Thermal stability of oxygen vacancy stabilized zirconia (OVSZ) thin films

Thermal stability of reactive magnetron sputter deposited oxygen vacancy stabilized cubic zirconia (OVSZ) thin films containing 16 and 3 at.% oxygen vacancies is reported. Temperature-resolved grazing incidence X-ray diffraction (TR-GIXRD) measurements (200–900 °C) in air and nitrogen atmosphere wer...

Full description

Saved in:
Bibliographic Details
Published in:Surface & coatings technology Vol. 409; p. 126880
Main Authors: Raza, Mohsin, Boulet, Pascal, Pierson, Jean-François, Snyders, Rony, Konstantinidis, Stéphanos
Format: Journal Article
Language:English
Published: Lausanne Elsevier B.V 15.03.2021
Elsevier BV
Elsevier
Subjects:
ISSN:0257-8972, 1879-3347, 1879-3347
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Thermal stability of reactive magnetron sputter deposited oxygen vacancy stabilized cubic zirconia (OVSZ) thin films containing 16 and 3 at.% oxygen vacancies is reported. Temperature-resolved grazing incidence X-ray diffraction (TR-GIXRD) measurements (200–900 °C) in air and nitrogen atmosphere were performed. TR-GIXRD data show that the deposited films are stable up to 750 °C irrespective of the annealing atmosphere or the oxygen vacancy concentration. However, above 750 °C a fraction of zirconia transforms from cubic to monoclinic structure. This structural transition is explained by the compressive stresses, generated as a result of discrepancy in film-substrate thermal expansion coefficients. Thermal cycling of the deposited OVSZ thin films is also performed at 700 °C and show that films retain their initial cubic structure. •Thermal stability of oxygen vacancy stabilized zirconia (OVSZ) thin films is reported.•OVSZ thin films are stable up-to 750 °C irrespective of annealing ambient (N2 or air) or oxygen vacancy concentration.•Mono-clinic peak appear above 750 °C as a result of compressive stresses.
AbstractList Thermal stability of reactive magnetron sputter deposited oxygen vacancy stabilized cubic zirconia (OVSZ) thin films containing 16 and 3 at.% oxygen vacancies is reported. Temperature-resolved grazing incidence X-ray diffraction (TR-GIXRD) measurements (200-900 degrees C) in air and nitrogen atmosphere were performed. TR-GIXRD data show that the deposited films are stable up to 750 degrees C irrespective of the annealing atmosphere or the oxygen vacancy concentration. However, above 750 degrees C a fraction of zirconia transforms from cubic to monoclinic structure. This structural transition is explained by the compressive stresses, generated as a result of discrepancy in film-substrate thermal expansion coefficients. Thermal cycling of the deposited OVSZ thin films is also performed at 700 degrees C and show that films retain their initial cubic structure.
Thermal stability of reactive magnetron sputter deposited oxygen vacancy stabilized cubic zirconia (OVSZ) thin films containing 16 and 3 at.% oxygen vacancies is reported. Temperature-resolved grazing incidence X-ray diffraction (TR-GIXRD) measurements (200–900 °C) in air and nitrogen atmosphere were performed. TR-GIXRD data show that the deposited films are stable up to 750 °C irrespective of the annealing atmosphere or the oxygen vacancy concentration. However, above 750 °C a fraction of zirconia transforms from cubic to monoclinic structure. This structural transition is explained by the compressive stresses, generated as a result of discrepancy in film-substrate thermal expansion coefficients. Thermal cycling of the deposited OVSZ thin films is also performed at 700 °C and show that films retain their initial cubic structure.
Thermal stability of reactive magnetron sputter deposited oxygen vacancy stabilized cubic zirconia (OVSZ) thin films containing 16 and 3 at.% oxygen vacancies is reported. Temperature-resolved grazing incidence X-ray diffraction (TR-GIXRD) measurements (200–900 °C) in air and nitrogen atmosphere were performed. TR-GIXRD data show that the deposited films are stable up to 750 °C irrespective of the annealing atmosphere or the oxygen vacancy concentration. However, above 750 °C a fraction of zirconia transforms from cubic to monoclinic structure. This structural transition is explained by the compressive stresses, generated as a result of discrepancy in film-substrate thermal expansion coefficients. Thermal cycling of the deposited OVSZ thin films is also performed at 700 °C and show that films retain their initial cubic structure. •Thermal stability of oxygen vacancy stabilized zirconia (OVSZ) thin films is reported.•OVSZ thin films are stable up-to 750 °C irrespective of annealing ambient (N2 or air) or oxygen vacancy concentration.•Mono-clinic peak appear above 750 °C as a result of compressive stresses.
ArticleNumber 126880
Author Pierson, Jean-François
Boulet, Pascal
Konstantinidis, Stéphanos
Raza, Mohsin
Snyders, Rony
Author_xml – sequence: 1
  givenname: Mohsin
  surname: Raza
  fullname: Raza, Mohsin
  email: mohsinraza.khan@outlook.com
  organization: Chimie des Interactions Plasma-Surface (ChIPS), University of Mons, 23 Place du Parc, 7000 Mons, Belgium
– sequence: 2
  givenname: Pascal
  surname: Boulet
  fullname: Boulet, Pascal
  organization: Institut Jean Lamour (UMR CNRS 7198), Université de Lorraine, Campus ARTEM, 54011 Nancy Cedex, France
– sequence: 3
  givenname: Jean-François
  surname: Pierson
  fullname: Pierson, Jean-François
  organization: Institut Jean Lamour (UMR CNRS 7198), Université de Lorraine, Campus ARTEM, 54011 Nancy Cedex, France
– sequence: 4
  givenname: Rony
  surname: Snyders
  fullname: Snyders, Rony
  organization: Chimie des Interactions Plasma-Surface (ChIPS), University of Mons, 23 Place du Parc, 7000 Mons, Belgium
– sequence: 5
  givenname: Stéphanos
  surname: Konstantinidis
  fullname: Konstantinidis, Stéphanos
  email: stephanos.konstantinidis@umons.ac.be
  organization: Chimie des Interactions Plasma-Surface (ChIPS), University of Mons, 23 Place du Parc, 7000 Mons, Belgium
BackLink https://cnrs.hal.science/hal-04966196$$DView record in HAL
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176201$$DView record from Swedish Publication Index (Linköpings universitet)
BookMark eNqFkUFv1DAQhS1UJLaFv4AicaGHLLYTO7HEgVULtNJKPVB64DJynEnXq6y92M7C9teTKOwBLj2NNPO90Zt55-TMeYeEvGV0ySiTH7bLOITOeJ2WnHK2ZFzWNX1BFqyuVF4UZXVGFpSLKq9VxV-R8xi3lFJWqXJBbu83GHa6z2LSje1tOma-y_zv4yO67KCNduZ4mj1hmz3ZYLyzOnt_9_Dtx2WWNtZlne138TV52ek-4pu_9YJ8__L5_uomX999vb1arXNTMp5yJVWlilaKVmglyqbBsS1ZY0bTqLjkyEZnpmvrsuVtJ6VulC5RdaYQyJUoLkg-742_cD80sA92p8MRvLZwbR9W4MMj9HYAVklO2chfzvxG9__AN6s1TD1aKimZkoeJfTez--B_DhgTbP0Q3HgOcEFFxUVZT9THmTLBxxiwA2OTTta7FLTtgVGYgoEtnIKBKRiYgxnl8j_5ydWzwk-zEMf3HiwGiMaiM9jagCZB6-1zK_4Af-ytNg
CitedBy_id crossref_primary_10_1016_j_ceramint_2022_06_203
crossref_primary_10_1016_j_matchar_2025_115359
crossref_primary_10_1016_j_mtcomm_2025_111970
crossref_primary_10_3390_pr10112217
Cites_doi 10.1063/1.1663432
10.1016/S0042-207X(00)00475-9
10.1007/BF02881546
10.1016/S0040-6090(97)00579-8
10.1016/j.dental.2007.05.005
10.1063/1.1777412
10.1016/j.dental.2011.09.004
10.4028/www.scientific.net/KEM.153-154.1
10.1146/annurev-matsci-070218-125955
10.1002/9781118217504.ch6
10.1179/174328005X14267
10.1557/jmr.2007.0128
10.1016/j.scriptamat.2016.06.025
10.1016/S1369-7021(05)70934-2
10.1007/s11666-004-0052-4
10.1126/science.277.5330.1237
10.3390/coatings10070613
10.1103/PhysRev.56.978
10.1039/C8CP05465G
10.1016/S0040-6090(00)01381-X
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Mar 15, 2021
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Mar 15, 2021
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID AAYXX
CITATION
7QQ
7SR
8BQ
8FD
JG9
1XC
ADTPV
AOWAS
DG8
DOI 10.1016/j.surfcoat.2021.126880
DatabaseName CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Hyper Article en Ligne (HAL)
SwePub
SwePub Articles
SWEPUB Linköpings universitet
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
METADEX
DatabaseTitleList


Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1879-3347
ExternalDocumentID oai_DiVA_org_liu_176201
oai:HAL:hal-04966196v1
10_1016_j_surfcoat_2021_126880
S0257897221000530
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
XPP
ZMT
~02
~G-
29Q
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HMV
HVGLF
HX~
HZ~
NDZJH
R2-
SEW
SMS
SPG
WUQ
~HD
7QQ
7SR
8BQ
8FD
JG9
1XC
ADTPV
AOWAS
DG8
ID FETCH-LOGICAL-c412t-969793d65d5a954bbe41261bc688e9262e1179cfd84d2df66ab9a4e9fc35e2953
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000654045600043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0257-8972
1879-3347
IngestDate Tue Nov 04 16:40:46 EST 2025
Sat Nov 29 06:30:36 EST 2025
Sun Nov 30 04:13:03 EST 2025
Sat Nov 29 07:25:17 EST 2025
Tue Nov 18 21:01:45 EST 2025
Fri Feb 23 02:45:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Phase transformation
Cubic zirconia
Thermal stability
Stress
Oxygen vacancy
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c412t-969793d65d5a954bbe41261bc688e9262e1179cfd84d2df66ab9a4e9fc35e2953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0684-4397
0000-0001-8790-3162
PQID 2505725481
PQPubID 2045394
ParticipantIDs swepub_primary_oai_DiVA_org_liu_176201
hal_primary_oai_HAL_hal_04966196v1
proquest_journals_2505725481
crossref_citationtrail_10_1016_j_surfcoat_2021_126880
crossref_primary_10_1016_j_surfcoat_2021_126880
elsevier_sciencedirect_doi_10_1016_j_surfcoat_2021_126880
PublicationCentury 2000
PublicationDate 2021-03-15
PublicationDateYYYYMMDD 2021-03-15
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-15
  day: 15
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Surface & coatings technology
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
– name: Elsevier
References Allahkarami, Hanan (bb0100) 2012; 574
Raza, Sanna, Dos Santos Gómez, Gautron, El Mel, Pryds, Snyders, Konstantinidis, Esposito (bb0045) 2018; 20
Yim, Paff (bb0065) 1974; 45
Morrell (bb0080) 1985
Allahkarami, Hanan (bb0105) 2011; 27
Kelly, Denry (bb0035) 2008; 24
Ngaruiya, Kappertz, Mohamed, Wuttig (bb0090) 2004; 85
Goedicke, Liebig, Zywitzki, Sahm (bb0060) 2000; 377–378
Arróyave, McDowell (bb0005) 2019; 49
.
Pauleau (bb0075) 2001; 61
G.B. Olson, Computational design of hierarchically structured materials, Science (80-. ). 277 (1997) 1237–1242. doi
Stöver, Pracht, Lehmann, Dietrich, Döring, Vaßen (bb0020) 2004; 13
Clarke, Phillpot (bb0025) 2005; 8
N. Tranvouez, P. Steyer, A. Malchère, P. Boulet, F. Capon, J.P. Bauer, J.F. Pierson, Effect of thermal stresses formed during air annealing of amorphous lanthanum cuprate thin films deposited on silicon substrate, Coatings. 10 (2020). doi
Piascik, Zhang, Bower, Thompson, Stoner (bb0095) 2007; 22
Abriata, Garcés, Versaci (bb0015) 1986; 7
Mehner, Klümper-Westkamp, Hoffmann, Mayr (bb0050) 1997; 308–309
Patterson (bb0055) 1939; 56
Shukla, Seal (bb0030) 2005; 50
Raza, Cornil, Cornil, Lucas, Snyders, Konstantinidis (bb0040) 2016; 124
Kisi, Howard (bb0085) 1998; 153–154
Arróyave (10.1016/j.surfcoat.2021.126880_bb0005) 2019; 49
Mehner (10.1016/j.surfcoat.2021.126880_bb0050) 1997; 308–309
Pauleau (10.1016/j.surfcoat.2021.126880_bb0075) 2001; 61
Yim (10.1016/j.surfcoat.2021.126880_bb0065) 1974; 45
10.1016/j.surfcoat.2021.126880_bb0010
Kelly (10.1016/j.surfcoat.2021.126880_bb0035) 2008; 24
Raza (10.1016/j.surfcoat.2021.126880_bb0045) 2018; 20
10.1016/j.surfcoat.2021.126880_bb0070
Abriata (10.1016/j.surfcoat.2021.126880_bb0015) 1986; 7
Patterson (10.1016/j.surfcoat.2021.126880_bb0055) 1939; 56
Goedicke (10.1016/j.surfcoat.2021.126880_bb0060) 2000; 377–378
Stöver (10.1016/j.surfcoat.2021.126880_bb0020) 2004; 13
Ngaruiya (10.1016/j.surfcoat.2021.126880_bb0090) 2004; 85
Raza (10.1016/j.surfcoat.2021.126880_bb0040) 2016; 124
Kisi (10.1016/j.surfcoat.2021.126880_bb0085) 1998; 153–154
Allahkarami (10.1016/j.surfcoat.2021.126880_bb0105) 2011; 27
Clarke (10.1016/j.surfcoat.2021.126880_bb0025) 2005; 8
Allahkarami (10.1016/j.surfcoat.2021.126880_bb0100) 2012; 574
Shukla (10.1016/j.surfcoat.2021.126880_bb0030) 2005; 50
Morrell (10.1016/j.surfcoat.2021.126880_bb0080) 1985
Piascik (10.1016/j.surfcoat.2021.126880_bb0095) 2007; 22
References_xml – volume: 574
  start-page: 37
  year: 2012
  ident: bb0100
  article-title: Residual stress and phase transformation in zirconia restoration ceramics
  publication-title: Adv. Bioceram. Porous Ceram. V Ceram. Eng. Sci. Proc.
– volume: 8
  start-page: 22
  year: 2005
  end-page: 29
  ident: bb0025
  article-title: Thermal barrier coating materials
  publication-title: Mater. Today
– volume: 153–154
  start-page: 1
  year: 1998
  end-page: 36
  ident: bb0085
  article-title: Crystal structures of zirconia phases and their inter-relation
  publication-title: Key Eng. Mater.
– volume: 24
  start-page: 289
  year: 2008
  end-page: 298
  ident: bb0035
  article-title: Stabilized zirconia as a structural ceramic: an overview
  publication-title: Dent. Mater.
– volume: 85
  start-page: 748
  year: 2004
  ident: bb0090
  article-title: Structure formation upon reactive direct current magnetron sputtering of transition metal oxide films
  publication-title: Appl. Phys. Lett.
– volume: 27
  start-page: 1279
  year: 2011
  end-page: 1284
  ident: bb0105
  article-title: Mapping the tetragonal to monoclinic phase transformation in zirconia core dental crowns
  publication-title: Dent. Mater.
– volume: 308–309
  start-page: 363
  year: 1997
  end-page: 368
  ident: bb0050
  article-title: Crystallization and residual stress formation of sol-gel-derived zirconia films
  publication-title: Thin Solid Films
– reference: G.B. Olson, Computational design of hierarchically structured materials, Science (80-. ). 277 (1997) 1237–1242. doi:
– reference: .
– volume: 49
  start-page: 103
  year: 2019
  end-page: 126
  ident: bb0005
  article-title: Systems approaches to materials design: past, present, and future
  publication-title: Annu. Rev. Mater. Res.
– reference: N. Tranvouez, P. Steyer, A. Malchère, P. Boulet, F. Capon, J.P. Bauer, J.F. Pierson, Effect of thermal stresses formed during air annealing of amorphous lanthanum cuprate thin films deposited on silicon substrate, Coatings. 10 (2020). doi:
– volume: 50
  start-page: 45
  year: 2005
  end-page: 64
  ident: bb0030
  article-title: Mechanisms of room temperature metastable tetragonal phase stabilisation in zirconia
  publication-title: Int. Mater. Rev.
– year: 1985
  ident: bb0080
  article-title: Handbook of Properties of Technical and Engineering Ceramics
– volume: 20
  start-page: 26068
  year: 2018
  end-page: 26071
  ident: bb0045
  article-title: Near interface ionic transport in oxygen vacancy stabilized cubic zirconium oxide thin films
  publication-title: Phys. Chem. Chem. Phys.
– volume: 124
  start-page: 26
  year: 2016
  end-page: 29
  ident: bb0040
  article-title: Oxygen vacancy stabilized zirconia (OVSZ); a joint experimental and theoretical study
  publication-title: Scr. Mater.
– volume: 13
  start-page: 76
  year: 2004
  end-page: 83
  ident: bb0020
  article-title: New material concepts for the next generation of plasma-sprayed thermal barrier coatings
  publication-title: J. Therm. Spray Technol.
– volume: 22
  start-page: 1105
  year: 2007
  end-page: 1111
  ident: bb0095
  article-title: Evidence of stress-induced tetragonal-to-monoclinic phase transformation during sputter deposition of yttria-stabilized zirconia
  publication-title: J. Mater. Res.
– volume: 45
  start-page: 1456
  year: 1974
  end-page: 1457
  ident: bb0065
  article-title: Thermal expansion of AlN, sapphire, and silicon
  publication-title: J. Appl. Phys.
– volume: 7
  start-page: 116
  year: 1986
  end-page: 124
  ident: bb0015
  article-title: The O-Zr (oxygen-zirconium) system
  publication-title: Bull. Alloy Phase Diagr.
– volume: 61
  start-page: 175
  year: 2001
  end-page: 181
  ident: bb0075
  article-title: Generation and evolution of residual stresses in physical vapour-deposited thin films
  publication-title: Vacuum.
– volume: 56
  start-page: 978
  year: 1939
  end-page: 982
  ident: bb0055
  article-title: The scherrer formula for X-ray particle size determination
  publication-title: Phys. Rev.
– volume: 377–378
  start-page: 37
  year: 2000
  end-page: 42
  ident: bb0060
  article-title: Influence of process parameters on the structure and the properties of ZrO 2 coatings deposited by reactive pulsed magnetron sputtering (PMS)
  publication-title: Thin Solid Films
– year: 1985
  ident: 10.1016/j.surfcoat.2021.126880_bb0080
– volume: 45
  start-page: 1456
  year: 1974
  ident: 10.1016/j.surfcoat.2021.126880_bb0065
  article-title: Thermal expansion of AlN, sapphire, and silicon
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1663432
– volume: 61
  start-page: 175
  year: 2001
  ident: 10.1016/j.surfcoat.2021.126880_bb0075
  article-title: Generation and evolution of residual stresses in physical vapour-deposited thin films
  publication-title: Vacuum.
  doi: 10.1016/S0042-207X(00)00475-9
– volume: 7
  start-page: 116
  year: 1986
  ident: 10.1016/j.surfcoat.2021.126880_bb0015
  article-title: The O-Zr (oxygen-zirconium) system
  publication-title: Bull. Alloy Phase Diagr.
  doi: 10.1007/BF02881546
– volume: 308–309
  start-page: 363
  year: 1997
  ident: 10.1016/j.surfcoat.2021.126880_bb0050
  article-title: Crystallization and residual stress formation of sol-gel-derived zirconia films
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(97)00579-8
– volume: 24
  start-page: 289
  year: 2008
  ident: 10.1016/j.surfcoat.2021.126880_bb0035
  article-title: Stabilized zirconia as a structural ceramic: an overview
  publication-title: Dent. Mater.
  doi: 10.1016/j.dental.2007.05.005
– volume: 85
  start-page: 748
  year: 2004
  ident: 10.1016/j.surfcoat.2021.126880_bb0090
  article-title: Structure formation upon reactive direct current magnetron sputtering of transition metal oxide films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1777412
– volume: 27
  start-page: 1279
  year: 2011
  ident: 10.1016/j.surfcoat.2021.126880_bb0105
  article-title: Mapping the tetragonal to monoclinic phase transformation in zirconia core dental crowns
  publication-title: Dent. Mater.
  doi: 10.1016/j.dental.2011.09.004
– volume: 153–154
  start-page: 1
  year: 1998
  ident: 10.1016/j.surfcoat.2021.126880_bb0085
  article-title: Crystal structures of zirconia phases and their inter-relation
  publication-title: Key Eng. Mater.
  doi: 10.4028/www.scientific.net/KEM.153-154.1
– volume: 49
  start-page: 103
  year: 2019
  ident: 10.1016/j.surfcoat.2021.126880_bb0005
  article-title: Systems approaches to materials design: past, present, and future
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070218-125955
– volume: 574
  start-page: 37
  year: 2012
  ident: 10.1016/j.surfcoat.2021.126880_bb0100
  article-title: Residual stress and phase transformation in zirconia restoration ceramics
  publication-title: Adv. Bioceram. Porous Ceram. V Ceram. Eng. Sci. Proc.
  doi: 10.1002/9781118217504.ch6
– volume: 50
  start-page: 45
  year: 2005
  ident: 10.1016/j.surfcoat.2021.126880_bb0030
  article-title: Mechanisms of room temperature metastable tetragonal phase stabilisation in zirconia
  publication-title: Int. Mater. Rev.
  doi: 10.1179/174328005X14267
– volume: 22
  start-page: 1105
  year: 2007
  ident: 10.1016/j.surfcoat.2021.126880_bb0095
  article-title: Evidence of stress-induced tetragonal-to-monoclinic phase transformation during sputter deposition of yttria-stabilized zirconia
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2007.0128
– volume: 124
  start-page: 26
  year: 2016
  ident: 10.1016/j.surfcoat.2021.126880_bb0040
  article-title: Oxygen vacancy stabilized zirconia (OVSZ); a joint experimental and theoretical study
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2016.06.025
– volume: 8
  start-page: 22
  year: 2005
  ident: 10.1016/j.surfcoat.2021.126880_bb0025
  article-title: Thermal barrier coating materials
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(05)70934-2
– volume: 13
  start-page: 76
  year: 2004
  ident: 10.1016/j.surfcoat.2021.126880_bb0020
  article-title: New material concepts for the next generation of plasma-sprayed thermal barrier coatings
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-004-0052-4
– ident: 10.1016/j.surfcoat.2021.126880_bb0010
  doi: 10.1126/science.277.5330.1237
– ident: 10.1016/j.surfcoat.2021.126880_bb0070
  doi: 10.3390/coatings10070613
– volume: 56
  start-page: 978
  year: 1939
  ident: 10.1016/j.surfcoat.2021.126880_bb0055
  article-title: The scherrer formula for X-ray particle size determination
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.56.978
– volume: 20
  start-page: 26068
  year: 2018
  ident: 10.1016/j.surfcoat.2021.126880_bb0045
  article-title: Near interface ionic transport in oxygen vacancy stabilized cubic zirconium oxide thin films
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP05465G
– volume: 377–378
  start-page: 37
  year: 2000
  ident: 10.1016/j.surfcoat.2021.126880_bb0060
  article-title: Influence of process parameters on the structure and the properties of ZrO 2 coatings deposited by reactive pulsed magnetron sputtering (PMS)
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(00)01381-X
SSID ssj0001794
Score 2.361733
Snippet Thermal stability of reactive magnetron sputter deposited oxygen vacancy stabilized cubic zirconia (OVSZ) thin films containing 16 and 3 at.% oxygen vacancies...
Thermal stability of reactive magnetron sputter deposited oxygen vacancy stabilized cubic zirconia (OVSZ) thin films containing 16 and 3 at.% oxygen vacancies...
SourceID swepub
hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 126880
SubjectTerms Chemical Sciences
Compressive properties
Condensed Matter
Cubic zirconia
Material chemistry
Materials Science
Oxygen
Oxygen vacancy
Phase transformation
Physics
Stress
Substrates
Thermal cycling
Thermal expansion
Thermal stability
Thin films
Vacancies
Zirconium dioxide
Title Thermal stability of oxygen vacancy stabilized zirconia (OVSZ) thin films
URI https://dx.doi.org/10.1016/j.surfcoat.2021.126880
https://www.proquest.com/docview/2505725481
https://cnrs.hal.science/hal-04966196
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176201
Volume 409
WOSCitedRecordID wos000654045600043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-3347
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001794
  issn: 1879-3347
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DQl4QDBAFAaKEEMglLLc48dqa7WhUqqtqypeLMdxaKoqKWlWdf0h_F6OL8k6MRg88BJVjuykPl8-H1_OdxB6Q30cYxpFpvzcXM8OzIhHgWn5CQYEUWYliUw2EfT74XiMB43GjyoWZjkLsixcrfD8v5oaysDYInT2H8xdNwoF8BuMDlcwO1z_1vBAtiIKRElwyy30fHUJFT4sKRNsWt1bg7e5TguYEqdU6o6Ozr6KZYJykmZCsUkrmU-roJEioYxLsLCcljLhZ_nL0vwpXUuH9HM-WaQ19ET-arXvMaALRutzHYNUuvzqoA3NTOFIy837IE9rd_8su4x1LrfTXJOXXqmw5VEtFaupls_qEJrRBskBZZghVul7WlyRcBhg03GUEmfF0u4B3uBZ60b2VwsRUxh2ikT0Q0u8Rcuy_VBli7out93_QrrnvR4ZdsbDfac7_26KXGRiz37fOVK42EI7duBhYMud9kln_Kke4wWNydU7_fYbsec3P_53bs_WRJy_3ZzcbArWSidn-BA90LMTo61Q9Qg1eLaL7h5WSQF30f0N_crH6ERjzaixZuSJobBmaKwZV1gzKqwZ7wTS3hsCZ4bE2RN03u0MD49NnZvDZK5llyb2MTB77HuxR7HnRhGHYt-KGPxZLjQoudAaZEkcurEdJ75PI0xdjhPmeNzGnvMUbWd5xp8hAybQ0FYQ-xjcSWo5IYwrURCyyME0oD5vIq_qOsK0cL3InzIj1QnFKam6nIguJ6rLm-hjXW-upFturYEryxDtgCrHkgDCbq37GkxZP0ioth-3e0SUwSQcvGDsL60m2qssTTRlLIiYhAS254Zw-62y_rVmjtJRm-TFNzJLL4gFzsuB9fzP7bxA966-vz20XRYX_CW6w5ZluiheaSz_BF_myF0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+stability+of+oxygen+vacancy+stabilized+zirconia+%28OVSZ%29+thin+films&rft.jtitle=Surface+%26+coatings+technology&rft.au=Raza%2C+Mohsin&rft.au=Boulet%2C+Pascal&rft.au=Pierson%2C+Jean-Fran%C3%A7ois&rft.au=Snyders%2C+Rony&rft.date=2021-03-15&rft.pub=Elsevier+BV&rft.issn=0257-8972&rft.eissn=1879-3347&rft.volume=409&rft.spage=1&rft_id=info:doi/10.1016%2Fj.surfcoat.2021.126880&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon