Thermal stability of oxygen vacancy stabilized zirconia (OVSZ) thin films
Thermal stability of reactive magnetron sputter deposited oxygen vacancy stabilized cubic zirconia (OVSZ) thin films containing 16 and 3 at.% oxygen vacancies is reported. Temperature-resolved grazing incidence X-ray diffraction (TR-GIXRD) measurements (200–900 °C) in air and nitrogen atmosphere wer...
Saved in:
| Published in: | Surface & coatings technology Vol. 409; p. 126880 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Lausanne
Elsevier B.V
15.03.2021
Elsevier BV Elsevier |
| Subjects: | |
| ISSN: | 0257-8972, 1879-3347, 1879-3347 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Thermal stability of reactive magnetron sputter deposited oxygen vacancy stabilized cubic zirconia (OVSZ) thin films containing 16 and 3 at.% oxygen vacancies is reported. Temperature-resolved grazing incidence X-ray diffraction (TR-GIXRD) measurements (200–900 °C) in air and nitrogen atmosphere were performed. TR-GIXRD data show that the deposited films are stable up to 750 °C irrespective of the annealing atmosphere or the oxygen vacancy concentration. However, above 750 °C a fraction of zirconia transforms from cubic to monoclinic structure. This structural transition is explained by the compressive stresses, generated as a result of discrepancy in film-substrate thermal expansion coefficients. Thermal cycling of the deposited OVSZ thin films is also performed at 700 °C and show that films retain their initial cubic structure.
•Thermal stability of oxygen vacancy stabilized zirconia (OVSZ) thin films is reported.•OVSZ thin films are stable up-to 750 °C irrespective of annealing ambient (N2 or air) or oxygen vacancy concentration.•Mono-clinic peak appear above 750 °C as a result of compressive stresses. |
|---|---|
| AbstractList | Thermal stability of reactive magnetron sputter deposited oxygen vacancy stabilized cubic zirconia (OVSZ) thin films containing 16 and 3 at.% oxygen vacancies is reported. Temperature-resolved grazing incidence X-ray diffraction (TR-GIXRD) measurements (200-900 degrees C) in air and nitrogen atmosphere were performed. TR-GIXRD data show that the deposited films are stable up to 750 degrees C irrespective of the annealing atmosphere or the oxygen vacancy concentration. However, above 750 degrees C a fraction of zirconia transforms from cubic to monoclinic structure. This structural transition is explained by the compressive stresses, generated as a result of discrepancy in film-substrate thermal expansion coefficients. Thermal cycling of the deposited OVSZ thin films is also performed at 700 degrees C and show that films retain their initial cubic structure. Thermal stability of reactive magnetron sputter deposited oxygen vacancy stabilized cubic zirconia (OVSZ) thin films containing 16 and 3 at.% oxygen vacancies is reported. Temperature-resolved grazing incidence X-ray diffraction (TR-GIXRD) measurements (200–900 °C) in air and nitrogen atmosphere were performed. TR-GIXRD data show that the deposited films are stable up to 750 °C irrespective of the annealing atmosphere or the oxygen vacancy concentration. However, above 750 °C a fraction of zirconia transforms from cubic to monoclinic structure. This structural transition is explained by the compressive stresses, generated as a result of discrepancy in film-substrate thermal expansion coefficients. Thermal cycling of the deposited OVSZ thin films is also performed at 700 °C and show that films retain their initial cubic structure. Thermal stability of reactive magnetron sputter deposited oxygen vacancy stabilized cubic zirconia (OVSZ) thin films containing 16 and 3 at.% oxygen vacancies is reported. Temperature-resolved grazing incidence X-ray diffraction (TR-GIXRD) measurements (200–900 °C) in air and nitrogen atmosphere were performed. TR-GIXRD data show that the deposited films are stable up to 750 °C irrespective of the annealing atmosphere or the oxygen vacancy concentration. However, above 750 °C a fraction of zirconia transforms from cubic to monoclinic structure. This structural transition is explained by the compressive stresses, generated as a result of discrepancy in film-substrate thermal expansion coefficients. Thermal cycling of the deposited OVSZ thin films is also performed at 700 °C and show that films retain their initial cubic structure. •Thermal stability of oxygen vacancy stabilized zirconia (OVSZ) thin films is reported.•OVSZ thin films are stable up-to 750 °C irrespective of annealing ambient (N2 or air) or oxygen vacancy concentration.•Mono-clinic peak appear above 750 °C as a result of compressive stresses. |
| ArticleNumber | 126880 |
| Author | Pierson, Jean-François Boulet, Pascal Konstantinidis, Stéphanos Raza, Mohsin Snyders, Rony |
| Author_xml | – sequence: 1 givenname: Mohsin surname: Raza fullname: Raza, Mohsin email: mohsinraza.khan@outlook.com organization: Chimie des Interactions Plasma-Surface (ChIPS), University of Mons, 23 Place du Parc, 7000 Mons, Belgium – sequence: 2 givenname: Pascal surname: Boulet fullname: Boulet, Pascal organization: Institut Jean Lamour (UMR CNRS 7198), Université de Lorraine, Campus ARTEM, 54011 Nancy Cedex, France – sequence: 3 givenname: Jean-François surname: Pierson fullname: Pierson, Jean-François organization: Institut Jean Lamour (UMR CNRS 7198), Université de Lorraine, Campus ARTEM, 54011 Nancy Cedex, France – sequence: 4 givenname: Rony surname: Snyders fullname: Snyders, Rony organization: Chimie des Interactions Plasma-Surface (ChIPS), University of Mons, 23 Place du Parc, 7000 Mons, Belgium – sequence: 5 givenname: Stéphanos surname: Konstantinidis fullname: Konstantinidis, Stéphanos email: stephanos.konstantinidis@umons.ac.be organization: Chimie des Interactions Plasma-Surface (ChIPS), University of Mons, 23 Place du Parc, 7000 Mons, Belgium |
| BackLink | https://cnrs.hal.science/hal-04966196$$DView record in HAL https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176201$$DView record from Swedish Publication Index (Linköpings universitet) |
| BookMark | eNqFkUFv1DAQhS1UJLaFv4AicaGHLLYTO7HEgVULtNJKPVB64DJynEnXq6y92M7C9teTKOwBLj2NNPO90Zt55-TMeYeEvGV0ySiTH7bLOITOeJ2WnHK2ZFzWNX1BFqyuVF4UZXVGFpSLKq9VxV-R8xi3lFJWqXJBbu83GHa6z2LSje1tOma-y_zv4yO67KCNduZ4mj1hmz3ZYLyzOnt_9_Dtx2WWNtZlne138TV52ek-4pu_9YJ8__L5_uomX999vb1arXNTMp5yJVWlilaKVmglyqbBsS1ZY0bTqLjkyEZnpmvrsuVtJ6VulC5RdaYQyJUoLkg-742_cD80sA92p8MRvLZwbR9W4MMj9HYAVklO2chfzvxG9__AN6s1TD1aKimZkoeJfTez--B_DhgTbP0Q3HgOcEFFxUVZT9THmTLBxxiwA2OTTta7FLTtgVGYgoEtnIKBKRiYgxnl8j_5ydWzwk-zEMf3HiwGiMaiM9jagCZB6-1zK_4Af-ytNg |
| CitedBy_id | crossref_primary_10_1016_j_ceramint_2022_06_203 crossref_primary_10_1016_j_matchar_2025_115359 crossref_primary_10_1016_j_mtcomm_2025_111970 crossref_primary_10_3390_pr10112217 |
| Cites_doi | 10.1063/1.1663432 10.1016/S0042-207X(00)00475-9 10.1007/BF02881546 10.1016/S0040-6090(97)00579-8 10.1016/j.dental.2007.05.005 10.1063/1.1777412 10.1016/j.dental.2011.09.004 10.4028/www.scientific.net/KEM.153-154.1 10.1146/annurev-matsci-070218-125955 10.1002/9781118217504.ch6 10.1179/174328005X14267 10.1557/jmr.2007.0128 10.1016/j.scriptamat.2016.06.025 10.1016/S1369-7021(05)70934-2 10.1007/s11666-004-0052-4 10.1126/science.277.5330.1237 10.3390/coatings10070613 10.1103/PhysRev.56.978 10.1039/C8CP05465G 10.1016/S0040-6090(00)01381-X |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. Copyright Elsevier BV Mar 15, 2021 licence_http://creativecommons.org/publicdomain/zero |
| Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV Mar 15, 2021 – notice: licence_http://creativecommons.org/publicdomain/zero |
| DBID | AAYXX CITATION 7QQ 7SR 8BQ 8FD JG9 1XC ADTPV AOWAS DG8 |
| DOI | 10.1016/j.surfcoat.2021.126880 |
| DatabaseName | CrossRef Ceramic Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Hyper Article en Ligne (HAL) SwePub SwePub Articles SWEPUB Linköpings universitet |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Ceramic Abstracts Technology Research Database METADEX |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Physics |
| EISSN | 1879-3347 |
| ExternalDocumentID | oai_DiVA_org_liu_176201 oai:HAL:hal-04966196v1 10_1016_j_surfcoat_2021_126880 S0257897221000530 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABMAC ABNEU ABXRA ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K XPP ZMT ~02 ~G- 29Q 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS EJD FEDTE FGOYB G-2 HMV HVGLF HX~ HZ~ NDZJH R2- SEW SMS SPG WUQ ~HD 7QQ 7SR 8BQ 8FD JG9 1XC ADTPV AOWAS DG8 |
| ID | FETCH-LOGICAL-c412t-969793d65d5a954bbe41261bc688e9262e1179cfd84d2df66ab9a4e9fc35e2953 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000654045600043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0257-8972 1879-3347 |
| IngestDate | Tue Nov 04 16:40:46 EST 2025 Sat Nov 29 06:30:36 EST 2025 Sun Nov 30 04:13:03 EST 2025 Sat Nov 29 07:25:17 EST 2025 Tue Nov 18 21:01:45 EST 2025 Fri Feb 23 02:45:25 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Phase transformation Cubic zirconia Thermal stability Stress Oxygen vacancy |
| Language | English |
| License | licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c412t-969793d65d5a954bbe41261bc688e9262e1179cfd84d2df66ab9a4e9fc35e2953 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0684-4397 0000-0001-8790-3162 |
| PQID | 2505725481 |
| PQPubID | 2045394 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_liu_176201 hal_primary_oai_HAL_hal_04966196v1 proquest_journals_2505725481 crossref_citationtrail_10_1016_j_surfcoat_2021_126880 crossref_primary_10_1016_j_surfcoat_2021_126880 elsevier_sciencedirect_doi_10_1016_j_surfcoat_2021_126880 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-15 |
| PublicationDateYYYYMMDD | 2021-03-15 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Lausanne |
| PublicationPlace_xml | – name: Lausanne |
| PublicationTitle | Surface & coatings technology |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Elsevier BV Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV – name: Elsevier |
| References | Allahkarami, Hanan (bb0100) 2012; 574 Raza, Sanna, Dos Santos Gómez, Gautron, El Mel, Pryds, Snyders, Konstantinidis, Esposito (bb0045) 2018; 20 Yim, Paff (bb0065) 1974; 45 Morrell (bb0080) 1985 Allahkarami, Hanan (bb0105) 2011; 27 Kelly, Denry (bb0035) 2008; 24 Ngaruiya, Kappertz, Mohamed, Wuttig (bb0090) 2004; 85 Goedicke, Liebig, Zywitzki, Sahm (bb0060) 2000; 377–378 Arróyave, McDowell (bb0005) 2019; 49 . Pauleau (bb0075) 2001; 61 G.B. Olson, Computational design of hierarchically structured materials, Science (80-. ). 277 (1997) 1237–1242. doi Stöver, Pracht, Lehmann, Dietrich, Döring, Vaßen (bb0020) 2004; 13 Clarke, Phillpot (bb0025) 2005; 8 N. Tranvouez, P. Steyer, A. Malchère, P. Boulet, F. Capon, J.P. Bauer, J.F. Pierson, Effect of thermal stresses formed during air annealing of amorphous lanthanum cuprate thin films deposited on silicon substrate, Coatings. 10 (2020). doi Piascik, Zhang, Bower, Thompson, Stoner (bb0095) 2007; 22 Abriata, Garcés, Versaci (bb0015) 1986; 7 Mehner, Klümper-Westkamp, Hoffmann, Mayr (bb0050) 1997; 308–309 Patterson (bb0055) 1939; 56 Shukla, Seal (bb0030) 2005; 50 Raza, Cornil, Cornil, Lucas, Snyders, Konstantinidis (bb0040) 2016; 124 Kisi, Howard (bb0085) 1998; 153–154 Arróyave (10.1016/j.surfcoat.2021.126880_bb0005) 2019; 49 Mehner (10.1016/j.surfcoat.2021.126880_bb0050) 1997; 308–309 Pauleau (10.1016/j.surfcoat.2021.126880_bb0075) 2001; 61 Yim (10.1016/j.surfcoat.2021.126880_bb0065) 1974; 45 10.1016/j.surfcoat.2021.126880_bb0010 Kelly (10.1016/j.surfcoat.2021.126880_bb0035) 2008; 24 Raza (10.1016/j.surfcoat.2021.126880_bb0045) 2018; 20 10.1016/j.surfcoat.2021.126880_bb0070 Abriata (10.1016/j.surfcoat.2021.126880_bb0015) 1986; 7 Patterson (10.1016/j.surfcoat.2021.126880_bb0055) 1939; 56 Goedicke (10.1016/j.surfcoat.2021.126880_bb0060) 2000; 377–378 Stöver (10.1016/j.surfcoat.2021.126880_bb0020) 2004; 13 Ngaruiya (10.1016/j.surfcoat.2021.126880_bb0090) 2004; 85 Raza (10.1016/j.surfcoat.2021.126880_bb0040) 2016; 124 Kisi (10.1016/j.surfcoat.2021.126880_bb0085) 1998; 153–154 Allahkarami (10.1016/j.surfcoat.2021.126880_bb0105) 2011; 27 Clarke (10.1016/j.surfcoat.2021.126880_bb0025) 2005; 8 Allahkarami (10.1016/j.surfcoat.2021.126880_bb0100) 2012; 574 Shukla (10.1016/j.surfcoat.2021.126880_bb0030) 2005; 50 Morrell (10.1016/j.surfcoat.2021.126880_bb0080) 1985 Piascik (10.1016/j.surfcoat.2021.126880_bb0095) 2007; 22 |
| References_xml | – volume: 574 start-page: 37 year: 2012 ident: bb0100 article-title: Residual stress and phase transformation in zirconia restoration ceramics publication-title: Adv. Bioceram. Porous Ceram. V Ceram. Eng. Sci. Proc. – volume: 8 start-page: 22 year: 2005 end-page: 29 ident: bb0025 article-title: Thermal barrier coating materials publication-title: Mater. Today – volume: 153–154 start-page: 1 year: 1998 end-page: 36 ident: bb0085 article-title: Crystal structures of zirconia phases and their inter-relation publication-title: Key Eng. Mater. – volume: 24 start-page: 289 year: 2008 end-page: 298 ident: bb0035 article-title: Stabilized zirconia as a structural ceramic: an overview publication-title: Dent. Mater. – volume: 85 start-page: 748 year: 2004 ident: bb0090 article-title: Structure formation upon reactive direct current magnetron sputtering of transition metal oxide films publication-title: Appl. Phys. Lett. – volume: 27 start-page: 1279 year: 2011 end-page: 1284 ident: bb0105 article-title: Mapping the tetragonal to monoclinic phase transformation in zirconia core dental crowns publication-title: Dent. Mater. – volume: 308–309 start-page: 363 year: 1997 end-page: 368 ident: bb0050 article-title: Crystallization and residual stress formation of sol-gel-derived zirconia films publication-title: Thin Solid Films – reference: G.B. Olson, Computational design of hierarchically structured materials, Science (80-. ). 277 (1997) 1237–1242. doi: – reference: . – volume: 49 start-page: 103 year: 2019 end-page: 126 ident: bb0005 article-title: Systems approaches to materials design: past, present, and future publication-title: Annu. Rev. Mater. Res. – reference: N. Tranvouez, P. Steyer, A. Malchère, P. Boulet, F. Capon, J.P. Bauer, J.F. Pierson, Effect of thermal stresses formed during air annealing of amorphous lanthanum cuprate thin films deposited on silicon substrate, Coatings. 10 (2020). doi: – volume: 50 start-page: 45 year: 2005 end-page: 64 ident: bb0030 article-title: Mechanisms of room temperature metastable tetragonal phase stabilisation in zirconia publication-title: Int. Mater. Rev. – year: 1985 ident: bb0080 article-title: Handbook of Properties of Technical and Engineering Ceramics – volume: 20 start-page: 26068 year: 2018 end-page: 26071 ident: bb0045 article-title: Near interface ionic transport in oxygen vacancy stabilized cubic zirconium oxide thin films publication-title: Phys. Chem. Chem. Phys. – volume: 124 start-page: 26 year: 2016 end-page: 29 ident: bb0040 article-title: Oxygen vacancy stabilized zirconia (OVSZ); a joint experimental and theoretical study publication-title: Scr. Mater. – volume: 13 start-page: 76 year: 2004 end-page: 83 ident: bb0020 article-title: New material concepts for the next generation of plasma-sprayed thermal barrier coatings publication-title: J. Therm. Spray Technol. – volume: 22 start-page: 1105 year: 2007 end-page: 1111 ident: bb0095 article-title: Evidence of stress-induced tetragonal-to-monoclinic phase transformation during sputter deposition of yttria-stabilized zirconia publication-title: J. Mater. Res. – volume: 45 start-page: 1456 year: 1974 end-page: 1457 ident: bb0065 article-title: Thermal expansion of AlN, sapphire, and silicon publication-title: J. Appl. Phys. – volume: 7 start-page: 116 year: 1986 end-page: 124 ident: bb0015 article-title: The O-Zr (oxygen-zirconium) system publication-title: Bull. Alloy Phase Diagr. – volume: 61 start-page: 175 year: 2001 end-page: 181 ident: bb0075 article-title: Generation and evolution of residual stresses in physical vapour-deposited thin films publication-title: Vacuum. – volume: 56 start-page: 978 year: 1939 end-page: 982 ident: bb0055 article-title: The scherrer formula for X-ray particle size determination publication-title: Phys. Rev. – volume: 377–378 start-page: 37 year: 2000 end-page: 42 ident: bb0060 article-title: Influence of process parameters on the structure and the properties of ZrO 2 coatings deposited by reactive pulsed magnetron sputtering (PMS) publication-title: Thin Solid Films – year: 1985 ident: 10.1016/j.surfcoat.2021.126880_bb0080 – volume: 45 start-page: 1456 year: 1974 ident: 10.1016/j.surfcoat.2021.126880_bb0065 article-title: Thermal expansion of AlN, sapphire, and silicon publication-title: J. Appl. Phys. doi: 10.1063/1.1663432 – volume: 61 start-page: 175 year: 2001 ident: 10.1016/j.surfcoat.2021.126880_bb0075 article-title: Generation and evolution of residual stresses in physical vapour-deposited thin films publication-title: Vacuum. doi: 10.1016/S0042-207X(00)00475-9 – volume: 7 start-page: 116 year: 1986 ident: 10.1016/j.surfcoat.2021.126880_bb0015 article-title: The O-Zr (oxygen-zirconium) system publication-title: Bull. Alloy Phase Diagr. doi: 10.1007/BF02881546 – volume: 308–309 start-page: 363 year: 1997 ident: 10.1016/j.surfcoat.2021.126880_bb0050 article-title: Crystallization and residual stress formation of sol-gel-derived zirconia films publication-title: Thin Solid Films doi: 10.1016/S0040-6090(97)00579-8 – volume: 24 start-page: 289 year: 2008 ident: 10.1016/j.surfcoat.2021.126880_bb0035 article-title: Stabilized zirconia as a structural ceramic: an overview publication-title: Dent. Mater. doi: 10.1016/j.dental.2007.05.005 – volume: 85 start-page: 748 year: 2004 ident: 10.1016/j.surfcoat.2021.126880_bb0090 article-title: Structure formation upon reactive direct current magnetron sputtering of transition metal oxide films publication-title: Appl. Phys. Lett. doi: 10.1063/1.1777412 – volume: 27 start-page: 1279 year: 2011 ident: 10.1016/j.surfcoat.2021.126880_bb0105 article-title: Mapping the tetragonal to monoclinic phase transformation in zirconia core dental crowns publication-title: Dent. Mater. doi: 10.1016/j.dental.2011.09.004 – volume: 153–154 start-page: 1 year: 1998 ident: 10.1016/j.surfcoat.2021.126880_bb0085 article-title: Crystal structures of zirconia phases and their inter-relation publication-title: Key Eng. Mater. doi: 10.4028/www.scientific.net/KEM.153-154.1 – volume: 49 start-page: 103 year: 2019 ident: 10.1016/j.surfcoat.2021.126880_bb0005 article-title: Systems approaches to materials design: past, present, and future publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070218-125955 – volume: 574 start-page: 37 year: 2012 ident: 10.1016/j.surfcoat.2021.126880_bb0100 article-title: Residual stress and phase transformation in zirconia restoration ceramics publication-title: Adv. Bioceram. Porous Ceram. V Ceram. Eng. Sci. Proc. doi: 10.1002/9781118217504.ch6 – volume: 50 start-page: 45 year: 2005 ident: 10.1016/j.surfcoat.2021.126880_bb0030 article-title: Mechanisms of room temperature metastable tetragonal phase stabilisation in zirconia publication-title: Int. Mater. Rev. doi: 10.1179/174328005X14267 – volume: 22 start-page: 1105 year: 2007 ident: 10.1016/j.surfcoat.2021.126880_bb0095 article-title: Evidence of stress-induced tetragonal-to-monoclinic phase transformation during sputter deposition of yttria-stabilized zirconia publication-title: J. Mater. Res. doi: 10.1557/jmr.2007.0128 – volume: 124 start-page: 26 year: 2016 ident: 10.1016/j.surfcoat.2021.126880_bb0040 article-title: Oxygen vacancy stabilized zirconia (OVSZ); a joint experimental and theoretical study publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2016.06.025 – volume: 8 start-page: 22 year: 2005 ident: 10.1016/j.surfcoat.2021.126880_bb0025 article-title: Thermal barrier coating materials publication-title: Mater. Today doi: 10.1016/S1369-7021(05)70934-2 – volume: 13 start-page: 76 year: 2004 ident: 10.1016/j.surfcoat.2021.126880_bb0020 article-title: New material concepts for the next generation of plasma-sprayed thermal barrier coatings publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-004-0052-4 – ident: 10.1016/j.surfcoat.2021.126880_bb0010 doi: 10.1126/science.277.5330.1237 – ident: 10.1016/j.surfcoat.2021.126880_bb0070 doi: 10.3390/coatings10070613 – volume: 56 start-page: 978 year: 1939 ident: 10.1016/j.surfcoat.2021.126880_bb0055 article-title: The scherrer formula for X-ray particle size determination publication-title: Phys. Rev. doi: 10.1103/PhysRev.56.978 – volume: 20 start-page: 26068 year: 2018 ident: 10.1016/j.surfcoat.2021.126880_bb0045 article-title: Near interface ionic transport in oxygen vacancy stabilized cubic zirconium oxide thin films publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP05465G – volume: 377–378 start-page: 37 year: 2000 ident: 10.1016/j.surfcoat.2021.126880_bb0060 article-title: Influence of process parameters on the structure and the properties of ZrO 2 coatings deposited by reactive pulsed magnetron sputtering (PMS) publication-title: Thin Solid Films doi: 10.1016/S0040-6090(00)01381-X |
| SSID | ssj0001794 |
| Score | 2.361733 |
| Snippet | Thermal stability of reactive magnetron sputter deposited oxygen vacancy stabilized cubic zirconia (OVSZ) thin films containing 16 and 3 at.% oxygen vacancies... Thermal stability of reactive magnetron sputter deposited oxygen vacancy stabilized cubic zirconia (OVSZ) thin films containing 16 and 3 at.% oxygen vacancies... |
| SourceID | swepub hal proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 126880 |
| SubjectTerms | Chemical Sciences Compressive properties Condensed Matter Cubic zirconia Material chemistry Materials Science Oxygen Oxygen vacancy Phase transformation Physics Stress Substrates Thermal cycling Thermal expansion Thermal stability Thin films Vacancies Zirconium dioxide |
| Title | Thermal stability of oxygen vacancy stabilized zirconia (OVSZ) thin films |
| URI | https://dx.doi.org/10.1016/j.surfcoat.2021.126880 https://www.proquest.com/docview/2505725481 https://cnrs.hal.science/hal-04966196 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176201 |
| Volume | 409 |
| WOSCitedRecordID | wos000654045600043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-3347 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001794 issn: 1879-3347 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DQl4QDBAFAaKEEMglLLc48dqa7WhUqqtqypeLMdxaKoqKWlWdf0h_F6OL8k6MRg88BJVjuykPl8-H1_OdxB6Q30cYxpFpvzcXM8OzIhHgWn5CQYEUWYliUw2EfT74XiMB43GjyoWZjkLsixcrfD8v5oaysDYInT2H8xdNwoF8BuMDlcwO1z_1vBAtiIKRElwyy30fHUJFT4sKRNsWt1bg7e5TguYEqdU6o6Ozr6KZYJykmZCsUkrmU-roJEioYxLsLCcljLhZ_nL0vwpXUuH9HM-WaQ19ET-arXvMaALRutzHYNUuvzqoA3NTOFIy837IE9rd_8su4x1LrfTXJOXXqmw5VEtFaupls_qEJrRBskBZZghVul7WlyRcBhg03GUEmfF0u4B3uBZ60b2VwsRUxh2ikT0Q0u8Rcuy_VBli7out93_QrrnvR4ZdsbDfac7_26KXGRiz37fOVK42EI7duBhYMud9kln_Kke4wWNydU7_fYbsec3P_53bs_WRJy_3ZzcbArWSidn-BA90LMTo61Q9Qg1eLaL7h5WSQF30f0N_crH6ERjzaixZuSJobBmaKwZV1gzKqwZ7wTS3hsCZ4bE2RN03u0MD49NnZvDZK5llyb2MTB77HuxR7HnRhGHYt-KGPxZLjQoudAaZEkcurEdJ75PI0xdjhPmeNzGnvMUbWd5xp8hAybQ0FYQ-xjcSWo5IYwrURCyyME0oD5vIq_qOsK0cL3InzIj1QnFKam6nIguJ6rLm-hjXW-upFturYEryxDtgCrHkgDCbq37GkxZP0ioth-3e0SUwSQcvGDsL60m2qssTTRlLIiYhAS254Zw-62y_rVmjtJRm-TFNzJLL4gFzsuB9fzP7bxA966-vz20XRYX_CW6w5ZluiheaSz_BF_myF0 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+stability+of+oxygen+vacancy+stabilized+zirconia+%28OVSZ%29+thin+films&rft.jtitle=Surface+%26+coatings+technology&rft.au=Raza%2C+Mohsin&rft.au=Boulet%2C+Pascal&rft.au=Pierson%2C+Jean-Fran%C3%A7ois&rft.au=Snyders%2C+Rony&rft.date=2021-03-15&rft.pub=Elsevier+BV&rft.issn=0257-8972&rft.eissn=1879-3347&rft.volume=409&rft.spage=1&rft_id=info:doi/10.1016%2Fj.surfcoat.2021.126880&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon |