HyKKT: a hybrid direct-iterative method for solving KKT linear systems
We propose a solution strategy for the large indefinite linear systems arising in interior methods for nonlinear optimization. The method is suitable for implementation on hardware accelerators such as graphical processing units (GPUs). The current gold standard for sparse indefinite systems is the...
Uložené v:
| Vydané v: | Optimization methods & software Ročník 38; číslo 2; s. 332 - 355 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Abingdon
Taylor & Francis
04.03.2023
Taylor & Francis Ltd |
| Predmet: | |
| ISSN: | 1055-6788, 1029-4937 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We propose a solution strategy for the large indefinite linear systems arising in interior methods for nonlinear optimization. The method is suitable for implementation on hardware accelerators such as graphical processing units (GPUs). The current gold standard for sparse indefinite systems is the LBLT factorization where
is a lower triangular matrix and
is
or
block diagonal. However, this requires pivoting, which substantially increases communication cost and degrades performance on GPUs. Our approach solves a large indefinite system by solving multiple smaller positive definite systems, using an iterative solver on the Schur complement and an inner direct solve (via Cholesky factorization) within each iteration. Cholesky is stable without pivoting, thereby reducing communication and allowing reuse of the symbolic factorization. We demonstrate the practicality of our approach on large optimal power flow problems and show that it can efficiently utilize GPUs and outperform LBL
T
factorization of the full system. |
|---|---|
| AbstractList | We propose a solution strategy for the large indefinite linear systems arising in interior methods for nonlinear optimization. The method is suitable for implementation on hardware accelerators such as graphical processing units (GPUs). The current gold standard for sparse indefinite systems is the LBLT factorization where is a lower triangular matrix and is or block diagonal. However, this requires pivoting, which substantially increases communication cost and degrades performance on GPUs. Our approach solves a large indefinite system by solving multiple smaller positive definite systems, using an iterative solver on the Schur complement and an inner direct solve (via Cholesky factorization) within each iteration. Cholesky is stable without pivoting, thereby reducing communication and allowing reuse of the symbolic factorization. We demonstrate the practicality of our approach on large optimal power flow problems and show that it can efficiently utilize GPUs and outperform LBLT factorization of the full system. We propose a solution strategy for the large indefinite linear systems arising in interior methods for nonlinear optimization. The method is suitable for implementation on hardware accelerators such as graphical processing units (GPUs). The current gold standard for sparse indefinite systems is the LBLT factorization where is a lower triangular matrix and is or block diagonal. However, this requires pivoting, which substantially increases communication cost and degrades performance on GPUs. Our approach solves a large indefinite system by solving multiple smaller positive definite systems, using an iterative solver on the Schur complement and an inner direct solve (via Cholesky factorization) within each iteration. Cholesky is stable without pivoting, thereby reducing communication and allowing reuse of the symbolic factorization. We demonstrate the practicality of our approach on large optimal power flow problems and show that it can efficiently utilize GPUs and outperform LBL T factorization of the full system. Here, we propose a solution strategy for the large indefinite linear systems arising in interior methods for nonlinear optimization. The method is suitable for implementation on hardware accelerators such as graphical processing units (GPUs). The current gold standard for sparse indefinite systems is the LBLT factorization where L is a lower triangular matrix and B is 1×1 or 2×2 block diagonal. However, this requires pivoting, which substantially increases communication cost and degrades performance on GPUs. Our approach solves a large indefinite system by solving multiple smaller positive definite systems, using an iterative solver on the Schur complement and an inner direct solve (via Cholesky factorization) within each iteration. Cholesky is stable without pivoting, thereby reducing communication and allowing reuse of the symbolic factorization. We demonstrate the practicality of our approach on large optimal power flow problems and show that it can efficiently utilize GPUs and outperform LBLT factorization of the full system. |
| Author | Saunders, Michael A. Chiang, Nai-Yuan Petra, Cosmin G. Darve, Eric Peleš, Slaven Regev, Shaked Świrydowicz, Kasia |
| Author_xml | – sequence: 1 givenname: Shaked orcidid: 0000-0003-2896-1658 surname: Regev fullname: Regev, Shaked email: sregev@stanford.edu organization: Stanford University – sequence: 2 givenname: Nai-Yuan surname: Chiang fullname: Chiang, Nai-Yuan organization: Lawrence Livermore National Laboratory – sequence: 3 givenname: Eric surname: Darve fullname: Darve, Eric organization: Stanford University – sequence: 4 givenname: Cosmin G. surname: Petra fullname: Petra, Cosmin G. organization: Lawrence Livermore National Laboratory – sequence: 5 givenname: Michael A. surname: Saunders fullname: Saunders, Michael A. organization: Stanford University – sequence: 6 givenname: Kasia surname: Świrydowicz fullname: Świrydowicz, Kasia organization: Pacific Northwest National Laboratory – sequence: 7 givenname: Slaven surname: Peleš fullname: Peleš, Slaven organization: Oak Ridge National Laboratory |
| BackLink | https://www.osti.gov/servlets/purl/2446704$$D View this record in Osti.gov |
| BookMark | eNqFkEtPxCAYRYnRxOdPMGl03fGDQgu60Rhf0cSNrgml4GA6oIBj-u9lMrpxoSsIOffmcnbRpg_eIHSIYYaBwwkGxtqO8xkBQmYEEyoEbKAdDETUVDTd5urOWL2CttFuSq8AQDFtd9D17XR__3RaqWo-9dEN1eCi0bl22USV3dJUC5PnYahsiFUK49L5l6okqtF5o8rTlLJZpH20ZdWYzMH3uYeer6-eLm_rh8ebu8uLh1pTTHLNQWvFqFUWNDNAiVHckhYrIHbouTJNLwTDSvSdbjTlfNCiJaS3XDFOetLsoaN1b0jZyaTLTD3XwfuyWRJK2w5ogY7X0FsM7x8mZfkaPqIvuyTpOiFaEG1TqLM1pWNIKRorS1v5cvA5KjdKDHJlV_7YlSu78ttuSbNf6bfoFipO_-bO1znni9GF-gxxHGRW0xiijcprl2Tzd8UXlICR0A |
| CitedBy_id | crossref_primary_10_1016_j_epsr_2024_110651 crossref_primary_10_1109_MCSE_2024_3403029 |
| Cites_doi | 10.1177/1468087420936398 10.1109/TSG.2017.2720471 10.1080/10556789908805759 10.1007/s10107-004-0559-y 10.6028/jres.049.044 10.56021/9781421407944 10.1109/IPDPSW.2016.92 10.1137/20M1363030 10.1080/00207160701356605 10.1109/TVLSI.2015.2421287 10.1080/10556780902806094 10.1109/IROS40897.2019.8968194 10.1109/PSC.2014.6808131 10.1137/05063427X 10.1007/0-387-30065-1_4 10.1007/978-3-030-01431-5 10.1109/TPWRS.2017.2789187 10.1007/s10589-015-9820-y 10.1016/j.parco.2016.06.004 10.1137/S1052623403426556 10.1093/bioinformatics/btu268 10.1109/LRA.2020.3010755 10.1016/S0167-8191(01)00141-7 10.1145/992200.992202 10.1016/j.mbs.2013.05.005 10.1145/1089014.1089017 10.3386/w27102 10.1261/rna.1950510 10.1016/0377-2217(95)00163-K 10.1002/nla.2103 10.1145/1824801.1824814 10.1145/1391989.1391995 10.1137/0712047 10.1140/epja/i2018-12516-4 10.1137/S1064827500375096 10.1109/TCST.2014.2313736 10.1145/2930660 |
| ContentType | Journal Article |
| Copyright | 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 2022 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group |
| CorporateAuthor | Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) |
| CorporateAuthor_xml | – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D OIOZB OTOTI |
| DOI | 10.1080/10556788.2022.2124990 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1029-4937 |
| EndPage | 355 |
| ExternalDocumentID | 2446704 10_1080_10556788_2022_2124990 2124990 |
| Genre | Research Article |
| GroupedDBID | .4S .7F .DC .QJ 0BK 0R~ 123 29N 30N 4.4 AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ACUHS ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AQTUD ARCSS AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EBS EDO EMK EPL EST ESX E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P I-F IPNFZ J.P KYCEM LJTGL M4Z NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TTHFI TUROJ TUS TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D OIOZB OTOTI |
| ID | FETCH-LOGICAL-c412t-80cca54faf0c5e042ea8f261a02fdb8ae3b9951a9b7c3c488dc9622bf8a582b23 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000860640100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1055-6788 |
| IngestDate | Mon Jan 20 14:51:58 EST 2025 Wed Aug 13 10:48:13 EDT 2025 Tue Nov 18 22:12:49 EST 2025 Sat Nov 29 02:36:07 EST 2025 Mon Oct 20 23:46:07 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c412t-80cca54faf0c5e042ea8f261a02fdb8ae3b9951a9b7c3c488dc9622bf8a582b23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 PNNL-SA-166808 USDOE Office of Science (SC) AC05-76RL01830 USDOE National Nuclear Security Administration (NNSA) |
| ORCID | 0000-0003-2896-1658 0000000328961658 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/2446704 |
| PQID | 2779960963 |
| PQPubID | 186278 |
| PageCount | 24 |
| ParticipantIDs | osti_scitechconnect_2446704 crossref_citationtrail_10_1080_10556788_2022_2124990 crossref_primary_10_1080_10556788_2022_2124990 informaworld_taylorfrancis_310_1080_10556788_2022_2124990 proquest_journals_2779960963 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-03-04 |
| PublicationDateYYYYMMDD | 2023-03-04 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon – name: United States |
| PublicationTitle | Optimization methods & software |
| PublicationYear | 2023 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | CIT0030 CIT0032 Nocedal J. (CIT0028) 2006 CIT0031 CIT0034 CIT0033 Searle S.R. (CIT0040) 1982 CIT0036 CIT0035 CIT0038 CIT0037 CIT0039 CIT0041 CIT0042 CIT0001 CIT0045 CIT0044 Duff I. (CIT0013) 2019; 42 CIT0003 CIT0047 CIT0002 CIT0005 CIT0049 CIT0004 CIT0048 CIT0007 CIT0006 CIT0009 Uzawa H. (CIT0046) 1958 CIT0008 CIT0050 CIT0051 CIT0010 CIT0012 CIT0011 CIT0014 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0021 CIT0020 Świrydowicz K. (CIT0043) 2022 CIT0023 CIT0022 CIT0025 CIT0024 CIT0027 CIT0026 CIT0029 |
| References_xml | – ident: CIT0021 doi: 10.1177/1468087420936398 – ident: CIT0026 doi: 10.1109/TSG.2017.2720471 – ident: CIT0047 doi: 10.1080/10556789908805759 – ident: CIT0050 doi: 10.1007/s10107-004-0559-y – ident: CIT0018 doi: 10.6028/jres.049.044 – ident: CIT0044 – ident: CIT0015 doi: 10.56021/9781421407944 – year: 2022 ident: CIT0043 publication-title: Parallel. Comput. Volume 111, Article 102870 – ident: CIT0025 – ident: CIT0005 doi: 10.1109/IPDPSW.2016.92 – ident: CIT0027 doi: 10.1137/20M1363030 – ident: CIT0004 doi: 10.1080/00207160701356605 – volume-title: Iterative Methods for Concave Programming year: 1958 ident: CIT0046 – ident: CIT0017 doi: 10.1109/TVLSI.2015.2421287 – ident: CIT0031 doi: 10.1080/10556780902806094 – ident: CIT0042 doi: 10.1109/IROS40897.2019.8968194 – ident: CIT0007 doi: 10.1109/PSC.2014.6808131 – ident: CIT0011 doi: 10.1137/05063427X – ident: CIT0032 – volume: 42 start-page: C23 issue: 2 year: 2019 ident: CIT0013 publication-title: SIAM J. Optim. – ident: CIT0006 doi: 10.1007/0-387-30065-1_4 – ident: CIT0038 doi: 10.1007/978-3-030-01431-5 – ident: CIT0022 doi: 10.1109/TPWRS.2017.2789187 – ident: CIT0009 doi: 10.1007/s10589-015-9820-y – ident: CIT0036 doi: 10.1016/j.parco.2016.06.004 – ident: CIT0049 doi: 10.1137/S1052623403426556 – ident: CIT0048 doi: 10.1093/bioinformatics/btu268 – ident: CIT0051 doi: 10.1109/LRA.2020.3010755 – ident: CIT0019 doi: 10.1016/S0167-8191(01)00141-7 – ident: CIT0012 doi: 10.1145/992200.992202 – ident: CIT0041 doi: 10.1016/j.mbs.2013.05.005 – ident: CIT0033 – ident: CIT0023 doi: 10.1145/1089014.1089017 – ident: CIT0001 doi: 10.3386/w27102 – ident: CIT0002 doi: 10.1261/rna.1950510 – ident: CIT0016 doi: 10.1016/0377-2217(95)00163-K – ident: CIT0039 – volume-title: Matrix Algebra Useful for Statistics year: 1982 ident: CIT0040 – ident: CIT0034 doi: 10.1002/nla.2103 – ident: CIT0020 – ident: CIT0010 doi: 10.1145/1824801.1824814 – ident: CIT0045 – volume-title: Numerical Optimization year: 2006 ident: CIT0028 – ident: CIT0008 doi: 10.1145/1391989.1391995 – ident: CIT0003 – ident: CIT0029 doi: 10.1137/0712047 – ident: CIT0035 doi: 10.1140/epja/i2018-12516-4 – ident: CIT0014 doi: 10.1137/S1064827500375096 – ident: CIT0024 doi: 10.1109/TCST.2014.2313736 – ident: CIT0030 – ident: CIT0037 doi: 10.1145/2930660 |
| SSID | ssj0004146 |
| Score | 2.4033372 |
| Snippet | We propose a solution strategy for the large indefinite linear systems arising in interior methods for nonlinear optimization. The method is suitable for... Here, we propose a solution strategy for the large indefinite linear systems arising in interior methods for nonlinear optimization. The method is suitable for... |
| SourceID | osti proquest crossref informaworld |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 332 |
| SubjectTerms | Cholesky factorization Factorization GPU Graphics processing units interior methods KKT systems Linear systems MATHEMATICS AND COMPUTING Optimization Performance degradation Power flow sparse matrix factorization |
| Title | HyKKT: a hybrid direct-iterative method for solving KKT linear systems |
| URI | https://www.tandfonline.com/doi/abs/10.1080/10556788.2022.2124990 https://www.proquest.com/docview/2779960963 https://www.osti.gov/servlets/purl/2446704 |
| Volume | 38 |
| WOSCitedRecordID | wos000860640100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1029-4937 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004146 issn: 1055-6788 databaseCode: TFW dateStart: 19920101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yPOjBb3FuSg5eO9s0bRNvIhZhMjxM3C0kaYqCbLJWYf-9L02qGyI76LXw2jR5n-G93w-hC5OCBRWaBFpHLKBJoQNFswRqniSWXEuVyoa15D4bjdhkwh98N2Hl2yptDV06oIjGV1vjlqpqO-IuG05HKN2guiNkQCx9MrdVO2T2tqlvnD99T0b6-SKQCKxIO8Pz21tWotMKdim47BkY3Q-X3cShfPcf_mAP7fgkFF87rdlHG2Z6gLaXoAkPUX63GA7HV1ji54Ud6sIu9gUOhRlcJHbc0xjWjkF_7b0EBglsVyPhkUNCP0KP-e345i7wnAuBphGpIWDBkSa0lGWoEwMWbSQrocqSISkLxaSJFYekTHKV6ViD9Reap4SoksmEEUXiY9SZzqbmBGFKVcGMlEVmYig6GSdKqhh0gEfahEx2EW33WmgPSG55MV5F5HFL220SdpuE36YuGnyJvTlEjnUCfPkgRd1chZSOt0TEa2R79tQFpCMWU1fb5iNdC8iJ0iykXdRvlUF4068EyTKLeAOO7fQPH-6hLUts33S70T7q1PN3c4Y29Uf9Us3PGyX_BHb_9cQ |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yBfXgtzg3NQevnW2arok3Ecdkc6eJu4UkTVGQTbYq7L_3vX7ohsgOei28Nk3eZ3jv9yPk0rXBghLLPGsD4fEosZ7hcQQ1TxRqabVp65y1pB8PBmI0kouzMNhWiTV0WgBF5L4ajRsvo6uWuKuc1BFqNyjvGGsx5E-WULavIzsdFmDDztP3bGQ5YQQiHspUUzy_vWYpPi2hl4LTnoDZ_XDaeSTq7P7HP-yRnTIPpTeF4uyTNTc-INsL6ISHpNOd93rDa6rp8xznumgR_rwCiBm8JC3opyksnoIK49UEBQmKy9HwqABDPyKPnbvhbdcraRc8ywOWQcyCU414qlPfRg6M2mmRQqGlfZYmRmgXGgl5mZYmtqEFB5BY2WbMpEJHghkWHpPaeDJ2J4RybhLhtE5iF0LdKSQz2oSgBjKwzhe6Tni12cqWmORIjfGqghK6tNomhdukym2qk9aX2FsByrFKQC6epMry25C0oC5R4QrZBh67gowEYXUt9h_ZTEFa1I59XifNShtUaf0zxeIYQW_At53-4cMXZLM7fOir_v2g1yBbyHOfN7_xJqll03d3RjbsR_Yym57nGv8JAdP55w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yRfTgtzg3NQevnV2atok3UctkY-wwcbeQpCkKso2tCvvvfWlTdYjsoNfCa9PkfYb3fj-ELk0EFpRq4mndZh4NU-0pGodQ84SB5FqqSBasJb2432ejER-4bsK5a6u0NXRWAkUUvtoa9zTNqo64q4LTEUo3qO4IaRFLn8yhal-H1Dm0ij1Mnr5GI92AEYh4VqYa4vntNUvhaQm8FHz2BKzuh88uAlGy-w-_sId2XBaKb0q12UdrZnyAtr9hEx6ipLPodofXWOLnhZ3qwmXw80oYZvCRuCSfxrB2DApsLyYwSGC7GgmPSij0I_SY3A9vO54jXfA0bZMcIhacaUgzmfk6NGDSRrIMyizpkyxVTJpAccjKJFexDjSYf6p5RIjKmAwZUSQ4RrXxZGxOEKZUpcxImcYmgKqTcaKkCkAJeFsbn8k6otVeC-0QyS0xxqtoO-DSapuE3SbhtqmOWp9i0xKSY5UA_36QIi_uQrKSuEQEK2Qb9tQF5CMWVFfb7iOdC0iKotinddSslEE4258LEscW8gY82-kfPnyBNgd3ieg99LsNtGVJ7ovON9pEtXz2Zs7Qhn7PX-az80LfPwAJvPiZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HyKKT%3A+a+hybrid+direct-iterative+method+for+solving+KKT+linear+systems&rft.jtitle=Optimization+methods+%26+software&rft.au=Shaked+Regev&rft.au=Nai-Yuan+Chiang&rft.au=Darve%2C+Eric&rft.au=Petra%2C+Cosmin+G&rft.date=2023-03-04&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1055-6788&rft.eissn=1029-4937&rft.volume=38&rft.issue=2&rft.spage=332&rft.epage=355&rft_id=info:doi/10.1080%2F10556788.2022.2124990&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-6788&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-6788&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-6788&client=summon |