Computation of the Sommerfeld Integral tails using the matrix pencil method

The oscillating infinite domain Sommerfeld integrals (SI) are difficult to integrate using a numerical procedure when dealing with structures in a layered media, even though several researchers have attempted to do that. Generally, integration along the real axis is used to compute the SI. However,...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation Vol. 54; no. 4; pp. 1358 - 1362
Main Authors: Mengtao Yuan, Sarkar, T.K.
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.04.2006
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-926X, 1558-2221
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The oscillating infinite domain Sommerfeld integrals (SI) are difficult to integrate using a numerical procedure when dealing with structures in a layered media, even though several researchers have attempted to do that. Generally, integration along the real axis is used to compute the SI. However, significant computational effort is required to integrate the oscillating and slowly decaying function along the tail. Extrapolation methods are generally applied to accelerate the rate of convergence of these integrals. However, there are difficulties with the extrapolation methods, such as locations for the breakpoints. In this paper, we illustrate a simplified approach for accurate and efficient calculation of the integrals dealing with the tails of the SI. In this paper, we fit the tail by a sum of finite (usually 10 to 20) complex exponentials using the matrix pencil method (MPM). The integral of the tail of the SI is then simply calculated by summing some complex numbers. No numerical integration is needed in this process, as the integrals can be done analytically. Good accuracy is achieved with a small number of evaluations for the integral kernel (60 points for the MPM as compared with hundreds or thousands of functional evaluations using the traditional extrapolation methods) along the tails of the SI. Simulation results show that to obtain the similar accuracy in the evaluation of the SI, the MPM is approximately 10 times faster than the traditional extrapolation methods. Moreover, since the MPM is robust to the effects of noise, this method is more stable, especially for large values of the horizontal distances. The method proposed in this paper is thus a new and better technique to obtain accurate results for the computation of the Green's function for a layered media in the spatial domain.
AbstractList The oscillating infinite domain Sommerfeld integrals (SI) are difficult to integrate using a numerical procedure when dealing with structures in a layered media, even though several researchers have attempted to do that. Generally, integration along the real axis is used to compute the SI. However, significant computational effort is required to integrate the oscillating and slowly decaying function along the tail. Extrapolation methods are generally applied to accelerate the rate of convergence of these integrals. However, there are difficulties with the extrapolation methods, such as locations for the breakpoints. In this paper, we illustrate a simplified approach for accurate and efficient calculation of the integrals dealing with the tails of the SI. In this paper, we fit the tail by a sum of finite (usually 10 to 20) complex exponentials using the matrix pencil method (MPM). The integral of the tail of the SI is then simply calculated by summing some complex numbers. No numerical integration is needed in this process, as the integrals can be done analytically. Good accuracy is achieved with a small number of evaluations for the integral kernel (60 points for the MPM as compared with hundreds or thousands of functional evaluations using the traditional extrapolation methods) along the tails of the SI. Simulation results show that to obtain the similar accuracy in the evaluation of the SI, the MPM is approximately 10 times faster than the traditional extrapolation methods. Moreover, since the MPM is robust to the effects of noise, this method is more stable, especially for large values of the horizontal distances. The method proposed in this paper is thus a new and better technique to obtain accurate results for the computation of the Green's function for a layered media in the spatial domain.
Simulation results show that to obtain the similar accuracy in the evaluation of the SI, the MPM is approximately 10 times faster than the traditional extrapolation methods. [...] since the MPM is robust to the effects of noise, this method is more stable, especially for large values of the horizontal distances.
Author Mengtao Yuan
Sarkar, T.K.
Author_xml – sequence: 1
  surname: Mengtao Yuan
  fullname: Mengtao Yuan
  organization: EECS Dept., Syracuse Univ., NY, USA
– sequence: 2
  givenname: T.K.
  surname: Sarkar
  fullname: Sarkar, T.K.
  organization: EECS Dept., Syracuse Univ., NY, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17683445$$DView record in Pascal Francis
BookMark eNqNkcFLHTEQh0NR6NP23EMvS6HtaZ-ZbDabHOVRrVSwUAu9hWzeRCO7m9ckC_rfm9cVBA_SUwj5fjOT-Y7IwRQmJOQD0DUAVSfXpz_XjFKxlh0TrXhDVtC2smaMwQFZUQqyVkz8eUuOUrorVy45X5EfmzDu5myyD1MVXJVvsfoVxhGjw2FbXUwZb6IZqmz8kKo5-enmHzOaHP19tcPJ-qEaMd-G7Tty6MyQ8P3TeUx-n3273nyvL6_OLzanl7XlwHKNClDSrTNgjBPOsL6zxvYgoFdGWGmE64WRLbNSqha3gvVMMdkiyqYpL80x-brU3cXwd8aU9eiTxWEwE4Y56RLjTduJtpBfXiWZBNpJgP8Ay8IEUwX89AK8C3Ocyne1AgYNk5wW6PMTZJI1g4umbCnpXfSjiQ8aOiEbzvfjnSycjSGliO4ZoXovVRepei9VL1JLon2RsH6Rl2Mx9Eru45LziPjcRQAHpZpHw02vww
CODEN IETPAK
CitedBy_id crossref_primary_10_1016_j_aeue_2009_05_006
crossref_primary_10_1002_mop_23283
crossref_primary_10_1016_j_camwa_2009_06_044
crossref_primary_10_1109_JLT_2008_2005914
crossref_primary_10_1029_2007RS003731
crossref_primary_10_1109_TGRS_2014_2329995
crossref_primary_10_1109_JMMCT_2016_2613868
crossref_primary_10_1109_TCPMT_2014_2372771
crossref_primary_10_1109_TAP_2009_2037761
crossref_primary_10_1109_TAP_2013_2265377
crossref_primary_10_1109_TAP_2012_2186244
crossref_primary_10_1109_TAP_2015_2477414
crossref_primary_10_1109_LMWC_2012_2188020
crossref_primary_10_1007_s11432_010_4093_7
crossref_primary_10_1109_TAP_2012_2210179
crossref_primary_10_1109_TAP_2022_3227799
crossref_primary_10_1109_TAP_2008_922176
crossref_primary_10_1109_TAP_2022_3161316
crossref_primary_10_1109_TMTT_2012_2195025
crossref_primary_10_1109_TMTT_2012_2231424
crossref_primary_10_1109_TAP_2019_2938675
crossref_primary_10_1109_TAP_2013_2238211
crossref_primary_10_1049_iet_map_2009_0033
crossref_primary_10_1109_LMWC_2007_911971
crossref_primary_10_1109_TAP_2010_2096187
Cites_doi 10.1109/22.75309
10.1023/A:1022318402393
10.1109/36.752208
10.1109/TMTT.1986.1133357
10.1109/8.56988
10.1109/8.725271
10.1109/22.493917
10.21236/ADA020991
10.1109/29.56027
10.1002/(SICI)1522-6301(199709)7:5<330::AID-MMCE3>3.0.CO;2-L
10.56021/9781421407944
10.1109/TMTT.2002.1006417
10.1109/74.370583
10.1109/22.775434
10.1109/8.558666
10.1109/TAP.2004.829849
10.1109/75.877225
ContentType Journal Article
Copyright 2006 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006
Copyright_xml – notice: 2006 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SP
8FD
L7M
H8D
F28
FR3
DOI 10.1109/TAP.2006.872656
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Aerospace Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
Aerospace Database
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Technology Research Database
Technology Research Database
Engineering Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1558-2221
EndPage 1362
ExternalDocumentID 2544100001
17683445
10_1109_TAP_2006_872656
1614199
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
VJK
VOH
AAYXX
CITATION
IQODW
RIG
7SP
8FD
L7M
H8D
F28
FR3
ID FETCH-LOGICAL-c412t-e91e80dfa1aaf6fa2b7cacb161b9a6c8a6fb6a852c8895ed62b29285ee833b6a3
IEDL.DBID RIE
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000236745300040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-926X
IngestDate Sat Sep 27 20:15:39 EDT 2025
Sat Sep 27 19:44:54 EDT 2025
Mon Sep 29 02:44:26 EDT 2025
Sun Nov 09 06:50:44 EST 2025
Mon Jul 21 09:16:51 EDT 2025
Sat Nov 29 08:00:34 EST 2025
Tue Nov 18 21:45:26 EST 2025
Tue Aug 26 16:36:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Breakpoint
Numerical integration
Extrapolation methods
Moment method
method of moments (MoM)
Computational complexity
Green function
Integral method
Stratified medium
Accuracy
matrix pencil method (MPM)
Infinite medium
Simulation
Sommerfeld integrals
Convergence rate
Sommerfeld integration (SI)
Computational electromagnetics
Matrix method
Localization
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-e91e80dfa1aaf6fa2b7cacb161b9a6c8a6fb6a852c8895ed62b29285ee833b6a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 912132840
PQPubID 23500
PageCount 5
ParticipantIDs proquest_journals_912132840
proquest_miscellaneous_28014629
pascalfrancis_primary_17683445
proquest_miscellaneous_28107811
crossref_primary_10_1109_TAP_2006_872656
proquest_miscellaneous_889435765
crossref_citationtrail_10_1109_TAP_2006_872656
ieee_primary_1614199
PublicationCentury 2000
PublicationDate 2006-04-01
PublicationDateYYYYMMDD 2006-04-01
PublicationDate_xml – month: 04
  year: 2006
  text: 2006-04-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on antennas and propagation
PublicationTitleAbbrev TAP
PublicationYear 2006
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref20
ref11
ref10
ref1
ref17
ref16
Chow (ref6) 1990
ref19
ref18
ref8
ref7
ref9
Gander (ref21) 2000; 40
(ref3) 2004
ref5
Yuan (ref2)
Sommerfeld (ref4) 1969
References_xml – ident: ref10
  doi: 10.1109/22.75309
– volume: 40
  start-page: 84
  issue: 1
  year: 2000
  ident: ref21
  article-title: Adaptive Quadrature - Revisited
  publication-title: BIT
  doi: 10.1023/A:1022318402393
– ident: ref14
  doi: 10.1109/36.752208
– ident: ref18
  doi: 10.1109/TMTT.1986.1133357
– ident: ref8
  doi: 10.1109/8.56988
– ident: ref2
  article-title: Modeling large and complex structures in computational electromagnetics
  publication-title: IEEE Antennas Propagat Mag
– ident: ref15
  doi: 10.1109/8.725271
– volume-title: Waves and Fields in Inhomogeneous Media
  year: 1990
  ident: ref6
– ident: ref11
  doi: 10.1109/22.493917
– ident: ref5
  doi: 10.21236/ADA020991
– volume-title: WIPL-D Pro User’s Manual
  year: 2004
  ident: ref3
– volume-title: Partial Differential Equations in Physics
  year: 1969
  ident: ref4
– ident: ref20
  doi: 10.1109/29.56027
– ident: ref17
  doi: 10.1002/(SICI)1522-6301(199709)7:5<330::AID-MMCE3>3.0.CO;2-L
– ident: ref19
  doi: 10.56021/9781421407944
– ident: ref13
  doi: 10.1109/TMTT.2002.1006417
– ident: ref16
  doi: 10.1109/74.370583
– ident: ref1
  doi: 10.1109/22.775434
– ident: ref7
  doi: 10.1109/8.558666
– ident: ref9
  doi: 10.1109/TAP.2004.829849
– ident: ref12
  doi: 10.1109/75.877225
SSID ssj0014844
Score 2.008035
Snippet The oscillating infinite domain Sommerfeld integrals (SI) are difficult to integrate using a numerical procedure when dealing with structures in a layered...
Simulation results show that to obtain the similar accuracy in the evaluation of the SI, the MPM is approximately 10 times faster than the traditional...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1358
SubjectTerms Acceleration
Accuracy
Applied sciences
Computation
Convergence
Dealing
Exact sciences and technology
Extrapolation
Extrapolation methods
Filling
Integral equations
Integrals
Kernel
Mathematical analysis
Mathematical models
matrix pencil method (MPM)
Media
method of moments (MoM)
Moment methods
Nonhomogeneous media
Radiocommunications
Radiowave propagation
Sommerfeld integration (SI)
Studies
Tail
Telecommunications
Telecommunications and information theory
Transmission line matrix methods
Title Computation of the Sommerfeld Integral tails using the matrix pencil method
URI https://ieeexplore.ieee.org/document/1614199
https://www.proquest.com/docview/912132840
https://www.proquest.com/docview/28014629
https://www.proquest.com/docview/28107811
https://www.proquest.com/docview/889435765
Volume 54
WOSCitedRecordID wos000236745300040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2221
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014844
  issn: 0018-926X
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PSx0xEB5UetCDWq24am0OPfTg6iabzSZHkYqlRYRaeLclySZFeL4V9z3xz3eSrE-lVfC2kFkI82NnJpn9PoCvrmKt9aLIrWlNzo2ockONyA2XDl3KCuGjpX_V5-dyNFIXC3Aw_xfGOReHz9xheIx3-W1nZ-Go7AirE06VWoTFuq7Tv1rzGwMueUJcphjATIwGGB9aqKPL44t06yBrJgJT9bMMFClVwkCk7lEnPpFZ_PNdjsnmdO1921yH1aGoJMfJCz7CgptswMozqMFN-JnoG6IdSOcJ1n3kdxdOrb0bt-RHQo0YkzBQ2pMwDf83ylwHCP97coPOfDUmiW_6E_w5_X55cpYPRAq55ZRNc6eok0XrNdXaC6-Zqa22BvdplBZWauGN0LJiVkpVuVYwwxSTlXOyLHGl3IKlSTdx20BMIXWJMc7RyNgsGc1LazEPoiNgpch4BoePym3sgDIeyC7GTew2CtWgNQL3pWiSNTL4Nn_hJgFsvC66GZT9JJb0nMH-C-s9rWMrVXJeZbD7aM5miNC-UQHLDnNzkcGX-SqGVrgv0RPXzfqGRWQdpt6SoAEsiWZAXpGQAd8ee7pq5_-b34XldKgTZoH2YGl6O3Of4YO9m171t_vRxR8A2RP7FA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB-sLbQ-aFtbXD_z0Ic-dHWTzeaSRxFF8XoIvcK9LUk2EeF6K-6d9M_vJFlPS2uhbwuZhTAfOzPJ7O8H8MlVrLFeFLk1jcm5EVVuqBG54dKhS1khfLT0cDAayclEXa3Al-W_MM65OHzmDsNjvMtvWrsIR2VHWJ1wqtQLeFlxzmj6W2t5Z8AlT5jLFEOYiUkP5EMLdTQ-vkr3DnLAROCqfpKDIqlKGInUHWrFJzqLP77MMd2cbfzfRt_Cel9WkuPkB-9gxc3ew9oTsMFNuEwEDtESpPUEKz_yrQ3n1t5NG3KRcCOmJIyUdiTMw19HmR8BxP8nuUV3vpmSxDj9Ab6fnY5PzvOeSiG3nLJ57hR1smi8plp74TUzA6utwX0apYWVWngjtKyYlVJVrhHMMMVk5ZwsS1wpP8LqrJ25LSCmkLrEKOdoZmyXjOaltZgJ0RWwVmQ8g8MH5da2xxkPdBfTOvYbharRGoH9UtTJGhl8Xr5wmyA2nhfdDMp-FEt6zmD_N-s9rmMzVXJeZbDzYM66j9GuVgHNDrNzkcHBchWDK9yY6JlrF13NIrYOU_-SoAEuiWZAnpGQAeEeu7pq---bP4DX5-Ovw3p4MbrcgTfpiCdMBu3C6vxu4fbglb2f33R3-9HdfwEGpP5b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computation+of+the+Sommerfeld+Integral+tails+using+the+matrix+pencil+method&rft.jtitle=IEEE+transactions+on+antennas+and+propagation&rft.au=Mengtao+Yuan&rft.au=Sarkar%2C+T.K.&rft.date=2006-04-01&rft.pub=IEEE&rft.issn=0018-926X&rft.volume=54&rft.issue=4&rft.spage=1358&rft.epage=1362&rft_id=info:doi/10.1109%2FTAP.2006.872656&rft.externalDocID=1614199
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-926X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-926X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-926X&client=summon