On trees with the same restricted U-polynomial and the Prouhet–Tarry–Escott problem

This paper focuses on the well-known problem due to Stanley of whether two non-isomorphic trees can have the same U-polynomial (or, equivalently, the same chromatic symmetric function). We consider the Uk-polynomial, which is a restricted version of U-polynomial, and construct, for any given k, non-...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete mathematics Ročník 340; číslo 6; s. 1435 - 1441
Hlavní autoři: Aliste-Prieto, José, de Mier, Anna, Zamora, José
Médium: Journal Article Publikace
Jazyk:angličtina
Vydáno: Elsevier B.V 01.06.2017
Témata:
ISSN:0012-365X, 1872-681X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper focuses on the well-known problem due to Stanley of whether two non-isomorphic trees can have the same U-polynomial (or, equivalently, the same chromatic symmetric function). We consider the Uk-polynomial, which is a restricted version of U-polynomial, and construct, for any given k, non-isomorphic trees with the same Uk-polynomial. These trees are constructed by encoding solutions of the Prouhet–Tarry–Escott problem. As a consequence, we find a new class of trees that are distinguished by the U-polynomial up to isomorphism.
ISSN:0012-365X
1872-681X
DOI:10.1016/j.disc.2016.09.019