Molecular tweezers modulate 14-3-3 protein–protein interactions
Supramolecular chemistry has recently emerged as a promising way to modulate protein functions, but devising molecules that will interact with a protein in the desired manner is difficult as many competing interactions exist in a biological environment (with solvents, salts or different sites for th...
Uloženo v:
| Vydáno v: | Nature chemistry Ročník 5; číslo 3; s. 234 - 239 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
01.03.2013
Nature Publishing Group |
| Témata: | |
| ISSN: | 1755-4330, 1755-4349, 1755-4349 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Supramolecular chemistry has recently emerged as a promising way to modulate protein functions, but devising molecules that will interact with a protein in the desired manner is difficult as many competing interactions exist in a biological environment (with solvents, salts or different sites for the target biomolecule). We now show that lysine-specific molecular tweezers bind to a 14-3-3 adapter protein and modulate its interaction with partner proteins. The tweezers inhibit binding between the 14-3-3 protein and two partner proteins—a phosphorylated (C-Raf) protein and an unphosphorylated one (ExoS)—in a concentration-dependent manner. Protein crystallography shows that this effect arises from the binding of the tweezers to a single surface-exposed lysine (Lys214) of the 14-3-3 protein in the proximity of its central channel, which normally binds the partner proteins. A combination of structural analysis and computer simulations provides rules for the tweezers' binding preferences, thus allowing us to predict their influence on this type of protein–protein interactions.
A molecular tweezer has been shown to bind to the surface of a 14-3-3 protein through a particular lysine residue. This interaction — characterized in detail by protein crystallography and computational modelling — disrupts the protein's binding with partner proteins. These findings ascertain supramolecular chemistry as an enticing tool in chemical biology, here towards modulating protein functions. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1755-4330 1755-4349 1755-4349 |
| DOI: | 10.1038/nchem.1570 |