HyKKT: a hybrid direct-iterative method for solving KKT linear systems

We propose a solution strategy for the large indefinite linear systems arising in interior methods for nonlinear optimization. The method is suitable for implementation on hardware accelerators such as graphical processing units (GPUs). The current gold standard for sparse indefinite systems is the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optimization methods & software Ročník 38; číslo 2; s. 332 - 355
Hlavní autori: Regev, Shaked, Chiang, Nai-Yuan, Darve, Eric, Petra, Cosmin G., Saunders, Michael A., Świrydowicz, Kasia, Peleš, Slaven
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Abingdon Taylor & Francis 04.03.2023
Taylor & Francis Ltd
Predmet:
ISSN:1055-6788, 1029-4937
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We propose a solution strategy for the large indefinite linear systems arising in interior methods for nonlinear optimization. The method is suitable for implementation on hardware accelerators such as graphical processing units (GPUs). The current gold standard for sparse indefinite systems is the LBLT factorization where is a lower triangular matrix and is or block diagonal. However, this requires pivoting, which substantially increases communication cost and degrades performance on GPUs. Our approach solves a large indefinite system by solving multiple smaller positive definite systems, using an iterative solver on the Schur complement and an inner direct solve (via Cholesky factorization) within each iteration. Cholesky is stable without pivoting, thereby reducing communication and allowing reuse of the symbolic factorization. We demonstrate the practicality of our approach on large optimal power flow problems and show that it can efficiently utilize GPUs and outperform LBL T factorization of the full system.
AbstractList We propose a solution strategy for the large indefinite linear systems arising in interior methods for nonlinear optimization. The method is suitable for implementation on hardware accelerators such as graphical processing units (GPUs). The current gold standard for sparse indefinite systems is the LBLT factorization where is a lower triangular matrix and is or block diagonal. However, this requires pivoting, which substantially increases communication cost and degrades performance on GPUs. Our approach solves a large indefinite system by solving multiple smaller positive definite systems, using an iterative solver on the Schur complement and an inner direct solve (via Cholesky factorization) within each iteration. Cholesky is stable without pivoting, thereby reducing communication and allowing reuse of the symbolic factorization. We demonstrate the practicality of our approach on large optimal power flow problems and show that it can efficiently utilize GPUs and outperform LBLT factorization of the full system.
We propose a solution strategy for the large indefinite linear systems arising in interior methods for nonlinear optimization. The method is suitable for implementation on hardware accelerators such as graphical processing units (GPUs). The current gold standard for sparse indefinite systems is the LBLT factorization where is a lower triangular matrix and is or block diagonal. However, this requires pivoting, which substantially increases communication cost and degrades performance on GPUs. Our approach solves a large indefinite system by solving multiple smaller positive definite systems, using an iterative solver on the Schur complement and an inner direct solve (via Cholesky factorization) within each iteration. Cholesky is stable without pivoting, thereby reducing communication and allowing reuse of the symbolic factorization. We demonstrate the practicality of our approach on large optimal power flow problems and show that it can efficiently utilize GPUs and outperform LBL T factorization of the full system.
Here, we propose a solution strategy for the large indefinite linear systems arising in interior methods for nonlinear optimization. The method is suitable for implementation on hardware accelerators such as graphical processing units (GPUs). The current gold standard for sparse indefinite systems is the LBLT factorization where L is a lower triangular matrix and B is 1×1 or 2×2 block diagonal. However, this requires pivoting, which substantially increases communication cost and degrades performance on GPUs. Our approach solves a large indefinite system by solving multiple smaller positive definite systems, using an iterative solver on the Schur complement and an inner direct solve (via Cholesky factorization) within each iteration. Cholesky is stable without pivoting, thereby reducing communication and allowing reuse of the symbolic factorization. We demonstrate the practicality of our approach on large optimal power flow problems and show that it can efficiently utilize GPUs and outperform LBLT factorization of the full system.
Author Saunders, Michael A.
Chiang, Nai-Yuan
Petra, Cosmin G.
Darve, Eric
Peleš, Slaven
Regev, Shaked
Świrydowicz, Kasia
Author_xml – sequence: 1
  givenname: Shaked
  orcidid: 0000-0003-2896-1658
  surname: Regev
  fullname: Regev, Shaked
  email: sregev@stanford.edu
  organization: Stanford University
– sequence: 2
  givenname: Nai-Yuan
  surname: Chiang
  fullname: Chiang, Nai-Yuan
  organization: Lawrence Livermore National Laboratory
– sequence: 3
  givenname: Eric
  surname: Darve
  fullname: Darve, Eric
  organization: Stanford University
– sequence: 4
  givenname: Cosmin G.
  surname: Petra
  fullname: Petra, Cosmin G.
  organization: Lawrence Livermore National Laboratory
– sequence: 5
  givenname: Michael A.
  surname: Saunders
  fullname: Saunders, Michael A.
  organization: Stanford University
– sequence: 6
  givenname: Kasia
  surname: Świrydowicz
  fullname: Świrydowicz, Kasia
  organization: Pacific Northwest National Laboratory
– sequence: 7
  givenname: Slaven
  surname: Peleš
  fullname: Peleš, Slaven
  organization: Oak Ridge National Laboratory
BackLink https://www.osti.gov/servlets/purl/2446704$$D View this record in Osti.gov
BookMark eNqFkEtPxCAYRYnRxOdPMGl03fGDQgu60Rhf0cSNrgml4GA6oIBj-u9lMrpxoSsIOffmcnbRpg_eIHSIYYaBwwkGxtqO8xkBQmYEEyoEbKAdDETUVDTd5urOWL2CttFuSq8AQDFtd9D17XR__3RaqWo-9dEN1eCi0bl22USV3dJUC5PnYahsiFUK49L5l6okqtF5o8rTlLJZpH20ZdWYzMH3uYeer6-eLm_rh8ebu8uLh1pTTHLNQWvFqFUWNDNAiVHckhYrIHbouTJNLwTDSvSdbjTlfNCiJaS3XDFOetLsoaN1b0jZyaTLTD3XwfuyWRJK2w5ogY7X0FsM7x8mZfkaPqIvuyTpOiFaEG1TqLM1pWNIKRorS1v5cvA5KjdKDHJlV_7YlSu78ttuSbNf6bfoFipO_-bO1znni9GF-gxxHGRW0xiijcprl2Tzd8UXlICR0A
CitedBy_id crossref_primary_10_1016_j_epsr_2024_110651
crossref_primary_10_1109_MCSE_2024_3403029
Cites_doi 10.1177/1468087420936398
10.1109/TSG.2017.2720471
10.1080/10556789908805759
10.1007/s10107-004-0559-y
10.6028/jres.049.044
10.56021/9781421407944
10.1109/IPDPSW.2016.92
10.1137/20M1363030
10.1080/00207160701356605
10.1109/TVLSI.2015.2421287
10.1080/10556780902806094
10.1109/IROS40897.2019.8968194
10.1109/PSC.2014.6808131
10.1137/05063427X
10.1007/0-387-30065-1_4
10.1007/978-3-030-01431-5
10.1109/TPWRS.2017.2789187
10.1007/s10589-015-9820-y
10.1016/j.parco.2016.06.004
10.1137/S1052623403426556
10.1093/bioinformatics/btu268
10.1109/LRA.2020.3010755
10.1016/S0167-8191(01)00141-7
10.1145/992200.992202
10.1016/j.mbs.2013.05.005
10.1145/1089014.1089017
10.3386/w27102
10.1261/rna.1950510
10.1016/0377-2217(95)00163-K
10.1002/nla.2103
10.1145/1824801.1824814
10.1145/1391989.1391995
10.1137/0712047
10.1140/epja/i2018-12516-4
10.1137/S1064827500375096
10.1109/TCST.2014.2313736
10.1145/2930660
ContentType Journal Article
Copyright 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
2022 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
– notice: 2022 Informa UK Limited, trading as Taylor & Francis Group
CorporateAuthor Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
CorporateAuthor_xml – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
OIOZB
OTOTI
DOI 10.1080/10556788.2022.2124990
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-4937
EndPage 355
ExternalDocumentID 2446704
10_1080_10556788_2022_2124990
2124990
Genre Research Article
GroupedDBID .4S
.7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EDO
EMK
EPL
EST
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
I-F
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
OIOZB
OTOTI
ID FETCH-LOGICAL-c412t-80cca54faf0c5e042ea8f261a02fdb8ae3b9951a9b7c3c488dc9622bf8a582b23
IEDL.DBID TFW
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000860640100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1055-6788
IngestDate Mon Jan 20 14:51:58 EST 2025
Wed Aug 13 10:48:13 EDT 2025
Tue Nov 18 22:12:49 EST 2025
Sat Nov 29 02:36:07 EST 2025
Mon Oct 20 23:46:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-80cca54faf0c5e042ea8f261a02fdb8ae3b9951a9b7c3c488dc9622bf8a582b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PNNL-SA-166808
USDOE Office of Science (SC)
AC05-76RL01830
USDOE National Nuclear Security Administration (NNSA)
ORCID 0000-0003-2896-1658
0000000328961658
OpenAccessLink https://www.osti.gov/servlets/purl/2446704
PQID 2779960963
PQPubID 186278
PageCount 24
ParticipantIDs osti_scitechconnect_2446704
crossref_citationtrail_10_1080_10556788_2022_2124990
crossref_primary_10_1080_10556788_2022_2124990
informaworld_taylorfrancis_310_1080_10556788_2022_2124990
proquest_journals_2779960963
PublicationCentury 2000
PublicationDate 2023-03-04
PublicationDateYYYYMMDD 2023-03-04
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-04
  day: 04
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
– name: United States
PublicationTitle Optimization methods & software
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0032
Nocedal J. (CIT0028) 2006
CIT0031
CIT0034
CIT0033
Searle S.R. (CIT0040) 1982
CIT0036
CIT0035
CIT0038
CIT0037
CIT0039
CIT0041
CIT0042
CIT0001
CIT0045
CIT0044
Duff I. (CIT0013) 2019; 42
CIT0003
CIT0047
CIT0002
CIT0005
CIT0049
CIT0004
CIT0048
CIT0007
CIT0006
CIT0009
Uzawa H. (CIT0046) 1958
CIT0008
CIT0050
CIT0051
CIT0010
CIT0012
CIT0011
CIT0014
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
CIT0021
CIT0020
Świrydowicz K. (CIT0043) 2022
CIT0023
CIT0022
CIT0025
CIT0024
CIT0027
CIT0026
CIT0029
References_xml – ident: CIT0021
  doi: 10.1177/1468087420936398
– ident: CIT0026
  doi: 10.1109/TSG.2017.2720471
– ident: CIT0047
  doi: 10.1080/10556789908805759
– ident: CIT0050
  doi: 10.1007/s10107-004-0559-y
– ident: CIT0018
  doi: 10.6028/jres.049.044
– ident: CIT0044
– ident: CIT0015
  doi: 10.56021/9781421407944
– year: 2022
  ident: CIT0043
  publication-title: Parallel. Comput. Volume 111, Article 102870 
– ident: CIT0025
– ident: CIT0005
  doi: 10.1109/IPDPSW.2016.92
– ident: CIT0027
  doi: 10.1137/20M1363030
– ident: CIT0004
  doi: 10.1080/00207160701356605
– volume-title: Iterative Methods for Concave Programming
  year: 1958
  ident: CIT0046
– ident: CIT0017
  doi: 10.1109/TVLSI.2015.2421287
– ident: CIT0031
  doi: 10.1080/10556780902806094
– ident: CIT0042
  doi: 10.1109/IROS40897.2019.8968194
– ident: CIT0007
  doi: 10.1109/PSC.2014.6808131
– ident: CIT0011
  doi: 10.1137/05063427X
– ident: CIT0032
– volume: 42
  start-page: C23
  issue: 2
  year: 2019
  ident: CIT0013
  publication-title: SIAM J. Optim.
– ident: CIT0006
  doi: 10.1007/0-387-30065-1_4
– ident: CIT0038
  doi: 10.1007/978-3-030-01431-5
– ident: CIT0022
  doi: 10.1109/TPWRS.2017.2789187
– ident: CIT0009
  doi: 10.1007/s10589-015-9820-y
– ident: CIT0036
  doi: 10.1016/j.parco.2016.06.004
– ident: CIT0049
  doi: 10.1137/S1052623403426556
– ident: CIT0048
  doi: 10.1093/bioinformatics/btu268
– ident: CIT0051
  doi: 10.1109/LRA.2020.3010755
– ident: CIT0019
  doi: 10.1016/S0167-8191(01)00141-7
– ident: CIT0012
  doi: 10.1145/992200.992202
– ident: CIT0041
  doi: 10.1016/j.mbs.2013.05.005
– ident: CIT0033
– ident: CIT0023
  doi: 10.1145/1089014.1089017
– ident: CIT0001
  doi: 10.3386/w27102
– ident: CIT0002
  doi: 10.1261/rna.1950510
– ident: CIT0016
  doi: 10.1016/0377-2217(95)00163-K
– ident: CIT0039
– volume-title: Matrix Algebra Useful for Statistics
  year: 1982
  ident: CIT0040
– ident: CIT0034
  doi: 10.1002/nla.2103
– ident: CIT0020
– ident: CIT0010
  doi: 10.1145/1824801.1824814
– ident: CIT0045
– volume-title: Numerical Optimization
  year: 2006
  ident: CIT0028
– ident: CIT0008
  doi: 10.1145/1391989.1391995
– ident: CIT0003
– ident: CIT0029
  doi: 10.1137/0712047
– ident: CIT0035
  doi: 10.1140/epja/i2018-12516-4
– ident: CIT0014
  doi: 10.1137/S1064827500375096
– ident: CIT0024
  doi: 10.1109/TCST.2014.2313736
– ident: CIT0030
– ident: CIT0037
  doi: 10.1145/2930660
SSID ssj0004146
Score 2.4033372
Snippet We propose a solution strategy for the large indefinite linear systems arising in interior methods for nonlinear optimization. The method is suitable for...
Here, we propose a solution strategy for the large indefinite linear systems arising in interior methods for nonlinear optimization. The method is suitable for...
SourceID osti
proquest
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 332
SubjectTerms Cholesky factorization
Factorization
GPU
Graphics processing units
interior methods
KKT systems
Linear systems
MATHEMATICS AND COMPUTING
Optimization
Performance degradation
Power flow
sparse matrix factorization
Title HyKKT: a hybrid direct-iterative method for solving KKT linear systems
URI https://www.tandfonline.com/doi/abs/10.1080/10556788.2022.2124990
https://www.proquest.com/docview/2779960963
https://www.osti.gov/servlets/purl/2446704
Volume 38
WOSCitedRecordID wos000860640100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1029-4937
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004146
  issn: 1055-6788
  databaseCode: TFW
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yPOjBb3FuSg5eO9s0bRNvIhZhMjxM3C0kaYqCbLJWYf-9L02qGyI76LXw2jR5n-G93w-hC5OCBRWaBFpHLKBJoQNFswRqniSWXEuVyoa15D4bjdhkwh98N2Hl2yptDV06oIjGV1vjlqpqO-IuG05HKN2guiNkQCx9MrdVO2T2tqlvnD99T0b6-SKQCKxIO8Pz21tWotMKdim47BkY3Q-X3cShfPcf_mAP7fgkFF87rdlHG2Z6gLaXoAkPUX63GA7HV1ji54Ud6sIu9gUOhRlcJHbc0xjWjkF_7b0EBglsVyPhkUNCP0KP-e345i7wnAuBphGpIWDBkSa0lGWoEwMWbSQrocqSISkLxaSJFYekTHKV6ViD9Reap4SoksmEEUXiY9SZzqbmBGFKVcGMlEVmYig6GSdKqhh0gEfahEx2EW33WmgPSG55MV5F5HFL220SdpuE36YuGnyJvTlEjnUCfPkgRd1chZSOt0TEa2R79tQFpCMWU1fb5iNdC8iJ0iykXdRvlUF4068EyTKLeAOO7fQPH-6hLUts33S70T7q1PN3c4Y29Uf9Us3PGyX_BHb_9cQ
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yBfXgtzg3NQevnW2arok3Ecdkc6eJu4UkTVGQTbYq7L_3vX7ohsgOei28Nk3eZ3jv9yPk0rXBghLLPGsD4fEosZ7hcQQ1TxRqabVp65y1pB8PBmI0kouzMNhWiTV0WgBF5L4ajRsvo6uWuKuc1BFqNyjvGGsx5E-WULavIzsdFmDDztP3bGQ5YQQiHspUUzy_vWYpPi2hl4LTnoDZ_XDaeSTq7P7HP-yRnTIPpTeF4uyTNTc-INsL6ISHpNOd93rDa6rp8xznumgR_rwCiBm8JC3opyksnoIK49UEBQmKy9HwqABDPyKPnbvhbdcraRc8ywOWQcyCU414qlPfRg6M2mmRQqGlfZYmRmgXGgl5mZYmtqEFB5BY2WbMpEJHghkWHpPaeDJ2J4RybhLhtE5iF0LdKSQz2oSgBjKwzhe6Tni12cqWmORIjfGqghK6tNomhdukym2qk9aX2FsByrFKQC6epMry25C0oC5R4QrZBh67gowEYXUt9h_ZTEFa1I59XifNShtUaf0zxeIYQW_At53-4cMXZLM7fOir_v2g1yBbyHOfN7_xJqll03d3RjbsR_Yym57nGv8JAdP55w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yRfTgtzg3NQevnV2atok3UctkY-wwcbeQpCkKso2tCvvvfWlTdYjsoNfCa9PkfYb3fj-ELk0EFpRq4mndZh4NU-0pGodQ84SB5FqqSBasJb2432ejER-4bsK5a6u0NXRWAkUUvtoa9zTNqo64q4LTEUo3qO4IaRFLn8yhal-H1Dm0ij1Mnr5GI92AEYh4VqYa4vntNUvhaQm8FHz2BKzuh88uAlGy-w-_sId2XBaKb0q12UdrZnyAtr9hEx6ipLPodofXWOLnhZ3qwmXw80oYZvCRuCSfxrB2DApsLyYwSGC7GgmPSij0I_SY3A9vO54jXfA0bZMcIhacaUgzmfk6NGDSRrIMyizpkyxVTJpAccjKJFexDjSYf6p5RIjKmAwZUSQ4RrXxZGxOEKZUpcxImcYmgKqTcaKkCkAJeFsbn8k6otVeC-0QyS0xxqtoO-DSapuE3SbhtqmOWp9i0xKSY5UA_36QIi_uQrKSuEQEK2Qb9tQF5CMWVFfb7iOdC0iKotinddSslEE4258LEscW8gY82-kfPnyBNgd3ieg99LsNtGVJ7ovON9pEtXz2Zs7Qhn7PX-az80LfPwAJvPiZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HyKKT%3A+a+hybrid+direct-iterative+method+for+solving+KKT+linear+systems&rft.jtitle=Optimization+methods+%26+software&rft.au=Shaked+Regev&rft.au=Nai-Yuan+Chiang&rft.au=Darve%2C+Eric&rft.au=Petra%2C+Cosmin+G&rft.date=2023-03-04&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1055-6788&rft.eissn=1029-4937&rft.volume=38&rft.issue=2&rft.spage=332&rft.epage=355&rft_id=info:doi/10.1080%2F10556788.2022.2124990&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-6788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-6788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-6788&client=summon