Big multi-step wind speed forecasting model based on secondary decomposition, ensemble method and error correction algorithm

•A new hybrid method is proposed for the wind speed multi-step forecasting.•The wavelet decomposition is adopted to reduce the noise of the original data.•The different decomposing algorithms are used to decompose the original data.•The different forecasting models are built to predict the pre-proce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy conversion and management Jg. 156; S. 525 - 541
Hauptverfasser: Liu, Hui, Duan, Zhu, Han, Feng-ze, Li, Yan-fei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Elsevier Ltd 15.01.2018
Elsevier Science Ltd
Schlagworte:
ISSN:0196-8904, 1879-2227
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A new hybrid method is proposed for the wind speed multi-step forecasting.•The wavelet decomposition is adopted to reduce the noise of the original data.•The different decomposing algorithms are used to decompose the original data.•The different forecasting models are built to predict the pre-processed data.•The error correction method is proposed to correct the wrong predictions. Wind power is one of the most promising powers. Wind speed forecasting can eliminate the harmful effect caused by the intermittent and fluctuation of wind power, and big multi-step forecasting can provide more time for the power grid to be adjusted. To achieve the high-precision big multi-step forecasting, a novel hybrid model named as the WD-SampEn-VMD-MadaBoost-BFGS-WF is proposed in the study, which consisting of three main modeling steps including the secondary decomposition, the ensemble method and the error correction. The detail of the proposed model is given as follows: (a) wind speed series are decomposed by the WD (Wavelet Decomposition) to obtain wind speed subseries. The SampEn (Sample Entropy) algorithm is used to estimate the unpredictability of these wind speed subseries. The most unpredictable subseries will be decomposed secondarily by the VMD (Variational Mode Decomposition); (b) the subseries are proceeded by the MAdaBoost (Modified AdaBoost.RT) with the BFGS (Broyden–Fletcher–Goldfarb–Shanno Quasi-Newton Back Propagation) neuron network to obtain forecasting subseries; (c) all of the forecasting subseries will be combined with the original subseries to form the combined wind speed series, which will be further proceeded by the WF (Wavelet Filter) to obtain the corrected forecasting series from the point of the frequency domain; (d) the corrected forecasting series are reconstructed to get the final forecasting series. To validate the effectiveness of the proposed model, several forecasting cases are provided in the study. The result indicates that the proposed model has satisfactory forecasting performance in the big multi-step extremely strong simulating wind speed forecasting.
AbstractList •A new hybrid method is proposed for the wind speed multi-step forecasting.•The wavelet decomposition is adopted to reduce the noise of the original data.•The different decomposing algorithms are used to decompose the original data.•The different forecasting models are built to predict the pre-processed data.•The error correction method is proposed to correct the wrong predictions. Wind power is one of the most promising powers. Wind speed forecasting can eliminate the harmful effect caused by the intermittent and fluctuation of wind power, and big multi-step forecasting can provide more time for the power grid to be adjusted. To achieve the high-precision big multi-step forecasting, a novel hybrid model named as the WD-SampEn-VMD-MadaBoost-BFGS-WF is proposed in the study, which consisting of three main modeling steps including the secondary decomposition, the ensemble method and the error correction. The detail of the proposed model is given as follows: (a) wind speed series are decomposed by the WD (Wavelet Decomposition) to obtain wind speed subseries. The SampEn (Sample Entropy) algorithm is used to estimate the unpredictability of these wind speed subseries. The most unpredictable subseries will be decomposed secondarily by the VMD (Variational Mode Decomposition); (b) the subseries are proceeded by the MAdaBoost (Modified AdaBoost.RT) with the BFGS (Broyden–Fletcher–Goldfarb–Shanno Quasi-Newton Back Propagation) neuron network to obtain forecasting subseries; (c) all of the forecasting subseries will be combined with the original subseries to form the combined wind speed series, which will be further proceeded by the WF (Wavelet Filter) to obtain the corrected forecasting series from the point of the frequency domain; (d) the corrected forecasting series are reconstructed to get the final forecasting series. To validate the effectiveness of the proposed model, several forecasting cases are provided in the study. The result indicates that the proposed model has satisfactory forecasting performance in the big multi-step extremely strong simulating wind speed forecasting.
Wind power is one of the most promising powers. Wind speed forecasting can eliminate the harmful effect caused by the intermittent and fluctuation of wind power, and big multi-step forecasting can provide more time for the power grid to be adjusted. To achieve the high-precision big multi-step forecasting, a novel hybrid model named as the WD-SampEn-VMD-MadaBoost-BFGS-WF is proposed in the study, which consisting of three main modeling steps including the secondary decomposition, the ensemble method and the error correction. The detail of the proposed model is given as follows: (a) wind speed series are decomposed by the WD (Wavelet Decomposition) to obtain wind speed subseries. The SampEn (Sample Entropy) algorithm is used to estimate the unpredictability of these wind speed subseries. The most unpredictable subseries will be decomposed secondarily by the VMD (Variational Mode Decomposition); (b) the subseries are proceeded by the MAdaBoost (Modified AdaBoost.RT) with the BFGS (Broyden–Fletcher–Goldfarb–Shanno Quasi-Newton Back Propagation) neuron network to obtain forecasting subseries; (c) all of the forecasting subseries will be combined with the original subseries to form the combined wind speed series, which will be further proceeded by the WF (Wavelet Filter) to obtain the corrected forecasting series from the point of the frequency domain; (d) the corrected forecasting series are reconstructed to get the final forecasting series. To validate the effectiveness of the proposed model, several forecasting cases are provided in the study. The result indicates that the proposed model has satisfactory forecasting performance in the big multi-step extremely strong simulating wind speed forecasting.
Author Duan, Zhu
Liu, Hui
Li, Yan-fei
Han, Feng-ze
Author_xml – sequence: 1
  givenname: Hui
  surname: Liu
  fullname: Liu, Hui
– sequence: 2
  givenname: Zhu
  orcidid: 0000-0002-4460-248X
  surname: Duan
  fullname: Duan, Zhu
– sequence: 3
  givenname: Feng-ze
  surname: Han
  fullname: Han, Feng-ze
– sequence: 4
  givenname: Yan-fei
  surname: Li
  fullname: Li, Yan-fei
  email: yanfeili@csu.edu.cn
BookMark eNqFkU9rHSEUxaWk0JfXfIUidNNFZqrOPEchiyahTQuBbpq1-OdO4mNGp-pLCfTD1-E1m2yy8iK_c66ec4pOQgyA0AdKWkoo_7xvIdgYZh1aRujQUtqSXr5BGyoG2TDGhhO0IVTyRkjSv0OnOe8JId2O8A36e-Xv8XyYim9ygQX_8cHhvAA4PMYEVufiQyWigwkbnet9DDhDXeh0esKuTvMSsy8-hnMMIcNsJsAzlIfosK5ukFJM2MZU7VYK6-k-Jl8e5vfo7ainDGf_zy26-_b11_X35vbnzY_ry9vG9pSVxsodcC6d7rqROGm1HAWYnTBjJ6joJHHAJBjnmHBGGugFN5KN_dgZqXfGdVv06ei7pPj7ALmo2WcL06QDxENWjFIuBOdkqOjHF-g-HlKor1OM9GzgdKjRbdHFkbIp5pxgVNYXvX6uJO0nRYlaq1F79VyNWqtRlKpaTZXzF_Il-bnG-brwy1EINa1HD0ll6ysJzq_hKhf9axb_AIjlsoo
CitedBy_id crossref_primary_10_1016_j_enconman_2019_112099
crossref_primary_10_1016_j_jclepro_2023_137791
crossref_primary_10_1016_j_renene_2018_12_035
crossref_primary_10_1016_j_renene_2020_11_002
crossref_primary_10_1007_s40313_021_00862_2
crossref_primary_10_1016_j_rser_2019_04_002
crossref_primary_10_1016_j_eswa_2021_114974
crossref_primary_10_1093_tse_tdad019
crossref_primary_10_1080_15435075_2020_1731816
crossref_primary_10_1108_IJESM_04_2019_0002
crossref_primary_10_1016_j_apenergy_2022_118674
crossref_primary_10_1016_j_enconman_2018_04_082
crossref_primary_10_1016_j_energy_2023_129618
crossref_primary_10_1016_j_enbuild_2019_04_018
crossref_primary_10_1088_1402_4896_adf15c
crossref_primary_10_1109_ACCESS_2020_2990439
crossref_primary_10_1016_j_enconman_2019_111799
crossref_primary_10_3233_JIFS_210779
crossref_primary_10_1016_j_oceaneng_2024_118993
crossref_primary_10_1016_j_renene_2018_02_092
crossref_primary_10_1109_TII_2018_2876907
crossref_primary_10_1016_j_enconman_2019_111981
crossref_primary_10_1016_j_multra_2022_100002
crossref_primary_10_1080_15567036_2021_1922550
crossref_primary_10_1016_j_epsr_2024_111112
crossref_primary_10_1186_s43251_025_00167_3
crossref_primary_10_1016_j_aei_2020_101089
crossref_primary_10_1016_j_apenergy_2025_126204
crossref_primary_10_1109_ACCESS_2020_2978937
crossref_primary_10_1016_j_enconman_2018_02_012
crossref_primary_10_1007_s10666_024_09959_9
crossref_primary_10_1016_j_energy_2025_136660
crossref_primary_10_1007_s00500_021_05608_5
crossref_primary_10_1016_j_asoc_2021_107894
crossref_primary_10_1080_14786451_2021_1915315
crossref_primary_10_1016_j_jclepro_2020_124628
crossref_primary_10_2166_wst_2023_211
crossref_primary_10_1007_s11356_021_13516_2
crossref_primary_10_1007_s11356_021_14186_w
crossref_primary_10_1016_j_seta_2020_100745
crossref_primary_10_3390_automation5020012
crossref_primary_10_1016_j_enconman_2018_02_006
crossref_primary_10_1016_j_enconman_2019_02_028
crossref_primary_10_1016_j_eswa_2018_11_019
crossref_primary_10_1016_j_ins_2024_120352
crossref_primary_10_1016_j_energy_2020_117794
crossref_primary_10_1007_s41748_025_00714_y
crossref_primary_10_1016_j_engappai_2024_108501
crossref_primary_10_1016_j_enconman_2018_11_006
crossref_primary_10_1016_j_renene_2020_09_109
crossref_primary_10_1016_j_enconman_2020_113680
crossref_primary_10_1016_j_apenergy_2018_07_050
crossref_primary_10_1016_j_measurement_2021_109347
crossref_primary_10_1016_j_apenergy_2019_113686
crossref_primary_10_1016_j_energy_2019_06_132
crossref_primary_10_1007_s00521_023_08288_4
crossref_primary_10_1016_j_apenergy_2019_04_188
crossref_primary_10_1155_2020_9318308
crossref_primary_10_1016_j_measurement_2019_106971
crossref_primary_10_1016_j_enconman_2019_05_020
crossref_primary_10_1007_s00202_023_01947_8
crossref_primary_10_1016_j_energy_2021_121808
crossref_primary_10_1016_j_engappai_2020_104133
crossref_primary_10_1007_s11356_022_19388_4
crossref_primary_10_1016_j_enconman_2019_111914
crossref_primary_10_1016_j_energy_2022_126159
crossref_primary_10_1016_j_renene_2022_12_124
crossref_primary_10_1109_ACCESS_2020_3034127
crossref_primary_10_1016_j_apenergy_2019_114367
crossref_primary_10_3390_en11112976
crossref_primary_10_1016_j_aei_2021_101290
crossref_primary_10_1016_j_eswa_2023_121051
crossref_primary_10_1016_j_neucom_2018_04_071
crossref_primary_10_1016_j_jclepro_2020_121027
crossref_primary_10_1016_j_energy_2021_120904
crossref_primary_10_1016_j_neucom_2018_09_092
crossref_primary_10_1016_j_apenergy_2018_10_080
crossref_primary_10_1016_j_apr_2021_101306
crossref_primary_10_1016_j_energy_2025_136739
crossref_primary_10_1016_j_enconman_2018_04_021
crossref_primary_10_1016_j_enconman_2020_112492
crossref_primary_10_3233_JIFS_233782
crossref_primary_10_1016_j_enconman_2018_01_010
crossref_primary_10_1016_j_enconman_2018_12_020
crossref_primary_10_3390_en12203920
crossref_primary_10_3390_en14051328
crossref_primary_10_1063_5_0238202
crossref_primary_10_1016_j_egyr_2021_06_014
crossref_primary_10_1016_j_renene_2020_08_139
crossref_primary_10_3390_en14113181
crossref_primary_10_1016_j_enconman_2019_112188
crossref_primary_10_1063_5_0254859
crossref_primary_10_1049_gtd2_12291
crossref_primary_10_1016_j_engappai_2023_105982
crossref_primary_10_3390_su10093202
crossref_primary_10_1049_rpg2_12919
crossref_primary_10_3233_JIFS_191594
crossref_primary_10_1016_j_enconman_2020_113500
crossref_primary_10_1016_j_energy_2019_05_084
crossref_primary_10_1016_j_renene_2019_05_039
crossref_primary_10_1007_s11998_020_00376_7
crossref_primary_10_1007_s40095_019_0313_0
crossref_primary_10_2166_hydro_2021_138
Cites_doi 10.1016/j.enconman.2014.12.053
10.1016/j.enconman.2014.09.060
10.1016/j.jmgm.2017.07.012
10.1016/j.apenergy.2015.08.014
10.1016/j.energy.2010.05.041
10.1109/TASE.2008.2005640
10.1016/j.asoc.2014.06.027
10.1016/j.apenergy.2012.04.001
10.1016/j.rser.2015.10.071
10.1109/TSP.2013.2288675
10.1016/j.energy.2017.02.150
10.1109/TPS.2009.2037151
10.1016/j.asoc.2017.05.031
10.1016/j.rser.2016.01.114
10.1109/TPWRS.2007.901117
10.1016/j.rser.2008.02.002
10.1016/j.renene.2014.09.058
10.1016/j.enconman.2016.12.032
10.1016/j.apenergy.2015.02.032
10.1152/ajpheart.2000.278.6.H2039
10.1016/j.renene.2015.03.049
10.1016/j.enconman.2017.04.064
10.1016/j.renene.2016.10.030
10.1016/j.enconman.2017.10.085
10.1016/j.apenergy.2015.10.145
10.1016/j.bspc.2009.11.001
10.1109/83.862633
10.1016/j.enconman.2015.04.057
10.1016/j.ymssp.2015.02.020
10.1109/34.192463
10.1016/j.apenergy.2012.03.054
10.1016/j.jneumeth.2012.07.002
10.1162/neco.2006.18.7.1678
10.1109/TIA.2012.2199449
10.1016/j.enpol.2012.05.026
10.1016/j.apenergy.2009.12.013
10.1016/j.enconman.2014.06.041
10.1016/j.energy.2015.08.039
10.1016/j.eswa.2011.03.063
10.1111/j.1749-6632.2001.tb02755.x
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier Science Ltd. Jan 15, 2018
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Jan 15, 2018
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.enconman.2017.11.049
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2227
EndPage 541
ExternalDocumentID 10_1016_j_enconman_2017_11_049
S0196890417311019
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
8WZ
9DU
A6W
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SEW
WUQ
~HD
7ST
7TB
8FD
AGCQF
C1K
FR3
H8D
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c412t-c95e669da33f0d9ca9f8eb58bf3818390de29ebdd28db9be486b92f4f3b9a5bd3
ISICitedReferencesCount 112
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000424310100041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-8904
IngestDate Wed Oct 01 14:26:35 EDT 2025
Wed Aug 13 11:01:57 EDT 2025
Tue Nov 18 20:41:42 EST 2025
Sat Nov 29 02:32:15 EST 2025
Fri Feb 23 02:33:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords ANN
CRO
Wavelet filter
HM
ELM
FEEMD
ARCH
Variational mode decomposition
WRF
WPD
SVM
FS
SPSA
WD
WF
Wavelet decomposition
MLP
PSOGSA
Big multi-step wind speed forecasting
EEMD
Sample entropy
KF
EMD
ADMM
MAdaBoost
SSA
DWT
CWT
LMD
DNN-MRT
NWP
Modified adaBoost.RT
MAPE
RMSE
VMD
BFGS
CS
MAE
AR
FCM
AdaBoost
ARIMA
LSSVM
SampEn
MFNN
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c412t-c95e669da33f0d9ca9f8eb58bf3818390de29ebdd28db9be486b92f4f3b9a5bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4460-248X
PQID 2042761700
PQPubID 2047472
PageCount 17
ParticipantIDs proquest_miscellaneous_2116886607
proquest_journals_2042761700
crossref_citationtrail_10_1016_j_enconman_2017_11_049
crossref_primary_10_1016_j_enconman_2017_11_049
elsevier_sciencedirect_doi_10_1016_j_enconman_2017_11_049
PublicationCentury 2000
PublicationDate 2018-01-15
PublicationDateYYYYMMDD 2018-01-15
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-15
  day: 15
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy conversion and management
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Li, Shi (b0060) 2010; 87
Liu, Tian, Liang, Li (b0125) 2015; 157
WWEA. WORLD WIND MARKET HAS REACHED 486 GW FROM WHERE 54 GW HAS BEEN INSTALLED LAST YEAR. 2017.
Jiang, Huang (b0135) 2017; 144
Tsai, Lin, Tsao, Lin, Wang, Huang (b0155) 2012; 210
Wang, Song, Liu, Hou (b0140) 2016; 60
Hong, Chang, Chiu (b0070) 2010; 35
Alcaraz, Rieta (b0170) 2010; 5
Zhao, Guo, Su, Zhao, Xiao, Liu (b0030) 2016; 162
Dong, Sun, Li (b0025) 2017; 102
Freund, Schapire (b0190) 1995
Chang, Yu, Vetterli (b0220) 2000; 9
Liu, Tian, Li (b0110) 2015; 89
Lei, Shiyan, Chuanwen, Hongling, Yan (b0020) 2009; 13
Drucker H. Improving regressors using boosting techniques. ICML1997. p. 107–15.
Liu, Mi, Li (b0120) 2018; 155
Croonenbroeck, Stadtmann (b0015) 2015; 81
Mallat (b0145) 1989; 11
Wang, Zhang, Li, Wang, Dang (b0115) 2014; 23
Liu, Tian, Li, Zhang (b0080) 2015; 92
Wiki. Sample entropy. 2017.
Wang, Wang, Wei (b0130) 2015; 91
Pincus (b0175) 2001; 954
Solomatine, Shrestha (b0200) 2004
Wang, Wang, Zhao, Dong (b0050) 2012; 48
Wang, Heng, Xiao, Wang (b0005) 2017; 125
Liu, Tian, Li (b0055) 2012; 98
Cassola, Burlando (b0035) 2012; 99
Zameer, Arshad, Khan, Raja (b0090) 2017; 134
Liu, Shi, Yang, Lee (b0100) 2012; 48
Richman, Moorman (b0150) 2000; 278
Qureshi, Khan, Zameer, Usman (b0085) 2017; 58
Xia, Rusli, Kumta (b0215) 2010; 38
Wang, Markert, Xiang, Zheng (b0185) 2015; 60–61
Liu, Tian, Li (b0095) 2015; 100
Yu, Lou, Li, Zhang, Qiu, Wu (b0225) 2017; 76
Masseran (b0045) 2016; 54
Salcedo-Sanz, Pastor-Sánchez, Prieto, Blanco-Aguilera, García-Herrera (b0065) 2014; 87
Osório, Matias, Catalão (b0105) 2015; 75
Ait Maatallah, Achuthan, Janoyan, Marzocca (b0075) 2015; 145
Hui-Xin, Zhi-Zhong (b0205) 2010; 7
Pinson, Chevallier, Kariniotakis (b0040) 2007; 22
Shrestha, Solomatine (b0210) 2006; 18
Widodo, Shim, Caesarendra, Yang (b0160) 2011; 38
Dragomiretskiy, Zosso (b0180) 2014; 62
Liu (10.1016/j.enconman.2017.11.049_b0125) 2015; 157
Masseran (10.1016/j.enconman.2017.11.049_b0045) 2016; 54
Pincus (10.1016/j.enconman.2017.11.049_b0175) 2001; 954
Shrestha (10.1016/j.enconman.2017.11.049_b0210) 2006; 18
Cassola (10.1016/j.enconman.2017.11.049_b0035) 2012; 99
Freund (10.1016/j.enconman.2017.11.049_b0190) 1995
Wang (10.1016/j.enconman.2017.11.049_b0140) 2016; 60
Liu (10.1016/j.enconman.2017.11.049_b0080) 2015; 92
Wang (10.1016/j.enconman.2017.11.049_b0005) 2017; 125
Wang (10.1016/j.enconman.2017.11.049_b0130) 2015; 91
Mallat (10.1016/j.enconman.2017.11.049_b0145) 1989; 11
Widodo (10.1016/j.enconman.2017.11.049_b0160) 2011; 38
Liu (10.1016/j.enconman.2017.11.049_b0055) 2012; 98
Liu (10.1016/j.enconman.2017.11.049_b0095) 2015; 100
Hui-Xin (10.1016/j.enconman.2017.11.049_b0205) 2010; 7
Lei (10.1016/j.enconman.2017.11.049_b0020) 2009; 13
Solomatine (10.1016/j.enconman.2017.11.049_b0200) 2004
Jiang (10.1016/j.enconman.2017.11.049_b0135) 2017; 144
Tsai (10.1016/j.enconman.2017.11.049_b0155) 2012; 210
Liu (10.1016/j.enconman.2017.11.049_b0100) 2012; 48
Osório (10.1016/j.enconman.2017.11.049_b0105) 2015; 75
10.1016/j.enconman.2017.11.049_b0165
Salcedo-Sanz (10.1016/j.enconman.2017.11.049_b0065) 2014; 87
Qureshi (10.1016/j.enconman.2017.11.049_b0085) 2017; 58
Ait Maatallah (10.1016/j.enconman.2017.11.049_b0075) 2015; 145
Croonenbroeck (10.1016/j.enconman.2017.11.049_b0015) 2015; 81
Liu (10.1016/j.enconman.2017.11.049_b0110) 2015; 89
Richman (10.1016/j.enconman.2017.11.049_b0150) 2000; 278
Wang (10.1016/j.enconman.2017.11.049_b0185) 2015; 60–61
Dong (10.1016/j.enconman.2017.11.049_b0025) 2017; 102
Wang (10.1016/j.enconman.2017.11.049_b0115) 2014; 23
Dragomiretskiy (10.1016/j.enconman.2017.11.049_b0180) 2014; 62
Zhao (10.1016/j.enconman.2017.11.049_b0030) 2016; 162
Chang (10.1016/j.enconman.2017.11.049_b0220) 2000; 9
Alcaraz (10.1016/j.enconman.2017.11.049_b0170) 2010; 5
Wang (10.1016/j.enconman.2017.11.049_b0050) 2012; 48
Li (10.1016/j.enconman.2017.11.049_b0060) 2010; 87
Hong (10.1016/j.enconman.2017.11.049_b0070) 2010; 35
Xia (10.1016/j.enconman.2017.11.049_b0215) 2010; 38
Yu (10.1016/j.enconman.2017.11.049_b0225) 2017; 76
Liu (10.1016/j.enconman.2017.11.049_b0120) 2018; 155
10.1016/j.enconman.2017.11.049_b0010
Pinson (10.1016/j.enconman.2017.11.049_b0040) 2007; 22
Zameer (10.1016/j.enconman.2017.11.049_b0090) 2017; 134
10.1016/j.enconman.2017.11.049_b0195
References_xml – volume: 89
  start-page: 1
  year: 2015
  end-page: 11
  ident: b0110
  article-title: Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, Wavelet Packet-MLP and Wavelet Packet-ANFIS for wind speed predictions
  publication-title: Energy Convers Manage
– reference: Wiki. Sample entropy. 2017.
– volume: 18
  start-page: 1678
  year: 2006
  end-page: 1710
  ident: b0210
  article-title: Experiments with AdaBoost. RT, an improved boosting scheme for regression
  publication-title: Neural Comput
– volume: 145
  start-page: 191
  year: 2015
  end-page: 197
  ident: b0075
  article-title: Recursive wind speed forecasting based on Hammerstein Auto-Regressive model
  publication-title: Appl Energy
– volume: 91
  start-page: 556
  year: 2015
  end-page: 572
  ident: b0130
  article-title: A hybrid wind speed forecasting model based on phase space reconstruction theory and Markov model: A case study of wind farms in northwest China
  publication-title: Energy
– volume: 81
  start-page: 197
  year: 2015
  end-page: 208
  ident: b0015
  article-title: Minimizing asymmetric loss in medium-term wind power forecasting
  publication-title: Renew Energy
– volume: 75
  start-page: 301
  year: 2015
  end-page: 307
  ident: b0105
  article-title: Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information
  publication-title: Renew Energy
– volume: 38
  start-page: 11763
  year: 2011
  end-page: 11769
  ident: b0160
  article-title: Intelligent prognostics for battery health monitoring based on sample entropy
  publication-title: Expert Syst Appl
– volume: 76
  start-page: 260
  year: 2017
  end-page: 273
  ident: b0225
  article-title: Prediction of protein structural class for low-similarity sequences using Chou's pseudo amino acid composition and wavelet denoising
  publication-title: J Mol Graph Model
– volume: 22
  start-page: 1148
  year: 2007
  end-page: 1156
  ident: b0040
  article-title: Trading wind generation from short-term probabilistic forecasts of wind power
  publication-title: IEEE Trans Power Syst
– start-page: 1163
  year: 2004
  end-page: 1168
  ident: b0200
  article-title: AdaBoost. RT: a boosting algorithm for regression problems
  publication-title: Neural Networks, 2004 Proceedings 2004 IEEE International Joint Conference on
– volume: 48
  start-page: 284
  year: 2012
  end-page: 294
  ident: b0050
  article-title: Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: a case study of China
  publication-title: Energy Policy
– volume: 102
  start-page: 241
  year: 2017
  end-page: 257
  ident: b0025
  article-title: A novel forecasting model based on a hybrid processing strategy and an optimized local linear fuzzy neural network to make wind power forecasting: a case study of wind farms in China
  publication-title: Renew Energy
– volume: 87
  start-page: 2313
  year: 2010
  end-page: 2320
  ident: b0060
  article-title: On comparing three artificial neural networks for wind speed forecasting
  publication-title: Appl Energy
– volume: 7
  start-page: 73
  year: 2010
  end-page: 80
  ident: b0205
  article-title: An Ensemble ELM Based on Modified AdaBoost.RT Algorithm for Predicting the Temperature of Molten Steel in Ladle Furnace
  publication-title: IEEE Trans Autom Sci Eng
– volume: 23
  start-page: 452
  year: 2014
  end-page: 459
  ident: b0115
  article-title: Forecasting wind speed using empirical mode decomposition and Elman neural network
  publication-title: Appl Soft Comput
– volume: 98
  start-page: 415
  year: 2012
  end-page: 424
  ident: b0055
  article-title: Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction
  publication-title: Appl Energy
– volume: 62
  start-page: 531
  year: 2014
  end-page: 544
  ident: b0180
  article-title: Variational mode decomposition
  publication-title: IEEE Trans Signal Process
– volume: 38
  start-page: 142
  year: 2010
  end-page: 148
  ident: b0215
  article-title: Feedforward neural network trained by BFGS algorithm for modeling plasma etching of silicon carbide
  publication-title: IEEE Trans Plasma Sci
– volume: 155
  start-page: 188
  year: 2018
  end-page: 200
  ident: b0120
  article-title: Comparison of two new intelligent wind speed forecasting approaches based on Wavelet Packet Decomposition, Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Artificial Neural Networks
  publication-title: Energy Convers Manage
– volume: 60
  start-page: 960
  year: 2016
  end-page: 981
  ident: b0140
  article-title: Analysis and application of forecasting models in wind power integration: a review of multi-step-ahead wind speed forecasting models
  publication-title: Renew Sustain Energy Rev
– reference: WWEA. WORLD WIND MARKET HAS REACHED 486 GW FROM WHERE 54 GW HAS BEEN INSTALLED LAST YEAR. 2017.
– volume: 210
  start-page: 230
  year: 2012
  end-page: 237
  ident: b0155
  article-title: Empirical mode decomposition based detrended sample entropy in electroencephalography for Alzheimer's disease
  publication-title: J Neurosci Meth
– volume: 144
  start-page: 340
  year: 2017
  end-page: 350
  ident: b0135
  article-title: Short-term wind speed prediction: hybrid of ensemble empirical mode decomposition, feature selection and error correction
  publication-title: Energy Convers Manage
– start-page: 23
  year: 1995
  end-page: 37
  ident: b0190
  article-title: A desicion-theoretic generalization of on-line learning and an application to boosting
  publication-title: European conference on computational learning theory
– volume: 35
  start-page: 3870
  year: 2010
  end-page: 3876
  ident: b0070
  article-title: Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs
  publication-title: Energy.
– volume: 54
  start-page: 777
  year: 2016
  end-page: 784
  ident: b0045
  article-title: Modeling the fluctuations of wind speed data by considering their mean and volatility effects
  publication-title: Renew Sustain Energy Rev
– volume: 134
  start-page: 361
  year: 2017
  end-page: 372
  ident: b0090
  article-title: Intelligent and robust prediction of short term wind power using genetic programming based ensemble of neural networks
  publication-title: Energy Convers Manage
– volume: 48
  start-page: 1136
  year: 2012
  end-page: 1141
  ident: b0100
  article-title: Short-term wind-power prediction based on wavelet transform–support vector machine and statistic-characteristics analysis
  publication-title: IEEE Trans Ind Appl
– volume: 9
  start-page: 1532
  year: 2000
  end-page: 1546
  ident: b0220
  article-title: Adaptive wavelet thresholding for image denoising and compression
  publication-title: IEEE Trans Image Process
– volume: 954
  start-page: 245
  year: 2001
  end-page: 267
  ident: b0175
  article-title: Assessing serial irregularity and its implications for health
  publication-title: Ann NY Acad Sci
– volume: 58
  start-page: 742
  year: 2017
  end-page: 755
  ident: b0085
  article-title: Wind power prediction using deep neural network based meta regression and transfer learning
  publication-title: Appl Soft Comput
– volume: 11
  start-page: 674
  year: 1989
  end-page: 693
  ident: b0145
  article-title: A theory for multiresolution signal decomposition: the wavelet representation
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 13
  start-page: 915
  year: 2009
  end-page: 920
  ident: b0020
  article-title: A review on the forecasting of wind speed and generated power
  publication-title: Renew Sustain Energy Rev
– volume: 125
  start-page: 591
  year: 2017
  end-page: 613
  ident: b0005
  article-title: Research and application of a combined model based on multi-objective optimization for multi-step ahead wind speed forecasting
  publication-title: Energy
– volume: 87
  start-page: 10
  year: 2014
  end-page: 18
  ident: b0065
  article-title: Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization – Extreme learning machine approach
  publication-title: Energy Convers Manage
– volume: 100
  start-page: 16
  year: 2015
  end-page: 22
  ident: b0095
  article-title: Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms
  publication-title: Energy Convers Manage
– volume: 162
  start-page: 808
  year: 2016
  end-page: 826
  ident: b0030
  article-title: An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed
  publication-title: Appl Energy
– volume: 278
  start-page: H2039
  year: 2000
  end-page: H2049
  ident: b0150
  article-title: Physiological time-series analysis using approximate entropy and sample entropy
  publication-title: Am J Physiol-Heart Circulatory Physiol
– volume: 5
  start-page: 1
  year: 2010
  end-page: 14
  ident: b0170
  article-title: A review on sample entropy applications for the non-invasive analysis of atrial fibrillation electrocardiograms
  publication-title: Biomed Signal Process Control
– reference: Drucker H. Improving regressors using boosting techniques. ICML1997. p. 107–15.
– volume: 92
  start-page: 67
  year: 2015
  end-page: 81
  ident: b0080
  article-title: Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions
  publication-title: Energy Convers Manage
– volume: 157
  start-page: 183
  year: 2015
  end-page: 194
  ident: b0125
  article-title: Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks
  publication-title: Appl Energy
– volume: 99
  start-page: 154
  year: 2012
  end-page: 166
  ident: b0035
  article-title: Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output
  publication-title: Appl Energy
– volume: 60–61
  start-page: 243
  year: 2015
  end-page: 251
  ident: b0185
  article-title: Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system
  publication-title: Mech Syst Sig Process
– volume: 92
  start-page: 67
  year: 2015
  ident: 10.1016/j.enconman.2017.11.049_b0080
  article-title: Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2014.12.053
– volume: 89
  start-page: 1
  year: 2015
  ident: 10.1016/j.enconman.2017.11.049_b0110
  article-title: Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, Wavelet Packet-MLP and Wavelet Packet-ANFIS for wind speed predictions
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2014.09.060
– volume: 76
  start-page: 260
  year: 2017
  ident: 10.1016/j.enconman.2017.11.049_b0225
  article-title: Prediction of protein structural class for low-similarity sequences using Chou's pseudo amino acid composition and wavelet denoising
  publication-title: J Mol Graph Model
  doi: 10.1016/j.jmgm.2017.07.012
– volume: 157
  start-page: 183
  year: 2015
  ident: 10.1016/j.enconman.2017.11.049_b0125
  article-title: Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.08.014
– volume: 35
  start-page: 3870
  year: 2010
  ident: 10.1016/j.enconman.2017.11.049_b0070
  article-title: Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs
  publication-title: Energy.
  doi: 10.1016/j.energy.2010.05.041
– volume: 7
  start-page: 73
  year: 2010
  ident: 10.1016/j.enconman.2017.11.049_b0205
  article-title: An Ensemble ELM Based on Modified AdaBoost.RT Algorithm for Predicting the Temperature of Molten Steel in Ladle Furnace
  publication-title: IEEE Trans Autom Sci Eng
  doi: 10.1109/TASE.2008.2005640
– volume: 23
  start-page: 452
  year: 2014
  ident: 10.1016/j.enconman.2017.11.049_b0115
  article-title: Forecasting wind speed using empirical mode decomposition and Elman neural network
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.06.027
– volume: 98
  start-page: 415
  year: 2012
  ident: 10.1016/j.enconman.2017.11.049_b0055
  article-title: Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.04.001
– volume: 54
  start-page: 777
  year: 2016
  ident: 10.1016/j.enconman.2017.11.049_b0045
  article-title: Modeling the fluctuations of wind speed data by considering their mean and volatility effects
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.10.071
– volume: 62
  start-page: 531
  year: 2014
  ident: 10.1016/j.enconman.2017.11.049_b0180
  article-title: Variational mode decomposition
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2013.2288675
– volume: 125
  start-page: 591
  year: 2017
  ident: 10.1016/j.enconman.2017.11.049_b0005
  article-title: Research and application of a combined model based on multi-objective optimization for multi-step ahead wind speed forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2017.02.150
– start-page: 23
  year: 1995
  ident: 10.1016/j.enconman.2017.11.049_b0190
  article-title: A desicion-theoretic generalization of on-line learning and an application to boosting
– volume: 38
  start-page: 142
  year: 2010
  ident: 10.1016/j.enconman.2017.11.049_b0215
  article-title: Feedforward neural network trained by BFGS algorithm for modeling plasma etching of silicon carbide
  publication-title: IEEE Trans Plasma Sci
  doi: 10.1109/TPS.2009.2037151
– ident: 10.1016/j.enconman.2017.11.049_b0195
– volume: 58
  start-page: 742
  year: 2017
  ident: 10.1016/j.enconman.2017.11.049_b0085
  article-title: Wind power prediction using deep neural network based meta regression and transfer learning
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.05.031
– volume: 60
  start-page: 960
  year: 2016
  ident: 10.1016/j.enconman.2017.11.049_b0140
  article-title: Analysis and application of forecasting models in wind power integration: a review of multi-step-ahead wind speed forecasting models
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2016.01.114
– volume: 22
  start-page: 1148
  year: 2007
  ident: 10.1016/j.enconman.2017.11.049_b0040
  article-title: Trading wind generation from short-term probabilistic forecasts of wind power
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2007.901117
– start-page: 1163
  year: 2004
  ident: 10.1016/j.enconman.2017.11.049_b0200
  article-title: AdaBoost. RT: a boosting algorithm for regression problems
– volume: 13
  start-page: 915
  year: 2009
  ident: 10.1016/j.enconman.2017.11.049_b0020
  article-title: A review on the forecasting of wind speed and generated power
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2008.02.002
– volume: 75
  start-page: 301
  year: 2015
  ident: 10.1016/j.enconman.2017.11.049_b0105
  article-title: Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2014.09.058
– volume: 134
  start-page: 361
  year: 2017
  ident: 10.1016/j.enconman.2017.11.049_b0090
  article-title: Intelligent and robust prediction of short term wind power using genetic programming based ensemble of neural networks
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.12.032
– ident: 10.1016/j.enconman.2017.11.049_b0165
– volume: 145
  start-page: 191
  year: 2015
  ident: 10.1016/j.enconman.2017.11.049_b0075
  article-title: Recursive wind speed forecasting based on Hammerstein Auto-Regressive model
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.02.032
– volume: 278
  start-page: H2039
  year: 2000
  ident: 10.1016/j.enconman.2017.11.049_b0150
  article-title: Physiological time-series analysis using approximate entropy and sample entropy
  publication-title: Am J Physiol-Heart Circulatory Physiol
  doi: 10.1152/ajpheart.2000.278.6.H2039
– volume: 81
  start-page: 197
  year: 2015
  ident: 10.1016/j.enconman.2017.11.049_b0015
  article-title: Minimizing asymmetric loss in medium-term wind power forecasting
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.03.049
– volume: 144
  start-page: 340
  year: 2017
  ident: 10.1016/j.enconman.2017.11.049_b0135
  article-title: Short-term wind speed prediction: hybrid of ensemble empirical mode decomposition, feature selection and error correction
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.04.064
– ident: 10.1016/j.enconman.2017.11.049_b0010
– volume: 102
  start-page: 241
  year: 2017
  ident: 10.1016/j.enconman.2017.11.049_b0025
  article-title: A novel forecasting model based on a hybrid processing strategy and an optimized local linear fuzzy neural network to make wind power forecasting: a case study of wind farms in China
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.10.030
– volume: 155
  start-page: 188
  year: 2018
  ident: 10.1016/j.enconman.2017.11.049_b0120
  article-title: Comparison of two new intelligent wind speed forecasting approaches based on Wavelet Packet Decomposition, Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Artificial Neural Networks
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.10.085
– volume: 162
  start-page: 808
  year: 2016
  ident: 10.1016/j.enconman.2017.11.049_b0030
  article-title: An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.10.145
– volume: 5
  start-page: 1
  year: 2010
  ident: 10.1016/j.enconman.2017.11.049_b0170
  article-title: A review on sample entropy applications for the non-invasive analysis of atrial fibrillation electrocardiograms
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2009.11.001
– volume: 9
  start-page: 1532
  year: 2000
  ident: 10.1016/j.enconman.2017.11.049_b0220
  article-title: Adaptive wavelet thresholding for image denoising and compression
  publication-title: IEEE Trans Image Process
  doi: 10.1109/83.862633
– volume: 100
  start-page: 16
  year: 2015
  ident: 10.1016/j.enconman.2017.11.049_b0095
  article-title: Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2015.04.057
– volume: 60–61
  start-page: 243
  year: 2015
  ident: 10.1016/j.enconman.2017.11.049_b0185
  article-title: Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system
  publication-title: Mech Syst Sig Process
  doi: 10.1016/j.ymssp.2015.02.020
– volume: 11
  start-page: 674
  year: 1989
  ident: 10.1016/j.enconman.2017.11.049_b0145
  article-title: A theory for multiresolution signal decomposition: the wavelet representation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.192463
– volume: 99
  start-page: 154
  year: 2012
  ident: 10.1016/j.enconman.2017.11.049_b0035
  article-title: Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.03.054
– volume: 210
  start-page: 230
  year: 2012
  ident: 10.1016/j.enconman.2017.11.049_b0155
  article-title: Empirical mode decomposition based detrended sample entropy in electroencephalography for Alzheimer's disease
  publication-title: J Neurosci Meth
  doi: 10.1016/j.jneumeth.2012.07.002
– volume: 18
  start-page: 1678
  year: 2006
  ident: 10.1016/j.enconman.2017.11.049_b0210
  article-title: Experiments with AdaBoost. RT, an improved boosting scheme for regression
  publication-title: Neural Comput
  doi: 10.1162/neco.2006.18.7.1678
– volume: 48
  start-page: 1136
  year: 2012
  ident: 10.1016/j.enconman.2017.11.049_b0100
  article-title: Short-term wind-power prediction based on wavelet transform–support vector machine and statistic-characteristics analysis
  publication-title: IEEE Trans Ind Appl
  doi: 10.1109/TIA.2012.2199449
– volume: 48
  start-page: 284
  year: 2012
  ident: 10.1016/j.enconman.2017.11.049_b0050
  article-title: Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: a case study of China
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2012.05.026
– volume: 87
  start-page: 2313
  year: 2010
  ident: 10.1016/j.enconman.2017.11.049_b0060
  article-title: On comparing three artificial neural networks for wind speed forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.12.013
– volume: 87
  start-page: 10
  year: 2014
  ident: 10.1016/j.enconman.2017.11.049_b0065
  article-title: Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization – Extreme learning machine approach
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2014.06.041
– volume: 91
  start-page: 556
  year: 2015
  ident: 10.1016/j.enconman.2017.11.049_b0130
  article-title: A hybrid wind speed forecasting model based on phase space reconstruction theory and Markov model: A case study of wind farms in northwest China
  publication-title: Energy
  doi: 10.1016/j.energy.2015.08.039
– volume: 38
  start-page: 11763
  year: 2011
  ident: 10.1016/j.enconman.2017.11.049_b0160
  article-title: Intelligent prognostics for battery health monitoring based on sample entropy
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.03.063
– volume: 954
  start-page: 245
  year: 2001
  ident: 10.1016/j.enconman.2017.11.049_b0175
  article-title: Assessing serial irregularity and its implications for health
  publication-title: Ann NY Acad Sci
  doi: 10.1111/j.1749-6632.2001.tb02755.x
SSID ssj0003506
Score 2.550736
Snippet •A new hybrid method is proposed for the wind speed multi-step forecasting.•The wavelet decomposition is adopted to reduce the noise of the original data.•The...
Wind power is one of the most promising powers. Wind speed forecasting can eliminate the harmful effect caused by the intermittent and fluctuation of wind...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 525
SubjectTerms Algorithms
Back propagation networks
Big multi-step wind speed forecasting
Computer simulation
Decomposition
Electricity distribution
Entropy
Error correction
Forecasting
Machine learning
Mathematical models
Modified adaBoost.RT
neurons
Sample entropy
Studies
Variation
Variational mode decomposition
wavelet
Wavelet analysis
Wavelet decomposition
Wavelet filter
Wind power
Wind speed
Title Big multi-step wind speed forecasting model based on secondary decomposition, ensemble method and error correction algorithm
URI https://dx.doi.org/10.1016/j.enconman.2017.11.049
https://www.proquest.com/docview/2042761700
https://www.proquest.com/docview/2116886607
Volume 156
WOSCitedRecordID wos000424310100041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZCygEOFU9RWpCRuAWXzT689rGgIkBVxaGgiMvKr023SjbRJikV4g_xLxnb-0haoPTAZRXtZqx15otnPP5mBqGXgoZpoIKEyFgyEg9TQYSmMYmZAPVLrrSj_H85So-P2WjEP_V6P5tcmPNJWpbs4oLP_6uq4R4o26bO3kDd7aBwAz6D0uEKaofrPyn-TTH2NEECCpwPvhU2Mj4HI2UZhUaJhSM6uw44A2vDtD0vWNh9sbYMOm0sy7ymclkFwD7XTG1-lW827U4bTFXNqoGynT3qVuOT8awqlqfTjUi_zyt0xHYXlXOy0yuEm6Ni5Szgqujcah-X_Xq66pZI72ibcky-m07U2RBRktwU6xGMoSXPEZ_D2QQ1OSWM-zbE7aqcrK-ric-Ork104mtlXVn9fSDibN-WAC1hNpa5l-7bIq2-LOpmue1LZrAlJza8t7OsGSez48BeKYNxbqGtME0466Otgw-Ho4-t2Y8S18i1ncxaOvrv3-hPntAln8A5Oif30Ha9Q8EHHln3Uc-UD9DdtbqVD9EPwBjuMIYtxrDDGF7DGHYYww5jeFbiFmN4A2OvcIMw7BGGASXYIQx3CMMtwh6hz-8OT96-J3UbD6LiYbgkiieGUq5FFOWB5krwnBmZMJlbbzHigTYhN1LrkGnJpYkZlTzM4zySXCRSR49Rv5yV5gnCJgd5GWkVSRHb7YEKU0MDJmOqA5YHOyhpftJM1TXubauVSfZ3pe6g163c3Fd5uVaCNxrLal_V-6AZgPFa2b1GxVm9cCzgeRymtjsCTOJF-xjWenuAJ0ozW8F3hkPKGKVB-vTGL7yL7nT_vT3UX1Yr8wzdVufLYlE9r8H8C6Bf1p8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Big+multi-step+wind+speed+forecasting+model+based+on+secondary+decomposition%2C+ensemble+method+and+error+correction+algorithm&rft.jtitle=Energy+conversion+and+management&rft.au=Liu%2C+Hui&rft.au=Duan%2C+Zhu&rft.au=Han%2C+Feng-ze&rft.au=Li%2C+Yan-fei&rft.date=2018-01-15&rft.issn=0196-8904&rft.volume=156&rft.spage=525&rft.epage=541&rft_id=info:doi/10.1016%2Fj.enconman.2017.11.049&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enconman_2017_11_049
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon