Minimax and risk averse multistage stochastic programming

► We study relations between the minimax, risk averse and nested formulations of multistage stochastic programming problems. ► We discuss conditions for time consistency of such formulations of stochastic problems. ► We also describe a connection between law invariant coherent risk measures and the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:European journal of operational research Ročník 219; číslo 3; s. 719 - 726
Hlavný autor: Shapiro, Alexander
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 16.06.2012
Elsevier
Elsevier Sequoia S.A
Predmet:
ISSN:0377-2217, 1872-6860
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract ► We study relations between the minimax, risk averse and nested formulations of multistage stochastic programming problems. ► We discuss conditions for time consistency of such formulations of stochastic problems. ► We also describe a connection between law invariant coherent risk measures and the corresponding sets of probability measures in their dual representation. In this paper we study relations between the minimax, risk averse and nested formulations of multistage stochastic programming problems. In particular, we discuss conditions for time consistency of such formulations of stochastic problems. We also describe a connection between law invariant coherent risk measures and the corresponding sets of probability measures in their dual representation. Finally, we discuss a minimax approach with moment constraints to the classical inventory model.
AbstractList In this paper we study relations between the minimax, risk averse and nested formulations of multistage stochastic programming problems. In particular, we discuss conditions for time consistency of such formulations of stochastic problems. We also describe a connection between law invariant coherent risk measures and the corresponding sets of probability measures in their dual representation. Finally, we discuss a minimax approach with moment constraints to the classical inventory model. [PUBLICATION ABSTRACT]
► We study relations between the minimax, risk averse and nested formulations of multistage stochastic programming problems. ► We discuss conditions for time consistency of such formulations of stochastic problems. ► We also describe a connection between law invariant coherent risk measures and the corresponding sets of probability measures in their dual representation. In this paper we study relations between the minimax, risk averse and nested formulations of multistage stochastic programming problems. In particular, we discuss conditions for time consistency of such formulations of stochastic problems. We also describe a connection between law invariant coherent risk measures and the corresponding sets of probability measures in their dual representation. Finally, we discuss a minimax approach with moment constraints to the classical inventory model.
Author Shapiro, Alexander
Author_xml – sequence: 1
  givenname: Alexander
  surname: Shapiro
  fullname: Shapiro, Alexander
  email: ashapiro@isye.gatech.edu
  organization: School of Industrial & Systems Engineering, Georgia Institute of Technology, 765 Ferst Drive, Atlanta, GA 30332, United States
BackLink http://www.econis.eu/PPNSET?PPN=71502535X$$DView this record in ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25660448$$DView record in Pascal Francis
BookMark eNp9kMFqGzEURUVxoLbTH-imQyHLcZ6kkTQD2QSTNoGUbFLoTmg0kquJLbmSbNq_r4wdCFkYHmhz7rt6Z4YmPniD0GcMCwyYX48LM4a4IIDxogwA-4CmuBWk5i2HCZoCFaImBIuPaJbSCACYYTZF3Q_n3Ub9rZQfqujSS6X2JiZTbXbr7FJWK1OlHPRvlbLT1TaGVVSbjfOrS3Rh1TqZT6d3jn5-u3te3tePT98flrePtW4wyfXQdwOltuWa8q5XjTWCEaqHRrN2AGGBEsu5NRQaJhrRK911XdtjxXoLpBV0jr4e95buPzuTshzDLvpSKTvCWSlhTYGuTpBKWq1tVF67JLex3Bb_ScI4h6ZpC_flyBkd_BtAYAaEUfarEO2R0DGkFI2V2mWVXfA5KreWGOTBuBzlwbg8GJdlivESJe-ir-vPhm5OPyoO985EmbQzXpvBRaOzHII7F_8P83Kafg
CODEN EJORDT
CitedBy_id crossref_primary_10_1287_ijoc_2023_0126
crossref_primary_10_1155_2018_5498760
crossref_primary_10_1109_LCSYS_2021_3114126
crossref_primary_10_1137_21M1446484
crossref_primary_10_1287_moor_2014_0689
crossref_primary_10_1016_j_ejor_2018_07_014
crossref_primary_10_1080_24725854_2017_1382749
crossref_primary_10_1080_00207543_2014_937509
crossref_primary_10_1287_moor_2021_1213
crossref_primary_10_1002_2050_7038_12211
crossref_primary_10_1016_j_ejor_2015_05_048
crossref_primary_10_1287_opre_2021_2120
crossref_primary_10_1016_j_ijepes_2015_04_002
crossref_primary_10_1109_TAC_2024_3444868
crossref_primary_10_1016_j_insmatheco_2015_03_011
crossref_primary_10_1016_j_orl_2023_04_001
crossref_primary_10_1109_TAC_2021_3131149
crossref_primary_10_1016_j_artint_2022_103743
crossref_primary_10_1007_s00186_024_00857_0
crossref_primary_10_1080_01605682_2018_1524350
crossref_primary_10_1016_j_biombioe_2018_01_003
crossref_primary_10_1093_qopen_qoab016
crossref_primary_10_5604_01_3001_0014_0818
crossref_primary_10_1287_opre_2013_1229
crossref_primary_10_1016_j_ejor_2015_03_046
crossref_primary_10_1109_TSG_2023_3265398
crossref_primary_10_1016_j_ejor_2020_07_041
crossref_primary_10_1287_opre_2023_0446
crossref_primary_10_1007_s10951_022_00775_1
crossref_primary_10_1029_2017WR021803
crossref_primary_10_1007_s11004_021_09984_4
crossref_primary_10_1080_03461238_2019_1598891
crossref_primary_10_1109_TPWRS_2014_2355204
crossref_primary_10_1016_j_orl_2022_08_002
crossref_primary_10_1287_opre_2015_1466
crossref_primary_10_1007_s10107_018_1249_5
crossref_primary_10_1007_s10479_014_1559_9
crossref_primary_10_1287_opre_2023_2470
crossref_primary_10_1109_TCST_2019_2929492
crossref_primary_10_1016_j_ejor_2011_11_012
crossref_primary_10_1137_22M147178X
crossref_primary_10_1287_ijoc_2017_0767
crossref_primary_10_1287_moor_2017_0911
crossref_primary_10_1109_TPWRS_2015_2424974
crossref_primary_10_1016_j_compchemeng_2013_03_018
crossref_primary_10_1016_j_omega_2019_06_006
crossref_primary_10_1016_j_compchemeng_2018_09_010
crossref_primary_10_1016_j_ejor_2023_05_030
crossref_primary_10_1109_TCST_2023_3274843
crossref_primary_10_1007_s00291_014_0379_2
crossref_primary_10_1093_biomet_asae044
Cites_doi 10.1098/rspa.1958.0062
10.1515/9783110212075
10.1111/1467-9965.00068
10.1016/j.orl.2009.02.005
10.1016/j.orl.2011.01.001
10.1287/moor.1060.0204
10.1287/moor.1050.0186
10.1287/moor.1040.0129
10.1287/opre.1050.0216
10.1007/s10107-010-0393-3
10.1016/j.spa.2004.03.004
10.1007/s10107-003-0454-y
ContentType Journal Article
Copyright 2011 Elsevier B.V.
2015 INIST-CNRS
Copyright Elsevier Sequoia S.A. Jun 16, 2012
Copyright_xml – notice: 2011 Elsevier B.V.
– notice: 2015 INIST-CNRS
– notice: Copyright Elsevier Sequoia S.A. Jun 16, 2012
DBID AAYXX
CITATION
OQ6
IQODW
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ejor.2011.11.005
DatabaseName CrossRef
ECONIS
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
Applied Sciences
EISSN 1872-6860
EndPage 726
ExternalDocumentID 2603795521
25660448
71502535X
10_1016_j_ejor_2011_11_005
S0377221711009921
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HZ~
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
XPP
ZMT
~02
~G-
1OL
29G
41~
9DU
AAAKG
AALRI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADNMO
ADXHL
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HVGLF
R2-
SEW
VH1
WUQ
~HD
AAYOK
OQ6
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c412t-db9d33f86c369ba4fe7523cd4c58d07f032f66fe3045747bac9998b1a5bf02873
ISICitedReferencesCount 54
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000302199300023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-2217
IngestDate Sun Nov 09 06:12:43 EST 2025
Mon Jul 21 09:14:25 EDT 2025
Sat Mar 08 16:22:13 EST 2025
Tue Nov 18 21:49:25 EST 2025
Sat Nov 29 01:41:04 EST 2025
Fri Feb 23 02:32:29 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Dynamic equations
Coherent risk measures
Robust optimization
Problem of moments
Risk averse stochastic optimization
Stochastic programming
Modeling
Risk aversion
Uncertain system
Invariant measure
Minimax problem
Minimax method
Inventory control
Moment problem
Robustness
Temporal coherence
Risk management
Probability measure
Mathematical programming
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c412t-db9d33f86c369ba4fe7523cd4c58d07f032f66fe3045747bac9998b1a5bf02873
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 926541254
PQPubID 45678
PageCount 8
ParticipantIDs proquest_journals_926541254
pascalfrancis_primary_25660448
econis_primary_71502535X
crossref_citationtrail_10_1016_j_ejor_2011_11_005
crossref_primary_10_1016_j_ejor_2011_11_005
elsevier_sciencedirect_doi_10_1016_j_ejor_2011_11_005
PublicationCentury 2000
PublicationDate 2012-06-16
PublicationDateYYYYMMDD 2012-06-16
PublicationDate_xml – month: 06
  year: 2012
  text: 2012-06-16
  day: 16
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle European journal of operational research
PublicationYear 2012
Publisher Elsevier B.V
Elsevier
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier
– name: Elsevier Sequoia S.A
References H. Föllmer, A, Schield, Stochastic Finance: An Introduction In Discrete Time, De Gruyter Studies in Mathematics, second ed., Berlin, 2004.
Ruszczyński, Shapiro (b0075) 2006; 31
Ruszczyński, Shapiro (b0080) 2006; 31
Ruszczyński (b0085) 2010; 125
P. Carpentier, J-P Chancelier, G. Cohen, M. De Lara, P. Girardeau, Dynamic consistency for stochastic optimal control problems
Shapiro, Dentcheva, Ruszczyński (b0100) 2009
Shapiro (b0105) 2011; 39
Iyengar (b0035) 2005; 30
Moments in mathematics, H.J. Landau (ed.), Proc. Sympos. Appl. Math., 37, Amer. Math. Soc., Providence, RI, 1987.
Scarf (b0090) 1958; 12
Shapiro (b0095) 2009; 37
Markowitz (b0045) 1952; 7
Rogosinski (b0070) 1958; 245
.
Rockafellar, Wets (b0065) 1998
Artzner, Delbaen, Eber, Heath (b0005) 1999; 9
Zipkin (b0115) 2000
Ben-Tal, El Ghaoui, Nemirovski (b0015) 2009
Billingsley (b0020) 1999
Ben-Tal, Goryashko, Guslitzer, Nemirovski (b0010) 2004; 99
Nilim, El Ghaoui (b0040) 2005; 53
Riedel (b0055) 2004; 112
Žáčková (b0110) 1966; 91
Pflug, Römisch (b0060) 2007
10.1016/j.ejor.2011.11.005_b0025
Rockafellar (10.1016/j.ejor.2011.11.005_b0065) 1998
Ruszczyński (10.1016/j.ejor.2011.11.005_b0075) 2006; 31
Ruszczyński (10.1016/j.ejor.2011.11.005_b0085) 2010; 125
10.1016/j.ejor.2011.11.005_b0030
Iyengar (10.1016/j.ejor.2011.11.005_b0035) 2005; 30
Riedel (10.1016/j.ejor.2011.11.005_b0055) 2004; 112
Ruszczyński (10.1016/j.ejor.2011.11.005_b0080) 2006; 31
Rogosinski (10.1016/j.ejor.2011.11.005_b0070) 1958; 245
Shapiro (10.1016/j.ejor.2011.11.005_b0095) 2009; 37
Nilim (10.1016/j.ejor.2011.11.005_b0040) 2005; 53
Artzner (10.1016/j.ejor.2011.11.005_b0005) 1999; 9
Billingsley (10.1016/j.ejor.2011.11.005_b0020) 1999
Ben-Tal (10.1016/j.ejor.2011.11.005_b0015) 2009
Pflug (10.1016/j.ejor.2011.11.005_b0060) 2007
Žáčková (10.1016/j.ejor.2011.11.005_b0110) 1966; 91
10.1016/j.ejor.2011.11.005_b0050
Scarf (10.1016/j.ejor.2011.11.005_b0090) 1958; 12
Markowitz (10.1016/j.ejor.2011.11.005_b0045) 1952; 7
Shapiro (10.1016/j.ejor.2011.11.005_b0105) 2011; 39
Zipkin (10.1016/j.ejor.2011.11.005_b0115) 2000
Ben-Tal (10.1016/j.ejor.2011.11.005_b0010) 2004; 99
Shapiro (10.1016/j.ejor.2011.11.005_b0100) 2009
References_xml – volume: 9
  start-page: 203
  year: 1999
  end-page: 228
  ident: b0005
  article-title: Coherent measures of risk
  publication-title: Mathematical Finance
– volume: 245
  start-page: 1
  year: 1958
  end-page: 27
  ident: b0070
  article-title: Moments of non-negative mass
  publication-title: Proceedings of Royal Society London Series A
– reference: Moments in mathematics, H.J. Landau (ed.), Proc. Sympos. Appl. Math., 37, Amer. Math. Soc., Providence, RI, 1987.
– year: 1999
  ident: b0020
  article-title: Convergence of Probability Measures
– reference: P. Carpentier, J-P Chancelier, G. Cohen, M. De Lara, P. Girardeau, Dynamic consistency for stochastic optimal control problems,
– volume: 91
  start-page: 423
  year: 1966
  end-page: 430
  ident: b0110
  article-title: On minimax solution of stochastic linear programming problems
  publication-title: Cas. Pest. Mat.
– reference: .
– volume: 99
  start-page: 351
  year: 2004
  end-page: 376
  ident: b0010
  article-title: Adjustable robust solutions of uncertain linear programs
  publication-title: Mathematical Programming
– volume: 30
  start-page: 257
  year: 2005
  end-page: 280
  ident: b0035
  article-title: Robust dynamic programming
  publication-title: Mathematics of Operations Research
– volume: 31
  start-page: 433
  year: 2006
  end-page: 452
  ident: b0075
  article-title: Optimization of convex risk functions
  publication-title: Mathematics of Operations Research
– year: 1998
  ident: b0065
  article-title: Variational Analysis
– volume: 37
  start-page: 143
  year: 2009
  end-page: 147
  ident: b0095
  article-title: On a time consistency concept in risk averse multi-stage stochastic programming
  publication-title: Operations Research Letters
– volume: 39
  start-page: 83
  year: 2011
  end-page: 87
  ident: b0105
  article-title: A dynamic programming approach to adjustable robust optimization
  publication-title: Operations Research Letters
– volume: 7
  start-page: 77
  year: 1952
  end-page: 91
  ident: b0045
  article-title: Portfolio selection
  publication-title: Journal of Finance
– reference: H. Föllmer, A, Schield, Stochastic Finance: An Introduction In Discrete Time, De Gruyter Studies in Mathematics, second ed., Berlin, 2004.
– year: 2007
  ident: b0060
  article-title: Modeling, Measuring and Managing Risk
– year: 2009
  ident: b0100
  article-title: Lectures on Stochastic Programming: Modeling and Theory
– year: 2000
  ident: b0115
  article-title: Foundations of Inventory Management
– volume: 125
  start-page: 235
  year: 2010
  end-page: 261
  ident: b0085
  article-title: Risk-averse dynamic programming for Markov decision processes
  publication-title: Mathematical Programming, Series B
– volume: 31
  start-page: 544
  year: 2006
  end-page: 561
  ident: b0080
  article-title: Conditional risk mappings
  publication-title: Mathematics of Operations Research
– volume: 112
  start-page: 185
  year: 2004
  end-page: 200
  ident: b0055
  article-title: Dynamic coherent risk measures
  publication-title: Stochastic Processes and Their Applications
– volume: 53
  start-page: 780
  year: 2005
  end-page: 798
  ident: b0040
  article-title: Robust control of Markov decision processes with uncertain transition matrices
  publication-title: Operations Research
– volume: 12
  year: 1958
  ident: b0090
  article-title: A min-max solution of an inventory problem
  publication-title: Studies in the Mathematical Theory of Inventory and Production (Chapter)
– year: 2009
  ident: b0015
  article-title: Robust Optimization
– volume: 245
  start-page: 1
  year: 1958
  ident: 10.1016/j.ejor.2011.11.005_b0070
  article-title: Moments of non-negative mass
  publication-title: Proceedings of Royal Society London Series A
  doi: 10.1098/rspa.1958.0062
– ident: 10.1016/j.ejor.2011.11.005_b0030
  doi: 10.1515/9783110212075
– volume: 9
  start-page: 203
  year: 1999
  ident: 10.1016/j.ejor.2011.11.005_b0005
  article-title: Coherent measures of risk
  publication-title: Mathematical Finance
  doi: 10.1111/1467-9965.00068
– volume: 37
  start-page: 143
  year: 2009
  ident: 10.1016/j.ejor.2011.11.005_b0095
  article-title: On a time consistency concept in risk averse multi-stage stochastic programming
  publication-title: Operations Research Letters
  doi: 10.1016/j.orl.2009.02.005
– year: 2000
  ident: 10.1016/j.ejor.2011.11.005_b0115
– volume: 12
  year: 1958
  ident: 10.1016/j.ejor.2011.11.005_b0090
  article-title: A min-max solution of an inventory problem
  publication-title: Studies in the Mathematical Theory of Inventory and Production (Chapter)
– year: 1999
  ident: 10.1016/j.ejor.2011.11.005_b0020
– year: 1998
  ident: 10.1016/j.ejor.2011.11.005_b0065
– ident: 10.1016/j.ejor.2011.11.005_b0025
– volume: 39
  start-page: 83
  year: 2011
  ident: 10.1016/j.ejor.2011.11.005_b0105
  article-title: A dynamic programming approach to adjustable robust optimization
  publication-title: Operations Research Letters
  doi: 10.1016/j.orl.2011.01.001
– year: 2009
  ident: 10.1016/j.ejor.2011.11.005_b0100
– volume: 7
  start-page: 77
  year: 1952
  ident: 10.1016/j.ejor.2011.11.005_b0045
  article-title: Portfolio selection
  publication-title: Journal of Finance
– volume: 31
  start-page: 544
  year: 2006
  ident: 10.1016/j.ejor.2011.11.005_b0080
  article-title: Conditional risk mappings
  publication-title: Mathematics of Operations Research
  doi: 10.1287/moor.1060.0204
– volume: 31
  start-page: 433
  year: 2006
  ident: 10.1016/j.ejor.2011.11.005_b0075
  article-title: Optimization of convex risk functions
  publication-title: Mathematics of Operations Research
  doi: 10.1287/moor.1050.0186
– volume: 30
  start-page: 257
  year: 2005
  ident: 10.1016/j.ejor.2011.11.005_b0035
  article-title: Robust dynamic programming
  publication-title: Mathematics of Operations Research
  doi: 10.1287/moor.1040.0129
– volume: 53
  start-page: 780
  year: 2005
  ident: 10.1016/j.ejor.2011.11.005_b0040
  article-title: Robust control of Markov decision processes with uncertain transition matrices
  publication-title: Operations Research
  doi: 10.1287/opre.1050.0216
– ident: 10.1016/j.ejor.2011.11.005_b0050
– volume: 125
  start-page: 235
  year: 2010
  ident: 10.1016/j.ejor.2011.11.005_b0085
  article-title: Risk-averse dynamic programming for Markov decision processes
  publication-title: Mathematical Programming, Series B
  doi: 10.1007/s10107-010-0393-3
– volume: 91
  start-page: 423
  year: 1966
  ident: 10.1016/j.ejor.2011.11.005_b0110
  article-title: On minimax solution of stochastic linear programming problems
  publication-title: Cas. Pest. Mat.
– volume: 112
  start-page: 185
  year: 2004
  ident: 10.1016/j.ejor.2011.11.005_b0055
  article-title: Dynamic coherent risk measures
  publication-title: Stochastic Processes and Their Applications
  doi: 10.1016/j.spa.2004.03.004
– year: 2007
  ident: 10.1016/j.ejor.2011.11.005_b0060
– volume: 99
  start-page: 351
  year: 2004
  ident: 10.1016/j.ejor.2011.11.005_b0010
  article-title: Adjustable robust solutions of uncertain linear programs
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-003-0454-y
– year: 2009
  ident: 10.1016/j.ejor.2011.11.005_b0015
SSID ssj0001515
Score 2.3412013
Snippet ► We study relations between the minimax, risk averse and nested formulations of multistage stochastic programming problems. ► We discuss conditions for time...
In this paper we study relations between the minimax, risk averse and nested formulations of multistage stochastic programming problems. In particular, we...
SourceID proquest
pascalfrancis
econis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 719
SubjectTerms Applied sciences
Coherent risk measures
Dynamic equations
Exact sciences and technology
Inventory control, production control. Distribution
Inventory management
Mathematical programming
Operational research and scientific management
Operational research. Management science
Problem of moments
Reliability theory. Replacement problems
Risk assessment
Risk averse stochastic optimization
Risk aversion
Risk theory. Actuarial science
Robust optimization
Stochastic models
Stochastic programming
Studies
Title Minimax and risk averse multistage stochastic programming
URI https://dx.doi.org/10.1016/j.ejor.2011.11.005
http://www.econis.eu/PPNSET?PPN=71502535X
https://www.proquest.com/docview/926541254
Volume 219
WOSCitedRecordID wos000302199300023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBejLWNj7CPbaNat-GFvw8WWJUt6LKNjG6wM2kHejL68OrROSLqSP78nS7KTZpRtsBcTFMd29Dud7s53v0PovdY5U1SZVBFLUqKoTpUxLDW8KETOleWZ6ppNsNNTPpmI76HH5rJrJ8Dalq9WYv5foYYxANuVzv4F3P1FYQA-A-hwBNjh-EfAf2va5kquhsRx6TIvrE8dBFvwp-OUnekL6RiaY37WVdzBfhekDwYrDCxi6DBwBPWx5LMLOW_ulMysBxRcZkaZ-npHH-XaqnTx1VWMpRj7Ossj65UlZzgtue8HELVp1IDNurfd6UYWvvHbLPOF8lsa3AcTpkd2Olt4hlVHsprRYb_qswjP3EO5Z3K0d0I4OoFdzKgA5bZ7_OVk8rXfkp3V1r1OCn8iVE_5RL-7d9qwUPZcWKJZbpgqT-ZyCQuo9p1PtjbxzjI5f46eBpciOfai8AI9sO0IPYwVDSP0LHbuSIIiH6HHazSUL5EIIpMAbIkTmcSLTDKITDKITLImMq_Qj08n5x8_p6GlRqpJjq9To4QpipqXuiiFkqS2jOJCG6IpNxmrswLXZVlb9_4cHE0lNTgQXOWSqhosUVa8RjvtrLX7KKlNwYTNLZGCO9I9oVVWCyJzo7HBeT1GeZzGSge-edf25LKKiYXTyk195aYeHNEKpn6MPvS_mXu2lXvP3vfo9OcycG8wLehkjGjEqwqmpDcRK5Czey95uAFuf2XwDMqMED5GBxHtKqzAZSVwSWF6KXnzj7c9QI-GlfgW7Vwvftl3aE_fAMiLwyDNt3lxrWc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimax+and+risk+averse+multistage+stochastic+programming&rft.jtitle=European+journal+of+operational+research&rft.au=Shapiro%2C+Alexander&rft.date=2012-06-16&rft.pub=Elsevier+B.V&rft.issn=0377-2217&rft.eissn=1872-6860&rft.volume=219&rft.issue=3&rft.spage=719&rft.epage=726&rft_id=info:doi/10.1016%2Fj.ejor.2011.11.005&rft.externalDocID=S0377221711009921
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon