United coding method for compound image compression

This paper proposes a compound image coding method named united coding (UC). In UC, several lossless coding tools such as dictionary-entropy coders, run-length encoding (RLE), Hextile, and a few filters used in portable network graphics (PNG) format are united into H.264 like intraframe hybrid video...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Multimedia tools and applications Ročník 71; číslo 3; s. 1263 - 1282
Hlavní autori: Wang, Shuhui, Lin, Tao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Boston Springer US 01.08.2014
Springer
Springer Nature B.V
Predmet:
ISSN:1380-7501, 1573-7721
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper proposes a compound image coding method named united coding (UC). In UC, several lossless coding tools such as dictionary-entropy coders, run-length encoding (RLE), Hextile, and a few filters used in portable network graphics (PNG) format are united into H.264 like intraframe hybrid video coding. The basic coding unit (BCU) has a size typically between 16 × 16 pixels to 64 × 64 pixels. All coders in UC are used to code each BCU. Then, the lossless coder that generates minimum bit-rate (R) is chosen as the optimal lossless coder. Finally, the final optimal coder is chosen from the lossy intraframe hybrid coder and the optimal lossless coder using R-D cost based optimization criterion. Moreover, the data coded by one lossless coder can be used as the dictionary of other lossless coders. Experimental results demonstrate that compared with H.264, UC achieves up to 20 dB PSNR improvement and better visual picture quality for compound images with mixed text, graphics and natural picture. Compared with lossless coders such as gzip and PNG, UC can achieve 2–5 times higher compression ratio with just a minor loss and keep partial-lossless picture quality. The partial-lossless nature of UC is indispensable for some typical applications, such as cloud computing and rendering, cloudlet-screen computing and remote desktop, where lossless coding of partial image regions is demanded. On the other hand, the implementation complexity and cost increment of UC is moderate, typically less than 25 % of a traditional hybrid coder such as H.264.
AbstractList This paper proposes a compound image coding method named united coding (UC). In UC, several lossless coding tools such as dictionary-entropy coders, run-length encoding (RLE), Hextile, and a few filters used in portable network graphics (PNG) format are united into H.264 like intraframe hybrid video coding. The basic coding unit (BCU) has a size typically between 16 × 16 pixels to 64 × 64 pixels. All coders in UC are used to code each BCU. Then, the lossless coder that generates minimum bit-rate (R) is chosen as the optimal lossless coder. Finally, the final optimal coder is chosen from the lossy intraframe hybrid coder and the optimal lossless coder using R-D cost based optimization criterion. Moreover, the data coded by one lossless coder can be used as the dictionary of other lossless coders. Experimental results demonstrate that compared with H.264, UC achieves up to 20 dB PSNR improvement and better visual picture quality for compound images with mixed text, graphics and natural picture. Compared with lossless coders such as gzip and PNG, UC can achieve 2–5 times higher compression ratio with just a minor loss and keep partial-lossless picture quality. The partial-lossless nature of UC is indispensable for some typical applications, such as cloud computing and rendering, cloudlet-screen computing and remote desktop, where lossless coding of partial image regions is demanded. On the other hand, the implementation complexity and cost increment of UC is moderate, typically less than 25 % of a traditional hybrid coder such as H.264.
This paper proposes a compound image coding method named united coding (UC). In UC, several lossless coding tools such as dictionary-entropy coders, run-length encoding (RLE), Hextile, and a few filters used in portable network graphics (PNG) format are united into H.264 like intraframe hybrid video coding. The basic coding unit (BCU) has a size typically between 16×16 pixels to 64×64 pixels. All coders in UC are used to code each BCU. Then, the lossless coder that generates minimum bit-rate (R) is chosen as the optimal lossless coder. Finally, the final optimal coder is chosen from the lossy intraframe hybrid coder and the optimal lossless coder using R-D cost based optimization criterion. Moreover, the data coded by one lossless coder can be used as the dictionary of other lossless coders. Experimental results demonstrate that compared with H.264, UC achieves up to 20 dB PSNR improvement and better visual picture quality for compound images with mixed text, graphics and natural picture. Compared with lossless coders such as gzip and PNG, UC can achieve 2-5 times higher compression ratio with just a minor loss and keep partial-lossless picture quality. The partial-lossless nature of UC is indispensable for some typical applications, such as cloud computing and rendering, cloudlet-screen computing and remote desktop, where lossless coding of partial image regions is demanded. On the other hand, the implementation complexity and cost increment of UC is moderate, typically less than 25 % of a traditional hybrid coder such as H.264.[PUBLICATION ABSTRACT]
This paper proposes a compound image coding method named united coding (UC). In UC, several lossless coding tools such as dictionary-entropy coders, run-length encoding (RLE), Hextile, and a few filters used in portable network graphics (PNG) format are united into H.264 like intraframe hybrid video coding. The basic coding unit (BCU) has a size typically between 1616 pixels to 6464 pixels. All coders in UC are used to code each BCU. Then, the lossless coder that generates minimum bit-rate (R) is chosen as the optimal lossless coder. Finally, the final optimal coder is chosen from the lossy intraframe hybrid coder and the optimal lossless coder using R-D cost based optimization criterion. Moreover, the data coded by one lossless coder can be used as the dictionary of other lossless coders. Experimental results demonstrate that compared with H.264, UC achieves up to 20 dB PSNR improvement and better visual picture quality for compound images with mixed text, graphics and natural picture. Compared with lossless coders such as gzip and PNG, UC can achieve 2-5 times higher compression ratio with just a minor loss and keep partial-lossless picture quality. The partial-lossless nature of UC is indispensable for some typical applications, such as cloud computing and rendering, cloudlet-screen computing and remote desktop, where lossless coding of partial image regions is demanded. On the other hand, the implementation complexity and cost increment of UC is moderate, typically less than 25 % of a traditional hybrid coder such as H.264.
Author Wang, Shuhui
Lin, Tao
Author_xml – sequence: 1
  givenname: Shuhui
  surname: Wang
  fullname: Wang, Shuhui
  email: wangshuhui_cn@yahoo.com.cn
  organization: VLSI Lab, Tongji University
– sequence: 2
  givenname: Tao
  surname: Lin
  fullname: Lin, Tao
  organization: VLSI Lab, Tongji University
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28611563$$DView record in Pascal Francis
BookMark eNp9kF1LwzAUhoNMcJv-AO8KInhTzclHUy9l-AUDb9x1SNNkdrTJTNqL_XszO0QGCoF88LznnDwzNHHeGYQuAd8CxuIuAmBGcgwkByJYvjtBU-CC5kIQmKQzLXEuOIYzNItxgzEUnLApoivX9KbOtK8bt84603_4OrM-pJdu6wdXZ02n1ub7GkyMjXfn6NSqNpqLwz5Hq6fH98VLvnx7fl08LHPNgPS5UrXGnLIaK6VVWRnFCKtA1NZaVeHSal6ZkgttyyotyrGtcKGsveeamdLSOboZ626D_xxM7GXXRG3aVjnjhyiBFwIwAc4TenWEbvwQXJouUYxRIJzSRF0fKBW1am1QTjdRbkP6YthJUhaQau45GDkdfIzB2B8EsNzrlqNumXTLvW65SxlxlNFNr_qkqw-qaf9NkjEZUxe3NuHX7H-GvgCju5aU
CitedBy_id crossref_primary_10_3390_s24041208
crossref_primary_10_1007_s11042_021_11418_6
crossref_primary_10_1109_JETCAS_2016_2599876
crossref_primary_10_1109_TMM_2020_3033092
crossref_primary_10_1109_TMM_2017_2758519
crossref_primary_10_1109_TMM_2015_2512539
crossref_primary_10_1109_TMM_2021_3129358
crossref_primary_10_1007_s11042_018_5624_2
crossref_primary_10_1145_2719921
crossref_primary_10_1007_s11042_023_14673_x
Cites_doi 10.1117/1.482609
10.1109/TIP.2005.849776
10.1109/IWSSIP.2007.4381171
10.1109/ICIP.1999.817222
10.1109/ICME.2009.5202873
10.1117/12.532433
10.1109/ICIP.1999.821603
10.1049/ip-cds:19990535
10.1109/CISP.2010.5647270
10.1109/83.847840
10.1109/ICIP.2005.1529812
10.1109/ICIP.1999.821601
10.1109/TIP.2010.2049181
10.1109/ICIP.2002.1038906
10.1109/LSP.2009.2014285
10.1109/TIP.2009.2038636
10.1109/TIT.1977.1055714
10.1109/ICIP.2006.312816
10.1109/TIP.2007.899036
10.1109/83.988964
10.1109/34.777372
ContentType Journal Article
Copyright Springer Science+Business Media New York 2012
2015 INIST-CNRS
Springer Science+Business Media New York 2014
Copyright_xml – notice: Springer Science+Business Media New York 2012
– notice: 2015 INIST-CNRS
– notice: Springer Science+Business Media New York 2014
DBID AAYXX
CITATION
IQODW
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11042-012-1274-y
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Proquest Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1573-7721
EndPage 1282
ExternalDocumentID 3368697611
28611563
10_1007_s11042_012_1274_y
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
IQODW
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c412t-aadc0534d0aaca8bea424b17dfffab08fc5be857cf8bf8b350fb06aff95c4e8f3
IEDL.DBID RSV
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000339387000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1380-7501
IngestDate Thu Oct 02 10:56:40 EDT 2025
Tue Nov 04 23:17:01 EST 2025
Wed Apr 02 07:16:13 EDT 2025
Sat Nov 29 03:25:28 EST 2025
Tue Nov 18 22:43:27 EST 2025
Fri Feb 21 02:33:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Dictionary-entropy coding
Compound image and video
United coding
Hybrid coding
Lossless coding
Video coding
Cloud computing
Dictionaries
Image processing
Data compression
Video signal
Lossless compression
Distributed computing
Optimization
Image coding
Pervasive computing
Image compression
Text
PNG image
RLE encoding
Graphics
Experimental result
Compression ratio
Outsourcing
Signal to noise ratio
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-aadc0534d0aaca8bea424b17dfffab08fc5be857cf8bf8b350fb06aff95c4e8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1544312533
PQPubID 54626
PageCount 20
ParticipantIDs proquest_miscellaneous_1567102155
proquest_journals_1544312533
pascalfrancis_primary_28611563
crossref_primary_10_1007_s11042_012_1274_y
crossref_citationtrail_10_1007_s11042_012_1274_y
springer_journals_10_1007_s11042_012_1274_y
PublicationCentury 2000
PublicationDate 2014-08-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: Heidelberg
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2014
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Selvakumar RK, Nallaperumal K, Punithavathy A (2008) Compound video image compression for H.264/AVC-INTRA. In: Proceedings of IEEE International Conference on Computing, Communication and Networking. Karur, pp 1–7
Mixed Raster Content (MRC) ITU-T (1998) Recommendation T.44, Study Group-8 Contribution
Said A, Drukarev A (1999) Simplified segmentation for compound image compression. In: Proc. IEEE Int. Conf. Image Processing, vol.1. Kobe, pp 229–233
Advanced Video Coding for Generic Audiovisual Services (2010) ITU-T Rec. H.264
Computer graphics and image processing-Portable Network Graphics (PNG): Functional specification (2004) ISO/IEC 15948
Armbrust M et al (2009) Above the clouds: A Berkeley view of cloud computing. Technical Report No. UCB/EECS-2009-28
AtallahMGeninYSzpankowskiWPattern matching image compression: algorithmic and empirical resultsIEEE Trans Pattern Anal Mach Intell199921761462710.1109/34.777372
KonstantinidesKTretterDA JPEG variable quantization method for compound documentsIEEE Trans Image Process2000971282128710.1109/83.847840
FranciscoNCRodriguesNMMda SilvaEABde CarvalhoMBde FariaSMMSilvaVMMScanned compound document encoding using multiscale recurrent patternsIEEE Trans Image Process201019102712272410.1109/TIP.2010.20491812815067
ZivJLempelAA universal algorithm for sequential data compressionIEEE Trans Inf Theory197723333734310.1109/TIT.1977.10557140379.94010530215
Ding W, Lu Y, Wu F (2007) Enable efficient compound image compression in H.264/AVC intra coding. In: Proc. IEEE Int. Conf. Image Processing, vol.2. San Antonio, pp 337–340
Ma S, Kuo C-CJ (2007) High-definition video coding with supermacroblocks. SPIE Visual Communications and Image Processing Conference, vol. 6508. San Jose, pp 650816.828
ZaghettoAde QueirozRLSegmentation-driven compound document coding based on H.264/AVC-INTRAIEEE Trans Image Process20071671755176010.1109/TIP.2007.8990362463080
LinTHaoPCompound image compression for real-time computer screen image transmissionIEEE Trans Image Process2005148993100510.1109/TIP.2005.8497762171959
Mukherjee D, Chrysafis C, Said A (2002) JPEG2000-matched MRC compression of compound documents. In: Proc. IEEE Int. Conf. Image Processing, vol.3. Vancouver, pp 73–76
AlzinaMSzpankowskiWGramaA2D-pattern matching image and video compression: theory, algorithms, and experimentsIEEE Trans Image Process200211331833110.1109/83.9889641889009
Zaghetto A, de Queiroz RL, Mukherjee D (2008) MRC compression of compound documents using threshold segmentation, iterative data-filling and H.264/AVC-INTRA. In: Sixth Indian Conference on Computer Vision, Graphics & Image processing. Bhubaneswar, pp 679–686
BottouLHaffnerPHowardPGSimardPBengioYLeCunYHigh quality document image compression with DjVuJ Electron Imag19987341042510.1117/1.482609
Lin T, Wang S (2009) Cloudlet-Screen Computing: A Multi-core-based, Cloud-computing-oriented, Traditional-computing-compatible Parallel Computing Paradigm for the Masses. In: IEEE Workshop on Multimedia Signal Processing and Novel Parallel Computing. New York, pp 1805–1808
Lakhani G, Subedi R (2006) Optimal filling of FG/BG layers of compound document images. In: Proc. IEEE Int. Conf. Image Processing. Atlanta, pp 2273–2276
LanCShiGWuFCompress compound images in H.264/MPGE-4 AVC by exploiting spatial correlationIEEE Trans Image Process201019494695710.1109/TIP.2009.20386362752095
Lan C, Peng X, Xu J, Wu F (2011) Intra and inter coding tools for screen contents. JCT-VC Doc JCTVC-E145
ChenJMWeiCHVLSI design for high-speed LZ-based data compressionIEE Proc Circ Dev Syst1999146526827810.1049/ip-cds:19990535
Mogi T (1999) A hybrid compression method based on region separation for synthetic and natural compound images. In: Proc. IEEE Int. Conf. Image Processing, vol.3. Kobe, pp 777–781
Huttenlocher D, Felzenszwalb P, Rucklidge W (1999) Digipaper: a versatile color document image representation. In: Proc. IEEE Int. Conf. Image Processing, vol.1. Kobe, pp 219–223
Wang S, Lin T (2010) United coding for compound image compression. In: 3nd International Conference on Image and Signal Processing. Yantai, pp 566–570
Kountchev R, Milanova M, Todorov V, Kountcheva R (2007) Adaptive compression of compound images. In: 14th International Workshop on systems, Signals and Image Processing and 6th Eurasip conference Focused on Speech and Image Processing, Multimedia Communications and Services. Maribor, pp 133–136
LinTAchieving re-loss-free video codingIEEE Signal Process Lett200916432332610.1109/LSP.2009.2014285
Lin T, Hao P, Sang Uk Lee (2005) Efficient coding of computer generated compound images. In: Proc. IEEE Int. Conf. Image Processing, vol.1. Genoa, pp 561–564
Said A (2004) Compression of compound images and video for enabling rich media in embedded systems. SPIE Visual Communications and Image Processing Conference, Vol.5308. San Jose, pp 69–82
JPEG 2000 image coding system (2002) ITU-T Rec. T.800
T Lin (1274_CR17) 2009; 16
1274_CR30
1274_CR10
1274_CR11
K Konstantinides (1274_CR12) 2000; 9
1274_CR14
1274_CR7
1274_CR13
C Lan (1274_CR15) 2010; 19
M Alzina (1274_CR2) 2002; 11
1274_CR16
1274_CR1
1274_CR3
1274_CR19
1274_CR8
NC Francisco (1274_CR9) 2010; 19
L Bottou (1274_CR5) 1998; 7
JM Chen (1274_CR6) 1999; 146
A Zaghetto (1274_CR29) 2007; 16
1274_CR21
1274_CR20
1274_CR23
T Lin (1274_CR18) 2005; 14
1274_CR22
J Ziv (1274_CR31) 1977; 23
1274_CR25
1274_CR24
1274_CR27
1274_CR26
1274_CR28
M Atallah (1274_CR4) 1999; 21
References_xml – reference: FranciscoNCRodriguesNMMda SilvaEABde CarvalhoMBde FariaSMMSilvaVMMScanned compound document encoding using multiscale recurrent patternsIEEE Trans Image Process201019102712272410.1109/TIP.2010.20491812815067
– reference: ZivJLempelAA universal algorithm for sequential data compressionIEEE Trans Inf Theory197723333734310.1109/TIT.1977.10557140379.94010530215
– reference: AlzinaMSzpankowskiWGramaA2D-pattern matching image and video compression: theory, algorithms, and experimentsIEEE Trans Image Process200211331833110.1109/83.9889641889009
– reference: Huttenlocher D, Felzenszwalb P, Rucklidge W (1999) Digipaper: a versatile color document image representation. In: Proc. IEEE Int. Conf. Image Processing, vol.1. Kobe, pp 219–223
– reference: LanCShiGWuFCompress compound images in H.264/MPGE-4 AVC by exploiting spatial correlationIEEE Trans Image Process201019494695710.1109/TIP.2009.20386362752095
– reference: Lan C, Peng X, Xu J, Wu F (2011) Intra and inter coding tools for screen contents. JCT-VC Doc JCTVC-E145
– reference: Wang S, Lin T (2010) United coding for compound image compression. In: 3nd International Conference on Image and Signal Processing. Yantai, pp 566–570
– reference: ChenJMWeiCHVLSI design for high-speed LZ-based data compressionIEE Proc Circ Dev Syst1999146526827810.1049/ip-cds:19990535
– reference: Kountchev R, Milanova M, Todorov V, Kountcheva R (2007) Adaptive compression of compound images. In: 14th International Workshop on systems, Signals and Image Processing and 6th Eurasip conference Focused on Speech and Image Processing, Multimedia Communications and Services. Maribor, pp 133–136
– reference: BottouLHaffnerPHowardPGSimardPBengioYLeCunYHigh quality document image compression with DjVuJ Electron Imag19987341042510.1117/1.482609
– reference: Said A (2004) Compression of compound images and video for enabling rich media in embedded systems. SPIE Visual Communications and Image Processing Conference, Vol.5308. San Jose, pp 69–82
– reference: Lin T, Hao P, Sang Uk Lee (2005) Efficient coding of computer generated compound images. In: Proc. IEEE Int. Conf. Image Processing, vol.1. Genoa, pp 561–564
– reference: Selvakumar RK, Nallaperumal K, Punithavathy A (2008) Compound video image compression for H.264/AVC-INTRA. In: Proceedings of IEEE International Conference on Computing, Communication and Networking. Karur, pp 1–7
– reference: Mixed Raster Content (MRC) ITU-T (1998) Recommendation T.44, Study Group-8 Contribution
– reference: LinTAchieving re-loss-free video codingIEEE Signal Process Lett200916432332610.1109/LSP.2009.2014285
– reference: Mukherjee D, Chrysafis C, Said A (2002) JPEG2000-matched MRC compression of compound documents. In: Proc. IEEE Int. Conf. Image Processing, vol.3. Vancouver, pp 73–76
– reference: Lakhani G, Subedi R (2006) Optimal filling of FG/BG layers of compound document images. In: Proc. IEEE Int. Conf. Image Processing. Atlanta, pp 2273–2276
– reference: Advanced Video Coding for Generic Audiovisual Services (2010) ITU-T Rec. H.264
– reference: AtallahMGeninYSzpankowskiWPattern matching image compression: algorithmic and empirical resultsIEEE Trans Pattern Anal Mach Intell199921761462710.1109/34.777372
– reference: KonstantinidesKTretterDA JPEG variable quantization method for compound documentsIEEE Trans Image Process2000971282128710.1109/83.847840
– reference: Said A, Drukarev A (1999) Simplified segmentation for compound image compression. In: Proc. IEEE Int. Conf. Image Processing, vol.1. Kobe, pp 229–233
– reference: ZaghettoAde QueirozRLSegmentation-driven compound document coding based on H.264/AVC-INTRAIEEE Trans Image Process20071671755176010.1109/TIP.2007.8990362463080
– reference: Zaghetto A, de Queiroz RL, Mukherjee D (2008) MRC compression of compound documents using threshold segmentation, iterative data-filling and H.264/AVC-INTRA. In: Sixth Indian Conference on Computer Vision, Graphics & Image processing. Bhubaneswar, pp 679–686
– reference: Mogi T (1999) A hybrid compression method based on region separation for synthetic and natural compound images. In: Proc. IEEE Int. Conf. Image Processing, vol.3. Kobe, pp 777–781
– reference: JPEG 2000 image coding system (2002) ITU-T Rec. T.800
– reference: Armbrust M et al (2009) Above the clouds: A Berkeley view of cloud computing. Technical Report No. UCB/EECS-2009-28
– reference: Ding W, Lu Y, Wu F (2007) Enable efficient compound image compression in H.264/AVC intra coding. In: Proc. IEEE Int. Conf. Image Processing, vol.2. San Antonio, pp 337–340
– reference: Computer graphics and image processing-Portable Network Graphics (PNG): Functional specification (2004) ISO/IEC 15948
– reference: Ma S, Kuo C-CJ (2007) High-definition video coding with supermacroblocks. SPIE Visual Communications and Image Processing Conference, vol. 6508. San Jose, pp 650816.828
– reference: LinTHaoPCompound image compression for real-time computer screen image transmissionIEEE Trans Image Process2005148993100510.1109/TIP.2005.8497762171959
– reference: Lin T, Wang S (2009) Cloudlet-Screen Computing: A Multi-core-based, Cloud-computing-oriented, Traditional-computing-compatible Parallel Computing Paradigm for the Masses. In: IEEE Workshop on Multimedia Signal Processing and Novel Parallel Computing. New York, pp 1805–1808
– volume: 7
  start-page: 410
  issue: 3
  year: 1998
  ident: 1274_CR5
  publication-title: J Electron Imag
  doi: 10.1117/1.482609
– volume: 14
  start-page: 993
  issue: 8
  year: 2005
  ident: 1274_CR18
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2005.849776
– ident: 1274_CR13
  doi: 10.1109/IWSSIP.2007.4381171
– ident: 1274_CR16
– ident: 1274_CR23
  doi: 10.1109/ICIP.1999.817222
– ident: 1274_CR19
  doi: 10.1109/ICME.2009.5202873
– ident: 1274_CR25
  doi: 10.1117/12.532433
– ident: 1274_CR22
– ident: 1274_CR26
  doi: 10.1109/ICIP.1999.821603
– volume: 146
  start-page: 268
  issue: 5
  year: 1999
  ident: 1274_CR6
  publication-title: IEE Proc Circ Dev Syst
  doi: 10.1049/ip-cds:19990535
– ident: 1274_CR3
– ident: 1274_CR1
– ident: 1274_CR28
  doi: 10.1109/CISP.2010.5647270
– volume: 9
  start-page: 1282
  issue: 7
  year: 2000
  ident: 1274_CR12
  publication-title: IEEE Trans Image Process
  doi: 10.1109/83.847840
– ident: 1274_CR7
– ident: 1274_CR20
  doi: 10.1109/ICIP.2005.1529812
– ident: 1274_CR10
  doi: 10.1109/ICIP.1999.821601
– ident: 1274_CR11
– volume: 19
  start-page: 2712
  issue: 10
  year: 2010
  ident: 1274_CR9
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2010.2049181
– ident: 1274_CR24
  doi: 10.1109/ICIP.2002.1038906
– volume: 16
  start-page: 323
  issue: 4
  year: 2009
  ident: 1274_CR17
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2009.2014285
– ident: 1274_CR30
– volume: 19
  start-page: 946
  issue: 4
  year: 2010
  ident: 1274_CR15
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2009.2038636
– ident: 1274_CR21
– volume: 23
  start-page: 337
  issue: 3
  year: 1977
  ident: 1274_CR31
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.1977.1055714
– ident: 1274_CR14
  doi: 10.1109/ICIP.2006.312816
– volume: 16
  start-page: 1755
  issue: 7
  year: 2007
  ident: 1274_CR29
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2007.899036
– ident: 1274_CR27
– volume: 11
  start-page: 318
  issue: 3
  year: 2002
  ident: 1274_CR2
  publication-title: IEEE Trans Image Process
  doi: 10.1109/83.988964
– volume: 21
  start-page: 614
  issue: 7
  year: 1999
  ident: 1274_CR4
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.777372
– ident: 1274_CR8
SSID ssj0016524
Score 2.0752416
Snippet This paper proposes a compound image coding method named united coding (UC). In UC, several lossless coding tools such as dictionary-entropy coders, run-length...
SourceID proquest
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1263
SubjectTerms Algorithms
Analysis
Applied sciences
Artificial intelligence
Cloud computing
Coders
Coding
Coding standards
Coding, codes
Computer Communication Networks
Computer graphics
Computer Science
Computer science; control theory; systems
Computer systems and distributed systems. User interface
Data compression
Data Structures and Information Theory
Dictionaries
Encoding
Exact sciences and technology
Image coding
Image processing systems
Information, signal and communications theory
Lossless
Multimedia computer applications
Multimedia Information Systems
Optimization
Pattern recognition. Digital image processing. Computational geometry
Pictures
Pixels
Protocol
Rendering
Signal and communications theory
Software
Special Purpose and Application-Based Systems
Studies
Telecommunications and information theory
Video compression
SummonAdditionalLinks – databaseName: ABI/INFORM Collection
  dbid: 7WY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB509aCIj1WxvqjgSQmmTR_Zk4goHkQ8KK6nkqQNCNpd9yHsv3emTVdX0IvQS0nSRyaT-ZKZzAdwrDgZwYQzbmjrJrSC6VgFTMtc5zISKa-TuN6md3ey2-3cuw23oQurbObEaqLOe4b2yM8oa4xAayzEef-dEWsUeVcdhcY8LGBRTAwG6dPz1IuQxI7UVnKGljFovJrV0bmADqbg9MwCXJixyYxdWumrIXaRrbktZsDnD39pZYau1_77A-uw6gCof1GPmA2YK8o2rDXkDr7T9TYsf8tUuAmixqa-6ZGt82veaR8Br08x6UTN5L-84dRU3dahteUWPF5fPVzeMMe3wEwUhCOmVG5QJ6OcK2WU1IWKwkgHaW6tVZpLa2JdyDg1Vmq8RMyt5omythObqJBWbEOr7JXFDvhUGmpEE7nC9ZZIdBEREOBKqpg8lx7wprcz45KREyfGa_aVRpkElKGAMhJQNvHgZNqkX2fi-Kvy4YwIpy1CmSAGToQH-42UMqe1w-xLRB4cTYtR38iJosqiN6Y6CYEyhGEenDZj4dsjfvui3b9fuAdLCMWiOrRwH1qjwbg4gEXzMXoZDg6rYf0J5ML9FA
  priority: 102
  providerName: ProQuest
Title United coding method for compound image compression
URI https://link.springer.com/article/10.1007/s11042-012-1274-y
https://www.proquest.com/docview/1544312533
https://www.proquest.com/docview/1567102155
Volume 71
WOSCitedRecordID wos000339387000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: 7WY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: M0C
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: K7-
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Research Library
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: M2O
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB68HhTxFtdjqeCTEkibps0-6qII6rp460tJ0gYE7Yq7Cv57Z7bt6ooKCiVQchAmncyXzuQbgC3NyQhGnHFLv24CJ5iR2mdGpSZVoYh5QeJ6HLda6uam0S7vcXeraPfKJdnfqT8uu_l0lQQ3VObjUYq9jcK4JLIZOqKfXw1cB5EsM9kqztAc-pUr87shhozR9JPuolxckdBiCHF-cZL2bc_B7L9mPQczJdT0dotvYx5GsnwBZqs0Dl6p1Qsw9YmTcBFEgUI92yGr5hUZpj2Eth5Fn1MSJu_-ETeh_msRRJsvweXB_kXzkJWZFZgN_aDHtE4tal-Ycq2tVibTYRAaP06dc9pw5aw0mZKxdcrgIyR3hkfauYa0YaacWIaxvJNnK-BRbWAQN6QaT1YiMllIJp9rpSX5KGvAKxEntqQdp-wXD8kHYTKJKEERJSSi5K0G24MuTwXnxm-N60PrNugRqAjRbiRqsF4tZFLqZzchDiKB2E5g9eagGjWL3CU6zzov1CYi-IWAqwY71eJ-GuKnGa3-qfUaTCIGC4uYwnUY6z2_ZBswYV97993nOozG17d1GN_bb7XP8O0oZlie8CaVwSmWbXlX7yvAO6wP-Vk
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VgkQRolCKCJRipHIpsnBiJ3EPCCGgarXLikORekttx5YqQXbpbkH7p_iNzMTJtluJ3npAyiVy4nz4eebZY88D2DGCnGAhuHA0dZMFyW1uUm51bWutZCliEtdhORrp4-O9ryvwp98LQ8sqe5vYGup67GiO_C1ljZHojaV8P_nJSTWKoqu9hEaExcDPf-OQbfru8BO27-ss2_989PGAd6oC3Kk0m3FjaofIU7UwxhltvVGZsmlZhxCMFTq43Hqdly5oi4fMRbCiMCHs5U55HSTWewtuK6kL6lGDki-iFkXeiehqwdETp30Utd2ql9JGGHQHPMWBIJ8v-cH7EzPFJglRS2OJ7F6Jz7Zub3_9f_thD-FBR7DZh9gjHsGKbzZgvRevYJ0t24B7lzIxPgYZuTdzY_LlLOpqMyT0jNbck_QUO_2Bprc9jUuHm034diMf8gRWm3HjnwKj0swiW6oNjidlYb0ioiOMNjlFZhMQfetWrku2Tpof36uLNNEEiAoBUREgqnkCu4tbJjHTyHUXby9BZnFHpgvk-IVMYKtHRdVZpWl1AYkEXi2K0Z5QkMg0fnxO1xREOpFmJvCmx96lKv71Rs-uf-BLuHtw9GVYDQ9Hg-ewhrRTxWWUW7A6Ozv3L-CO-zU7nZ5tt12KwclNQ_IvNwZf6w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1baxQxFD7UrYgirbaVjq1tBH1RQjOTuaQPUnpbWlqWRRT6NiaZBAo6u-1ulf1r_jrP2cxsu4J964MwL8NM5pYv53yZc3I-gHdakBPMBReWft0kXnKT6ZgbVZlKpbIQoYjredHrqYuL3f4C_G7XwlBaZWsTp4a6Glj6R75DVWMkemMpd3yTFtE_6u4NrzgpSFGktZXTCBA5c5NfOH0bfTo9wr5-nyTd4y-HJ7xRGOA2jZMx17qyiMK0ElpbrYzTaZKauKi899oI5W1mnMoK65XBTWbCG5Fr73czmzrlJV73ESwWEic9HVg8OO71P89iGHnWSOoqwdEvx21MdbpwL6ZlMegceIzTQj6Z84rPh3qEHeSDssYc9f0rWjt1gt3l__nzvYClhnqz_TBWXsKCq1dguZW1YI2VW4Fnd2o0roIMrJzZAXl5FhS3GVJ9Rtn4JErFLn-gUZ7uhqTieg2-PsiLvIJOPajdOjA6mhjkUZXGmabMjUuJAgmtdEYx2whE29OlbcqwkxrI9_K2gDSBo0RwlASOchLBh1mTYahBct_JW3PwmbVIVI7sP5cRbLYIKRt7NSpv4RHB29lhtDQUPtK1G9zQOTnRUSSgEXxscXjnEv96otf333AbniASy_PT3tkGPEU-mob8yk3ojK9v3Bt4bH-OL0fXW834YvDtoTH5B8Heaj0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=United+coding+method+for+compound+image+compression&rft.jtitle=Multimedia+tools+and+applications&rft.au=Wang%2C+Shuhui&rft.au=Lin%2C+Tao&rft.date=2014-08-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=71&rft.issue=3&rft.spage=1263&rft.epage=1282&rft_id=info:doi/10.1007%2Fs11042-012-1274-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon