Quantum query complexity of Boolean functions under indefinite causal order

The standard model of quantum circuits assumes operations are applied in a fixed sequential “causal” order. In recent years, the possibility of relaxing this constraint to obtain causally indefinite computations has received significant attention. The quantum switch, for example, uses a quantum syst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review research Jg. 6; H. 3; S. L032020
Hauptverfasser: Abbott, Alastair A., Mhalla, Mehdi, Pocreau, Pierre
Format: Journal Article
Sprache:Englisch
Veröffentlicht: American Physical Society 26.07.2024
Schlagworte:
ISSN:2643-1564, 2643-1564
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The standard model of quantum circuits assumes operations are applied in a fixed sequential “causal” order. In recent years, the possibility of relaxing this constraint to obtain causally indefinite computations has received significant attention. The quantum switch, for example, uses a quantum system to coherently control the order of operations. Several computational and information-theoretical advantages have been demonstrated, raising questions as to whether advantages can be obtained in a more unified complexity theoretic framework. In this paper, we approach this problem by studying the query complexity of Boolean functions under general higher-order quantum computations. To this end, we generalize the framework of query complexity from quantum circuits to quantum supermaps to compare different models on an equal footing. We show that the recently introduced class of quantum circuits with quantum control of causal order cannot lead to any reduction in query complexity, and that any potential advantage arising from causally indefinite supermaps can be bounded by the polynomial method, as is the case with quantum circuits. Nevertheless, we find some functions for which the minimum error with which they can be computed using two queries is strictly lower when exploiting causally indefinite supermaps.
AbstractList The standard model of quantum circuits assumes operations are applied in a fixed sequential “causal” order. In recent years, the possibility of relaxing this constraint to obtain causally indefinite computations has received significant attention. The quantum switch, for example, uses a quantum system to coherently control the order of operations. Several ad hoc computational and information-theoretical advantages have been demonstrated, raising questions as to whether advantages can be obtained in a more unified complexity theoretic framework. In this paper, we approach this problem by studying the query complexity of Boolean functions under general higher-order quantum computations. To this end, we generalize the framework of query complexity from quantum circuits to quantum supermaps to compare different models on an equal footing. We show that the recently introduced class of quantum circuits with quantum control of causal order cannot lead to any reduction in query complexity, and that any potential advantage arising from causally indefinite supermaps can be bounded by the polynomial method, as is the case with quantum circuits. Nevertheless, we find some functions for which the minimum error with which they can be computed using two queries is strictly lower when exploiting causally indefinite supermaps.
The standard model of quantum circuits assumes operations are applied in a fixed sequential “causal” order. In recent years, the possibility of relaxing this constraint to obtain causally indefinite computations has received significant attention. The quantum switch, for example, uses a quantum system to coherently control the order of operations. Several computational and information-theoretical advantages have been demonstrated, raising questions as to whether advantages can be obtained in a more unified complexity theoretic framework. In this paper, we approach this problem by studying the query complexity of Boolean functions under general higher-order quantum computations. To this end, we generalize the framework of query complexity from quantum circuits to quantum supermaps to compare different models on an equal footing. We show that the recently introduced class of quantum circuits with quantum control of causal order cannot lead to any reduction in query complexity, and that any potential advantage arising from causally indefinite supermaps can be bounded by the polynomial method, as is the case with quantum circuits. Nevertheless, we find some functions for which the minimum error with which they can be computed using two queries is strictly lower when exploiting causally indefinite supermaps. Published by the American Physical Society 2024
The standard model of quantum circuits assumes operations are applied in a fixed sequential “causal” order. In recent years, the possibility of relaxing this constraint to obtain causally indefinite computations has received significant attention. The quantum switch, for example, uses a quantum system to coherently control the order of operations. Several computational and information-theoretical advantages have been demonstrated, raising questions as to whether advantages can be obtained in a more unified complexity theoretic framework. In this paper, we approach this problem by studying the query complexity of Boolean functions under general higher-order quantum computations. To this end, we generalize the framework of query complexity from quantum circuits to quantum supermaps to compare different models on an equal footing. We show that the recently introduced class of quantum circuits with quantum control of causal order cannot lead to any reduction in query complexity, and that any potential advantage arising from causally indefinite supermaps can be bounded by the polynomial method, as is the case with quantum circuits. Nevertheless, we find some functions for which the minimum error with which they can be computed using two queries is strictly lower when exploiting causally indefinite supermaps.
ArticleNumber L032020
Author Mhalla, Mehdi
Pocreau, Pierre
Abbott, Alastair A.
Author_xml – sequence: 1
  givenname: Alastair A.
  orcidid: 0000-0002-2759-633X
  surname: Abbott
  fullname: Abbott, Alastair A.
– sequence: 2
  givenname: Mehdi
  orcidid: 0000-0003-4178-5396
  surname: Mhalla
  fullname: Mhalla, Mehdi
– sequence: 3
  givenname: Pierre
  orcidid: 0009-0009-1566-0363
  surname: Pocreau
  fullname: Pocreau, Pierre
BackLink https://inria.hal.science/hal-04672768$$DView record in HAL
BookMark eNqNkU1LJDEQhoO44Od_iEcPMyadj06fREVX2QFd8R5qkspOpKejSffg_PvtcWRZPXmpKl7qfSjqPSC7XeqQkBPOppwzcfawWJdHXD1iQchuMdXTGRMVq9gO2a-0FBOutNz9b94jx6U8M8Yqxbk0ap_8-j1A1w9L-jpgXlOXli8tvsV-TVOglym1CB0NQ-f6mLpCh85jpnGsIXaxR-pgKNDSlEf9iPwI0BY8_uiH5Onm-unqdjK7_3l3dTGbOMmrfgKymQMLAhXO9dybpgYBYjMEV9UqjALTykvuxiNBGM244xpDwNoBCHFI7rZYn-DZvuS4hLy2CaJ9F1L-YyH30bVox1c0jTdGe-mlhLlhRnlAoxruG2XcyDrdshbQfkLdXszsRmNS11WtzYqPu8121-VUSsbwz8CZ3eRhv-Rhtf3IY_Sef_G62MPmp32G2H6D8Bflspsy
CitedBy_id crossref_primary_10_4204_EPTCS_426_11
Cites_doi 10.1038/ncomms2076
10.1016/0034-4877(72)90011-0
10.1088/1367-2630/aafef7
10.1103/PRXQuantum.2.010320
10.1103/PhysRevLett.123.210502
10.1145/502090.502097
10.1103/PhysRevLett.124.190503
10.1103/PhysRevLett.101.060401
10.1137/S0097539796300933
10.1063/5.0075919
10.1103/PhysRevA.88.022318
10.1103/PhysRevLett.127.110402
10.1088/1367-2630/17/10/102001
10.23638/LMCS-15(3:15)2019
10.1103/PRXQuantum.2.030335
10.1016/0024-3795(75)90075-0
10.1006/jcss.2002.1826
10.1103/PhysRevA.80.022339
10.1103/PhysRevLett.130.070803
10.1088/1367-2630/18/9/093020
10.1103/PhysRevA.109.062435
10.1088/1367-2630/aaf352
10.1007/s00453-013-9826-8
10.1103/PhysRevLett.127.200504
10.1016/S0304-3975(01)00144-X
10.1103/PhysRevLett.113.250402
10.1103/PhysRevA.86.040301
10.1103/PhysRevLett.117.100502
10.1038/nphoton.2011.35
10.22331/q-2017-04-26-10
10.1209/0295-5075/83/30004
10.1007/s10957-016-0892-3
10.1038/s41467-023-36893-3
10.1103/PhysRevLett.128.230503
10.1103/PhysRevA.96.052315
10.1016/j.jcss.2005.06.006
10.22331/q-2022-03-31-679
10.1137/050644719
ContentType Journal Article
Copyright licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: licence_http://creativecommons.org/publicdomain/zero
DBID AAYXX
CITATION
1XC
VOOES
DOA
DOI 10.1103/PhysRevResearch.6.L032020
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2643-1564
ExternalDocumentID oai_doaj_org_article_02099d886d4d44ab8085dae8591d958c
oai:HAL:hal-04672768v1
10_1103_PhysRevResearch_6_L032020
GroupedDBID 3MX
AAFWJ
AAYXX
AECSF
AFGMR
AFPKN
AGDNE
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
ROL
1XC
VOOES
ID FETCH-LOGICAL-c412t-a49ba0f3e5eb6bd897a3a3bd89fc275f897065d41c511a38601c16effe7caa33
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001283826200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2643-1564
IngestDate Mon Nov 10 04:35:55 EST 2025
Sat Nov 22 06:20:31 EST 2025
Sat Nov 29 01:36:29 EST 2025
Tue Nov 18 22:26:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-a49ba0f3e5eb6bd897a3a3bd89fc275f897065d41c511a38601c16effe7caa33
ORCID 0009-0009-1566-0363
0000-0002-2759-633X
0000-0003-4178-5396
OpenAccessLink https://doaj.org/article/02099d886d4d44ab8085dae8591d958c
ParticipantIDs doaj_primary_oai_doaj_org_article_02099d886d4d44ab8085dae8591d958c
hal_primary_oai_HAL_hal_04672768v1
crossref_primary_10_1103_PhysRevResearch_6_L032020
crossref_citationtrail_10_1103_PhysRevResearch_6_L032020
PublicationCentury 2000
PublicationDate 2024-07-26
PublicationDateYYYYMMDD 2024-07-26
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-26
  day: 26
PublicationDecade 2020
PublicationTitle Physical review research
PublicationYear 2024
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevResearch.6.L032020Cc9R1
PhysRevResearch.6.L032020Cc11R1
PhysRevResearch.6.L032020Cc34R1
PhysRevResearch.6.L032020Cc8R1
PhysRevResearch.6.L032020Cc12R1
PhysRevResearch.6.L032020Cc33R1
PhysRevResearch.6.L032020Cc7R1
PhysRevResearch.6.L032020Cc13R1
PhysRevResearch.6.L032020Cc6R1
PhysRevResearch.6.L032020Cc14R1
PhysRevResearch.6.L032020Cc5R1
PhysRevResearch.6.L032020Cc15R1
PhysRevResearch.6.L032020Cc4R1
PhysRevResearch.6.L032020Cc16R1
PhysRevResearch.6.L032020Cc37R1
PhysRevResearch.6.L032020Cc3R1
PhysRevResearch.6.L032020Cc17R1
J. Lofberg (PhysRevResearch.6.L032020Cc39R1) 2004
PhysRevResearch.6.L032020Cc18R1
L. K. Grover (PhysRevResearch.6.L032020Cc2R1) 1996
A. Ambainis (PhysRevResearch.6.L032020Cc19R1) 2018
S. Aaronson (PhysRevResearch.6.L032020Cc35R1) 2016
PhysRevResearch.6.L032020Cc30R1
PhysRevResearch.6.L032020Cc32R1
PhysRevResearch.6.L032020Cc10R1
PhysRevResearch.6.L032020Cc31R1
PhysRevResearch.6.L032020Cc22R1
PhysRevResearch.6.L032020Cc45R1
PhysRevResearch.6.L032020Cc23R1
PhysRevResearch.6.L032020Cc44R1
PhysRevResearch.6.L032020Cc25R1
PhysRevResearch.6.L032020Cc46R1
PhysRevResearch.6.L032020Cc26R1
PhysRevResearch.6.L032020Cc27R1
PhysRevResearch.6.L032020Cc29R1
H. Barnum (PhysRevResearch.6.L032020Cc38R1) 2003
S. Aaronson (PhysRevResearch.6.L032020Cc36R1) 2021
PhysRevResearch.6.L032020Cc1R1
PhysRevResearch.6.L032020Cc41R1
PhysRevResearch.6.L032020Cc40R1
PhysRevResearch.6.L032020Cc20R1
PhysRevResearch.6.L032020Cc43R1
PhysRevResearch.6.L032020Cc21R1
PhysRevResearch.6.L032020Cc42R1
References_xml – ident: PhysRevResearch.6.L032020Cc5R1
  doi: 10.1038/ncomms2076
– ident: PhysRevResearch.6.L032020Cc22R1
  doi: 10.1016/0034-4877(72)90011-0
– ident: PhysRevResearch.6.L032020Cc41R1
  doi: 10.1088/1367-2630/aafef7
– ident: PhysRevResearch.6.L032020Cc12R1
  doi: 10.1103/PRXQuantum.2.010320
– ident: PhysRevResearch.6.L032020Cc29R1
  doi: 10.1103/PhysRevLett.123.210502
– ident: PhysRevResearch.6.L032020Cc33R1
  doi: 10.1145/502090.502097
– ident: PhysRevResearch.6.L032020Cc15R1
  doi: 10.1103/PhysRevLett.124.190503
– ident: PhysRevResearch.6.L032020Cc6R1
  doi: 10.1103/PhysRevLett.101.060401
– ident: PhysRevResearch.6.L032020Cc1R1
  doi: 10.1137/S0097539796300933
– ident: PhysRevResearch.6.L032020Cc13R1
  doi: 10.1063/5.0075919
– volume-title: 18th IEEE Annual Conference on Computational Complexity, Proceedings
  year: 2003
  ident: PhysRevResearch.6.L032020Cc38R1
– ident: PhysRevResearch.6.L032020Cc4R1
  doi: 10.1103/PhysRevA.88.022318
– ident: PhysRevResearch.6.L032020Cc27R1
  doi: 10.1103/PhysRevLett.127.110402
– ident: PhysRevResearch.6.L032020Cc26R1
  doi: 10.1088/1367-2630/17/10/102001
– volume-title: Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing
  year: 2021
  ident: PhysRevResearch.6.L032020Cc36R1
– ident: PhysRevResearch.6.L032020Cc42R1
  doi: 10.23638/LMCS-15(3:15)2019
– ident: PhysRevResearch.6.L032020Cc17R1
  doi: 10.1103/PRXQuantum.2.030335
– ident: PhysRevResearch.6.L032020Cc21R1
  doi: 10.1016/0024-3795(75)90075-0
– ident: PhysRevResearch.6.L032020Cc20R1
  doi: 10.1006/jcss.2002.1826
– ident: PhysRevResearch.6.L032020Cc23R1
  doi: 10.1103/PhysRevA.80.022339
– ident: PhysRevResearch.6.L032020Cc31R1
  doi: 10.1103/PhysRevLett.130.070803
– ident: PhysRevResearch.6.L032020Cc7R1
  doi: 10.1088/1367-2630/18/9/093020
– ident: PhysRevResearch.6.L032020Cc32R1
  doi: 10.1103/PhysRevA.109.062435
– volume-title: Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2016)
  year: 2016
  ident: PhysRevResearch.6.L032020Cc35R1
– ident: PhysRevResearch.6.L032020Cc8R1
  doi: 10.1088/1367-2630/aaf352
– ident: PhysRevResearch.6.L032020Cc37R1
  doi: 10.1007/s00453-013-9826-8
– ident: PhysRevResearch.6.L032020Cc30R1
  doi: 10.1103/PhysRevLett.127.200504
– ident: PhysRevResearch.6.L032020Cc18R1
  doi: 10.1016/S0304-3975(01)00144-X
– volume-title: 2004 IEEE International Symposium on Computer Aided Control Systems Design
  year: 2004
  ident: PhysRevResearch.6.L032020Cc39R1
– ident: PhysRevResearch.6.L032020Cc10R1
  doi: 10.1103/PhysRevLett.113.250402
– volume-title: Proceedings of the International Congress of Mathematicians: Rio de Janeiro 2018
  year: 2018
  ident: PhysRevResearch.6.L032020Cc19R1
– ident: PhysRevResearch.6.L032020Cc9R1
  doi: 10.1103/PhysRevA.86.040301
– ident: PhysRevResearch.6.L032020Cc46R1
  doi: 10.1103/PhysRevLett.117.100502
– ident: PhysRevResearch.6.L032020Cc43R1
  doi: 10.1038/nphoton.2011.35
– ident: PhysRevResearch.6.L032020Cc44R1
  doi: 10.22331/q-2017-04-26-10
– volume-title: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing - STOC '96
  year: 1996
  ident: PhysRevResearch.6.L032020Cc2R1
– ident: PhysRevResearch.6.L032020Cc25R1
  doi: 10.1209/0295-5075/83/30004
– ident: PhysRevResearch.6.L032020Cc40R1
  doi: 10.1007/s10957-016-0892-3
– ident: PhysRevResearch.6.L032020Cc45R1
  doi: 10.1038/s41467-023-36893-3
– ident: PhysRevResearch.6.L032020Cc11R1
  doi: 10.1103/PhysRevLett.128.230503
– ident: PhysRevResearch.6.L032020Cc16R1
  doi: 10.1103/PhysRevA.96.052315
– ident: PhysRevResearch.6.L032020Cc34R1
  doi: 10.1016/j.jcss.2005.06.006
– ident: PhysRevResearch.6.L032020Cc14R1
  doi: 10.22331/q-2022-03-31-679
– ident: PhysRevResearch.6.L032020Cc3R1
  doi: 10.1137/050644719
SSID ssj0002511485
Score 2.3093252
Snippet The standard model of quantum circuits assumes operations are applied in a fixed sequential “causal” order. In recent years, the possibility of relaxing this...
SourceID doaj
hal
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
StartPage L032020
SubjectTerms Physics
Quantum Physics
Title Quantum query complexity of Boolean functions under indefinite causal order
URI https://inria.hal.science/hal-04672768
https://doaj.org/article/02099d886d4d44ab8085dae8591d958c
Volume 6
WOSCitedRecordID wos001283826200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2643-1564
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511485
  issn: 2643-1564
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2643-1564
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511485
  issn: 2643-1564
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iKl7EJ64vonit2zZpmh53ZZcFH6jswVvJqyhoV_aFXvztzqRd2fWiBy-lBJK2kyHzTfrlG0LOmU6xqIsKMgu5KkaoQLPEBibRQslUqyKuik2kt7fy8TG7myv1hZywSh64MlwzxLOdVkphueVcaQkYwSqHsms2S6TB1TdMs7lkCtdgBM5cJmvktGK6syYSKh_cdMZnuxAX1752eLgQkLxuP4SZp9m2qg8z3U2yUeND2qrea4ssuXKbrHqephntkKv7CZhi8kphOR9-UE8Id--ApOmgoO3B4MWpkmKs8u5E8YTYkKIiYvGM4JIaNRnB8F5wc5f0u53-ZS-o6yEEhkfxOFA80yosmEucFtrKLFVMMbwpTJwmBTQAoLA8MvD1iknItUwkkBeSGqUY2yPL5aB0-4SiSqDUsSyEc5xnkYL5SQEqcmWjImO2QeTMJrmptcKxZMVL7nOGkOU_zJmLvDZng8TfXd8qwYy_dGqj4b87oOa1bwBPyGtPyH_zhAY5g2lbGKPXus6xLeT4w1nIaXTwH086JOvw1hy3eGNxRJbHw4k7JitmOn4eDU-8J8L15rPzBRJz5X8
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+query+complexity+of+Boolean+functions+under+indefinite+causal+order&rft.jtitle=Physical+review+research&rft.au=Abbott%2C+Alastair+A.&rft.au=Mhalla%2C+Mehdi&rft.au=Pocreau%2C+Pierre&rft.date=2024-07-26&rft.pub=American+Physical+Society&rft.issn=2643-1564&rft.eissn=2643-1564&rft.volume=6&rft.issue=3&rft_id=info:doi/10.1103%2FPhysRevResearch.6.L032020&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04672768v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2643-1564&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2643-1564&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2643-1564&client=summon