On trees with the same restricted U-polynomial and the Prouhet–Tarry–Escott problem

This paper focuses on the well-known problem due to Stanley of whether two non-isomorphic trees can have the same U-polynomial (or, equivalently, the same chromatic symmetric function). We consider the Uk-polynomial, which is a restricted version of U-polynomial, and construct, for any given k, non-...

Full description

Saved in:
Bibliographic Details
Published in:Discrete mathematics Vol. 340; no. 6; pp. 1435 - 1441
Main Authors: Aliste-Prieto, José, de Mier, Anna, Zamora, José
Format: Journal Article Publication
Language:English
Published: Elsevier B.V 01.06.2017
Subjects:
ISSN:0012-365X, 1872-681X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper focuses on the well-known problem due to Stanley of whether two non-isomorphic trees can have the same U-polynomial (or, equivalently, the same chromatic symmetric function). We consider the Uk-polynomial, which is a restricted version of U-polynomial, and construct, for any given k, non-isomorphic trees with the same Uk-polynomial. These trees are constructed by encoding solutions of the Prouhet–Tarry–Escott problem. As a consequence, we find a new class of trees that are distinguished by the U-polynomial up to isomorphism.
AbstractList This paper focuses on the well-known problem due to Stanley of whether two non-isomorphic trees can have the same U-polynomial (or, equivalently, the same chromatic symmetric function). We consider the Uk-polynomial, which is a restricted version of U-polynomial, and construct, for any given kk, non-isomorphic trees with the same Uk-polynomial. These trees are constructed by encoding solutions of the Prouhet–Tarry–Escott problem. As a consequence, we find a new class of trees that are distinguished by the U-polynomial up to isomorphism. Peer Reviewed
This paper focuses on the well-known problem due to Stanley of whether two non-isomorphic trees can have the same U-polynomial (or, equivalently, the same chromatic symmetric function). We consider the Uk-polynomial, which is a restricted version of U-polynomial, and construct, for any given k, non-isomorphic trees with the same Uk-polynomial. These trees are constructed by encoding solutions of the Prouhet–Tarry–Escott problem. As a consequence, we find a new class of trees that are distinguished by the U-polynomial up to isomorphism.
Author de Mier, Anna
Aliste-Prieto, José
Zamora, José
Author_xml – sequence: 1
  givenname: José
  surname: Aliste-Prieto
  fullname: Aliste-Prieto, José
  email: jose.aliste@unab.cl
  organization: Departamento de Matemáticas, Universidad Andres Bello, Republica 220, Santiago, Chile
– sequence: 2
  givenname: Anna
  surname: de Mier
  fullname: de Mier, Anna
  email: anna.de.mier@upc.edu
  organization: Departament de Matemàtiques, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain
– sequence: 3
  givenname: José
  surname: Zamora
  fullname: Zamora, José
  email: josezamora@unab.cl
  organization: Departamento de Matemáticas, Universidad Andres Bello, Republica 220, Santiago, Chile
BookMark eNp9kEtqwzAQQEVJoUnaC3SlC9iV_JWhmxLSDwTSRUKzE_J4TBQcK0hKS3a9Q2_Yk9RuAoUuspgfzBuGNyKD1rRIyC1nIWc8u9uElXYQRl0fsiJkvLggQy7yKMgEXw3IkDEeBXGWrq7IyLkN6-YsFkPyNm-pt4iOfmi_pn6N1KktUovOWw0eK7oMdqY5tGarVUNVW_0uvVqzX6P__vxaKGsPXZ06MN7TnTVlg9trclmrxuHNqY7J8nG6mDwHs_nTy-RhFkDCIx-AgCQrkddYlqLskqrTPClQAXIoRC4gEpBygXmcxEXKONSFKrM6yaBSPBHxmPDjXXB7kBYBLSgvjdJ_Qx8RyyMZszgpekacGGucs1hL0F55bVpvlW4kZ7KXKjeylyp7qZIVspPaodE_dGf1VtnDeej-CGEn4l2jlQ40toCV7n70sjL6HP4DNDmXAw
CitedBy_id crossref_primary_10_1016_j_disc_2021_112682
crossref_primary_10_1016_j_jcta_2021_105496
crossref_primary_10_1016_j_jcta_2021_105572
crossref_primary_10_1016_j_disc_2024_114096
crossref_primary_10_1016_j_aam_2024_102718
crossref_primary_10_1016_j_ejc_2020_103143
crossref_primary_10_1016_j_endm_2018_06_032
crossref_primary_10_1016_j_jctb_2019_05_006
crossref_primary_10_1016_j_jcta_2022_105608
crossref_primary_10_1112_blms_13144
crossref_primary_10_1016_j_disc_2020_112255
crossref_primary_10_1137_17M1144805
crossref_primary_10_1137_20M1380314
crossref_primary_10_1137_22M148046X
Cites_doi 10.1016/j.disc.2013.10.016
10.1006/jctb.2000.1988
10.1006/aima.1995.1020
10.1090/S0002-9904-1948-09071-1
10.1016/0095-8956(81)90068-X
10.1007/s000260050008
10.5802/aif.1706
10.1016/j.jcta.2007.05.008
10.1016/S0012-365X(99)00363-5
10.1016/j.disc.2013.12.006
10.1080/00029890.1959.11989269
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. MD - Matemàtica Discreta
Universitat Politècnica de Catalunya. Departament de Matemàtiques
Contributor_xml – sequence: 1
  fullname: Universitat Politècnica de Catalunya. Departament de Matemàtiques
– sequence: 2
  fullname: Universitat Politècnica de Catalunya. MD - Matemàtica Discreta
Copyright 2016 Elsevier B.V.
info:eu-repo/semantics/openAccess
Copyright_xml – notice: 2016 Elsevier B.V.
– notice: info:eu-repo/semantics/openAccess
DBID AAYXX
CITATION
XX2
DOI 10.1016/j.disc.2016.09.019
DatabaseName CrossRef
Recercat
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-681X
EndPage 1441
ExternalDocumentID oai_recercat_cat_2072_303498
10_1016_j_disc_2016_09_019
S0012365X16303077
GroupedDBID --K
--M
-DZ
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
41~
457
4G.
5GY
5VS
6I.
6OB
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
M26
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
VH1
WH7
WUQ
XJT
XOL
XPP
ZCG
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
XX2
ID FETCH-LOGICAL-c412t-c8c46be1febb8bebbaf5749eace1c9878c28c518e73439501cf9ab6f46cda1483
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000398751100032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0012-365X
IngestDate Fri Nov 07 13:42:09 EST 2025
Sat Nov 29 06:17:53 EST 2025
Tue Nov 18 22:03:05 EST 2025
Fri Feb 23 02:22:13 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Prouhet–Tarry– Escott problem
Graph polynomials
Chromatic symmetric function
U-polynomial
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c412t-c8c46be1febb8bebbaf5749eace1c9878c28c518e73439501cf9ab6f46cda1483
OpenAccessLink https://recercat.cat/handle/2072/303498
PageCount 7
ParticipantIDs csuc_recercat_oai_recercat_cat_2072_303498
crossref_citationtrail_10_1016_j_disc_2016_09_019
crossref_primary_10_1016_j_disc_2016_09_019
elsevier_sciencedirect_doi_10_1016_j_disc_2016_09_019
PublicationCentury 2000
PublicationDate 2017-06-01
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Discrete mathematics
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References K. Markström, From the ising and potts models to the general graph homomorphism polynomial, arXiv preprint
Orellana, Scott (b11) 2014; 320
K. Russell, All trees on 25 or fewer vertices have different chromatic symmetric function, (2013).
Sarmiento (b13) 2000; 4
Stanley (b16) 1999
Bollobás, Pebody, Riordan (b2) 2000; 80
Bollobás, Riordan (b3) 2000; 219
Borwein, Ingalls (b5) 1994; 40
Brylawski (b6) 1981; 30
.
Wright (b17) 1948; 8
Wright (b18) 1959
Aliste-Prieto, Zamora (b1) 2014; 315
Noble, Welsh (b10) 1999; 49
Borwein (b4) 2002
M. Loebl, J.-S. Sereni, Potts partition function and isomorphisms of trees, arXiv preprint
Martin, Morin, Wagner (b9) 2008; 115
I. Smith, Z. Smith, P. Tian, Symmetric chromatic polynomial of trees, arXiv preprint
Stanley (b15) 1995; 111
Sarmiento (10.1016/j.disc.2016.09.019_b13) 2000; 4
Martin (10.1016/j.disc.2016.09.019_b9) 2008; 115
Bollobás (10.1016/j.disc.2016.09.019_b3) 2000; 219
Aliste-Prieto (10.1016/j.disc.2016.09.019_b1) 2014; 315
10.1016/j.disc.2016.09.019_b8
Brylawski (10.1016/j.disc.2016.09.019_b6) 1981; 30
Stanley (10.1016/j.disc.2016.09.019_b16) 1999
Noble (10.1016/j.disc.2016.09.019_b10) 1999; 49
Borwein (10.1016/j.disc.2016.09.019_b4) 2002
Borwein (10.1016/j.disc.2016.09.019_b5) 1994; 40
Wright (10.1016/j.disc.2016.09.019_b17) 1948; 8
Bollobás (10.1016/j.disc.2016.09.019_b2) 2000; 80
Orellana (10.1016/j.disc.2016.09.019_b11) 2014; 320
10.1016/j.disc.2016.09.019_b7
10.1016/j.disc.2016.09.019_b14
Wright (10.1016/j.disc.2016.09.019_b18) 1959
10.1016/j.disc.2016.09.019_b12
Stanley (10.1016/j.disc.2016.09.019_b15) 1995; 111
References_xml – year: 2002
  ident: b4
  publication-title: Computational Excursions in Analysis and Number Theory
– volume: 40
  start-page: 3
  year: 1994
  end-page: 27
  ident: b5
  article-title: The Prouhet-Tarry-Escott problem revisited
  publication-title: Enseign. Math. (2)
– year: 1999
  ident: b16
  publication-title: Cambridge Studies in Advanced Mathematics, Vol. 62
– start-page: 199
  year: 1959
  end-page: 201
  ident: b18
  article-title: Prouhet’s 1851 solution of the Tarry-Escott problem of 1910
  publication-title: Amer. Math. Monthly
– volume: 111
  start-page: 166
  year: 1995
  end-page: 194
  ident: b15
  article-title: A symmetric function generalization of the chromatic polynomial of a graph
  publication-title: Adv. Math.
– volume: 115
  start-page: 237
  year: 2008
  end-page: 253
  ident: b9
  article-title: On distinguishing trees by their chromatic symmetric functions
  publication-title: J. Combin. Theory Ser. A
– volume: 30
  start-page: 233
  year: 1981
  end-page: 246
  ident: b6
  article-title: Intersection theory for graphs
  publication-title: J. Combin. Theory Ser. B
– reference: K. Russell, All trees on 25 or fewer vertices have different chromatic symmetric function, (2013).
– reference: .
– reference: I. Smith, Z. Smith, P. Tian, Symmetric chromatic polynomial of trees, arXiv preprint
– volume: 4
  start-page: 227
  year: 2000
  end-page: 236
  ident: b13
  article-title: The polychromate and a chord diagram polynomial
  publication-title: Ann. Comb.
– volume: 80
  start-page: 320
  year: 2000
  end-page: 345
  ident: b2
  article-title: Contraction–deletion invariants for graphs
  publication-title: J. Combin. Theory Ser. B
– reference: M. Loebl, J.-S. Sereni, Potts partition function and isomorphisms of trees, arXiv preprint
– volume: 219
  start-page: 1
  year: 2000
  end-page: 7
  ident: b3
  article-title: Polychromatic polynomials
  publication-title: Discrete Math.
– volume: 315
  start-page: 158
  year: 2014
  end-page: 164
  ident: b1
  article-title: Proper caterpillars are distinguished by their chromatic symmetric function
  publication-title: Discrete Math.
– volume: 320
  start-page: 1
  year: 2014
  end-page: 14
  ident: b11
  article-title: Graphs with equal chromatic symmetric functions
  publication-title: Discrete Math.
– reference: K. Markström, From the ising and potts models to the general graph homomorphism polynomial, arXiv preprint
– volume: 49
  start-page: 1057
  year: 1999
  end-page: 1087
  ident: b10
  article-title: A weighted graph polynomial from chromatic invariants of knots
  publication-title: Ann. Inst. Fourier (Grenoble)
– volume: 8
  start-page: 755
  year: 1948
  end-page: 757
  ident: b17
  article-title: Equal sums of like powers
  publication-title: Bull. Amer. Math. Soc
– volume: 315
  start-page: 158
  year: 2014
  ident: 10.1016/j.disc.2016.09.019_b1
  article-title: Proper caterpillars are distinguished by their chromatic symmetric function
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2013.10.016
– volume: 80
  start-page: 320
  issue: 2
  year: 2000
  ident: 10.1016/j.disc.2016.09.019_b2
  article-title: Contraction–deletion invariants for graphs
  publication-title: J. Combin. Theory Ser. B
  doi: 10.1006/jctb.2000.1988
– volume: 111
  start-page: 166
  issue: 1
  year: 1995
  ident: 10.1016/j.disc.2016.09.019_b15
  article-title: A symmetric function generalization of the chromatic polynomial of a graph
  publication-title: Adv. Math.
  doi: 10.1006/aima.1995.1020
– volume: 40
  start-page: 3
  issue: 1–2
  year: 1994
  ident: 10.1016/j.disc.2016.09.019_b5
  article-title: The Prouhet-Tarry-Escott problem revisited
  publication-title: Enseign. Math. (2)
– ident: 10.1016/j.disc.2016.09.019_b8
– year: 2002
  ident: 10.1016/j.disc.2016.09.019_b4
– volume: 8
  start-page: 755
  year: 1948
  ident: 10.1016/j.disc.2016.09.019_b17
  article-title: Equal sums of like powers
  publication-title: Bull. Amer. Math. Soc
  doi: 10.1090/S0002-9904-1948-09071-1
– ident: 10.1016/j.disc.2016.09.019_b7
– year: 1999
  ident: 10.1016/j.disc.2016.09.019_b16
– volume: 30
  start-page: 233
  issue: 2
  year: 1981
  ident: 10.1016/j.disc.2016.09.019_b6
  article-title: Intersection theory for graphs
  publication-title: J. Combin. Theory Ser. B
  doi: 10.1016/0095-8956(81)90068-X
– volume: 4
  start-page: 227
  issue: 2
  year: 2000
  ident: 10.1016/j.disc.2016.09.019_b13
  article-title: The polychromate and a chord diagram polynomial
  publication-title: Ann. Comb.
  doi: 10.1007/s000260050008
– volume: 49
  start-page: 1057
  issue: 3
  year: 1999
  ident: 10.1016/j.disc.2016.09.019_b10
  article-title: A weighted graph polynomial from chromatic invariants of knots
  publication-title: Ann. Inst. Fourier (Grenoble)
  doi: 10.5802/aif.1706
– ident: 10.1016/j.disc.2016.09.019_b14
– volume: 115
  start-page: 237
  issue: 2
  year: 2008
  ident: 10.1016/j.disc.2016.09.019_b9
  article-title: On distinguishing trees by their chromatic symmetric functions
  publication-title: J. Combin. Theory Ser. A
  doi: 10.1016/j.jcta.2007.05.008
– ident: 10.1016/j.disc.2016.09.019_b12
– volume: 219
  start-page: 1
  issue: 1
  year: 2000
  ident: 10.1016/j.disc.2016.09.019_b3
  article-title: Polychromatic polynomials
  publication-title: Discrete Math.
  doi: 10.1016/S0012-365X(99)00363-5
– volume: 320
  start-page: 1
  year: 2014
  ident: 10.1016/j.disc.2016.09.019_b11
  article-title: Graphs with equal chromatic symmetric functions
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2013.12.006
– start-page: 199
  year: 1959
  ident: 10.1016/j.disc.2016.09.019_b18
  article-title: Prouhet’s 1851 solution of the Tarry-Escott problem of 1910
  publication-title: Amer. Math. Monthly
  doi: 10.1080/00029890.1959.11989269
SSID ssj0001638
Score 2.3330853
Snippet This paper focuses on the well-known problem due to Stanley of whether two non-isomorphic trees can have the same U-polynomial (or, equivalently, the same...
SourceID csuc
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 1435
SubjectTerms 05 Combinatorics
05C Graph theory
05E Algebraic combinatorics
[formula omitted]-polynomial
Chromatic symmetric function
Classificació AMS
Combinatorial analysis
Combinatòria
Graph polynomials
Matemàtica discreta
Matemàtiques i estadística
Polinomis
Polynomials
Prouhet–Tarry– Escott problem
UU-polynomial
Àrees temàtiques de la UPC
Title On trees with the same restricted U-polynomial and the Prouhet–Tarry–Escott problem
URI https://dx.doi.org/10.1016/j.disc.2016.09.019
https://recercat.cat/handle/2072/303498
Volume 340
WOSCitedRecordID wos000398751100032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-681X
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0001638
  issn: 0012-365X
  databaseCode: AIEXJ
  dateStart: 19950120
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWLgc4IJ6ivJQDJ1ZBeTm2jxUUARK7leiKiIvluI7oqk2rNF3t3vgPiD_IL2EmdtIsi1aAxKFuk9qN6vky89mZByHPaWCUAcPip8BW_UTHsZ-nWvtCB0powwRVs6bYBDs85FkmJnt739tYmNMFK0t-dibW_1XUcA6EjaGzfyHu7kfhBHwGoUMLYof2jwR_VKL3uHFha8grN2qJxVGwQodGgnnsr1eLc4xHdokCsNOkWm2_mLp1foinqqrOu6Pxpsnh4MrP9Bnt6zkoHmDeB8suAWxH00cLBJE_geV4vXLPG-yT-bbHDLTK3BXULsvORHxWy1WlLo9w2xMh27lR2T2zS3EzVg9jqsSUZtYKWdXLWeSnPMz6ujm2uZwcCPuaFnlez2rjuvC3FsFuTpy8xCBn9ORLm7S2Tk1fzLT90Sa0oxlwVNR97BrZjxgVfED2R-_G2fvOxCOJtSbe_g0XjWUdB3-90gXGM9Cbre4Rnx6Zmd4mt9wqxBtZ9Nwhe6a8S25-2EnwHvl0VHoNjjzEkQffeIgjb4cjr48jD3DUdHI4-vH1W4MgeLfY8Rx27pPjN-Ppq7e-q8Lh6ySMal9znaS5CQuT5zyHRhWUJQIMtgm14IzriGsacsNiILc0CHUhVJ4WSapnChbb8QMyKFeleUi8OMgFL1QUUD1LFM8VqP8iimexpkEOa9shCduZktqlqMdKKQvZ-iKeSJxdibMrAyFhdofkoBuztglaruz9AgUggU2YSqtaYnb17gBfUcAiGWPWJj4ktBWTdHzU8kwJ4LriIo_-cdxjcmN3Bz0hg7ramqfkuj6t55vqmcPgT2w2rxI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+trees+with+the+same+restricted+U-polynomial+and+the+Prouhet%E2%80%93Tarry%E2%80%93Escott+problem&rft.jtitle=Discrete+mathematics&rft.au=Aliste-Prieto%2C+Jos%C3%A9&rft.au=de+Mier%2C+Anna&rft.au=Zamora%2C+Jos%C3%A9&rft.date=2017-06-01&rft.pub=Elsevier+B.V&rft.issn=0012-365X&rft.eissn=1872-681X&rft.volume=340&rft.issue=6&rft.spage=1435&rft.epage=1441&rft_id=info:doi/10.1016%2Fj.disc.2016.09.019&rft.externalDocID=S0012365X16303077
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-365X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-365X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-365X&client=summon