Single-molecule states link transcription factor binding to gene expression

The binding of multiple transcription factors (TFs) to genomic enhancers drives gene expression in mammalian cells 1 . However, the molecular details that link enhancer sequence to TF binding, promoter state and transcription levels remain unclear. Here we applied single-molecule footprinting 2 , 3...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) Vol. 636; no. 8043; pp. 745 - 754
Main Authors: Doughty, Benjamin R., Hinks, Michaela M., Schaepe, Julia M., Marinov, Georgi K., Thurm, Abby R., Rios-Martinez, Carolina, Parks, Benjamin E., Tan, Yingxuan, Marklund, Emil, Dubocanin, Danilo, Bintu, Lacramioara, Greenleaf, William J.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 19.12.2024
Nature Publishing Group
Subjects:
ISSN:0028-0836, 1476-4687, 1476-4687
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The binding of multiple transcription factors (TFs) to genomic enhancers drives gene expression in mammalian cells 1 . However, the molecular details that link enhancer sequence to TF binding, promoter state and transcription levels remain unclear. Here we applied single-molecule footprinting 2 , 3 to measure the simultaneous occupancy of TFs, nucleosomes and other regulatory proteins on engineered enhancer–promoter constructs with variable numbers of TF binding sites for both a synthetic TF and an endogenous TF involved in the type I interferon response. Although TF binding events on nucleosome-free DNA are independent, activation domains recruit cofactors that destabilize nucleosomes, driving observed TF binding cooperativity. Average TF occupancy linearly determines promoter activity, and we decompose TF strength into separable binding and activation terms. Finally, we develop thermodynamic and kinetic models that quantitatively predict both the enhancer binding microstates and gene expression dynamics. This work provides a template for the quantitative dissection of distinct contributors to gene expression, including TF activation domains, concentration, binding affinity, binding site configuration and recruitment of chromatin regulators. A study uses single-molecule footprinting to measure protein occupancy at regulatory elements on individual molecules in human cells and describes how different properties of transcription factor binding contribute to gene expression.
AbstractList The binding of multiple transcription factors (TFs) to genomic enhancers drives gene expression in mammalian cells. However, the molecular details that link enhancer sequence to TF binding, promoter state and transcription levels remain unclear. Here we applied single-molecule footprinting to measure the simultaneous occupancy of TFs, nucleosomes and other regulatory proteins on engineered enhancer–promoter constructs with variable numbers of TF binding sites for both a synthetic TF and an endogenous TF involved in the type I interferon response. Although TF binding events on nucleosome-free DNA are independent, activation domains recruit cofactors that destabilize nucleosomes, driving observed TF binding cooperativity. Average TF occupancy linearly determines promoter activity, and we decompose TF strength into separable binding and activation terms. Finally, we develop thermodynamic and kinetic models that quantitatively predict both the enhancer binding microstates and gene expression dynamics. This work provides a template for the quantitative dissection of distinct contributors to gene expression, including TF activation domains, concentration, binding affinity, binding site configuration and recruitment of chromatin regulators.
The binding of multiple transcription factors (TFs) to genomic enhancers drives gene expression in mammalian cells 1 . However, the molecular details that link enhancer sequence to TF binding, promoter state and transcription levels remain unclear. Here we applied single-molecule footprinting 2 , 3 to measure the simultaneous occupancy of TFs, nucleosomes and other regulatory proteins on engineered enhancer–promoter constructs with variable numbers of TF binding sites for both a synthetic TF and an endogenous TF involved in the type I interferon response. Although TF binding events on nucleosome-free DNA are independent, activation domains recruit cofactors that destabilize nucleosomes, driving observed TF binding cooperativity. Average TF occupancy linearly determines promoter activity, and we decompose TF strength into separable binding and activation terms. Finally, we develop thermodynamic and kinetic models that quantitatively predict both the enhancer binding microstates and gene expression dynamics. This work provides a template for the quantitative dissection of distinct contributors to gene expression, including TF activation domains, concentration, binding affinity, binding site configuration and recruitment of chromatin regulators. A study uses single-molecule footprinting to measure protein occupancy at regulatory elements on individual molecules in human cells and describes how different properties of transcription factor binding contribute to gene expression.
The binding of multiple transcription factors (TFs) to genomic enhancers drives gene expression in mammalian cells . However, the molecular details that link enhancer sequence to TF binding, promoter state and transcription levels remain unclear. Here we applied single-molecule footprinting to measure the simultaneous occupancy of TFs, nucleosomes and other regulatory proteins on engineered enhancer-promoter constructs with variable numbers of TF binding sites for both a synthetic TF and an endogenous TF involved in the type I interferon response. Although TF binding events on nucleosome-free DNA are independent, activation domains recruit cofactors that destabilize nucleosomes, driving observed TF binding cooperativity. Average TF occupancy linearly determines promoter activity, and we decompose TF strength into separable binding and activation terms. Finally, we develop thermodynamic and kinetic models that quantitatively predict both the enhancer binding microstates and gene expression dynamics. This work provides a template for the quantitative dissection of distinct contributors to gene expression, including TF activation domains, concentration, binding affinity, binding site configuration and recruitment of chromatin regulators.
The binding of multiple transcription factors (TFs) to genomic enhancers drives gene expression in mammalian cells'. However, the molecular details that link enhancer sequence to TF binding, promoter state and transcription levels remain unclear. Here we applied single-molecule footprinting2,3 to measure the simultaneous occupancy of TFs, nucleosomes and other regulatory proteins on engineered enhancer-promoter constructs with variable numbers of TF binding sites for both a synthetic TF andan endogenous TF involved in the type l interferon response. Although TF binding events on nucleosome-free DNA are independent, activation domains recruit cofactors that destabilize nucleosomes, driving observed TF binding cooperativity. Average TF occupancy linearly determines promoter activity, and we decompose TF strength into separable binding and activation terms. Finally, we develop thermodynamic and kinetic models that quantitatively predict both the enhancer binding microstates and gene expression dynamics. This work provides a template for the quantitative dissection of distinct contributors to gene expression, including TF activation domains, concentration, binding affinity, binding site configuration and recruitment of chromatin regulators.
The binding of multiple transcription factors (TFs) to genomic enhancers drives gene expression in mammalian cells1. However, the molecular details that link enhancer sequence to TF binding, promoter state and transcription levels remain unclear. Here we applied single-molecule footprinting2,3 to measure the simultaneous occupancy of TFs, nucleosomes and other regulatory proteins on engineered enhancer-promoter constructs with variable numbers of TF binding sites for both a synthetic TF and an endogenous TF involved in the type I interferon response. Although TF binding events on nucleosome-free DNA are independent, activation domains recruit cofactors that destabilize nucleosomes, driving observed TF binding cooperativity. Average TF occupancy linearly determines promoter activity, and we decompose TF strength into separable binding and activation terms. Finally, we develop thermodynamic and kinetic models that quantitatively predict both the enhancer binding microstates and gene expression dynamics. This work provides a template for the quantitative dissection of distinct contributors to gene expression, including TF activation domains, concentration, binding affinity, binding site configuration and recruitment of chromatin regulators.The binding of multiple transcription factors (TFs) to genomic enhancers drives gene expression in mammalian cells1. However, the molecular details that link enhancer sequence to TF binding, promoter state and transcription levels remain unclear. Here we applied single-molecule footprinting2,3 to measure the simultaneous occupancy of TFs, nucleosomes and other regulatory proteins on engineered enhancer-promoter constructs with variable numbers of TF binding sites for both a synthetic TF and an endogenous TF involved in the type I interferon response. Although TF binding events on nucleosome-free DNA are independent, activation domains recruit cofactors that destabilize nucleosomes, driving observed TF binding cooperativity. Average TF occupancy linearly determines promoter activity, and we decompose TF strength into separable binding and activation terms. Finally, we develop thermodynamic and kinetic models that quantitatively predict both the enhancer binding microstates and gene expression dynamics. This work provides a template for the quantitative dissection of distinct contributors to gene expression, including TF activation domains, concentration, binding affinity, binding site configuration and recruitment of chromatin regulators.
Author Doughty, Benjamin R.
Marklund, Emil
Greenleaf, William J.
Schaepe, Julia M.
Marinov, Georgi K.
Thurm, Abby R.
Tan, Yingxuan
Parks, Benjamin E.
Bintu, Lacramioara
Rios-Martinez, Carolina
Hinks, Michaela M.
Dubocanin, Danilo
Author_xml – sequence: 1
  givenname: Benjamin R.
  orcidid: 0000-0003-0447-4468
  surname: Doughty
  fullname: Doughty, Benjamin R.
  organization: Genetics Department, Stanford University
– sequence: 2
  givenname: Michaela M.
  surname: Hinks
  fullname: Hinks, Michaela M.
  organization: Bioengineering Department, Stanford University
– sequence: 3
  givenname: Julia M.
  orcidid: 0000-0003-0416-0469
  surname: Schaepe
  fullname: Schaepe, Julia M.
  organization: Bioengineering Department, Stanford University
– sequence: 4
  givenname: Georgi K.
  orcidid: 0000-0003-1822-7273
  surname: Marinov
  fullname: Marinov, Georgi K.
  organization: Genetics Department, Stanford University
– sequence: 5
  givenname: Abby R.
  orcidid: 0000-0002-1819-3192
  surname: Thurm
  fullname: Thurm, Abby R.
  organization: Biophysics Program, Stanford University
– sequence: 6
  givenname: Carolina
  surname: Rios-Martinez
  fullname: Rios-Martinez, Carolina
  organization: Bioengineering Department, Stanford University
– sequence: 7
  givenname: Benjamin E.
  orcidid: 0000-0002-0261-7472
  surname: Parks
  fullname: Parks, Benjamin E.
  organization: Computer Science Department, Stanford University
– sequence: 8
  givenname: Yingxuan
  surname: Tan
  fullname: Tan, Yingxuan
  organization: Computer Science Department, Stanford University
– sequence: 9
  givenname: Emil
  orcidid: 0000-0002-1150-7304
  surname: Marklund
  fullname: Marklund, Emil
  organization: Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University
– sequence: 10
  givenname: Danilo
  surname: Dubocanin
  fullname: Dubocanin, Danilo
  organization: Genetics Department, Stanford University
– sequence: 11
  givenname: Lacramioara
  orcidid: 0000-0001-5443-6633
  surname: Bintu
  fullname: Bintu, Lacramioara
  email: lbintu@stanford.edu
  organization: Bioengineering Department, Stanford University
– sequence: 12
  givenname: William J.
  orcidid: 0000-0003-1409-3095
  surname: Greenleaf
  fullname: Greenleaf, William J.
  email: wjg@stanford.edu
  organization: Genetics Department, Stanford University, Department of Applied Physics, Stanford University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39567683$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-240538$$DView record from Swedish Publication Index (Stockholms universitet)
BookMark eNp9kU1PFTEUhhuCkQv6B1iYSdywcLTf0y4J4EckcQGybTqd05vi3HZsZ3L131u9F0xYsOqiz9vT8z7H6DCmCAidEvyeYKY-FE6Eki2mvMWKEt1uD9CK8E62XKruEK0wpqpeMXmEjku5xxgL0vGX6IhpITup2Ap9vQlxPUK7SSO4ZYSmzHaG0owh_mjmbGNxOUxzSLHx1s0pN32IQ800c2rWEKGBX1OGUirxCr3wdizwen-eoO8fr24vPrfX3z59uTi_bh0ndG61HsDrXlknrafegvSacQa4LtVxOWjhCWeYA_XCCi2Z8xh6jgcixECwZifo3e7dsoVp6c2Uw8bm3ybZYC7D3blJeW3KYijHgqmKn-3wKaefC5TZbEJxMI42QlqKYYQRrjWlrKJvn6D3acmxLlMp0VGqueCVerOnln4Dw-P8h1YrQHeAy6mUDP4RIdj8VWd26kxVZ_6pM9saUk9CLlQXtdeqIYzPR9m-kDonriH___YzqT-Tu63L
CitedBy_id crossref_primary_10_1002_ggn2_202500035
crossref_primary_10_1038_s41592_025_02811_2
crossref_primary_10_1016_j_isci_2025_112864
crossref_primary_10_1016_j_jmb_2025_169308
crossref_primary_10_1016_j_molcel_2025_06_026
crossref_primary_10_1038_s44320_025_00094_5
crossref_primary_10_1038_s41467_025_57730_9
crossref_primary_10_1016_j_ceb_2025_102527
crossref_primary_10_1016_j_sbi_2025_103064
crossref_primary_10_1038_s41598_025_14361_w
Cites_doi 10.1016/j.molcel.2017.01.007
10.1038/nbt.2486
10.1016/j.cell.2014.05.038
10.1007/978-1-4939-6716-2_2
10.1016/j.gde.2005.02.007
10.1038/30032
10.1101/gr.266551.120
10.1021/acs.jmedchem.8b01318
10.1007/978-1-4939-6716-2_1
10.1016/j.cels.2023.02.003
10.1038/s41586-022-04570-y
10.1073/pnas.89.12.5547
10.1074/jbc.272.7.4600
10.1038/nmeth.4401
10.1038/nmeth.4396
10.1101/2024.06.14.599019
10.1128/MCB.24.10.4476-4486.2004
10.1146/annurev-biochem-040320-103630
10.1126/science.7792603
10.1038/nsmb.1500
10.1128/MCB.22.6.1615-1625.2002
10.1101/2024.05.30.596689
10.1126/science.1198817
10.1016/j.cell.2018.04.033
10.1016/0092-8674(93)90051-Q
10.1016/j.tig.2009.08.003
10.1038/nprot.2012.101
10.1101/gad.7.2.173
10.1002/JLB.2MIR0817-342R
10.1016/j.molcel.2024.01.027
10.1016/j.immuni.2019.03.025
10.1073/pnas.0913805107
10.1016/j.cell.2020.11.024
10.1038/nature24028
10.1016/j.cell.2015.12.032
10.1016/j.molcel.2021.03.008
10.1016/S1097-2765(00)00054-X
10.1101/gad.12.5.599
10.1038/nbt.1754
10.1101/gr.143008.112
10.1073/pnas.1718426115
10.1084/jem.20111680
10.1186/s13072-015-0009-5
10.1016/j.molcel.2017.06.027
10.1038/s41586-020-2528-x
10.1371/journal.pbio.0040309
10.1038/s41592-019-0686-2
10.1016/j.molcel.2021.12.008
10.1038/ng.3646
10.1016/0022-2836(90)90187-Q
10.1101/2023.04.11.536490
10.1016/j.cell.2023.10.006
10.1146/annurev-biophys-121219-081542
10.1038/s41467-019-10970-y
10.1073/pnas.79.4.1129
10.1101/2022.07.22.501078
10.1016/j.cyto.2015.07.019
10.1126/science.aaz1646
10.1186/gb-2009-10-3-r25
10.1101/gad.13.18.2369
10.1073/pnas.1911188117
10.1016/j.molcel.2020.11.015
10.1038/nrg3207
10.1016/0092-8674(91)90354-2
10.1038/s41588-024-01706-w
10.5281/zenodo.13841007
10.1186/s13059-014-0550-8
10.1073/pnas.85.2.382
10.1016/j.jmb.2004.11.056
10.1038/s41586-023-05906-y
10.1038/s41587-022-01494-w
10.7554/eLife.64320
10.1101/gad.4.10.1753
10.1016/j.molcel.2011.06.016
10.1038/nature09692
10.1128/MCB.01180-12
10.1038/s41588-020-00768-w
10.1038/s41592-019-0730-2
10.1016/S1097-2765(00)80216-6
10.1016/0092-8674(95)90136-1
10.5281/zenodo.13840888
10.1016/j.molcel.2023.12.004
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2024. The Author(s), under exclusive licence to Springer Nature Limited.
Copyright Nature Publishing Group Dec 19-Dec 26, 2024
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2024. The Author(s), under exclusive licence to Springer Nature Limited.
– notice: Copyright Nature Publishing Group Dec 19-Dec 26, 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
KL.
M7N
NAPCQ
P64
RC3
SOI
7X8
ADTPV
AOWAS
DG7
DOI 10.1038/s41586-024-08219-w
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Meteorological & Geoastrophysical Abstracts - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Stockholms universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Nursing & Allied Health Premium
Genetics Abstracts
Meteorological & Geoastrophysical Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
MEDLINE - Academic
DatabaseTitleList

MEDLINE
Virology and AIDS Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 754
ExternalDocumentID oai_DiVA_org_su_240538
39567683
10_1038_s41586_024_08219_w
Genre Journal Article
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS128028
– fundername: NHGRI NIH HHS
  grantid: UM1 HG009436
– fundername: NHGRI NIH HHS
  grantid: P50 HG007735
– fundername: NHGRI NIH HHS
  grantid: DP1 HG013599
– fundername: NIGMS NIH HHS
  grantid: T32 GM145402
– fundername: NHGRI NIH HHS
  grantid: R01 HG013317
– fundername: NHLBI NIH HHS
  grantid: R01 HL171611
– fundername: NIGMS NIH HHS
  grantid: R35 GM128947
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
123
186
1OL
29M
2KS
39C
53G
5RE
6TJ
70F
7RV
85S
8WZ
97F
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AFBBN
AFFNX
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGOIJ
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
BENPR
BHPHI
BIN
BKKNO
CJ0
CS3
DU5
E.-
E.L
EAP
EBS
EE.
EPS
EXGXG
F5P
FAC
FEDTE
FQGFK
FSGXE
HCIFZ
HG6
HVGLF
HZ~
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
IOF
IPY
KOO
L7B
LGEZI
LOTEE
LSO
M0K
M2O
M7P
N9A
NADUK
NEPJS
NXXTH
O9-
OBC
ODYON
OES
OHH
OMK
OVD
P2P
PKN
PV9
RND
RNS
RNT
RNTTT
RXW
SC5
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKR
UMD
UQL
VQA
VVN
WH7
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YJ6
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
~02
~88
~KM
0WA
AARCD
AAYXX
ABFSG
ABUFD
ACSTC
AEZWR
AFANA
AFHIU
AFKWF
AGSTI
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
NAPCQ
NFIDA
TUS
.-4
.GJ
.HR
00M
08P
1CY
1VR
1VW
2XV
354
3EH
3O-
4.4
41X
41~
42X
4R4
663
79B
7X2
7X7
7XC
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
97L
9M8
A8Z
AAJYS
AAKAS
AAVBQ
ABAWZ
ABDBF
ABDPE
ABEFU
ABJCF
ABNNU
ABUWG
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADGHP
ADNMO
ADRHT
ADXHL
ADYSU
ADZCM
AETEA
AEUYN
AFFDN
AFHKK
AFKRA
AGCDD
AGGDT
AGNAY
AGQPQ
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
AZQEC
B0M
BBNVY
BCR
BCU
BDKGC
BEC
BES
BGLVJ
BKEYQ
BKOMP
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CGR
CUY
CVF
D1I
D1J
D1K
DB5
DO4
DWQXO
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
ECM
EIF
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
ESE
ESN
ESX
EX3
FA8
FYUFA
GNUQQ
GUQSH
HMCUK
I-F
INR
ISR
ITC
J5H
K6-
KB.
L-9
L6V
LK5
LK8
M1P
M2M
M2P
M7R
M7S
MVM
N4W
NEJ
NPM
OHT
P-O
P62
PATMY
PCBAR
PDBOC
PEA
PHGZM
PHGZT
PJZUB
PM3
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
QS-
R05
R4F
RHI
S0X
SJFOW
SKT
SV3
TH9
TUD
UBY
UHB
UKHRP
USG
VOH
WOW
X7L
XOL
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZY4
~7V
~8M
~G0
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
KL.
M7N
P64
RC3
SOI
7X8
ADTPV
AFFHD
AOWAS
DG7
ESTFP
ID FETCH-LOGICAL-c412t-99def9b8ac6af2fae6f9343e0103746d95f14304e2f5a5963cf0eb40d155d1093
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001359297500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0028-0836
1476-4687
IngestDate Tue Nov 04 16:54:36 EST 2025
Tue Sep 30 23:26:55 EDT 2025
Tue Oct 07 07:21:45 EDT 2025
Sun Aug 10 01:31:46 EDT 2025
Sat Nov 29 04:19:20 EST 2025
Tue Nov 18 22:27:33 EST 2025
Fri Feb 21 02:36:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8043
Language English
License 2024. The Author(s), under exclusive licence to Springer Nature Limited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c412t-99def9b8ac6af2fae6f9343e0103746d95f14304e2f5a5963cf0eb40d155d1093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0261-7472
0000-0002-1819-3192
0000-0002-1150-7304
0000-0003-1409-3095
0000-0003-1822-7273
0000-0003-0447-4468
0000-0003-0416-0469
0000-0001-5443-6633
PMID 39567683
PQID 3157229454
PQPubID 40569
PageCount 10
ParticipantIDs swepub_primary_oai_DiVA_org_su_240538
proquest_miscellaneous_3131499223
proquest_journals_3157229454
pubmed_primary_39567683
crossref_primary_10_1038_s41586_024_08219_w
crossref_citationtrail_10_1038_s41586_024_08219_w
springer_journals_10_1038_s41586_024_08219_w
PublicationCentury 2000
PublicationDate 2024-12-19
PublicationDateYYYYMMDD 2024-12-19
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-19
  day: 19
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References K Cui (8219_CR45) 2004; 24
8219_CR83
Z Wunderlich (8219_CR5) 2009; 25
MG Durrant (8219_CR67) 2023; 41
8219_CR82
S Chong (8219_CR35) 2014; 158
S Rengachari (8219_CR42) 2018; 115
SC Biddie (8219_CR10) 2011; 43
R Shelansky (8219_CR60) 2020; 117
E Giniger (8219_CR6) 1988; 85
DY Lee (8219_CR53) 1993; 72
J Tycko (8219_CR68) 2020; 183
J Feng (8219_CR80) 2012; 7
A Rada-Iglesias (8219_CR30) 2011; 470
HM Lazear (8219_CR40) 2019; 50
M Gossen (8219_CR19) 1995; 268
CD Krause (8219_CR47) 2015; 76
8219_CR48
N Yudkovsky (8219_CR24) 1999; 13
A Raj (8219_CR33) 2006; 4
DM Suter (8219_CR34) 2011; 332
S Mostafavi (8219_CR49) 2016; 164
R Vaisvila (8219_CR63) 2024; 84
Z Shipony (8219_CR14) 2020; 17
JT Robinson (8219_CR75) 2011; 29
GK Marinov (8219_CR78) 2017; 1543
8219_CR72
F Wong (8219_CR59) 2020; 49
8219_CR71
TK Kelly (8219_CR2) 2012; 22
K Struhl (8219_CR54) 1998; 12
C Sönmezer (8219_CR16) 2021; 81
M Pettersson (8219_CR7) 1990; 214
H Boeger (8219_CR58) 2022; 91
LA Mirny (8219_CR9) 2010; 107
HA Bluyssen (8219_CR43) 1997; 272
P Virtanen (8219_CR73) 2020; 17
AB Stergachis (8219_CR15) 2020; 368
BT Weinert (8219_CR70) 2018; 174
CJ Fryer (8219_CR11) 1998; 393
J Vierstra (8219_CR4) 2020; 583
M Iurlaro (8219_CR69) 2021; 53
JPN Papillon (8219_CR26) 2018; 61
N Alerasool (8219_CR29) 2022; 82
8219_CR61
TK Kundu (8219_CR28) 2000; 6
N Dogan (8219_CR50) 2015; 8
R Martinez-Corral (8219_CR13) 2023; 14
MC Patel (8219_CR44) 2013; 33
8219_CR65
8219_CR64
8219_CR62
F Spitz (8219_CR1) 2012; 13
T Narita (8219_CR55) 2021; 81
D Herschlag (8219_CR12) 1993; 7
LM Lasko (8219_CR32) 2017; 550
J Zuin (8219_CR37) 2022; 604
B Langmead (8219_CR79) 2009; 10
KE Neely (8219_CR23) 1999; 4
8219_CR27
JY Xiao (8219_CR36) 2021; 10
MR Corces (8219_CR74) 2017; 14
D Thanos (8219_CR8) 1995; 83
MR Corces (8219_CR51) 2016; 48
R Vaisvila (8219_CR20) 2021; 31
RD Kornberg (8219_CR57) 1991; 67
AN Schep (8219_CR76) 2017; 14
MT Weirauch (8219_CR52) 2013; 31
GK Ackers (8219_CR21) 1982; 79
E Platanitis (8219_CR41) 2019; 10
B Brower-Toland (8219_CR31) 2005; 346
M Levo (8219_CR17) 2017; 65
KE Neely (8219_CR25) 2002; 22
L Bintu (8219_CR18) 2005; 15
HD Kim (8219_CR22) 2008; 15
8219_CR56
AR Krebs (8219_CR3) 2017; 67
MI Love (8219_CR77) 2014; 15
J Manry (8219_CR46) 2011; 208
M Gossen (8219_CR38) 1992; 89
N DelRosso (8219_CR66) 2023; 616
DS Kessler (8219_CR39) 1990; 4
GK Marinov (8219_CR81) 2017; 1543
38352517 - bioRxiv. 2024 Feb 04:2024.02.02.578660. doi: 10.1101/2024.02.02.578660.
References_xml – volume: 65
  start-page: 604
  year: 2017
  ident: 8219_CR17
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.01.007
– volume: 31
  start-page: 126
  year: 2013
  ident: 8219_CR52
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2486
– volume: 158
  start-page: 314
  year: 2014
  ident: 8219_CR35
  publication-title: Cell
  doi: 10.1016/j.cell.2014.05.038
– volume: 1543
  start-page: 19
  year: 2017
  ident: 8219_CR81
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-6716-2_2
– volume: 15
  start-page: 116
  year: 2005
  ident: 8219_CR18
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2005.02.007
– volume: 393
  start-page: 88
  year: 1998
  ident: 8219_CR11
  publication-title: Nature
  doi: 10.1038/30032
– volume: 31
  start-page: 1280
  year: 2021
  ident: 8219_CR20
  publication-title: Genome Res.
  doi: 10.1101/gr.266551.120
– volume: 61
  start-page: 10155
  year: 2018
  ident: 8219_CR26
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.8b01318
– volume: 1543
  start-page: 3
  year: 2017
  ident: 8219_CR78
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-6716-2_1
– volume: 14
  start-page: 324
  year: 2023
  ident: 8219_CR13
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2023.02.003
– volume: 604
  start-page: 571
  year: 2022
  ident: 8219_CR37
  publication-title: Nature
  doi: 10.1038/s41586-022-04570-y
– volume: 89
  start-page: 5547
  year: 1992
  ident: 8219_CR38
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.89.12.5547
– volume: 272
  start-page: 4600
  year: 1997
  ident: 8219_CR43
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.7.4600
– volume: 14
  start-page: 975
  year: 2017
  ident: 8219_CR76
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4401
– volume: 14
  start-page: 959
  year: 2017
  ident: 8219_CR74
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4396
– ident: 8219_CR64
  doi: 10.1101/2024.06.14.599019
– volume: 24
  start-page: 4476
  year: 2004
  ident: 8219_CR45
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.24.10.4476-4486.2004
– volume: 91
  start-page: 423
  year: 2022
  ident: 8219_CR58
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-040320-103630
– volume: 268
  start-page: 1766
  year: 1995
  ident: 8219_CR19
  publication-title: Science
  doi: 10.1126/science.7792603
– volume: 15
  start-page: 1192
  year: 2008
  ident: 8219_CR22
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1500
– volume: 22
  start-page: 1615
  year: 2002
  ident: 8219_CR25
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.22.6.1615-1625.2002
– ident: 8219_CR62
  doi: 10.1101/2024.05.30.596689
– volume: 332
  start-page: 472
  year: 2011
  ident: 8219_CR34
  publication-title: Science
  doi: 10.1126/science.1198817
– volume: 174
  start-page: 231
  year: 2018
  ident: 8219_CR70
  publication-title: Cell
  doi: 10.1016/j.cell.2018.04.033
– volume: 72
  start-page: 73
  year: 1993
  ident: 8219_CR53
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90051-Q
– volume: 25
  start-page: 434
  year: 2009
  ident: 8219_CR5
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2009.08.003
– volume: 7
  start-page: 1728
  year: 2012
  ident: 8219_CR80
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2012.101
– volume: 7
  start-page: 173
  year: 1993
  ident: 8219_CR12
  publication-title: Genes Dev.
  doi: 10.1101/gad.7.2.173
– ident: 8219_CR48
  doi: 10.1002/JLB.2MIR0817-342R
– volume: 84
  start-page: 854
  year: 2024
  ident: 8219_CR63
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2024.01.027
– volume: 50
  start-page: 907
  year: 2019
  ident: 8219_CR40
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.03.025
– volume: 107
  start-page: 22534
  year: 2010
  ident: 8219_CR9
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0913805107
– volume: 183
  start-page: 2020
  year: 2020
  ident: 8219_CR68
  publication-title: Cell
  doi: 10.1016/j.cell.2020.11.024
– volume: 550
  start-page: 128
  year: 2017
  ident: 8219_CR32
  publication-title: Nature
  doi: 10.1038/nature24028
– volume: 164
  start-page: 564
  year: 2016
  ident: 8219_CR49
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.032
– volume: 81
  start-page: 2166
  year: 2021
  ident: 8219_CR55
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2021.03.008
– ident: 8219_CR72
– volume: 6
  start-page: 551
  year: 2000
  ident: 8219_CR28
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)00054-X
– volume: 12
  start-page: 599
  year: 1998
  ident: 8219_CR54
  publication-title: Genes Dev.
  doi: 10.1101/gad.12.5.599
– volume: 29
  start-page: 24
  year: 2011
  ident: 8219_CR75
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1754
– volume: 22
  start-page: 2497
  year: 2012
  ident: 8219_CR2
  publication-title: Genome Res.
  doi: 10.1101/gr.143008.112
– volume: 115
  start-page: E601
  year: 2018
  ident: 8219_CR42
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1718426115
– volume: 208
  start-page: 2747
  year: 2011
  ident: 8219_CR46
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20111680
– volume: 8
  start-page: 16
  year: 2015
  ident: 8219_CR50
  publication-title: Epigenetics Chromatin
  doi: 10.1186/s13072-015-0009-5
– volume: 67
  start-page: 411
  year: 2017
  ident: 8219_CR3
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.06.027
– volume: 583
  start-page: 729
  year: 2020
  ident: 8219_CR4
  publication-title: Nature
  doi: 10.1038/s41586-020-2528-x
– volume: 4
  start-page: e309
  year: 2006
  ident: 8219_CR33
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0040309
– volume: 17
  start-page: 261
  year: 2020
  ident: 8219_CR73
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0686-2
– volume: 82
  start-page: 677
  year: 2022
  ident: 8219_CR29
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2021.12.008
– volume: 48
  start-page: 1193
  year: 2016
  ident: 8219_CR51
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3646
– volume: 214
  start-page: 373
  year: 1990
  ident: 8219_CR7
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(90)90187-Q
– ident: 8219_CR61
  doi: 10.1101/2023.04.11.536490
– ident: 8219_CR27
  doi: 10.1016/j.cell.2023.10.006
– volume: 49
  start-page: 199
  year: 2020
  ident: 8219_CR59
  publication-title: Annu. Rev. Biophys.
  doi: 10.1146/annurev-biophys-121219-081542
– volume: 10
  year: 2019
  ident: 8219_CR41
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10970-y
– volume: 79
  start-page: 1129
  year: 1982
  ident: 8219_CR21
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.79.4.1129
– ident: 8219_CR71
  doi: 10.1101/2022.07.22.501078
– volume: 76
  start-page: 480
  year: 2015
  ident: 8219_CR47
  publication-title: Cytokine
  doi: 10.1016/j.cyto.2015.07.019
– volume: 368
  start-page: 1449
  year: 2020
  ident: 8219_CR15
  publication-title: Science
  doi: 10.1126/science.aaz1646
– volume: 10
  year: 2009
  ident: 8219_CR79
  publication-title: Genome Biol.
  doi: 10.1186/gb-2009-10-3-r25
– volume: 13
  start-page: 2369
  year: 1999
  ident: 8219_CR24
  publication-title: Genes Dev.
  doi: 10.1101/gad.13.18.2369
– volume: 117
  start-page: 2456
  year: 2020
  ident: 8219_CR60
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1911188117
– volume: 81
  start-page: 255
  year: 2021
  ident: 8219_CR16
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.11.015
– volume: 13
  start-page: 613
  year: 2012
  ident: 8219_CR1
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3207
– volume: 67
  start-page: 833
  year: 1991
  ident: 8219_CR57
  publication-title: Cell
  doi: 10.1016/0092-8674(91)90354-2
– ident: 8219_CR65
  doi: 10.1038/s41588-024-01706-w
– ident: 8219_CR82
  doi: 10.5281/zenodo.13841007
– volume: 15
  year: 2014
  ident: 8219_CR77
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0550-8
– volume: 85
  start-page: 382
  year: 1988
  ident: 8219_CR6
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.85.2.382
– volume: 346
  start-page: 135
  year: 2005
  ident: 8219_CR31
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2004.11.056
– volume: 616
  start-page: 365
  year: 2023
  ident: 8219_CR66
  publication-title: Nature
  doi: 10.1038/s41586-023-05906-y
– volume: 41
  start-page: 488
  year: 2023
  ident: 8219_CR67
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-022-01494-w
– volume: 10
  start-page: e64320
  year: 2021
  ident: 8219_CR36
  publication-title: Elife
  doi: 10.7554/eLife.64320
– volume: 4
  start-page: 1753
  year: 1990
  ident: 8219_CR39
  publication-title: Genes Dev.
  doi: 10.1101/gad.4.10.1753
– volume: 43
  start-page: 145
  year: 2011
  ident: 8219_CR10
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.06.016
– volume: 470
  start-page: 279
  year: 2011
  ident: 8219_CR30
  publication-title: Nature
  doi: 10.1038/nature09692
– volume: 33
  start-page: 2497
  year: 2013
  ident: 8219_CR44
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01180-12
– volume: 53
  start-page: 279
  year: 2021
  ident: 8219_CR69
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-020-00768-w
– volume: 17
  start-page: 319
  year: 2020
  ident: 8219_CR14
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0730-2
– volume: 4
  start-page: 649
  year: 1999
  ident: 8219_CR23
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)80216-6
– volume: 83
  start-page: 1091
  year: 1995
  ident: 8219_CR8
  publication-title: Cell
  doi: 10.1016/0092-8674(95)90136-1
– ident: 8219_CR83
  doi: 10.5281/zenodo.13840888
– ident: 8219_CR56
  doi: 10.1016/j.molcel.2023.12.004
– reference: 38352517 - bioRxiv. 2024 Feb 04:2024.02.02.578660. doi: 10.1101/2024.02.02.578660.
SSID ssj0005174
Score 2.5142546
Snippet The binding of multiple transcription factors (TFs) to genomic enhancers drives gene expression in mammalian cells 1 . However, the molecular details that link...
The binding of multiple transcription factors (TFs) to genomic enhancers drives gene expression in mammalian cells . However, the molecular details that link...
The binding of multiple transcription factors (TFs) to genomic enhancers drives gene expression in mammalian cells'. However, the molecular details that link...
The binding of multiple transcription factors (TFs) to genomic enhancers drives gene expression in mammalian cells1. However, the molecular details that link...
The binding of multiple transcription factors (TFs) to genomic enhancers drives gene expression in mammalian cells. However, the molecular details that link...
SourceID swepub
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 745
SubjectTerms 13
13/106
38
45/15
45/23
45/91
631/208/200
631/337/100
631/337/572
631/553/552
Binding Sites
Chromatin
DNA - genetics
DNA - metabolism
DNA Footprinting
DNA Methylation
Enhancer Elements, Genetic
Enhancers
Gene expression
Gene Expression Regulation
Humanities and Social Sciences
Humans
Interferon Type I - metabolism
K562 Cells
Kinetics
Mammalian cells
Models, Molecular
multidisciplinary
Nucleosomes
Nucleosomes - genetics
Nucleosomes - metabolism
Nucleotide sequence
Promoter Regions, Genetic
Protein Binding
Proteins
Regulatory proteins
Regulatory sequences
Response Elements
RNA polymerase
Science
Science (multidisciplinary)
Single Molecule Imaging
Statistical mechanics
Thermodynamics
Transcription factors
Transcription Factors - metabolism
Title Single-molecule states link transcription factor binding to gene expression
URI https://link.springer.com/article/10.1038/s41586-024-08219-w
https://www.ncbi.nlm.nih.gov/pubmed/39567683
https://www.proquest.com/docview/3157229454
https://www.proquest.com/docview/3131499223
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-240538
Volume 636
WOSCitedRecordID wos001359297500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAQT
  databaseName: Nature
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: RNT
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.nature.com
  providerName: Nature Publishing
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6AdJeEBuwFcYUJJBAISMXJ7Efx01IYxXaCuqb5cSOKHRutbTd_hD_k-PYuawVE3vgJaps98Tt-XzO8e07CL0ggsgo44knaZh4GPvc43rimocyDrICS5FXWUu-pIMBGY3o117vd30XZjlJlSJXV3T2X1UNZaBsfXX2FupuhEIBfAalwxPUDs9_UvwZOKOJ9M5N3ltNIKvDSVfv1OqEEKq1EybXjpuNzc0WiEJBqNSk_-ZwrOpGroOKAbSbAaRZQtBB-A-TXOCdVD_5-Vi5p4ftorb6VXZO6HP3pKk70yUzWV_U7ladwCReTZfNuv3YPT7sLlGEFRGiNYT1lQFDg22cjrG0OAVsJNbbWlOc2CYGc8THUce2poZ30rrp1HBPr3kAw_deQlxC9OlqDO8Fo-xdtv6u3uNfcYPN4cRqWz4izMhgIINVMtjlBroTpjHVxvN0MGxPEq2Qfdu7WSDj7Xo_rsc_a5Oazob8CnltFfAMH6D7dqbiHBmEbaOeVDvoXnViOC930Lb1CqXzylKXv36IjlfA5xjwORp8zjXwOQZ8jgWfM586GnxOC75H6Nunj8P3nz2brsPLcRDOPUqFLGhGeJ7wIiy4TAoa4UjqTCIpTgSNCwjOfSzDIuYxGP688GWGfQEhrdCsZo_RppoquYccKoI84GAsiIggws8450QIgTGJ_SzkUR8F9Z_Icstlr1OqTNjflddHbvOdmWFyubH1fq0bZgd3yaIgTsOQ4hj30fOmGuyx3mTjSk4Xuk0UYE32DJ3cNTptXhfROIHpPdS8qZXcCr-pLy8NEBpBmhP-w_j7EYPhx8oFg7AcApcnt_qFT9FWO1b30eb8YiGfobv5cj4uLw7QRjoiBxXO_wBcB82u
linkProvider Nature Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-molecule+states+link+transcription+factor+binding+to+gene+expression&rft.jtitle=Nature+%28London%29&rft.au=Doughty%2C+Benjamin+R.&rft.au=Hinks%2C+Michaela+M.&rft.au=Schaepe%2C+Julia+M.&rft.au=Marinov%2C+Georgi+K.&rft.date=2024-12-19&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=636&rft.issue=8043&rft.spage=745&rft.epage=754&rft_id=info:doi/10.1038%2Fs41586-024-08219-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41586_024_08219_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon