Non-Fourier phonon heat conduction at the microscale and nanoscale

The description of phonon heat conduction has typically been based on Fourier diffusion theory. However, over the past three decades, a host of interesting phonon transport phenomena beyond the Fourier diffusion picture have drawn much attention. Although most of the studies focused on classical siz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature reviews physics Jg. 3; H. 8; S. 555 - 569
1. Verfasser: Chen, Gang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group 01.08.2021
Schlagworte:
ISSN:2522-5820
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The description of phonon heat conduction has typically been based on Fourier diffusion theory. However, over the past three decades, a host of interesting phonon transport phenomena beyond the Fourier diffusion picture have drawn much attention. Although most of the studies focused on classical size effects that lead to reduced thermal conductivity, other phenomena have been observed, often at the microscale and nanoscale, that are either completely novel or appear only at elevated temperatures. Examples are the prediction and observation of phonon second sound at high temperatures, quantized heat conduction and Anderson localization. These developments reveal rich phonon heat conduction phenomena analogous to those of electrical conduction. This Review discusses different non-Fourier heat conduction regimes (including the Casimir–Knudsen classical size effect regime), phonon hydrodynamics, the coherent phonon transport regimes (including localization and quantization of heat conduction) and the possibility of divergent heat conduction in low dimensions.Phonon heat conduction at the microscale and the nanoscale exhibits rich phenomena beyond the predictions of Fourier’s law, rivalling the phenomena of electrons. This Review discusses phonon heat conduction regimes, including the Casimir–Knudsen size effect, hydrodynamic transport, coherent transport (from quantization and localization) and divergence.
AbstractList The description of phonon heat conduction has typically been based on Fourier diffusion theory. However, over the past three decades, a host of interesting phonon transport phenomena beyond the Fourier diffusion picture have drawn much attention. Although most of the studies focused on classical size effects that lead to reduced thermal conductivity, other phenomena have been observed, often at the microscale and nanoscale, that are either completely novel or appear only at elevated temperatures. Examples are the prediction and observation of phonon second sound at high temperatures, quantized heat conduction and Anderson localization. These developments reveal rich phonon heat conduction phenomena analogous to those of electrical conduction. This Review discusses different non-Fourier heat conduction regimes (including the Casimir–Knudsen classical size effect regime), phonon hydrodynamics, the coherent phonon transport regimes (including localization and quantization of heat conduction) and the possibility of divergent heat conduction in low dimensions.Phonon heat conduction at the microscale and the nanoscale exhibits rich phenomena beyond the predictions of Fourier’s law, rivalling the phenomena of electrons. This Review discusses phonon heat conduction regimes, including the Casimir–Knudsen size effect, hydrodynamic transport, coherent transport (from quantization and localization) and divergence.
Author Chen, Gang
Author_xml – sequence: 1
  givenname: Gang
  surname: Chen
  fullname: Chen, Gang
BookMark eNotj8FKAzEQhoMoWGtfwFPAc3QySTbZoxZbhaIXPZdsOmG31KRutu9vpF7-4WPgm_lv2GXKiRi7k_AgQbnHohGNFoBSACilhbxgMzSIwjiEa7YoZQ9Q11obUDP2_J6TWOXTONDIj32uOt6Tn3jIaXcK01C50tQT_x7CmEvwB-I-7Xjy6Uy37Cr6Q6HF_5yzr9XL5_JVbD7Wb8unjQha4iSsNdjptoZ1wUFoZCDwXRO9dLozAWPUzstIbUuNAU1_fZwN1to2KmPVnN2fvccx_5yoTNt9_TvVk1uF2CiABlr1C1OuTC0
CitedBy_id crossref_primary_10_1016_j_enconman_2025_119621
crossref_primary_10_1021_acsami_5c09280
crossref_primary_10_1103_PhysRevE_111_014227
crossref_primary_10_1557_s43578_024_01441_2
crossref_primary_10_1038_s41586_024_07724_2
crossref_primary_10_1007_s40766_023_00041_w
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122193
crossref_primary_10_1038_s41563_025_02186_x
crossref_primary_10_1063_5_0155795
crossref_primary_10_1039_D5TA01468A
crossref_primary_10_1126_science_abn4290
crossref_primary_10_1107_S1600576723004302
crossref_primary_10_1063_5_0134208
crossref_primary_10_1134_S002565442560028X
crossref_primary_10_1063_5_0102227
crossref_primary_10_1063_5_0239197
crossref_primary_10_1002_adma_202512801
crossref_primary_10_1038_s41524_022_00712_y
crossref_primary_10_1038_s41524_024_01364_w
crossref_primary_10_1093_nsr_nwae248
crossref_primary_10_1016_j_ijthermalsci_2025_110011
crossref_primary_10_1088_1361_648X_ad31c0
crossref_primary_10_1107_S1600576724006381
crossref_primary_10_1007_s10704_023_00727_6
crossref_primary_10_1088_1361_648X_ac718a
crossref_primary_10_1016_j_dt_2025_02_002
crossref_primary_10_1016_j_physrep_2023_09_006
crossref_primary_10_1063_5_0288990
crossref_primary_10_1080_15376494_2024_2408638
crossref_primary_10_1016_j_mtphys_2024_101360
crossref_primary_10_1063_5_0283336
crossref_primary_10_1016_j_ijheatmasstransfer_2025_127596
crossref_primary_10_1088_1361_648X_ad9210
crossref_primary_10_1063_5_0254248
crossref_primary_10_1103_PhysRevB_111_205404
crossref_primary_10_1016_j_icheatmasstransfer_2024_107683
crossref_primary_10_1063_5_0120284
crossref_primary_10_1016_j_applthermaleng_2024_123609
crossref_primary_10_1016_j_solidstatesciences_2024_107466
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124475
crossref_primary_10_3390_en16031500
crossref_primary_10_1140_epjb_s10051_023_00568_1
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126374
crossref_primary_10_1063_5_0068915
crossref_primary_10_1088_1361_6463_ac82f9
crossref_primary_10_1007_s10483_022_2914_5
crossref_primary_10_1016_j_actamat_2022_118406
crossref_primary_10_3390_app13158811
crossref_primary_10_1038_s41467_023_37380_5
crossref_primary_10_1063_5_0280896
crossref_primary_10_1103_PhysRevE_106_034110
crossref_primary_10_7498_aps_74_20250694
crossref_primary_10_1088_1361_648X_acfdea
crossref_primary_10_1038_s42005_024_01581_1
crossref_primary_10_1063_5_0201522
crossref_primary_10_1103_PhysRevApplied_19_014007
crossref_primary_10_1016_j_apm_2024_115684
crossref_primary_10_1016_j_jfranklin_2024_106923
crossref_primary_10_1007_s10853_025_10892_9
crossref_primary_10_1016_j_device_2024_100684
crossref_primary_10_1103_p8wg_p1j3
crossref_primary_10_1016_j_newton_2025_100092
crossref_primary_10_1088_1367_2630_ad2f69
crossref_primary_10_1038_s41586_024_08052_1
crossref_primary_10_1063_5_0248153
crossref_primary_10_3390_cryst15070654
crossref_primary_10_1088_1361_6455_ad717f
crossref_primary_10_1109_TCPMT_2024_3412794
crossref_primary_10_3390_electronics13010164
crossref_primary_10_1038_s41524_025_01635_0
crossref_primary_10_1002_admi_202500041
crossref_primary_10_1063_5_0214687
crossref_primary_10_1088_1402_4896_ad0086
crossref_primary_10_1007_s00158_022_03392_w
crossref_primary_10_1115_1_4066899
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125700
crossref_primary_10_1016_j_jallcom_2022_167915
crossref_primary_10_1063_5_0098353
crossref_primary_10_1016_j_jallcom_2025_183569
crossref_primary_10_1039_D4MH00570H
crossref_primary_10_1039_D4TC04975F
crossref_primary_10_1021_jacs_3c11379
crossref_primary_10_1002_adma_202302749
crossref_primary_10_1007_s00033_023_02176_6
crossref_primary_10_1134_S1063784224060380
crossref_primary_10_1038_s41563_025_02195_w
crossref_primary_10_1109_JSEN_2025_3556105
crossref_primary_10_1080_15567265_2024_2354674
crossref_primary_10_3390_pr11092769
crossref_primary_10_1007_s10118_023_3057_5
crossref_primary_10_1016_j_physrep_2023_11_001
crossref_primary_10_1103_PRXQuantum_4_040314
crossref_primary_10_1016_j_mattod_2025_01_012
crossref_primary_10_1007_s10765_022_03057_2
crossref_primary_10_3390_cryst12121774
crossref_primary_10_3390_nano13121854
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124288
crossref_primary_10_1063_5_0221352
crossref_primary_10_54097_ja67wk60
crossref_primary_10_1016_j_surfin_2025_106424
crossref_primary_10_1088_1361_6463_ade9d3
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124284
crossref_primary_10_1002_adma_202209123
crossref_primary_10_1016_j_ijheatmasstransfer_2025_127394
crossref_primary_10_1007_s10483_024_3180_7
crossref_primary_10_1016_j_ijthermalsci_2024_109446
crossref_primary_10_1063_5_0233566
crossref_primary_10_1016_j_micrna_2025_208113
crossref_primary_10_1134_S0025654424607249
crossref_primary_10_1063_5_0228819
crossref_primary_10_1103_PhysRevB_111_035406
crossref_primary_10_1016_j_polymer_2021_124168
crossref_primary_10_1109_TED_2022_3168798
crossref_primary_10_1039_D3NR03066K
crossref_primary_10_1109_TED_2022_3227894
crossref_primary_10_1016_j_ijft_2024_100861
crossref_primary_10_1002_mma_11140
crossref_primary_10_1016_j_physleta_2025_130261
crossref_primary_10_1093_nsr_nwae345
crossref_primary_10_1021_acsnano_5c02539
crossref_primary_10_1007_s12598_023_02355_4
crossref_primary_10_1016_j_diamond_2022_109611
crossref_primary_10_1002_admi_202200078
crossref_primary_10_1007_s10765_024_03470_9
crossref_primary_10_1103_PhysRevResearch_6_013168
crossref_primary_10_1016_j_carbon_2023_118264
crossref_primary_10_1016_j_ijthermalsci_2025_110018
crossref_primary_10_1002_adfm_202301549
crossref_primary_10_1016_j_physb_2023_414828
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124715
crossref_primary_10_1007_s00707_024_03929_8
crossref_primary_10_1016_j_physe_2025_116232
crossref_primary_10_1063_5_0129590
crossref_primary_10_1088_2631_7990_acfd68
crossref_primary_10_1063_5_0187032
crossref_primary_10_1088_1402_4896_ad8847
crossref_primary_10_1002_pssb_202300381
crossref_primary_10_1007_s00033_024_02208_9
crossref_primary_10_2298_TSCI240705245C
crossref_primary_10_1002_adma_202206997
crossref_primary_10_1007_s10876_024_02690_1
crossref_primary_10_1016_j_apmate_2022_01_005
crossref_primary_10_1002_sstr_202500102
crossref_primary_10_3390_e25071091
crossref_primary_10_1073_pnas_2320337121
crossref_primary_10_1088_2399_6528_ac9774
crossref_primary_10_1002_adfm_202407333
crossref_primary_10_1016_j_jcp_2025_114364
crossref_primary_10_1007_s11433_022_1952_3
crossref_primary_10_1016_j_jcp_2022_111436
crossref_primary_10_1007_s00033_025_02481_2
ContentType Journal Article
Copyright Copyright Nature Publishing Group Aug 2021
Copyright_xml – notice: Copyright Nature Publishing Group Aug 2021
DBID 3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
L6V
M2P
M7S
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1038/s42254-021-00334-1
DatabaseName ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Science Database
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student
Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2522-5820
EndPage 569
GroupedDBID 3V.
7XB
88I
8FE
8FG
8FK
AARCD
AAWYQ
AAYZH
ABJCF
ABJNI
ABUWG
AFANA
AFKRA
AFSHS
AIBTJ
ALMA_UNASSIGNED_HOLDINGS
ATHPR
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
EBS
EJD
FSGXE
GNUQQ
HCIFZ
KB.
L6V
M2P
M7S
NNMJJ
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
RNT
SIXXV
SNYQT
SOJ
TBHMF
ID FETCH-LOGICAL-c412t-7752b4952b78c80c61ce0ab6fa184b5c2ff48a1fe99e6504e103887c7779f3573
IEDL.DBID M7S
ISICitedReferencesCount 217
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000669763100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Sat Aug 23 12:50:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-7752b4952b78c80c61ce0ab6fa184b5c2ff48a1fe99e6504e103887c7779f3573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3226300609
PQPubID 7343578
PageCount 15
ParticipantIDs proquest_journals_3226300609
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature reviews physics
PublicationYear 2021
Publisher Nature Publishing Group
Publisher_xml – name: Nature Publishing Group
SSID ssj0002144503
Score 2.5782359
SecondaryResourceType review_article
Snippet The description of phonon heat conduction has typically been based on Fourier diffusion theory. However, over the past three decades, a host of interesting...
SourceID proquest
SourceType Aggregation Database
StartPage 555
SubjectTerms Anderson localization
Conduction heating
Conductive heat transfer
Conductivity
Diffusion theory
Electrical conduction
Heat conductivity
High temperature
Localization
Nanowires
Phonons
Size effects
Temperature
Thermal conductivity
Thin films
Transport phenomena
Title Non-Fourier phonon heat conduction at the microscale and nanoscale
URI https://www.proquest.com/docview/3226300609
Volume 3
WOSCitedRecordID wos000669763100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7RFiQW3ohn5YHV1E6cOJ4QRa2QEFHFQ-pW2Y4jMZBCU_j9nBMXBiQWlkhWFuvu8vnu_OU-gAul8CuyGLxWC4MFikmpkVxR4RjTLtKYMZtGbELmeTadqklouNWBVrnCxAaoi7n1PfIBBp6fDpUydfX2Tr1qlL9dDRIaHej5KQm8oe49fvdY_DiwhMXhXxkWZ4NaYPwK6nkJXsVMUP4Lg5uDZbz93y3twFZIKcl1GwO7sOaqPdhoqJ223odhPq_ouJWmI56JPq-IR2CClXDRzo4luMJEkLx6dl6NXnNEVwWpdNWuDuB5PHq6uaVBOYFawaMlpsxJZLD0iYxERzCbcuuYNmmpsaAziY3KUmSal04phymacN44mbRSSlXGiYwPoYu7cUdAJJNFpqSzWHqgMVNEz5KzIvGzspgo3DGcrYwzC-Ffz34sc_L361PYjBpneEbdGXSXiw93Duv2c_lSL_rQG47yyUMfOnfDS3zeR5N-4-EvdKOq5Q
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED6VAoKFN-JRwAOMFo7rxPGAEK-qVduoQ5G6lcRxJAZSaAqIP8Vv5JwHDEhsHRitKJGT-853n_P5DuBUKfQijeDVoYiQoEQejaSjqDCMhYaHmDFHebMJGQT-aKQGNfiszsJYWWW1JuYLdTzRdo_8HIFnq0N5TF0-v1DbNcr-Xa1aaBSw6JqPd6Rs2UXnFu17xnnrbnjTpmVXAaqFw2eYTro8QlrAI4mTZNpztGFh5CUhkp3I1TxJhB86iVHKYPoijC0h7kstpVRJ05VNfO4CLAqMhFZC2OeD7z0dW37MZc3ybA7edp4J9BdBrQ7Cdk0T1Pm15ueBrLX-3z7BBqyVKTO5KjC-CTWTbsFyLl3V2TZcB5OUtorWe8Qq7ScpsRGGINOPi9q4BEeY6JInqz7MEJWGhGlM0jAtRjtwP5cX2IU6zsbsAZFMxr6SRiO1QuN5GB0Sh8WurQXGRGz2oVEZY1y6dzb-scTB35dPYKU97PfGvU7QPYRVngPBqgcbUJ9NX80RLOm32WM2Pc6RROBh3nb7AgAGArs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-Fourier+phonon+heat+conduction+at+the+microscale+and+nanoscale&rft.jtitle=Nature+reviews+physics&rft.au=Chen%2C+Gang&rft.date=2021-08-01&rft.pub=Nature+Publishing+Group&rft.eissn=2522-5820&rft.volume=3&rft.issue=8&rft.spage=555&rft.epage=569&rft_id=info:doi/10.1038%2Fs42254-021-00334-1