Big multi-step wind speed forecasting model based on secondary decomposition, ensemble method and error correction algorithm
•A new hybrid method is proposed for the wind speed multi-step forecasting.•The wavelet decomposition is adopted to reduce the noise of the original data.•The different decomposing algorithms are used to decompose the original data.•The different forecasting models are built to predict the pre-proce...
Gespeichert in:
| Veröffentlicht in: | Energy conversion and management Jg. 156; S. 525 - 541 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford
Elsevier Ltd
15.01.2018
Elsevier Science Ltd |
| Schlagworte: | |
| ISSN: | 0196-8904, 1879-2227 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •A new hybrid method is proposed for the wind speed multi-step forecasting.•The wavelet decomposition is adopted to reduce the noise of the original data.•The different decomposing algorithms are used to decompose the original data.•The different forecasting models are built to predict the pre-processed data.•The error correction method is proposed to correct the wrong predictions.
Wind power is one of the most promising powers. Wind speed forecasting can eliminate the harmful effect caused by the intermittent and fluctuation of wind power, and big multi-step forecasting can provide more time for the power grid to be adjusted. To achieve the high-precision big multi-step forecasting, a novel hybrid model named as the WD-SampEn-VMD-MadaBoost-BFGS-WF is proposed in the study, which consisting of three main modeling steps including the secondary decomposition, the ensemble method and the error correction. The detail of the proposed model is given as follows: (a) wind speed series are decomposed by the WD (Wavelet Decomposition) to obtain wind speed subseries. The SampEn (Sample Entropy) algorithm is used to estimate the unpredictability of these wind speed subseries. The most unpredictable subseries will be decomposed secondarily by the VMD (Variational Mode Decomposition); (b) the subseries are proceeded by the MAdaBoost (Modified AdaBoost.RT) with the BFGS (Broyden–Fletcher–Goldfarb–Shanno Quasi-Newton Back Propagation) neuron network to obtain forecasting subseries; (c) all of the forecasting subseries will be combined with the original subseries to form the combined wind speed series, which will be further proceeded by the WF (Wavelet Filter) to obtain the corrected forecasting series from the point of the frequency domain; (d) the corrected forecasting series are reconstructed to get the final forecasting series. To validate the effectiveness of the proposed model, several forecasting cases are provided in the study. The result indicates that the proposed model has satisfactory forecasting performance in the big multi-step extremely strong simulating wind speed forecasting. |
|---|---|
| AbstractList | •A new hybrid method is proposed for the wind speed multi-step forecasting.•The wavelet decomposition is adopted to reduce the noise of the original data.•The different decomposing algorithms are used to decompose the original data.•The different forecasting models are built to predict the pre-processed data.•The error correction method is proposed to correct the wrong predictions.
Wind power is one of the most promising powers. Wind speed forecasting can eliminate the harmful effect caused by the intermittent and fluctuation of wind power, and big multi-step forecasting can provide more time for the power grid to be adjusted. To achieve the high-precision big multi-step forecasting, a novel hybrid model named as the WD-SampEn-VMD-MadaBoost-BFGS-WF is proposed in the study, which consisting of three main modeling steps including the secondary decomposition, the ensemble method and the error correction. The detail of the proposed model is given as follows: (a) wind speed series are decomposed by the WD (Wavelet Decomposition) to obtain wind speed subseries. The SampEn (Sample Entropy) algorithm is used to estimate the unpredictability of these wind speed subseries. The most unpredictable subseries will be decomposed secondarily by the VMD (Variational Mode Decomposition); (b) the subseries are proceeded by the MAdaBoost (Modified AdaBoost.RT) with the BFGS (Broyden–Fletcher–Goldfarb–Shanno Quasi-Newton Back Propagation) neuron network to obtain forecasting subseries; (c) all of the forecasting subseries will be combined with the original subseries to form the combined wind speed series, which will be further proceeded by the WF (Wavelet Filter) to obtain the corrected forecasting series from the point of the frequency domain; (d) the corrected forecasting series are reconstructed to get the final forecasting series. To validate the effectiveness of the proposed model, several forecasting cases are provided in the study. The result indicates that the proposed model has satisfactory forecasting performance in the big multi-step extremely strong simulating wind speed forecasting. Wind power is one of the most promising powers. Wind speed forecasting can eliminate the harmful effect caused by the intermittent and fluctuation of wind power, and big multi-step forecasting can provide more time for the power grid to be adjusted. To achieve the high-precision big multi-step forecasting, a novel hybrid model named as the WD-SampEn-VMD-MadaBoost-BFGS-WF is proposed in the study, which consisting of three main modeling steps including the secondary decomposition, the ensemble method and the error correction. The detail of the proposed model is given as follows: (a) wind speed series are decomposed by the WD (Wavelet Decomposition) to obtain wind speed subseries. The SampEn (Sample Entropy) algorithm is used to estimate the unpredictability of these wind speed subseries. The most unpredictable subseries will be decomposed secondarily by the VMD (Variational Mode Decomposition); (b) the subseries are proceeded by the MAdaBoost (Modified AdaBoost.RT) with the BFGS (Broyden–Fletcher–Goldfarb–Shanno Quasi-Newton Back Propagation) neuron network to obtain forecasting subseries; (c) all of the forecasting subseries will be combined with the original subseries to form the combined wind speed series, which will be further proceeded by the WF (Wavelet Filter) to obtain the corrected forecasting series from the point of the frequency domain; (d) the corrected forecasting series are reconstructed to get the final forecasting series. To validate the effectiveness of the proposed model, several forecasting cases are provided in the study. The result indicates that the proposed model has satisfactory forecasting performance in the big multi-step extremely strong simulating wind speed forecasting. |
| Author | Duan, Zhu Liu, Hui Li, Yan-fei Han, Feng-ze |
| Author_xml | – sequence: 1 givenname: Hui surname: Liu fullname: Liu, Hui – sequence: 2 givenname: Zhu orcidid: 0000-0002-4460-248X surname: Duan fullname: Duan, Zhu – sequence: 3 givenname: Feng-ze surname: Han fullname: Han, Feng-ze – sequence: 4 givenname: Yan-fei surname: Li fullname: Li, Yan-fei email: yanfeili@csu.edu.cn |
| BookMark | eNqFkU9rHSEUxaWk0JfXfIUidNNFZqrOPEchiyahTQuBbpq1-OdO4mNGp-pLCfTD1-E1m2yy8iK_c66ec4pOQgyA0AdKWkoo_7xvIdgYZh1aRujQUtqSXr5BGyoG2TDGhhO0IVTyRkjSv0OnOe8JId2O8A36e-Xv8XyYim9ygQX_8cHhvAA4PMYEVufiQyWigwkbnet9DDhDXeh0esKuTvMSsy8-hnMMIcNsJsAzlIfosK5ukFJM2MZU7VYK6-k-Jl8e5vfo7ainDGf_zy26-_b11_X35vbnzY_ry9vG9pSVxsodcC6d7rqROGm1HAWYnTBjJ6joJHHAJBjnmHBGGugFN5KN_dgZqXfGdVv06ei7pPj7ALmo2WcL06QDxENWjFIuBOdkqOjHF-g-HlKor1OM9GzgdKjRbdHFkbIp5pxgVNYXvX6uJO0nRYlaq1F79VyNWqtRlKpaTZXzF_Il-bnG-brwy1EINa1HD0ll6ysJzq_hKhf9axb_AIjlsoo |
| CitedBy_id | crossref_primary_10_1016_j_enconman_2019_112099 crossref_primary_10_1016_j_jclepro_2023_137791 crossref_primary_10_1016_j_renene_2018_12_035 crossref_primary_10_1016_j_renene_2020_11_002 crossref_primary_10_1007_s40313_021_00862_2 crossref_primary_10_1016_j_rser_2019_04_002 crossref_primary_10_1016_j_eswa_2021_114974 crossref_primary_10_1093_tse_tdad019 crossref_primary_10_1080_15435075_2020_1731816 crossref_primary_10_1108_IJESM_04_2019_0002 crossref_primary_10_1016_j_apenergy_2022_118674 crossref_primary_10_1016_j_enconman_2018_04_082 crossref_primary_10_1016_j_energy_2023_129618 crossref_primary_10_1016_j_enbuild_2019_04_018 crossref_primary_10_1088_1402_4896_adf15c crossref_primary_10_1109_ACCESS_2020_2990439 crossref_primary_10_1016_j_enconman_2019_111799 crossref_primary_10_3233_JIFS_210779 crossref_primary_10_1016_j_oceaneng_2024_118993 crossref_primary_10_1016_j_renene_2018_02_092 crossref_primary_10_1109_TII_2018_2876907 crossref_primary_10_1016_j_enconman_2019_111981 crossref_primary_10_1016_j_multra_2022_100002 crossref_primary_10_1080_15567036_2021_1922550 crossref_primary_10_1016_j_epsr_2024_111112 crossref_primary_10_1186_s43251_025_00167_3 crossref_primary_10_1016_j_aei_2020_101089 crossref_primary_10_1016_j_apenergy_2025_126204 crossref_primary_10_1109_ACCESS_2020_2978937 crossref_primary_10_1016_j_enconman_2018_02_012 crossref_primary_10_1007_s10666_024_09959_9 crossref_primary_10_1016_j_energy_2025_136660 crossref_primary_10_1007_s00500_021_05608_5 crossref_primary_10_1016_j_asoc_2021_107894 crossref_primary_10_1080_14786451_2021_1915315 crossref_primary_10_1016_j_jclepro_2020_124628 crossref_primary_10_2166_wst_2023_211 crossref_primary_10_1007_s11356_021_13516_2 crossref_primary_10_1007_s11356_021_14186_w crossref_primary_10_1016_j_seta_2020_100745 crossref_primary_10_3390_automation5020012 crossref_primary_10_1016_j_enconman_2018_02_006 crossref_primary_10_1016_j_enconman_2019_02_028 crossref_primary_10_1016_j_eswa_2018_11_019 crossref_primary_10_1016_j_ins_2024_120352 crossref_primary_10_1016_j_energy_2020_117794 crossref_primary_10_1007_s41748_025_00714_y crossref_primary_10_1016_j_engappai_2024_108501 crossref_primary_10_1016_j_enconman_2018_11_006 crossref_primary_10_1016_j_renene_2020_09_109 crossref_primary_10_1016_j_enconman_2020_113680 crossref_primary_10_1016_j_apenergy_2018_07_050 crossref_primary_10_1016_j_measurement_2021_109347 crossref_primary_10_1016_j_apenergy_2019_113686 crossref_primary_10_1016_j_energy_2019_06_132 crossref_primary_10_1007_s00521_023_08288_4 crossref_primary_10_1016_j_apenergy_2019_04_188 crossref_primary_10_1155_2020_9318308 crossref_primary_10_1016_j_measurement_2019_106971 crossref_primary_10_1016_j_enconman_2019_05_020 crossref_primary_10_1007_s00202_023_01947_8 crossref_primary_10_1016_j_energy_2021_121808 crossref_primary_10_1016_j_engappai_2020_104133 crossref_primary_10_1007_s11356_022_19388_4 crossref_primary_10_1016_j_enconman_2019_111914 crossref_primary_10_1016_j_energy_2022_126159 crossref_primary_10_1016_j_renene_2022_12_124 crossref_primary_10_1109_ACCESS_2020_3034127 crossref_primary_10_1016_j_apenergy_2019_114367 crossref_primary_10_3390_en11112976 crossref_primary_10_1016_j_aei_2021_101290 crossref_primary_10_1016_j_eswa_2023_121051 crossref_primary_10_1016_j_neucom_2018_04_071 crossref_primary_10_1016_j_jclepro_2020_121027 crossref_primary_10_1016_j_energy_2021_120904 crossref_primary_10_1016_j_neucom_2018_09_092 crossref_primary_10_1016_j_apenergy_2018_10_080 crossref_primary_10_1016_j_apr_2021_101306 crossref_primary_10_1016_j_energy_2025_136739 crossref_primary_10_1016_j_enconman_2018_04_021 crossref_primary_10_1016_j_enconman_2020_112492 crossref_primary_10_3233_JIFS_233782 crossref_primary_10_1016_j_enconman_2018_01_010 crossref_primary_10_1016_j_enconman_2018_12_020 crossref_primary_10_3390_en12203920 crossref_primary_10_3390_en14051328 crossref_primary_10_1063_5_0238202 crossref_primary_10_1016_j_egyr_2021_06_014 crossref_primary_10_1016_j_renene_2020_08_139 crossref_primary_10_3390_en14113181 crossref_primary_10_1016_j_enconman_2019_112188 crossref_primary_10_1063_5_0254859 crossref_primary_10_1049_gtd2_12291 crossref_primary_10_1016_j_engappai_2023_105982 crossref_primary_10_3390_su10093202 crossref_primary_10_1049_rpg2_12919 crossref_primary_10_3233_JIFS_191594 crossref_primary_10_1016_j_enconman_2020_113500 crossref_primary_10_1016_j_energy_2019_05_084 crossref_primary_10_1016_j_renene_2019_05_039 crossref_primary_10_1007_s11998_020_00376_7 crossref_primary_10_1007_s40095_019_0313_0 crossref_primary_10_2166_hydro_2021_138 |
| Cites_doi | 10.1016/j.enconman.2014.12.053 10.1016/j.enconman.2014.09.060 10.1016/j.jmgm.2017.07.012 10.1016/j.apenergy.2015.08.014 10.1016/j.energy.2010.05.041 10.1109/TASE.2008.2005640 10.1016/j.asoc.2014.06.027 10.1016/j.apenergy.2012.04.001 10.1016/j.rser.2015.10.071 10.1109/TSP.2013.2288675 10.1016/j.energy.2017.02.150 10.1109/TPS.2009.2037151 10.1016/j.asoc.2017.05.031 10.1016/j.rser.2016.01.114 10.1109/TPWRS.2007.901117 10.1016/j.rser.2008.02.002 10.1016/j.renene.2014.09.058 10.1016/j.enconman.2016.12.032 10.1016/j.apenergy.2015.02.032 10.1152/ajpheart.2000.278.6.H2039 10.1016/j.renene.2015.03.049 10.1016/j.enconman.2017.04.064 10.1016/j.renene.2016.10.030 10.1016/j.enconman.2017.10.085 10.1016/j.apenergy.2015.10.145 10.1016/j.bspc.2009.11.001 10.1109/83.862633 10.1016/j.enconman.2015.04.057 10.1016/j.ymssp.2015.02.020 10.1109/34.192463 10.1016/j.apenergy.2012.03.054 10.1016/j.jneumeth.2012.07.002 10.1162/neco.2006.18.7.1678 10.1109/TIA.2012.2199449 10.1016/j.enpol.2012.05.026 10.1016/j.apenergy.2009.12.013 10.1016/j.enconman.2014.06.041 10.1016/j.energy.2015.08.039 10.1016/j.eswa.2011.03.063 10.1111/j.1749-6632.2001.tb02755.x |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Ltd Copyright Elsevier Science Ltd. Jan 15, 2018 |
| Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Jan 15, 2018 |
| DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 H8D KR7 L7M SOI 7S9 L.6 |
| DOI | 10.1016/j.enconman.2017.11.049 |
| DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-2227 |
| EndPage | 541 |
| ExternalDocumentID | 10_1016_j_enconman_2017_11_049 S0196890417311019 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 8WZ 9DU A6W AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SEW WUQ ~HD 7ST 7TB 8FD AGCQF C1K FR3 H8D KR7 L7M SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c412t-c95e669da33f0d9ca9f8eb58bf3818390de29ebdd28db9be486b92f4f3b9a5bd3 |
| ISICitedReferencesCount | 112 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000424310100041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-8904 |
| IngestDate | Wed Oct 01 14:26:35 EDT 2025 Wed Aug 13 11:01:57 EDT 2025 Tue Nov 18 20:41:42 EST 2025 Sat Nov 29 02:32:15 EST 2025 Fri Feb 23 02:33:04 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | ANN CRO Wavelet filter HM ELM FEEMD ARCH Variational mode decomposition WRF WPD SVM FS SPSA WD WF Wavelet decomposition MLP PSOGSA Big multi-step wind speed forecasting EEMD Sample entropy KF EMD ADMM MAdaBoost SSA DWT CWT LMD DNN-MRT NWP Modified adaBoost.RT MAPE RMSE VMD BFGS CS MAE AR FCM AdaBoost ARIMA LSSVM SampEn MFNN |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c412t-c95e669da33f0d9ca9f8eb58bf3818390de29ebdd28db9be486b92f4f3b9a5bd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4460-248X |
| PQID | 2042761700 |
| PQPubID | 2047472 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_2116886607 proquest_journals_2042761700 crossref_citationtrail_10_1016_j_enconman_2017_11_049 crossref_primary_10_1016_j_enconman_2017_11_049 elsevier_sciencedirect_doi_10_1016_j_enconman_2017_11_049 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-01-15 |
| PublicationDateYYYYMMDD | 2018-01-15 |
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Energy conversion and management |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | Li, Shi (b0060) 2010; 87 Liu, Tian, Liang, Li (b0125) 2015; 157 WWEA. WORLD WIND MARKET HAS REACHED 486 GW FROM WHERE 54 GW HAS BEEN INSTALLED LAST YEAR. 2017. Jiang, Huang (b0135) 2017; 144 Tsai, Lin, Tsao, Lin, Wang, Huang (b0155) 2012; 210 Wang, Song, Liu, Hou (b0140) 2016; 60 Hong, Chang, Chiu (b0070) 2010; 35 Alcaraz, Rieta (b0170) 2010; 5 Zhao, Guo, Su, Zhao, Xiao, Liu (b0030) 2016; 162 Dong, Sun, Li (b0025) 2017; 102 Freund, Schapire (b0190) 1995 Chang, Yu, Vetterli (b0220) 2000; 9 Liu, Tian, Li (b0110) 2015; 89 Lei, Shiyan, Chuanwen, Hongling, Yan (b0020) 2009; 13 Drucker H. Improving regressors using boosting techniques. ICML1997. p. 107–15. Liu, Mi, Li (b0120) 2018; 155 Croonenbroeck, Stadtmann (b0015) 2015; 81 Mallat (b0145) 1989; 11 Wang, Zhang, Li, Wang, Dang (b0115) 2014; 23 Liu, Tian, Li, Zhang (b0080) 2015; 92 Wiki. Sample entropy. 2017. Wang, Wang, Wei (b0130) 2015; 91 Pincus (b0175) 2001; 954 Solomatine, Shrestha (b0200) 2004 Wang, Wang, Zhao, Dong (b0050) 2012; 48 Wang, Heng, Xiao, Wang (b0005) 2017; 125 Liu, Tian, Li (b0055) 2012; 98 Cassola, Burlando (b0035) 2012; 99 Zameer, Arshad, Khan, Raja (b0090) 2017; 134 Liu, Shi, Yang, Lee (b0100) 2012; 48 Richman, Moorman (b0150) 2000; 278 Qureshi, Khan, Zameer, Usman (b0085) 2017; 58 Xia, Rusli, Kumta (b0215) 2010; 38 Wang, Markert, Xiang, Zheng (b0185) 2015; 60–61 Liu, Tian, Li (b0095) 2015; 100 Yu, Lou, Li, Zhang, Qiu, Wu (b0225) 2017; 76 Masseran (b0045) 2016; 54 Salcedo-Sanz, Pastor-Sánchez, Prieto, Blanco-Aguilera, García-Herrera (b0065) 2014; 87 Osório, Matias, Catalão (b0105) 2015; 75 Ait Maatallah, Achuthan, Janoyan, Marzocca (b0075) 2015; 145 Hui-Xin, Zhi-Zhong (b0205) 2010; 7 Pinson, Chevallier, Kariniotakis (b0040) 2007; 22 Shrestha, Solomatine (b0210) 2006; 18 Widodo, Shim, Caesarendra, Yang (b0160) 2011; 38 Dragomiretskiy, Zosso (b0180) 2014; 62 Liu (10.1016/j.enconman.2017.11.049_b0125) 2015; 157 Masseran (10.1016/j.enconman.2017.11.049_b0045) 2016; 54 Pincus (10.1016/j.enconman.2017.11.049_b0175) 2001; 954 Shrestha (10.1016/j.enconman.2017.11.049_b0210) 2006; 18 Cassola (10.1016/j.enconman.2017.11.049_b0035) 2012; 99 Freund (10.1016/j.enconman.2017.11.049_b0190) 1995 Wang (10.1016/j.enconman.2017.11.049_b0140) 2016; 60 Liu (10.1016/j.enconman.2017.11.049_b0080) 2015; 92 Wang (10.1016/j.enconman.2017.11.049_b0005) 2017; 125 Wang (10.1016/j.enconman.2017.11.049_b0130) 2015; 91 Mallat (10.1016/j.enconman.2017.11.049_b0145) 1989; 11 Widodo (10.1016/j.enconman.2017.11.049_b0160) 2011; 38 Liu (10.1016/j.enconman.2017.11.049_b0055) 2012; 98 Liu (10.1016/j.enconman.2017.11.049_b0095) 2015; 100 Hui-Xin (10.1016/j.enconman.2017.11.049_b0205) 2010; 7 Lei (10.1016/j.enconman.2017.11.049_b0020) 2009; 13 Solomatine (10.1016/j.enconman.2017.11.049_b0200) 2004 Jiang (10.1016/j.enconman.2017.11.049_b0135) 2017; 144 Tsai (10.1016/j.enconman.2017.11.049_b0155) 2012; 210 Liu (10.1016/j.enconman.2017.11.049_b0100) 2012; 48 Osório (10.1016/j.enconman.2017.11.049_b0105) 2015; 75 10.1016/j.enconman.2017.11.049_b0165 Salcedo-Sanz (10.1016/j.enconman.2017.11.049_b0065) 2014; 87 Qureshi (10.1016/j.enconman.2017.11.049_b0085) 2017; 58 Ait Maatallah (10.1016/j.enconman.2017.11.049_b0075) 2015; 145 Croonenbroeck (10.1016/j.enconman.2017.11.049_b0015) 2015; 81 Liu (10.1016/j.enconman.2017.11.049_b0110) 2015; 89 Richman (10.1016/j.enconman.2017.11.049_b0150) 2000; 278 Wang (10.1016/j.enconman.2017.11.049_b0185) 2015; 60–61 Dong (10.1016/j.enconman.2017.11.049_b0025) 2017; 102 Wang (10.1016/j.enconman.2017.11.049_b0115) 2014; 23 Dragomiretskiy (10.1016/j.enconman.2017.11.049_b0180) 2014; 62 Zhao (10.1016/j.enconman.2017.11.049_b0030) 2016; 162 Chang (10.1016/j.enconman.2017.11.049_b0220) 2000; 9 Alcaraz (10.1016/j.enconman.2017.11.049_b0170) 2010; 5 Wang (10.1016/j.enconman.2017.11.049_b0050) 2012; 48 Li (10.1016/j.enconman.2017.11.049_b0060) 2010; 87 Hong (10.1016/j.enconman.2017.11.049_b0070) 2010; 35 Xia (10.1016/j.enconman.2017.11.049_b0215) 2010; 38 Yu (10.1016/j.enconman.2017.11.049_b0225) 2017; 76 Liu (10.1016/j.enconman.2017.11.049_b0120) 2018; 155 10.1016/j.enconman.2017.11.049_b0010 Pinson (10.1016/j.enconman.2017.11.049_b0040) 2007; 22 Zameer (10.1016/j.enconman.2017.11.049_b0090) 2017; 134 10.1016/j.enconman.2017.11.049_b0195 |
| References_xml | – volume: 89 start-page: 1 year: 2015 end-page: 11 ident: b0110 article-title: Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, Wavelet Packet-MLP and Wavelet Packet-ANFIS for wind speed predictions publication-title: Energy Convers Manage – reference: Wiki. Sample entropy. 2017. – volume: 18 start-page: 1678 year: 2006 end-page: 1710 ident: b0210 article-title: Experiments with AdaBoost. RT, an improved boosting scheme for regression publication-title: Neural Comput – volume: 145 start-page: 191 year: 2015 end-page: 197 ident: b0075 article-title: Recursive wind speed forecasting based on Hammerstein Auto-Regressive model publication-title: Appl Energy – volume: 91 start-page: 556 year: 2015 end-page: 572 ident: b0130 article-title: A hybrid wind speed forecasting model based on phase space reconstruction theory and Markov model: A case study of wind farms in northwest China publication-title: Energy – volume: 81 start-page: 197 year: 2015 end-page: 208 ident: b0015 article-title: Minimizing asymmetric loss in medium-term wind power forecasting publication-title: Renew Energy – volume: 75 start-page: 301 year: 2015 end-page: 307 ident: b0105 article-title: Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information publication-title: Renew Energy – volume: 38 start-page: 11763 year: 2011 end-page: 11769 ident: b0160 article-title: Intelligent prognostics for battery health monitoring based on sample entropy publication-title: Expert Syst Appl – volume: 76 start-page: 260 year: 2017 end-page: 273 ident: b0225 article-title: Prediction of protein structural class for low-similarity sequences using Chou's pseudo amino acid composition and wavelet denoising publication-title: J Mol Graph Model – volume: 22 start-page: 1148 year: 2007 end-page: 1156 ident: b0040 article-title: Trading wind generation from short-term probabilistic forecasts of wind power publication-title: IEEE Trans Power Syst – start-page: 1163 year: 2004 end-page: 1168 ident: b0200 article-title: AdaBoost. RT: a boosting algorithm for regression problems publication-title: Neural Networks, 2004 Proceedings 2004 IEEE International Joint Conference on – volume: 48 start-page: 284 year: 2012 end-page: 294 ident: b0050 article-title: Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: a case study of China publication-title: Energy Policy – volume: 102 start-page: 241 year: 2017 end-page: 257 ident: b0025 article-title: A novel forecasting model based on a hybrid processing strategy and an optimized local linear fuzzy neural network to make wind power forecasting: a case study of wind farms in China publication-title: Renew Energy – volume: 87 start-page: 2313 year: 2010 end-page: 2320 ident: b0060 article-title: On comparing three artificial neural networks for wind speed forecasting publication-title: Appl Energy – volume: 7 start-page: 73 year: 2010 end-page: 80 ident: b0205 article-title: An Ensemble ELM Based on Modified AdaBoost.RT Algorithm for Predicting the Temperature of Molten Steel in Ladle Furnace publication-title: IEEE Trans Autom Sci Eng – volume: 23 start-page: 452 year: 2014 end-page: 459 ident: b0115 article-title: Forecasting wind speed using empirical mode decomposition and Elman neural network publication-title: Appl Soft Comput – volume: 98 start-page: 415 year: 2012 end-page: 424 ident: b0055 article-title: Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction publication-title: Appl Energy – volume: 62 start-page: 531 year: 2014 end-page: 544 ident: b0180 article-title: Variational mode decomposition publication-title: IEEE Trans Signal Process – volume: 38 start-page: 142 year: 2010 end-page: 148 ident: b0215 article-title: Feedforward neural network trained by BFGS algorithm for modeling plasma etching of silicon carbide publication-title: IEEE Trans Plasma Sci – volume: 155 start-page: 188 year: 2018 end-page: 200 ident: b0120 article-title: Comparison of two new intelligent wind speed forecasting approaches based on Wavelet Packet Decomposition, Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Artificial Neural Networks publication-title: Energy Convers Manage – volume: 60 start-page: 960 year: 2016 end-page: 981 ident: b0140 article-title: Analysis and application of forecasting models in wind power integration: a review of multi-step-ahead wind speed forecasting models publication-title: Renew Sustain Energy Rev – reference: WWEA. WORLD WIND MARKET HAS REACHED 486 GW FROM WHERE 54 GW HAS BEEN INSTALLED LAST YEAR. 2017. – volume: 210 start-page: 230 year: 2012 end-page: 237 ident: b0155 article-title: Empirical mode decomposition based detrended sample entropy in electroencephalography for Alzheimer's disease publication-title: J Neurosci Meth – volume: 144 start-page: 340 year: 2017 end-page: 350 ident: b0135 article-title: Short-term wind speed prediction: hybrid of ensemble empirical mode decomposition, feature selection and error correction publication-title: Energy Convers Manage – start-page: 23 year: 1995 end-page: 37 ident: b0190 article-title: A desicion-theoretic generalization of on-line learning and an application to boosting publication-title: European conference on computational learning theory – volume: 35 start-page: 3870 year: 2010 end-page: 3876 ident: b0070 article-title: Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs publication-title: Energy. – volume: 54 start-page: 777 year: 2016 end-page: 784 ident: b0045 article-title: Modeling the fluctuations of wind speed data by considering their mean and volatility effects publication-title: Renew Sustain Energy Rev – volume: 134 start-page: 361 year: 2017 end-page: 372 ident: b0090 article-title: Intelligent and robust prediction of short term wind power using genetic programming based ensemble of neural networks publication-title: Energy Convers Manage – volume: 48 start-page: 1136 year: 2012 end-page: 1141 ident: b0100 article-title: Short-term wind-power prediction based on wavelet transform–support vector machine and statistic-characteristics analysis publication-title: IEEE Trans Ind Appl – volume: 9 start-page: 1532 year: 2000 end-page: 1546 ident: b0220 article-title: Adaptive wavelet thresholding for image denoising and compression publication-title: IEEE Trans Image Process – volume: 954 start-page: 245 year: 2001 end-page: 267 ident: b0175 article-title: Assessing serial irregularity and its implications for health publication-title: Ann NY Acad Sci – volume: 58 start-page: 742 year: 2017 end-page: 755 ident: b0085 article-title: Wind power prediction using deep neural network based meta regression and transfer learning publication-title: Appl Soft Comput – volume: 11 start-page: 674 year: 1989 end-page: 693 ident: b0145 article-title: A theory for multiresolution signal decomposition: the wavelet representation publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 13 start-page: 915 year: 2009 end-page: 920 ident: b0020 article-title: A review on the forecasting of wind speed and generated power publication-title: Renew Sustain Energy Rev – volume: 125 start-page: 591 year: 2017 end-page: 613 ident: b0005 article-title: Research and application of a combined model based on multi-objective optimization for multi-step ahead wind speed forecasting publication-title: Energy – volume: 87 start-page: 10 year: 2014 end-page: 18 ident: b0065 article-title: Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization – Extreme learning machine approach publication-title: Energy Convers Manage – volume: 100 start-page: 16 year: 2015 end-page: 22 ident: b0095 article-title: Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms publication-title: Energy Convers Manage – volume: 162 start-page: 808 year: 2016 end-page: 826 ident: b0030 article-title: An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed publication-title: Appl Energy – volume: 278 start-page: H2039 year: 2000 end-page: H2049 ident: b0150 article-title: Physiological time-series analysis using approximate entropy and sample entropy publication-title: Am J Physiol-Heart Circulatory Physiol – volume: 5 start-page: 1 year: 2010 end-page: 14 ident: b0170 article-title: A review on sample entropy applications for the non-invasive analysis of atrial fibrillation electrocardiograms publication-title: Biomed Signal Process Control – reference: Drucker H. Improving regressors using boosting techniques. ICML1997. p. 107–15. – volume: 92 start-page: 67 year: 2015 end-page: 81 ident: b0080 article-title: Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions publication-title: Energy Convers Manage – volume: 157 start-page: 183 year: 2015 end-page: 194 ident: b0125 article-title: Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks publication-title: Appl Energy – volume: 99 start-page: 154 year: 2012 end-page: 166 ident: b0035 article-title: Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output publication-title: Appl Energy – volume: 60–61 start-page: 243 year: 2015 end-page: 251 ident: b0185 article-title: Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system publication-title: Mech Syst Sig Process – volume: 92 start-page: 67 year: 2015 ident: 10.1016/j.enconman.2017.11.049_b0080 article-title: Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2014.12.053 – volume: 89 start-page: 1 year: 2015 ident: 10.1016/j.enconman.2017.11.049_b0110 article-title: Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, Wavelet Packet-MLP and Wavelet Packet-ANFIS for wind speed predictions publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2014.09.060 – volume: 76 start-page: 260 year: 2017 ident: 10.1016/j.enconman.2017.11.049_b0225 article-title: Prediction of protein structural class for low-similarity sequences using Chou's pseudo amino acid composition and wavelet denoising publication-title: J Mol Graph Model doi: 10.1016/j.jmgm.2017.07.012 – volume: 157 start-page: 183 year: 2015 ident: 10.1016/j.enconman.2017.11.049_b0125 article-title: Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.08.014 – volume: 35 start-page: 3870 year: 2010 ident: 10.1016/j.enconman.2017.11.049_b0070 article-title: Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs publication-title: Energy. doi: 10.1016/j.energy.2010.05.041 – volume: 7 start-page: 73 year: 2010 ident: 10.1016/j.enconman.2017.11.049_b0205 article-title: An Ensemble ELM Based on Modified AdaBoost.RT Algorithm for Predicting the Temperature of Molten Steel in Ladle Furnace publication-title: IEEE Trans Autom Sci Eng doi: 10.1109/TASE.2008.2005640 – volume: 23 start-page: 452 year: 2014 ident: 10.1016/j.enconman.2017.11.049_b0115 article-title: Forecasting wind speed using empirical mode decomposition and Elman neural network publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2014.06.027 – volume: 98 start-page: 415 year: 2012 ident: 10.1016/j.enconman.2017.11.049_b0055 article-title: Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.04.001 – volume: 54 start-page: 777 year: 2016 ident: 10.1016/j.enconman.2017.11.049_b0045 article-title: Modeling the fluctuations of wind speed data by considering their mean and volatility effects publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.10.071 – volume: 62 start-page: 531 year: 2014 ident: 10.1016/j.enconman.2017.11.049_b0180 article-title: Variational mode decomposition publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2013.2288675 – volume: 125 start-page: 591 year: 2017 ident: 10.1016/j.enconman.2017.11.049_b0005 article-title: Research and application of a combined model based on multi-objective optimization for multi-step ahead wind speed forecasting publication-title: Energy doi: 10.1016/j.energy.2017.02.150 – start-page: 23 year: 1995 ident: 10.1016/j.enconman.2017.11.049_b0190 article-title: A desicion-theoretic generalization of on-line learning and an application to boosting – volume: 38 start-page: 142 year: 2010 ident: 10.1016/j.enconman.2017.11.049_b0215 article-title: Feedforward neural network trained by BFGS algorithm for modeling plasma etching of silicon carbide publication-title: IEEE Trans Plasma Sci doi: 10.1109/TPS.2009.2037151 – ident: 10.1016/j.enconman.2017.11.049_b0195 – volume: 58 start-page: 742 year: 2017 ident: 10.1016/j.enconman.2017.11.049_b0085 article-title: Wind power prediction using deep neural network based meta regression and transfer learning publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.05.031 – volume: 60 start-page: 960 year: 2016 ident: 10.1016/j.enconman.2017.11.049_b0140 article-title: Analysis and application of forecasting models in wind power integration: a review of multi-step-ahead wind speed forecasting models publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.01.114 – volume: 22 start-page: 1148 year: 2007 ident: 10.1016/j.enconman.2017.11.049_b0040 article-title: Trading wind generation from short-term probabilistic forecasts of wind power publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2007.901117 – start-page: 1163 year: 2004 ident: 10.1016/j.enconman.2017.11.049_b0200 article-title: AdaBoost. RT: a boosting algorithm for regression problems – volume: 13 start-page: 915 year: 2009 ident: 10.1016/j.enconman.2017.11.049_b0020 article-title: A review on the forecasting of wind speed and generated power publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2008.02.002 – volume: 75 start-page: 301 year: 2015 ident: 10.1016/j.enconman.2017.11.049_b0105 article-title: Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information publication-title: Renew Energy doi: 10.1016/j.renene.2014.09.058 – volume: 134 start-page: 361 year: 2017 ident: 10.1016/j.enconman.2017.11.049_b0090 article-title: Intelligent and robust prediction of short term wind power using genetic programming based ensemble of neural networks publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2016.12.032 – ident: 10.1016/j.enconman.2017.11.049_b0165 – volume: 145 start-page: 191 year: 2015 ident: 10.1016/j.enconman.2017.11.049_b0075 article-title: Recursive wind speed forecasting based on Hammerstein Auto-Regressive model publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.02.032 – volume: 278 start-page: H2039 year: 2000 ident: 10.1016/j.enconman.2017.11.049_b0150 article-title: Physiological time-series analysis using approximate entropy and sample entropy publication-title: Am J Physiol-Heart Circulatory Physiol doi: 10.1152/ajpheart.2000.278.6.H2039 – volume: 81 start-page: 197 year: 2015 ident: 10.1016/j.enconman.2017.11.049_b0015 article-title: Minimizing asymmetric loss in medium-term wind power forecasting publication-title: Renew Energy doi: 10.1016/j.renene.2015.03.049 – volume: 144 start-page: 340 year: 2017 ident: 10.1016/j.enconman.2017.11.049_b0135 article-title: Short-term wind speed prediction: hybrid of ensemble empirical mode decomposition, feature selection and error correction publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.04.064 – ident: 10.1016/j.enconman.2017.11.049_b0010 – volume: 102 start-page: 241 year: 2017 ident: 10.1016/j.enconman.2017.11.049_b0025 article-title: A novel forecasting model based on a hybrid processing strategy and an optimized local linear fuzzy neural network to make wind power forecasting: a case study of wind farms in China publication-title: Renew Energy doi: 10.1016/j.renene.2016.10.030 – volume: 155 start-page: 188 year: 2018 ident: 10.1016/j.enconman.2017.11.049_b0120 article-title: Comparison of two new intelligent wind speed forecasting approaches based on Wavelet Packet Decomposition, Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Artificial Neural Networks publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.10.085 – volume: 162 start-page: 808 year: 2016 ident: 10.1016/j.enconman.2017.11.049_b0030 article-title: An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.10.145 – volume: 5 start-page: 1 year: 2010 ident: 10.1016/j.enconman.2017.11.049_b0170 article-title: A review on sample entropy applications for the non-invasive analysis of atrial fibrillation electrocardiograms publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2009.11.001 – volume: 9 start-page: 1532 year: 2000 ident: 10.1016/j.enconman.2017.11.049_b0220 article-title: Adaptive wavelet thresholding for image denoising and compression publication-title: IEEE Trans Image Process doi: 10.1109/83.862633 – volume: 100 start-page: 16 year: 2015 ident: 10.1016/j.enconman.2017.11.049_b0095 article-title: Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2015.04.057 – volume: 60–61 start-page: 243 year: 2015 ident: 10.1016/j.enconman.2017.11.049_b0185 article-title: Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system publication-title: Mech Syst Sig Process doi: 10.1016/j.ymssp.2015.02.020 – volume: 11 start-page: 674 year: 1989 ident: 10.1016/j.enconman.2017.11.049_b0145 article-title: A theory for multiresolution signal decomposition: the wavelet representation publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.192463 – volume: 99 start-page: 154 year: 2012 ident: 10.1016/j.enconman.2017.11.049_b0035 article-title: Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.03.054 – volume: 210 start-page: 230 year: 2012 ident: 10.1016/j.enconman.2017.11.049_b0155 article-title: Empirical mode decomposition based detrended sample entropy in electroencephalography for Alzheimer's disease publication-title: J Neurosci Meth doi: 10.1016/j.jneumeth.2012.07.002 – volume: 18 start-page: 1678 year: 2006 ident: 10.1016/j.enconman.2017.11.049_b0210 article-title: Experiments with AdaBoost. RT, an improved boosting scheme for regression publication-title: Neural Comput doi: 10.1162/neco.2006.18.7.1678 – volume: 48 start-page: 1136 year: 2012 ident: 10.1016/j.enconman.2017.11.049_b0100 article-title: Short-term wind-power prediction based on wavelet transform–support vector machine and statistic-characteristics analysis publication-title: IEEE Trans Ind Appl doi: 10.1109/TIA.2012.2199449 – volume: 48 start-page: 284 year: 2012 ident: 10.1016/j.enconman.2017.11.049_b0050 article-title: Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: a case study of China publication-title: Energy Policy doi: 10.1016/j.enpol.2012.05.026 – volume: 87 start-page: 2313 year: 2010 ident: 10.1016/j.enconman.2017.11.049_b0060 article-title: On comparing three artificial neural networks for wind speed forecasting publication-title: Appl Energy doi: 10.1016/j.apenergy.2009.12.013 – volume: 87 start-page: 10 year: 2014 ident: 10.1016/j.enconman.2017.11.049_b0065 article-title: Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization – Extreme learning machine approach publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2014.06.041 – volume: 91 start-page: 556 year: 2015 ident: 10.1016/j.enconman.2017.11.049_b0130 article-title: A hybrid wind speed forecasting model based on phase space reconstruction theory and Markov model: A case study of wind farms in northwest China publication-title: Energy doi: 10.1016/j.energy.2015.08.039 – volume: 38 start-page: 11763 year: 2011 ident: 10.1016/j.enconman.2017.11.049_b0160 article-title: Intelligent prognostics for battery health monitoring based on sample entropy publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.03.063 – volume: 954 start-page: 245 year: 2001 ident: 10.1016/j.enconman.2017.11.049_b0175 article-title: Assessing serial irregularity and its implications for health publication-title: Ann NY Acad Sci doi: 10.1111/j.1749-6632.2001.tb02755.x |
| SSID | ssj0003506 |
| Score | 2.550736 |
| Snippet | •A new hybrid method is proposed for the wind speed multi-step forecasting.•The wavelet decomposition is adopted to reduce the noise of the original data.•The... Wind power is one of the most promising powers. Wind speed forecasting can eliminate the harmful effect caused by the intermittent and fluctuation of wind... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 525 |
| SubjectTerms | Algorithms Back propagation networks Big multi-step wind speed forecasting Computer simulation Decomposition Electricity distribution Entropy Error correction Forecasting Machine learning Mathematical models Modified adaBoost.RT neurons Sample entropy Studies Variation Variational mode decomposition wavelet Wavelet analysis Wavelet decomposition Wavelet filter Wind power Wind speed |
| Title | Big multi-step wind speed forecasting model based on secondary decomposition, ensemble method and error correction algorithm |
| URI | https://dx.doi.org/10.1016/j.enconman.2017.11.049 https://www.proquest.com/docview/2042761700 https://www.proquest.com/docview/2116886607 |
| Volume | 156 |
| WOSCitedRecordID | wos000424310100041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZCygEOFU9RWpCRuAWXzT689rGgIkBVxaGgiMvKr023SjbRJikV4g_xLxnb-0haoPTAZRXtZqx15otnPP5mBqGXgoZpoIKEyFgyEg9TQYSmMYmZAPVLrrSj_H85So-P2WjEP_V6P5tcmPNJWpbs4oLP_6uq4R4o26bO3kDd7aBwAz6D0uEKaofrPyn-TTH2NEECCpwPvhU2Mj4HI2UZhUaJhSM6uw44A2vDtD0vWNh9sbYMOm0sy7ymclkFwD7XTG1-lW827U4bTFXNqoGynT3qVuOT8awqlqfTjUi_zyt0xHYXlXOy0yuEm6Ni5Szgqujcah-X_Xq66pZI72ibcky-m07U2RBRktwU6xGMoSXPEZ_D2QQ1OSWM-zbE7aqcrK-ric-Ork104mtlXVn9fSDibN-WAC1hNpa5l-7bIq2-LOpmue1LZrAlJza8t7OsGSez48BeKYNxbqGtME0466Otgw-Ho4-t2Y8S18i1ncxaOvrv3-hPntAln8A5Oif30Ha9Q8EHHln3Uc-UD9DdtbqVD9EPwBjuMIYtxrDDGF7DGHYYww5jeFbiFmN4A2OvcIMw7BGGASXYIQx3CMMtwh6hz-8OT96-J3UbD6LiYbgkiieGUq5FFOWB5krwnBmZMJlbbzHigTYhN1LrkGnJpYkZlTzM4zySXCRSR49Rv5yV5gnCJgd5GWkVSRHb7YEKU0MDJmOqA5YHOyhpftJM1TXubauVSfZ3pe6g163c3Fd5uVaCNxrLal_V-6AZgPFa2b1GxVm9cCzgeRymtjsCTOJF-xjWenuAJ0ozW8F3hkPKGKVB-vTGL7yL7nT_vT3UX1Yr8wzdVufLYlE9r8H8C6Bf1p8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Big+multi-step+wind+speed+forecasting+model+based+on+secondary+decomposition%2C+ensemble+method+and+error+correction+algorithm&rft.jtitle=Energy+conversion+and+management&rft.au=Liu%2C+Hui&rft.au=Duan%2C+Zhu&rft.au=Han%2C+Feng-ze&rft.au=Li%2C+Yan-fei&rft.date=2018-01-15&rft.issn=0196-8904&rft.volume=156&rft.spage=525&rft.epage=541&rft_id=info:doi/10.1016%2Fj.enconman.2017.11.049&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enconman_2017_11_049 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |