Single-molecule states link transcription factor binding to gene expression
The binding of multiple transcription factors (TFs) to genomic enhancers drives gene expression in mammalian cells 1 . However, the molecular details that link enhancer sequence to TF binding, promoter state and transcription levels remain unclear. Here we applied single-molecule footprinting 2 , 3...
Saved in:
| Published in: | Nature (London) Vol. 636; no. 8043; pp. 745 - 754 |
|---|---|
| Main Authors: | , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
19.12.2024
Nature Publishing Group |
| Subjects: | |
| ISSN: | 0028-0836, 1476-4687, 1476-4687 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The binding of multiple transcription factors (TFs) to genomic enhancers drives gene expression in mammalian cells
1
. However, the molecular details that link enhancer sequence to TF binding, promoter state and transcription levels remain unclear. Here we applied single-molecule footprinting
2
,
3
to measure the simultaneous occupancy of TFs, nucleosomes and other regulatory proteins on engineered enhancer–promoter constructs with variable numbers of TF binding sites for both a synthetic TF and an endogenous TF involved in the type I interferon response. Although TF binding events on nucleosome-free DNA are independent, activation domains recruit cofactors that destabilize nucleosomes, driving observed TF binding cooperativity. Average TF occupancy linearly determines promoter activity, and we decompose TF strength into separable binding and activation terms. Finally, we develop thermodynamic and kinetic models that quantitatively predict both the enhancer binding microstates and gene expression dynamics. This work provides a template for the quantitative dissection of distinct contributors to gene expression, including TF activation domains, concentration, binding affinity, binding site configuration and recruitment of chromatin regulators.
A study uses single-molecule footprinting to measure protein occupancy at regulatory elements on individual molecules in human cells and describes how different properties of transcription factor binding contribute to gene expression. |
|---|---|
| AbstractList | The binding of multiple transcription factors (TFs) to genomic enhancers drives gene expression in mammalian cells. However, the molecular details that link enhancer sequence to TF binding, promoter state and transcription levels remain unclear. Here we applied single-molecule footprinting to measure the simultaneous occupancy of TFs, nucleosomes and other regulatory proteins on engineered enhancer–promoter constructs with variable numbers of TF binding sites for both a synthetic TF and an endogenous TF involved in the type I interferon response. Although TF binding events on nucleosome-free DNA are independent, activation domains recruit cofactors that destabilize nucleosomes, driving observed TF binding cooperativity. Average TF occupancy linearly determines promoter activity, and we decompose TF strength into separable binding and activation terms. Finally, we develop thermodynamic and kinetic models that quantitatively predict both the enhancer binding microstates and gene expression dynamics. This work provides a template for the quantitative dissection of distinct contributors to gene expression, including TF activation domains, concentration, binding affinity, binding site configuration and recruitment of chromatin regulators. The binding of multiple transcription factors (TFs) to genomic enhancers drives gene expression in mammalian cells 1 . However, the molecular details that link enhancer sequence to TF binding, promoter state and transcription levels remain unclear. Here we applied single-molecule footprinting 2 , 3 to measure the simultaneous occupancy of TFs, nucleosomes and other regulatory proteins on engineered enhancer–promoter constructs with variable numbers of TF binding sites for both a synthetic TF and an endogenous TF involved in the type I interferon response. Although TF binding events on nucleosome-free DNA are independent, activation domains recruit cofactors that destabilize nucleosomes, driving observed TF binding cooperativity. Average TF occupancy linearly determines promoter activity, and we decompose TF strength into separable binding and activation terms. Finally, we develop thermodynamic and kinetic models that quantitatively predict both the enhancer binding microstates and gene expression dynamics. This work provides a template for the quantitative dissection of distinct contributors to gene expression, including TF activation domains, concentration, binding affinity, binding site configuration and recruitment of chromatin regulators. A study uses single-molecule footprinting to measure protein occupancy at regulatory elements on individual molecules in human cells and describes how different properties of transcription factor binding contribute to gene expression. The binding of multiple transcription factors (TFs) to genomic enhancers drives gene expression in mammalian cells . However, the molecular details that link enhancer sequence to TF binding, promoter state and transcription levels remain unclear. Here we applied single-molecule footprinting to measure the simultaneous occupancy of TFs, nucleosomes and other regulatory proteins on engineered enhancer-promoter constructs with variable numbers of TF binding sites for both a synthetic TF and an endogenous TF involved in the type I interferon response. Although TF binding events on nucleosome-free DNA are independent, activation domains recruit cofactors that destabilize nucleosomes, driving observed TF binding cooperativity. Average TF occupancy linearly determines promoter activity, and we decompose TF strength into separable binding and activation terms. Finally, we develop thermodynamic and kinetic models that quantitatively predict both the enhancer binding microstates and gene expression dynamics. This work provides a template for the quantitative dissection of distinct contributors to gene expression, including TF activation domains, concentration, binding affinity, binding site configuration and recruitment of chromatin regulators. The binding of multiple transcription factors (TFs) to genomic enhancers drives gene expression in mammalian cells'. However, the molecular details that link enhancer sequence to TF binding, promoter state and transcription levels remain unclear. Here we applied single-molecule footprinting2,3 to measure the simultaneous occupancy of TFs, nucleosomes and other regulatory proteins on engineered enhancer-promoter constructs with variable numbers of TF binding sites for both a synthetic TF andan endogenous TF involved in the type l interferon response. Although TF binding events on nucleosome-free DNA are independent, activation domains recruit cofactors that destabilize nucleosomes, driving observed TF binding cooperativity. Average TF occupancy linearly determines promoter activity, and we decompose TF strength into separable binding and activation terms. Finally, we develop thermodynamic and kinetic models that quantitatively predict both the enhancer binding microstates and gene expression dynamics. This work provides a template for the quantitative dissection of distinct contributors to gene expression, including TF activation domains, concentration, binding affinity, binding site configuration and recruitment of chromatin regulators. The binding of multiple transcription factors (TFs) to genomic enhancers drives gene expression in mammalian cells1. However, the molecular details that link enhancer sequence to TF binding, promoter state and transcription levels remain unclear. Here we applied single-molecule footprinting2,3 to measure the simultaneous occupancy of TFs, nucleosomes and other regulatory proteins on engineered enhancer-promoter constructs with variable numbers of TF binding sites for both a synthetic TF and an endogenous TF involved in the type I interferon response. Although TF binding events on nucleosome-free DNA are independent, activation domains recruit cofactors that destabilize nucleosomes, driving observed TF binding cooperativity. Average TF occupancy linearly determines promoter activity, and we decompose TF strength into separable binding and activation terms. Finally, we develop thermodynamic and kinetic models that quantitatively predict both the enhancer binding microstates and gene expression dynamics. This work provides a template for the quantitative dissection of distinct contributors to gene expression, including TF activation domains, concentration, binding affinity, binding site configuration and recruitment of chromatin regulators.The binding of multiple transcription factors (TFs) to genomic enhancers drives gene expression in mammalian cells1. However, the molecular details that link enhancer sequence to TF binding, promoter state and transcription levels remain unclear. Here we applied single-molecule footprinting2,3 to measure the simultaneous occupancy of TFs, nucleosomes and other regulatory proteins on engineered enhancer-promoter constructs with variable numbers of TF binding sites for both a synthetic TF and an endogenous TF involved in the type I interferon response. Although TF binding events on nucleosome-free DNA are independent, activation domains recruit cofactors that destabilize nucleosomes, driving observed TF binding cooperativity. Average TF occupancy linearly determines promoter activity, and we decompose TF strength into separable binding and activation terms. Finally, we develop thermodynamic and kinetic models that quantitatively predict both the enhancer binding microstates and gene expression dynamics. This work provides a template for the quantitative dissection of distinct contributors to gene expression, including TF activation domains, concentration, binding affinity, binding site configuration and recruitment of chromatin regulators. |
| Author | Doughty, Benjamin R. Marklund, Emil Greenleaf, William J. Schaepe, Julia M. Marinov, Georgi K. Thurm, Abby R. Tan, Yingxuan Parks, Benjamin E. Bintu, Lacramioara Rios-Martinez, Carolina Hinks, Michaela M. Dubocanin, Danilo |
| Author_xml | – sequence: 1 givenname: Benjamin R. orcidid: 0000-0003-0447-4468 surname: Doughty fullname: Doughty, Benjamin R. organization: Genetics Department, Stanford University – sequence: 2 givenname: Michaela M. surname: Hinks fullname: Hinks, Michaela M. organization: Bioengineering Department, Stanford University – sequence: 3 givenname: Julia M. orcidid: 0000-0003-0416-0469 surname: Schaepe fullname: Schaepe, Julia M. organization: Bioengineering Department, Stanford University – sequence: 4 givenname: Georgi K. orcidid: 0000-0003-1822-7273 surname: Marinov fullname: Marinov, Georgi K. organization: Genetics Department, Stanford University – sequence: 5 givenname: Abby R. orcidid: 0000-0002-1819-3192 surname: Thurm fullname: Thurm, Abby R. organization: Biophysics Program, Stanford University – sequence: 6 givenname: Carolina surname: Rios-Martinez fullname: Rios-Martinez, Carolina organization: Bioengineering Department, Stanford University – sequence: 7 givenname: Benjamin E. orcidid: 0000-0002-0261-7472 surname: Parks fullname: Parks, Benjamin E. organization: Computer Science Department, Stanford University – sequence: 8 givenname: Yingxuan surname: Tan fullname: Tan, Yingxuan organization: Computer Science Department, Stanford University – sequence: 9 givenname: Emil orcidid: 0000-0002-1150-7304 surname: Marklund fullname: Marklund, Emil organization: Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University – sequence: 10 givenname: Danilo surname: Dubocanin fullname: Dubocanin, Danilo organization: Genetics Department, Stanford University – sequence: 11 givenname: Lacramioara orcidid: 0000-0001-5443-6633 surname: Bintu fullname: Bintu, Lacramioara email: lbintu@stanford.edu organization: Bioengineering Department, Stanford University – sequence: 12 givenname: William J. orcidid: 0000-0003-1409-3095 surname: Greenleaf fullname: Greenleaf, William J. email: wjg@stanford.edu organization: Genetics Department, Stanford University, Department of Applied Physics, Stanford University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39567683$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-240538$$DView record from Swedish Publication Index (Stockholms universitet) |
| BookMark | eNp9kU1PFTEUhhuCkQv6B1iYSdywcLTf0y4J4EckcQGybTqd05vi3HZsZ3L131u9F0xYsOqiz9vT8z7H6DCmCAidEvyeYKY-FE6Eki2mvMWKEt1uD9CK8E62XKruEK0wpqpeMXmEjku5xxgL0vGX6IhpITup2Ap9vQlxPUK7SSO4ZYSmzHaG0owh_mjmbGNxOUxzSLHx1s0pN32IQ800c2rWEKGBX1OGUirxCr3wdizwen-eoO8fr24vPrfX3z59uTi_bh0ndG61HsDrXlknrafegvSacQa4LtVxOWjhCWeYA_XCCi2Z8xh6jgcixECwZifo3e7dsoVp6c2Uw8bm3ybZYC7D3blJeW3KYijHgqmKn-3wKaefC5TZbEJxMI42QlqKYYQRrjWlrKJvn6D3acmxLlMp0VGqueCVerOnln4Dw-P8h1YrQHeAy6mUDP4RIdj8VWd26kxVZ_6pM9saUk9CLlQXtdeqIYzPR9m-kDonriH___YzqT-Tu63L |
| CitedBy_id | crossref_primary_10_1002_ggn2_202500035 crossref_primary_10_1038_s41592_025_02811_2 crossref_primary_10_1016_j_isci_2025_112864 crossref_primary_10_1016_j_jmb_2025_169308 crossref_primary_10_1016_j_molcel_2025_06_026 crossref_primary_10_1038_s44320_025_00094_5 crossref_primary_10_1038_s41467_025_57730_9 crossref_primary_10_1016_j_ceb_2025_102527 crossref_primary_10_1016_j_sbi_2025_103064 crossref_primary_10_1038_s41598_025_14361_w |
| Cites_doi | 10.1016/j.molcel.2017.01.007 10.1038/nbt.2486 10.1016/j.cell.2014.05.038 10.1007/978-1-4939-6716-2_2 10.1016/j.gde.2005.02.007 10.1038/30032 10.1101/gr.266551.120 10.1021/acs.jmedchem.8b01318 10.1007/978-1-4939-6716-2_1 10.1016/j.cels.2023.02.003 10.1038/s41586-022-04570-y 10.1073/pnas.89.12.5547 10.1074/jbc.272.7.4600 10.1038/nmeth.4401 10.1038/nmeth.4396 10.1101/2024.06.14.599019 10.1128/MCB.24.10.4476-4486.2004 10.1146/annurev-biochem-040320-103630 10.1126/science.7792603 10.1038/nsmb.1500 10.1128/MCB.22.6.1615-1625.2002 10.1101/2024.05.30.596689 10.1126/science.1198817 10.1016/j.cell.2018.04.033 10.1016/0092-8674(93)90051-Q 10.1016/j.tig.2009.08.003 10.1038/nprot.2012.101 10.1101/gad.7.2.173 10.1002/JLB.2MIR0817-342R 10.1016/j.molcel.2024.01.027 10.1016/j.immuni.2019.03.025 10.1073/pnas.0913805107 10.1016/j.cell.2020.11.024 10.1038/nature24028 10.1016/j.cell.2015.12.032 10.1016/j.molcel.2021.03.008 10.1016/S1097-2765(00)00054-X 10.1101/gad.12.5.599 10.1038/nbt.1754 10.1101/gr.143008.112 10.1073/pnas.1718426115 10.1084/jem.20111680 10.1186/s13072-015-0009-5 10.1016/j.molcel.2017.06.027 10.1038/s41586-020-2528-x 10.1371/journal.pbio.0040309 10.1038/s41592-019-0686-2 10.1016/j.molcel.2021.12.008 10.1038/ng.3646 10.1016/0022-2836(90)90187-Q 10.1101/2023.04.11.536490 10.1016/j.cell.2023.10.006 10.1146/annurev-biophys-121219-081542 10.1038/s41467-019-10970-y 10.1073/pnas.79.4.1129 10.1101/2022.07.22.501078 10.1016/j.cyto.2015.07.019 10.1126/science.aaz1646 10.1186/gb-2009-10-3-r25 10.1101/gad.13.18.2369 10.1073/pnas.1911188117 10.1016/j.molcel.2020.11.015 10.1038/nrg3207 10.1016/0092-8674(91)90354-2 10.1038/s41588-024-01706-w 10.5281/zenodo.13841007 10.1186/s13059-014-0550-8 10.1073/pnas.85.2.382 10.1016/j.jmb.2004.11.056 10.1038/s41586-023-05906-y 10.1038/s41587-022-01494-w 10.7554/eLife.64320 10.1101/gad.4.10.1753 10.1016/j.molcel.2011.06.016 10.1038/nature09692 10.1128/MCB.01180-12 10.1038/s41588-020-00768-w 10.1038/s41592-019-0730-2 10.1016/S1097-2765(00)80216-6 10.1016/0092-8674(95)90136-1 10.5281/zenodo.13840888 10.1016/j.molcel.2023.12.004 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024. The Author(s), under exclusive licence to Springer Nature Limited. Copyright Nature Publishing Group Dec 19-Dec 26, 2024 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2024. The Author(s), under exclusive licence to Springer Nature Limited. – notice: Copyright Nature Publishing Group Dec 19-Dec 26, 2024 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. KL. M7N NAPCQ P64 RC3 SOI 7X8 ADTPV AOWAS DG7 |
| DOI | 10.1038/s41586-024-08219-w |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Meteorological & Geoastrophysical Abstracts - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic SwePub SwePub Articles SWEPUB Stockholms universitet |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Nursing & Allied Health Premium Genetics Abstracts Meteorological & Geoastrophysical Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Virology and AIDS Abstracts MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics |
| EISSN | 1476-4687 |
| EndPage | 754 |
| ExternalDocumentID | oai_DiVA_org_su_240538 39567683 10_1038_s41586_024_08219_w |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS128028 – fundername: NHGRI NIH HHS grantid: UM1 HG009436 – fundername: NHGRI NIH HHS grantid: P50 HG007735 – fundername: NHGRI NIH HHS grantid: DP1 HG013599 – fundername: NIGMS NIH HHS grantid: T32 GM145402 – fundername: NHGRI NIH HHS grantid: R01 HG013317 – fundername: NHLBI NIH HHS grantid: R01 HL171611 – fundername: NIGMS NIH HHS grantid: R35 GM128947 |
| GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 123 186 1OL 29M 2KS 39C 53G 5RE 6TJ 70F 7RV 85S 8WZ 97F A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJNI ABLJU ABOCM ABPEJ ABPPZ ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AFBBN AFFNX AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN BENPR BHPHI BIN BKKNO CJ0 CS3 DU5 E.- E.L EAP EBS EE. EPS EXGXG F5P FAC FEDTE FQGFK FSGXE HCIFZ HG6 HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH IOF IPY KOO L7B LGEZI LOTEE LSO M0K M2O M7P N9A NADUK NEPJS NXXTH O9- OBC ODYON OES OHH OMK OVD P2P PKN PV9 RND RNS RNT RNTTT RXW SC5 SHXYY SIXXV SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKR UMD UQL VQA VVN WH7 X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YJ6 YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~88 ~KM 0WA AARCD AAYXX ABFSG ABUFD ACSTC AEZWR AFANA AFHIU AFKWF AGSTI AHWEU AIXLP ALPWD ATHPR CITATION NAPCQ NFIDA TUS .-4 .GJ .HR 00M 08P 1CY 1VR 1VW 2XV 354 3EH 3O- 4.4 41X 41~ 42X 4R4 663 79B 7X2 7X7 7XC 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 97L 9M8 A8Z AAJYS AAKAS AAVBQ ABAWZ ABDBF ABDPE ABEFU ABJCF ABNNU ABUWG ACBNA ACBTR ACRPL ACTDY ACUHS ADGHP ADNMO ADRHT ADXHL ADYSU ADZCM AETEA AEUYN AFFDN AFHKK AFKRA AGCDD AGGDT AGNAY AGQPQ AIDAL AIYXT AJUXI APEBS ARTTT AZQEC B0M BBNVY BCR BCU BDKGC BEC BES BGLVJ BKEYQ BKOMP BKSAR BLC BPHCQ BVXVI CCPQU CGR CUY CVF D1I D1J D1K DB5 DO4 DWQXO EAD EAS EAZ EBC EBD EBO ECC ECM EIF EJD EMB EMF EMH EMK EMOBN EPL ESE ESN ESX EX3 FA8 FYUFA GNUQQ GUQSH HMCUK I-F INR ISR ITC J5H K6- KB. L-9 L6V LK5 LK8 M1P M2M M2P M7R M7S MVM N4W NEJ NPM OHT P-O P62 PATMY PCBAR PDBOC PEA PHGZM PHGZT PJZUB PM3 PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X QS- R05 R4F RHI S0X SJFOW SKT SV3 TH9 TUD UBY UHB UKHRP USG VOH WOW X7L XOL YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZY4 ~7V ~8M ~G0 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. KL. M7N P64 RC3 SOI 7X8 ADTPV AFFHD AOWAS DG7 ESTFP |
| ID | FETCH-LOGICAL-c412t-99def9b8ac6af2fae6f9343e0103746d95f14304e2f5a5963cf0eb40d155d1093 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001359297500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0028-0836 1476-4687 |
| IngestDate | Tue Nov 04 16:54:36 EST 2025 Tue Sep 30 23:26:55 EDT 2025 Tue Oct 07 07:21:45 EDT 2025 Sun Aug 10 01:31:46 EDT 2025 Sat Nov 29 04:19:20 EST 2025 Tue Nov 18 22:27:33 EST 2025 Fri Feb 21 02:36:03 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8043 |
| Language | English |
| License | 2024. The Author(s), under exclusive licence to Springer Nature Limited. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c412t-99def9b8ac6af2fae6f9343e0103746d95f14304e2f5a5963cf0eb40d155d1093 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0261-7472 0000-0002-1819-3192 0000-0002-1150-7304 0000-0003-1409-3095 0000-0003-1822-7273 0000-0003-0447-4468 0000-0003-0416-0469 0000-0001-5443-6633 |
| PMID | 39567683 |
| PQID | 3157229454 |
| PQPubID | 40569 |
| PageCount | 10 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_su_240538 proquest_miscellaneous_3131499223 proquest_journals_3157229454 pubmed_primary_39567683 crossref_primary_10_1038_s41586_024_08219_w crossref_citationtrail_10_1038_s41586_024_08219_w springer_journals_10_1038_s41586_024_08219_w |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-19 |
| PublicationDateYYYYMMDD | 2024-12-19 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationSubtitle | International weekly journal of science |
| PublicationTitle | Nature (London) |
| PublicationTitleAbbrev | Nature |
| PublicationTitleAlternate | Nature |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | K Cui (8219_CR45) 2004; 24 8219_CR83 Z Wunderlich (8219_CR5) 2009; 25 MG Durrant (8219_CR67) 2023; 41 8219_CR82 S Chong (8219_CR35) 2014; 158 S Rengachari (8219_CR42) 2018; 115 SC Biddie (8219_CR10) 2011; 43 R Shelansky (8219_CR60) 2020; 117 E Giniger (8219_CR6) 1988; 85 DY Lee (8219_CR53) 1993; 72 J Tycko (8219_CR68) 2020; 183 J Feng (8219_CR80) 2012; 7 A Rada-Iglesias (8219_CR30) 2011; 470 HM Lazear (8219_CR40) 2019; 50 M Gossen (8219_CR19) 1995; 268 CD Krause (8219_CR47) 2015; 76 8219_CR48 N Yudkovsky (8219_CR24) 1999; 13 A Raj (8219_CR33) 2006; 4 DM Suter (8219_CR34) 2011; 332 S Mostafavi (8219_CR49) 2016; 164 R Vaisvila (8219_CR63) 2024; 84 Z Shipony (8219_CR14) 2020; 17 JT Robinson (8219_CR75) 2011; 29 GK Marinov (8219_CR78) 2017; 1543 8219_CR72 F Wong (8219_CR59) 2020; 49 8219_CR71 TK Kelly (8219_CR2) 2012; 22 K Struhl (8219_CR54) 1998; 12 C Sönmezer (8219_CR16) 2021; 81 M Pettersson (8219_CR7) 1990; 214 H Boeger (8219_CR58) 2022; 91 LA Mirny (8219_CR9) 2010; 107 HA Bluyssen (8219_CR43) 1997; 272 P Virtanen (8219_CR73) 2020; 17 AB Stergachis (8219_CR15) 2020; 368 BT Weinert (8219_CR70) 2018; 174 CJ Fryer (8219_CR11) 1998; 393 J Vierstra (8219_CR4) 2020; 583 M Iurlaro (8219_CR69) 2021; 53 JPN Papillon (8219_CR26) 2018; 61 N Alerasool (8219_CR29) 2022; 82 8219_CR61 TK Kundu (8219_CR28) 2000; 6 N Dogan (8219_CR50) 2015; 8 R Martinez-Corral (8219_CR13) 2023; 14 MC Patel (8219_CR44) 2013; 33 8219_CR65 8219_CR64 8219_CR62 F Spitz (8219_CR1) 2012; 13 T Narita (8219_CR55) 2021; 81 D Herschlag (8219_CR12) 1993; 7 LM Lasko (8219_CR32) 2017; 550 J Zuin (8219_CR37) 2022; 604 B Langmead (8219_CR79) 2009; 10 KE Neely (8219_CR23) 1999; 4 8219_CR27 JY Xiao (8219_CR36) 2021; 10 MR Corces (8219_CR74) 2017; 14 D Thanos (8219_CR8) 1995; 83 MR Corces (8219_CR51) 2016; 48 R Vaisvila (8219_CR20) 2021; 31 RD Kornberg (8219_CR57) 1991; 67 AN Schep (8219_CR76) 2017; 14 MT Weirauch (8219_CR52) 2013; 31 GK Ackers (8219_CR21) 1982; 79 E Platanitis (8219_CR41) 2019; 10 B Brower-Toland (8219_CR31) 2005; 346 M Levo (8219_CR17) 2017; 65 KE Neely (8219_CR25) 2002; 22 L Bintu (8219_CR18) 2005; 15 HD Kim (8219_CR22) 2008; 15 8219_CR56 AR Krebs (8219_CR3) 2017; 67 MI Love (8219_CR77) 2014; 15 J Manry (8219_CR46) 2011; 208 M Gossen (8219_CR38) 1992; 89 N DelRosso (8219_CR66) 2023; 616 DS Kessler (8219_CR39) 1990; 4 GK Marinov (8219_CR81) 2017; 1543 38352517 - bioRxiv. 2024 Feb 04:2024.02.02.578660. doi: 10.1101/2024.02.02.578660. |
| References_xml | – volume: 65 start-page: 604 year: 2017 ident: 8219_CR17 publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.01.007 – volume: 31 start-page: 126 year: 2013 ident: 8219_CR52 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2486 – volume: 158 start-page: 314 year: 2014 ident: 8219_CR35 publication-title: Cell doi: 10.1016/j.cell.2014.05.038 – volume: 1543 start-page: 19 year: 2017 ident: 8219_CR81 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-6716-2_2 – volume: 15 start-page: 116 year: 2005 ident: 8219_CR18 publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2005.02.007 – volume: 393 start-page: 88 year: 1998 ident: 8219_CR11 publication-title: Nature doi: 10.1038/30032 – volume: 31 start-page: 1280 year: 2021 ident: 8219_CR20 publication-title: Genome Res. doi: 10.1101/gr.266551.120 – volume: 61 start-page: 10155 year: 2018 ident: 8219_CR26 publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.8b01318 – volume: 1543 start-page: 3 year: 2017 ident: 8219_CR78 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-6716-2_1 – volume: 14 start-page: 324 year: 2023 ident: 8219_CR13 publication-title: Cell Syst. doi: 10.1016/j.cels.2023.02.003 – volume: 604 start-page: 571 year: 2022 ident: 8219_CR37 publication-title: Nature doi: 10.1038/s41586-022-04570-y – volume: 89 start-page: 5547 year: 1992 ident: 8219_CR38 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.89.12.5547 – volume: 272 start-page: 4600 year: 1997 ident: 8219_CR43 publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.7.4600 – volume: 14 start-page: 975 year: 2017 ident: 8219_CR76 publication-title: Nat. Methods doi: 10.1038/nmeth.4401 – volume: 14 start-page: 959 year: 2017 ident: 8219_CR74 publication-title: Nat. Methods doi: 10.1038/nmeth.4396 – ident: 8219_CR64 doi: 10.1101/2024.06.14.599019 – volume: 24 start-page: 4476 year: 2004 ident: 8219_CR45 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.24.10.4476-4486.2004 – volume: 91 start-page: 423 year: 2022 ident: 8219_CR58 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-040320-103630 – volume: 268 start-page: 1766 year: 1995 ident: 8219_CR19 publication-title: Science doi: 10.1126/science.7792603 – volume: 15 start-page: 1192 year: 2008 ident: 8219_CR22 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1500 – volume: 22 start-page: 1615 year: 2002 ident: 8219_CR25 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.22.6.1615-1625.2002 – ident: 8219_CR62 doi: 10.1101/2024.05.30.596689 – volume: 332 start-page: 472 year: 2011 ident: 8219_CR34 publication-title: Science doi: 10.1126/science.1198817 – volume: 174 start-page: 231 year: 2018 ident: 8219_CR70 publication-title: Cell doi: 10.1016/j.cell.2018.04.033 – volume: 72 start-page: 73 year: 1993 ident: 8219_CR53 publication-title: Cell doi: 10.1016/0092-8674(93)90051-Q – volume: 25 start-page: 434 year: 2009 ident: 8219_CR5 publication-title: Trends Genet. doi: 10.1016/j.tig.2009.08.003 – volume: 7 start-page: 1728 year: 2012 ident: 8219_CR80 publication-title: Nat. Protoc. doi: 10.1038/nprot.2012.101 – volume: 7 start-page: 173 year: 1993 ident: 8219_CR12 publication-title: Genes Dev. doi: 10.1101/gad.7.2.173 – ident: 8219_CR48 doi: 10.1002/JLB.2MIR0817-342R – volume: 84 start-page: 854 year: 2024 ident: 8219_CR63 publication-title: Mol. Cell doi: 10.1016/j.molcel.2024.01.027 – volume: 50 start-page: 907 year: 2019 ident: 8219_CR40 publication-title: Immunity doi: 10.1016/j.immuni.2019.03.025 – volume: 107 start-page: 22534 year: 2010 ident: 8219_CR9 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0913805107 – volume: 183 start-page: 2020 year: 2020 ident: 8219_CR68 publication-title: Cell doi: 10.1016/j.cell.2020.11.024 – volume: 550 start-page: 128 year: 2017 ident: 8219_CR32 publication-title: Nature doi: 10.1038/nature24028 – volume: 164 start-page: 564 year: 2016 ident: 8219_CR49 publication-title: Cell doi: 10.1016/j.cell.2015.12.032 – volume: 81 start-page: 2166 year: 2021 ident: 8219_CR55 publication-title: Mol. Cell doi: 10.1016/j.molcel.2021.03.008 – ident: 8219_CR72 – volume: 6 start-page: 551 year: 2000 ident: 8219_CR28 publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)00054-X – volume: 12 start-page: 599 year: 1998 ident: 8219_CR54 publication-title: Genes Dev. doi: 10.1101/gad.12.5.599 – volume: 29 start-page: 24 year: 2011 ident: 8219_CR75 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1754 – volume: 22 start-page: 2497 year: 2012 ident: 8219_CR2 publication-title: Genome Res. doi: 10.1101/gr.143008.112 – volume: 115 start-page: E601 year: 2018 ident: 8219_CR42 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1718426115 – volume: 208 start-page: 2747 year: 2011 ident: 8219_CR46 publication-title: J. Exp. Med. doi: 10.1084/jem.20111680 – volume: 8 start-page: 16 year: 2015 ident: 8219_CR50 publication-title: Epigenetics Chromatin doi: 10.1186/s13072-015-0009-5 – volume: 67 start-page: 411 year: 2017 ident: 8219_CR3 publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.06.027 – volume: 583 start-page: 729 year: 2020 ident: 8219_CR4 publication-title: Nature doi: 10.1038/s41586-020-2528-x – volume: 4 start-page: e309 year: 2006 ident: 8219_CR33 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0040309 – volume: 17 start-page: 261 year: 2020 ident: 8219_CR73 publication-title: Nat. Methods doi: 10.1038/s41592-019-0686-2 – volume: 82 start-page: 677 year: 2022 ident: 8219_CR29 publication-title: Mol. Cell doi: 10.1016/j.molcel.2021.12.008 – volume: 48 start-page: 1193 year: 2016 ident: 8219_CR51 publication-title: Nat. Genet. doi: 10.1038/ng.3646 – volume: 214 start-page: 373 year: 1990 ident: 8219_CR7 publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(90)90187-Q – ident: 8219_CR61 doi: 10.1101/2023.04.11.536490 – ident: 8219_CR27 doi: 10.1016/j.cell.2023.10.006 – volume: 49 start-page: 199 year: 2020 ident: 8219_CR59 publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev-biophys-121219-081542 – volume: 10 year: 2019 ident: 8219_CR41 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10970-y – volume: 79 start-page: 1129 year: 1982 ident: 8219_CR21 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.79.4.1129 – ident: 8219_CR71 doi: 10.1101/2022.07.22.501078 – volume: 76 start-page: 480 year: 2015 ident: 8219_CR47 publication-title: Cytokine doi: 10.1016/j.cyto.2015.07.019 – volume: 368 start-page: 1449 year: 2020 ident: 8219_CR15 publication-title: Science doi: 10.1126/science.aaz1646 – volume: 10 year: 2009 ident: 8219_CR79 publication-title: Genome Biol. doi: 10.1186/gb-2009-10-3-r25 – volume: 13 start-page: 2369 year: 1999 ident: 8219_CR24 publication-title: Genes Dev. doi: 10.1101/gad.13.18.2369 – volume: 117 start-page: 2456 year: 2020 ident: 8219_CR60 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1911188117 – volume: 81 start-page: 255 year: 2021 ident: 8219_CR16 publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.11.015 – volume: 13 start-page: 613 year: 2012 ident: 8219_CR1 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3207 – volume: 67 start-page: 833 year: 1991 ident: 8219_CR57 publication-title: Cell doi: 10.1016/0092-8674(91)90354-2 – ident: 8219_CR65 doi: 10.1038/s41588-024-01706-w – ident: 8219_CR82 doi: 10.5281/zenodo.13841007 – volume: 15 year: 2014 ident: 8219_CR77 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 85 start-page: 382 year: 1988 ident: 8219_CR6 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.85.2.382 – volume: 346 start-page: 135 year: 2005 ident: 8219_CR31 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2004.11.056 – volume: 616 start-page: 365 year: 2023 ident: 8219_CR66 publication-title: Nature doi: 10.1038/s41586-023-05906-y – volume: 41 start-page: 488 year: 2023 ident: 8219_CR67 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-022-01494-w – volume: 10 start-page: e64320 year: 2021 ident: 8219_CR36 publication-title: Elife doi: 10.7554/eLife.64320 – volume: 4 start-page: 1753 year: 1990 ident: 8219_CR39 publication-title: Genes Dev. doi: 10.1101/gad.4.10.1753 – volume: 43 start-page: 145 year: 2011 ident: 8219_CR10 publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.06.016 – volume: 470 start-page: 279 year: 2011 ident: 8219_CR30 publication-title: Nature doi: 10.1038/nature09692 – volume: 33 start-page: 2497 year: 2013 ident: 8219_CR44 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01180-12 – volume: 53 start-page: 279 year: 2021 ident: 8219_CR69 publication-title: Nat. Genet. doi: 10.1038/s41588-020-00768-w – volume: 17 start-page: 319 year: 2020 ident: 8219_CR14 publication-title: Nat. Methods doi: 10.1038/s41592-019-0730-2 – volume: 4 start-page: 649 year: 1999 ident: 8219_CR23 publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80216-6 – volume: 83 start-page: 1091 year: 1995 ident: 8219_CR8 publication-title: Cell doi: 10.1016/0092-8674(95)90136-1 – ident: 8219_CR83 doi: 10.5281/zenodo.13840888 – ident: 8219_CR56 doi: 10.1016/j.molcel.2023.12.004 – reference: 38352517 - bioRxiv. 2024 Feb 04:2024.02.02.578660. doi: 10.1101/2024.02.02.578660. |
| SSID | ssj0005174 |
| Score | 2.5142546 |
| Snippet | The binding of multiple transcription factors (TFs) to genomic enhancers drives gene expression in mammalian cells
1
. However, the molecular details that link... The binding of multiple transcription factors (TFs) to genomic enhancers drives gene expression in mammalian cells . However, the molecular details that link... The binding of multiple transcription factors (TFs) to genomic enhancers drives gene expression in mammalian cells'. However, the molecular details that link... The binding of multiple transcription factors (TFs) to genomic enhancers drives gene expression in mammalian cells1. However, the molecular details that link... The binding of multiple transcription factors (TFs) to genomic enhancers drives gene expression in mammalian cells. However, the molecular details that link... |
| SourceID | swepub proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 745 |
| SubjectTerms | 13 13/106 38 45/15 45/23 45/91 631/208/200 631/337/100 631/337/572 631/553/552 Binding Sites Chromatin DNA - genetics DNA - metabolism DNA Footprinting DNA Methylation Enhancer Elements, Genetic Enhancers Gene expression Gene Expression Regulation Humanities and Social Sciences Humans Interferon Type I - metabolism K562 Cells Kinetics Mammalian cells Models, Molecular multidisciplinary Nucleosomes Nucleosomes - genetics Nucleosomes - metabolism Nucleotide sequence Promoter Regions, Genetic Protein Binding Proteins Regulatory proteins Regulatory sequences Response Elements RNA polymerase Science Science (multidisciplinary) Single Molecule Imaging Statistical mechanics Thermodynamics Transcription factors Transcription Factors - metabolism |
| Title | Single-molecule states link transcription factor binding to gene expression |
| URI | https://link.springer.com/article/10.1038/s41586-024-08219-w https://www.ncbi.nlm.nih.gov/pubmed/39567683 https://www.proquest.com/docview/3157229454 https://www.proquest.com/docview/3131499223 https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-240538 |
| Volume | 636 |
| WOSCitedRecordID | wos001359297500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAQT databaseName: Nature customDbUrl: eissn: 1476-4687 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: RNT dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.nature.com providerName: Nature Publishing |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELbSAhIXRMsrUCojAQKFFfvwPnws0KoSJSBIUW7WPmwRlDqhm6Q98tOZWXsfbVBVDlxWkb2xLc949ht7_A0hz1VRhDLmCpwcMIEsk5mT5WnuBGkCAEGF4GazKtlEPBwm4zH_0uv9ru_CrKax1sn5OZ__V1FDGQgbr87-g7ibRqEAfoPQ4Qlih-e1BP8NPkZT6ZyYvLdIIItwcoAntZgQQrd2wuTaGWQTc7MFUCg0KpH03wTH6i5yHVYMoN0MIM0WAoLwHya5wDupf6YnE93GIR7iCXEnQD_tZDDGgrmsr2l3aj6BB69nq2bTfmJ3Y-32hF-RIFojaCwqiyOHRfarKv9SZs1wZIhQrL4lLgs6djU2nJNr9t6wu5eAQhKMpWYOIBqPO2ft160-0R9-FgfHR0ditD8evZz_cjDvGJ7P2yQsG-SGH4cc7eLX4agNEjI83s2A7bUr6PbteqcXoc2av9I5a7_ES1thmdFdcsc6IXTPKM8W6Um9TW5VwcB5uU22rMEv6SvLSv76Hvl4Sa-o0SuKekUv6BU1ekWtXtHFjKJe0Vav7pPjg_3R-0PHZuJwcub5C4fzQiqeJWkepcpXqYwUD1ggMUlIzKKChwpwt8ukr8I0BJueK1dmzC0ArRZIWPaAbOqZlo8I9SQgcFdFCSsAGKkii2IJOM2XgVskhRv1iVdPosgtTT1mS5mKKlwiSISZeAETL6qJF2d9Mmj-MzckLVe-vVPLRth1W4rAC2Pf5yxkffKsqQZTi-dnqZazJb4TeAx5nIM-eWhk2nQX8DACzx1q3tRCbhu_aiwvjCI0DSHd-4fJ9z0Bi0uUSwGIGzDJ42sM6gm53S7AHbK5OF3Kp-RmvlpMytNdshGPk91Ku_8Aut3Cxg |
| linkProvider | Nature Publishing |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-molecule+states+link+transcription+factor+binding+to+gene+expression&rft.jtitle=Nature+%28London%29&rft.au=Doughty%2C+Benjamin+R&rft.au=Hinks%2C+Michaela+M&rft.au=Schaepe%2C+Julia+M&rft.au=Marinov%2C+Georgi+K&rft.date=2024-12-19&rft.issn=1476-4687&rft.eissn=1476-4687&rft.volume=636&rft.issue=8043&rft.spage=745&rft_id=info:doi/10.1038%2Fs41586-024-08219-w&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |