Numerical Strategies for Mixed-Integer Optimization of Power-Split and Gear Selection in Hybrid Electric Vehicles

This paper presents numerical strategies for a computationally efficient energy management system that co-optimizes the power split and gear selection of a hybrid electric vehicle (HEV). We formulate a mixed-integer optimal control problem (MIOCP) that is transcribed using multiple-shooting into a m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems Jg. 24; H. 3; S. 1 - 17
Hauptverfasser: Ganesan, Anand, Gros, Sebastien, Murgovski, Nikolce
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1524-9050, 1558-0016, 1558-0016
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper presents numerical strategies for a computationally efficient energy management system that co-optimizes the power split and gear selection of a hybrid electric vehicle (HEV). We formulate a mixed-integer optimal control problem (MIOCP) that is transcribed using multiple-shooting into a mixed-integer nonlinear program (MINLP) and then solved by nonlinear model predictive control. We present two different numerical strategies, a Selective Relaxation Approach (SRA), which decomposes the MINLP into several subproblems, and a Round-n-Search Approach (RSA), which is an enhancement of the known 'relax-n-round' strategy. Subsequently, the resulting algorithmic performance and optimality of the solution of the proposed strategies are analyzed against two benchmark strategies; one using rule-based gear selection, which is typically used in production vehicles, and the other using dynamic programming (DP), which provides a global optimum of a quantized version of the MINLP. The results show that both SRA and RSA enable about <inline-formula> <tex-math notation="LaTeX">{3.6}{\%}</tex-math> </inline-formula> cost reduction compared to the rule-based strategy, while still being within <inline-formula> <tex-math notation="LaTeX">\SI{1}{\%}</tex-math> </inline-formula> of the DP solution. Moreover, for the case studied RSA takes about <inline-formula> <tex-math notation="LaTeX">\SI{35}{\%}</tex-math> </inline-formula> less mean computation time compared to SRA, while both SRA and RSA being about <inline-formula> <tex-math notation="LaTeX">99</tex-math> </inline-formula> times faster than DP. Furthermore, both SRA and RSA were able to overcome the infeasibilities encountered by a typical rounding strategy under different drive cycles. The results show the computational benefit of the proposed strategies, as well as the energy saving possibility of co-optimization strategies in which actuator dynamics are explicitly included.
AbstractList This paper presents numerical strategies for a computationally efficient energy management system that co-optimizes the power split and gear selection of a hybrid electric vehicle (HEV). We formulate a mixed-integer optimal control problem (MIOCP) that is transcribed using multiple-shooting into a mixed-integer nonlinear program (MINLP) and then solved by nonlinear model predictive control. We present two different numerical strategies, a Selective Relaxation Approach (SRA), which decomposes the MINLP into several subproblems, and a Round-n-Search Approach (RSA), which is an enhancement of the known ‘relax-n-round’ strategy. Subsequently, the resulting algorithmic performance and optimality of the solution of the proposed strategies are analyzed against two benchmark strategies; one using rule-based gear selection, which is typically used in production vehicles, and the other using dynamic programming (DP), which provides a global optimum of a quantized version of the MINLP. The results show that both SRA and RSA enable about 3.6% cost reduction compared to the rule-based strategy, while still being within 1% of the DP solution. Moreover, for the case studied RSA takes about 35% less mean computation time compared to SRA, while both SRA and RSA being about 99 times faster than DP. Furthermore, both SRA and RSA were able to overcome the infeasibilities encountered by a typical rounding strategy under different drive cycles. The results show the computational benefit of the proposed strategies, as well as the energy saving possibility of co-optimization strategies in which actuator dynamics are explicitly included.
This paper presents numerical strategies for a computationally efficient energy management system that co-optimizes the power split and gear selection of a hybrid electric vehicle (HEV). We formulate a mixed-integer optimal control problem (MIOCP) that is transcribed using multiple-shooting into a mixed-integer nonlinear program (MINLP) and then solved by nonlinear model predictive control. We present two different numerical strategies, a Selective Relaxation Approach (SRA), which decomposes the MINLP into several subproblems, and a Round-n-Search Approach (RSA), which is an enhancement of the known ‘relax-n-round’ strategy. Subsequently, the resulting algorithmic performance and optimality of the solution of the proposed strategies are analyzed against two benchmark strategies; one using rule-based gear selection, which is typically used in production vehicles, and the other using dynamic programming (DP), which provides a global optimum of a quantized version of the MINLP. The results show that both SRA and RSA enable about 3.6% cost reduction compared to the rule-based strategy, while still being within 1% of the DP solution. Moreover, for the case studied RSA takes about 35% less mean computation time compared to SRA, while both SRA and RSA being about 99 times faster than DP. Furthermore, both SRA and RSA were able to overcome the infeasibilities encountered by a typical rounding strategy under different drive cycles. The results show the computational benefit of the proposed strategies, as well as the energy saving possibility of co-optimization strategies in which actuator dynamics are explicitly included.
This paper presents numerical strategies for a computationally efficient energy management system that co-optimizes the power split and gear selection of a hybrid electric vehicle (HEV). We formulate a mixed-integer optimal control problem (MIOCP) that is transcribed using multiple-shooting into a mixed-integer nonlinear program (MINLP) and then solved by nonlinear model predictive control. We present two different numerical strategies, a Selective Relaxation Approach (SRA), which decomposes the MINLP into several subproblems, and a Round-n-Search Approach (RSA), which is an enhancement of the known 'relax-n-round' strategy. Subsequently, the resulting algorithmic performance and optimality of the solution of the proposed strategies are analyzed against two benchmark strategies; one using rule-based gear selection, which is typically used in production vehicles, and the other using dynamic programming (DP), which provides a global optimum of a quantized version of the MINLP. The results show that both SRA and RSA enable about <inline-formula> <tex-math notation="LaTeX">{3.6}{\%}</tex-math> </inline-formula> cost reduction compared to the rule-based strategy, while still being within <inline-formula> <tex-math notation="LaTeX">\SI{1}{\%}</tex-math> </inline-formula> of the DP solution. Moreover, for the case studied RSA takes about <inline-formula> <tex-math notation="LaTeX">\SI{35}{\%}</tex-math> </inline-formula> less mean computation time compared to SRA, while both SRA and RSA being about <inline-formula> <tex-math notation="LaTeX">99</tex-math> </inline-formula> times faster than DP. Furthermore, both SRA and RSA were able to overcome the infeasibilities encountered by a typical rounding strategy under different drive cycles. The results show the computational benefit of the proposed strategies, as well as the energy saving possibility of co-optimization strategies in which actuator dynamics are explicitly included.
Author Murgovski, Nikolce
Ganesan, Anand
Gros, Sebastien
Author_xml – sequence: 1
  givenname: Anand
  orcidid: 0000-0002-1202-9842
  surname: Ganesan
  fullname: Ganesan, Anand
  organization: Research and Development, Volvo Car Corporation, Gothenburg, Sweden
– sequence: 2
  givenname: Sebastien
  orcidid: 0000-0001-6054-2133
  surname: Gros
  fullname: Gros, Sebastien
  organization: Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway
– sequence: 3
  givenname: Nikolce
  orcidid: 0000-0002-0960-7090
  surname: Murgovski
  fullname: Murgovski, Nikolce
  organization: Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
BackLink https://research.chalmers.se/publication/534273$$DView record from Swedish Publication Index (Chalmers tekniska högskola)
BookMark eNp9UU1P3DAQtSoqFWh_QNWLpZ6ztR07jo8VorASLUhZuFr-mHSNsnGws6L019dhaQ894MtYT-_NzJt3go7GOAJCHylZUUrUl816060YYWxVM6aY4G_QMRWirQihzdHyZ7xSRJB36CTn-4JyQekxevix30EKzgy4m5OZ4WeAjPuY8PfwC3y1HgsECV9Pc9iF32YOccSxxzfxEVLVTUOYsRk9vgCTcAcDuGdGGPHlk03B4_MFKgPwHWyDGyC_R297M2T48FJP0e23883ZZXV1fbE--3pVOU7ZXLmeec5rXrwYaYARAqoU5SWAkw1tuW9aSmwPhdlbT23tZU8ta4k1lvr6FHWHvvkRpr3VUwo7k550NEEnyGVft9Vua4biP-sM2sjaESV67UE1mjNTa6uM1V4K27QWhOBQun4-dJ1SfNhDnvV93KexGNFMtkS1klJRWPLAcinmnKDXLszPtys3DoOmRC-p6SU1vaSmX1IrSvqf8u_er2k-HTQBAP7xVXlUqPoPtBSnVQ
CODEN ITISFG
CitedBy_id crossref_primary_10_1016_j_etran_2024_100348
crossref_primary_10_1109_LCSYS_2025_3575335
crossref_primary_10_1109_TSMC_2024_3412172
crossref_primary_10_3390_wevj15050182
crossref_primary_10_1016_j_energy_2023_129574
crossref_primary_10_1088_1742_6596_2893_1_012068
crossref_primary_10_1109_TITS_2024_3436045
crossref_primary_10_1109_TITS_2024_3432775
crossref_primary_10_1177_09544070251356393
Cites_doi 10.1007/s10589-012-9518-3
10.1016/j.automatica.2020.109325
10.1177/0954407017732858
10.1002/9781119278924.ch6
10.1016/j.conengprac.2016.08.018
10.23919/ACC45564.2020.9147465
10.1109/LCSYS.2019.2920164
10.1109/TVT.2012.2207922
10.1109/TVT.2020.3018445
10.1016/j.ifacol.2020.12.1196
10.1115/1.4040219
10.1007/s11081-019-09438-1
10.1007/978-3-8348-8202-8
10.3182/20110828-6-IT-1002.01047
10.1109/TCST.2013.2296211
10.1109/MCS.2015.2449688
10.1080/00207179.2017.1316016
10.1109/MCS.2007.338280
10.1109/ACC.2012.6315200
10.4271/2019-24-0205
10.1007/s00186-011-0355-4
10.1007/s12532-018-0139-4
10.1016/j.mechatronics.2011.12.001
10.23919/ACC45564.2020.9147841
10.1109/ACC.2001.946337
10.1017/S0962492913000032
10.1016/S0005-1098(04)00223-7
10.2514/1.60492
10.1109/CCA.2016.7587889
10.1007/s10107-004-0559-y
10.1007/978-1-4471-6781-5
10.1109/tcst.2010.2061232
10.1109/TCST.2007.894649
10.1177/0954407017702985
10.1109/tcst.2021.3111538
10.1016/j.jfranklin.2019.09.011
10.1016/j.est.2021.103054
10.1007/978-3-642-35913-2
10.1109/VPPC46532.2019.8952549
10.1007/978-1-4614-1927-3
10.1126/science.153.3731.34
10.1016/j.egypro.2016.06.125
10.1109/TVT.2020.3030088
10.1109/VPPC49601.2020.9330841
10.1109/TVT.2012.2197767
10.1016/j.ifacol.2020.12.073
10.1109/TTE.2021.3083751
10.1007/s10107-020-01533-x
10.1016/j.conengprac.2015.04.014
10.1109/ECC.2016.7810644
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ABBSD
ADTPV
AOWAS
D8T
F1S
ZZAVC
DOI 10.1109/TITS.2022.3229254
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SWEPUB Chalmers tekniska högskola full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Chalmers tekniska högskola
SwePub Articles full text
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 17
ExternalDocumentID oai_research_chalmers_se_a73c095f_de96_42a3_b9ab_d75b68be554e
10_1109_TITS_2022_3229254
9999159
Genre orig-research
GrantInformation_xml – fundername: Sweden’s Innovation Agency (Vinnova)
  grantid: 2017-05506
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
AAYXX
AETIX
AGSQL
AIBXA
CITATION
EJD
H~9
ZY4
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ABAZT
ABBSD
ADTPV
AOWAS
D8T
F1S
ZZAVC
ID FETCH-LOGICAL-c412t-cf2d4434925a7ae200e9ae29d7eec76184d6810bfecf2fbd1b3d7f1b280bab1d3
IEDL.DBID RIE
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000910532700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-9050
1558-0016
IngestDate Wed Nov 05 04:14:09 EST 2025
Sun Nov 30 05:12:02 EST 2025
Sat Nov 29 06:35:02 EST 2025
Tue Nov 18 22:53:28 EST 2025
Tue Nov 25 14:44:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-cf2d4434925a7ae200e9ae29d7eec76184d6810bfecf2fbd1b3d7f1b280bab1d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1202-9842
0000-0002-0960-7090
0000-0001-6054-2133
OpenAccessLink https://research.chalmers.se/publication/534273
PQID 2780987115
PQPubID 75735
PageCount 17
ParticipantIDs proquest_journals_2780987115
swepub_primary_oai_research_chalmers_se_a73c095f_de96_42a3_b9ab_d75b68be554e
crossref_primary_10_1109_TITS_2022_3229254
crossref_citationtrail_10_1109_TITS_2022_3229254
ieee_primary_9999159
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref47
ref42
ref41
ref44
ref43
ref49
Sager (ref33) 2005
Sundström (ref4) 2009
ref8
ref9
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
(ref7) 2019
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Diehl (ref48) 2011
References_xml – ident: ref27
  doi: 10.1007/s10589-012-9518-3
– ident: ref23
  doi: 10.1016/j.automatica.2020.109325
– ident: ref2
  doi: 10.1177/0954407017732858
– ident: ref16
  doi: 10.1002/9781119278924.ch6
– ident: ref9
  doi: 10.1016/j.conengprac.2016.08.018
– ident: ref10
  doi: 10.23919/ACC45564.2020.9147465
– ident: ref39
  doi: 10.1109/LCSYS.2019.2920164
– ident: ref14
  doi: 10.1109/TVT.2012.2207922
– ident: ref28
  doi: 10.1109/TVT.2020.3018445
– ident: ref38
  doi: 10.1016/j.ifacol.2020.12.1196
– ident: ref42
  doi: 10.1115/1.4040219
– ident: ref20
  doi: 10.1007/s11081-019-09438-1
– ident: ref32
  doi: 10.1007/978-3-8348-8202-8
– ident: ref47
  doi: 10.3182/20110828-6-IT-1002.01047
– ident: ref25
  doi: 10.1109/TCST.2013.2296211
– ident: ref12
  doi: 10.1109/MCS.2015.2449688
– ident: ref15
  doi: 10.1080/00207179.2017.1316016
– ident: ref6
  doi: 10.1109/MCS.2007.338280
– ident: ref22
  doi: 10.1109/ACC.2012.6315200
– ident: ref31
  doi: 10.4271/2019-24-0205
– ident: ref52
  doi: 10.1007/s00186-011-0355-4
– ident: ref49
  doi: 10.1007/s12532-018-0139-4
– volume-title: Global EV Outlook 2019
  year: 2019
  ident: ref7
– ident: ref11
  doi: 10.1016/j.mechatronics.2011.12.001
– ident: ref26
  doi: 10.23919/ACC45564.2020.9147841
– ident: ref17
  doi: 10.1109/ACC.2001.946337
– ident: ref21
  doi: 10.1017/S0962492913000032
– ident: ref53
  doi: 10.1016/S0005-1098(04)00223-7
– ident: ref24
  doi: 10.2514/1.60492
– volume-title: Numerical optimal control
  year: 2011
  ident: ref48
– ident: ref8
  doi: 10.1109/CCA.2016.7587889
– ident: ref50
  doi: 10.1007/s10107-004-0559-y
– ident: ref1
  doi: 10.1007/978-1-4471-6781-5
– ident: ref45
  doi: 10.1109/tcst.2010.2061232
– ident: ref5
  doi: 10.1109/TCST.2007.894649
– ident: ref43
  doi: 10.1177/0954407017702985
– ident: ref36
  doi: 10.1109/tcst.2021.3111538
– ident: ref30
  doi: 10.1016/j.jfranklin.2019.09.011
– year: 2009
  ident: ref4
  article-title: Optimal control and design of hybrid-electric vehicles
– ident: ref37
  doi: 10.1016/j.est.2021.103054
– ident: ref3
  doi: 10.1007/978-3-642-35913-2
– ident: ref46
  doi: 10.1109/VPPC46532.2019.8952549
– ident: ref19
  doi: 10.1007/978-1-4614-1927-3
– ident: ref18
  doi: 10.1126/science.153.3731.34
– ident: ref44
  doi: 10.1016/j.egypro.2016.06.125
– ident: ref35
  doi: 10.1109/TVT.2020.3030088
– ident: ref40
  doi: 10.1109/VPPC49601.2020.9330841
– ident: ref41
  doi: 10.1109/TVT.2012.2197767
– year: 2005
  ident: ref33
  article-title: Numerical methods for mixed-integer optimal control problems
– ident: ref51
  doi: 10.1016/j.ifacol.2020.12.073
– ident: ref54
  doi: 10.1109/TTE.2021.3083751
– ident: ref29
  doi: 10.1007/s10107-020-01533-x
– ident: ref13
  doi: 10.1016/j.conengprac.2015.04.014
– ident: ref34
  doi: 10.1109/ECC.2016.7810644
SSID ssj0014511
Score 2.4751012
Snippet This paper presents numerical strategies for a computationally efficient energy management system that co-optimizes the power split and gear selection of a...
SourceID swepub
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Actuators
Dynamic programming
Electric vehicles
Energy management
Gears
hybrid electric vehicle
Hybrid electric vehicles
Mechanical power transmission
Mixed integer
Mixed-Integer nonlinear optimal control
Nonlinear control
nonlinear MPC
nonlinear programming
numerical optimization
Optimal control
optimal gear selection
optimal torque-split
Optimization
Predictive control
Real-time systems
Vehicle dynamics
Title Numerical Strategies for Mixed-Integer Optimization of Power-Split and Gear Selection in Hybrid Electric Vehicles
URI https://ieeexplore.ieee.org/document/9999159
https://www.proquest.com/docview/2780987115
https://research.chalmers.se/publication/534273
Volume 24
WOSCitedRecordID wos000910532700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB21FQc4tEBBbFuQD5wQaRPbieMjQi1FKkulXareLH-M2ZVKlm52K_j32E42aiWExCk5jCMrMxO_eDzvAbxlWFHkhQ8ekHHrRpRZXXmWmZBdojSmzJMWwdWFGI_r62t5uQXvh14YREyHz_A43qZavlvYddwqO5ERzZRyG7aFqLperaFiEHm2Ejcq5ZnMy00Fs8jlyfTzdBL-BCk9DtErackfrEFJVOUhvrzPGZrWmbO9_5vhU9jt8ST50AXAM9jC5jk8uccyuA-343VXlrkhGy5abEkAq-TL_Be6LG4Kfscl-Rq-Hj_6tkyy8OQyCqhlk4BSV0Q3jnwKSUEmSTcnWswbcv479nuR0ySlM7fkCmfplN0L-HZ2Ov14nvVKC5nlBV1l1lPHeSIq1EJjyByU4SKdQLQiasK4yFtmPAZLb1xhmBO-MLTOjTaFYy9hp1k0-ApIGKorrqlHWnDrw2Mcs0yW0jJTcKQjyDfvXtmehjyqYdyo9DuSSxXdpaK7VO-uEbwbhvzsODj-Zbwf3TIY9h4ZwdHGwarP0lZRUYcIFQEUj-Cic_owLtJu93xLM2VnScymVS0qLZgNuNQrh7JSnGqmjNRGuRDaVW0w4DM8-PskDuFxVKvvjrAdwc5qucbX8Mjerebt8k2K5z-Vy_St
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NgQQ8jB8bomyAH3hCZEtsJ44fJ7TRia5Mapn2ZsX2mVYaKTQtgv9-tpNGm4SQeEoezpGVu4u_-HzfB_COYUGRZ857QIatG5EnZeFYon12iVzrPI1aBJcjMR6XV1fyYgs-9L0wiBgPn-FhuI21fLsw67BVdiQDmsnlPbifc07TtlurrxkEpq3Ijkp5ItN8U8PMUnk0PZtO_L8gpYc-fiXN-Z1VKMqq3EWYt1lD40pz-uT_5vgUdjpESY7bEHgGW1g_h8e3eAZ34ed43RZmrsmGjRYb4uEqOZ__RpuEbcFvuCRf_Pfje9eYSRaOXAQJtWTiceqKVLUln3xakElUzgkW85oM_4SOL3ISxXTmhlziLJ6z24OvpyfTj8Ok01pIDM_oKjGOWs4jVWElKvS5g9JfpBWIRgRVGBuYy7RDb-m0zTSzwmWalqmudGbZC9iuFzW-BOKHVgWvqEOaceP8YywzTObSMJ1xpANIN-9emY6IPOhhXKv4Q5JKFdylgrtU564BvO-H_GhZOP5lvBvc0ht2HhnAwcbBqsvTRlFR-hgVHhYPYNQ6vR8XiLc7xqWZMrMoZ9OoBlUlmPHI1CmLslCcVkxpWWllfXAXpUaP0PDV3yfxFh4Op-cjNTobf96HR0G7vj3QdgDbq-UaX8MD82s1b5ZvYmzfAGzc9_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+Strategies+for+Mixed-Integer+Optimization+of+Power-Split+and+Gear+Selection+in+Hybrid+Electric+Vehicles&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Ganesan%2C+Anand&rft.au=Murgovski%2C+Nikolce&rft.au=Gros%2C+Sebastien&rft.date=2023-03-01&rft.issn=1524-9050&rft.volume=24&rft.issue=3&rft.spage=3194&rft_id=info:doi/10.1109%2FTITS.2022.3229254&rft.externalDocID=oai_research_chalmers_se_a73c095f_de96_42a3_b9ab_d75b68be554e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon