Non-Fourier phonon heat conduction at the microscale and nanoscale
The description of phonon heat conduction has typically been based on Fourier diffusion theory. However, over the past three decades, a host of interesting phonon transport phenomena beyond the Fourier diffusion picture have drawn much attention. Although most of the studies focused on classical siz...
Gespeichert in:
| Veröffentlicht in: | Nature reviews physics Jg. 3; H. 8; S. 555 - 569 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group
01.08.2021
|
| Schlagworte: | |
| ISSN: | 2522-5820 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The description of phonon heat conduction has typically been based on Fourier diffusion theory. However, over the past three decades, a host of interesting phonon transport phenomena beyond the Fourier diffusion picture have drawn much attention. Although most of the studies focused on classical size effects that lead to reduced thermal conductivity, other phenomena have been observed, often at the microscale and nanoscale, that are either completely novel or appear only at elevated temperatures. Examples are the prediction and observation of phonon second sound at high temperatures, quantized heat conduction and Anderson localization. These developments reveal rich phonon heat conduction phenomena analogous to those of electrical conduction. This Review discusses different non-Fourier heat conduction regimes (including the Casimir–Knudsen classical size effect regime), phonon hydrodynamics, the coherent phonon transport regimes (including localization and quantization of heat conduction) and the possibility of divergent heat conduction in low dimensions.Phonon heat conduction at the microscale and the nanoscale exhibits rich phenomena beyond the predictions of Fourier’s law, rivalling the phenomena of electrons. This Review discusses phonon heat conduction regimes, including the Casimir–Knudsen size effect, hydrodynamic transport, coherent transport (from quantization and localization) and divergence. |
|---|---|
| AbstractList | The description of phonon heat conduction has typically been based on Fourier diffusion theory. However, over the past three decades, a host of interesting phonon transport phenomena beyond the Fourier diffusion picture have drawn much attention. Although most of the studies focused on classical size effects that lead to reduced thermal conductivity, other phenomena have been observed, often at the microscale and nanoscale, that are either completely novel or appear only at elevated temperatures. Examples are the prediction and observation of phonon second sound at high temperatures, quantized heat conduction and Anderson localization. These developments reveal rich phonon heat conduction phenomena analogous to those of electrical conduction. This Review discusses different non-Fourier heat conduction regimes (including the Casimir–Knudsen classical size effect regime), phonon hydrodynamics, the coherent phonon transport regimes (including localization and quantization of heat conduction) and the possibility of divergent heat conduction in low dimensions.Phonon heat conduction at the microscale and the nanoscale exhibits rich phenomena beyond the predictions of Fourier’s law, rivalling the phenomena of electrons. This Review discusses phonon heat conduction regimes, including the Casimir–Knudsen size effect, hydrodynamic transport, coherent transport (from quantization and localization) and divergence. |
| Author | Chen, Gang |
| Author_xml | – sequence: 1 givenname: Gang surname: Chen fullname: Chen, Gang |
| BookMark | eNotj8FKAzEQhoMoWGtfwFPAc3QySTbZoxZbhaIXPZdsOmG31KRutu9vpF7-4WPgm_lv2GXKiRi7k_AgQbnHohGNFoBSACilhbxgMzSIwjiEa7YoZQ9Q11obUDP2_J6TWOXTONDIj32uOt6Tn3jIaXcK01C50tQT_x7CmEvwB-I-7Xjy6Uy37Cr6Q6HF_5yzr9XL5_JVbD7Wb8unjQha4iSsNdjptoZ1wUFoZCDwXRO9dLozAWPUzstIbUuNAU1_fZwN1to2KmPVnN2fvccx_5yoTNt9_TvVk1uF2CiABlr1C1OuTC0 |
| CitedBy_id | crossref_primary_10_1016_j_enconman_2025_119621 crossref_primary_10_1021_acsami_5c09280 crossref_primary_10_1103_PhysRevE_111_014227 crossref_primary_10_1557_s43578_024_01441_2 crossref_primary_10_1038_s41586_024_07724_2 crossref_primary_10_1007_s40766_023_00041_w crossref_primary_10_1016_j_ijheatmasstransfer_2021_122193 crossref_primary_10_1038_s41563_025_02186_x crossref_primary_10_1063_5_0155795 crossref_primary_10_1039_D5TA01468A crossref_primary_10_1126_science_abn4290 crossref_primary_10_1107_S1600576723004302 crossref_primary_10_1063_5_0134208 crossref_primary_10_1134_S002565442560028X crossref_primary_10_1063_5_0102227 crossref_primary_10_1063_5_0239197 crossref_primary_10_1002_adma_202512801 crossref_primary_10_1038_s41524_022_00712_y crossref_primary_10_1038_s41524_024_01364_w crossref_primary_10_1093_nsr_nwae248 crossref_primary_10_1016_j_ijthermalsci_2025_110011 crossref_primary_10_1088_1361_648X_ad31c0 crossref_primary_10_1107_S1600576724006381 crossref_primary_10_1007_s10704_023_00727_6 crossref_primary_10_1088_1361_648X_ac718a crossref_primary_10_1016_j_dt_2025_02_002 crossref_primary_10_1016_j_physrep_2023_09_006 crossref_primary_10_1063_5_0288990 crossref_primary_10_1080_15376494_2024_2408638 crossref_primary_10_1016_j_mtphys_2024_101360 crossref_primary_10_1063_5_0283336 crossref_primary_10_1016_j_ijheatmasstransfer_2025_127596 crossref_primary_10_1088_1361_648X_ad9210 crossref_primary_10_1063_5_0254248 crossref_primary_10_1103_PhysRevB_111_205404 crossref_primary_10_1016_j_icheatmasstransfer_2024_107683 crossref_primary_10_1063_5_0120284 crossref_primary_10_1016_j_applthermaleng_2024_123609 crossref_primary_10_1016_j_solidstatesciences_2024_107466 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124475 crossref_primary_10_3390_en16031500 crossref_primary_10_1140_epjb_s10051_023_00568_1 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126374 crossref_primary_10_1063_5_0068915 crossref_primary_10_1088_1361_6463_ac82f9 crossref_primary_10_1007_s10483_022_2914_5 crossref_primary_10_1016_j_actamat_2022_118406 crossref_primary_10_3390_app13158811 crossref_primary_10_1038_s41467_023_37380_5 crossref_primary_10_1063_5_0280896 crossref_primary_10_1103_PhysRevE_106_034110 crossref_primary_10_7498_aps_74_20250694 crossref_primary_10_1088_1361_648X_acfdea crossref_primary_10_1038_s42005_024_01581_1 crossref_primary_10_1063_5_0201522 crossref_primary_10_1103_PhysRevApplied_19_014007 crossref_primary_10_1016_j_apm_2024_115684 crossref_primary_10_1016_j_jfranklin_2024_106923 crossref_primary_10_1007_s10853_025_10892_9 crossref_primary_10_1016_j_device_2024_100684 crossref_primary_10_1103_p8wg_p1j3 crossref_primary_10_1016_j_newton_2025_100092 crossref_primary_10_1088_1367_2630_ad2f69 crossref_primary_10_1038_s41586_024_08052_1 crossref_primary_10_1063_5_0248153 crossref_primary_10_3390_cryst15070654 crossref_primary_10_1088_1361_6455_ad717f crossref_primary_10_1109_TCPMT_2024_3412794 crossref_primary_10_3390_electronics13010164 crossref_primary_10_1038_s41524_025_01635_0 crossref_primary_10_1002_admi_202500041 crossref_primary_10_1063_5_0214687 crossref_primary_10_1088_1402_4896_ad0086 crossref_primary_10_1007_s00158_022_03392_w crossref_primary_10_1115_1_4066899 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125700 crossref_primary_10_1016_j_jallcom_2022_167915 crossref_primary_10_1063_5_0098353 crossref_primary_10_1016_j_jallcom_2025_183569 crossref_primary_10_1039_D4MH00570H crossref_primary_10_1039_D4TC04975F crossref_primary_10_1021_jacs_3c11379 crossref_primary_10_1002_adma_202302749 crossref_primary_10_1007_s00033_023_02176_6 crossref_primary_10_1134_S1063784224060380 crossref_primary_10_1038_s41563_025_02195_w crossref_primary_10_1109_JSEN_2025_3556105 crossref_primary_10_1080_15567265_2024_2354674 crossref_primary_10_3390_pr11092769 crossref_primary_10_1007_s10118_023_3057_5 crossref_primary_10_1016_j_physrep_2023_11_001 crossref_primary_10_1103_PRXQuantum_4_040314 crossref_primary_10_1016_j_mattod_2025_01_012 crossref_primary_10_1007_s10765_022_03057_2 crossref_primary_10_3390_cryst12121774 crossref_primary_10_3390_nano13121854 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124288 crossref_primary_10_1063_5_0221352 crossref_primary_10_54097_ja67wk60 crossref_primary_10_1016_j_surfin_2025_106424 crossref_primary_10_1088_1361_6463_ade9d3 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124284 crossref_primary_10_1002_adma_202209123 crossref_primary_10_1016_j_ijheatmasstransfer_2025_127394 crossref_primary_10_1007_s10483_024_3180_7 crossref_primary_10_1016_j_ijthermalsci_2024_109446 crossref_primary_10_1063_5_0233566 crossref_primary_10_1016_j_micrna_2025_208113 crossref_primary_10_1134_S0025654424607249 crossref_primary_10_1063_5_0228819 crossref_primary_10_1103_PhysRevB_111_035406 crossref_primary_10_1016_j_polymer_2021_124168 crossref_primary_10_1109_TED_2022_3168798 crossref_primary_10_1039_D3NR03066K crossref_primary_10_1109_TED_2022_3227894 crossref_primary_10_1016_j_ijft_2024_100861 crossref_primary_10_1002_mma_11140 crossref_primary_10_1016_j_physleta_2025_130261 crossref_primary_10_1093_nsr_nwae345 crossref_primary_10_1021_acsnano_5c02539 crossref_primary_10_1007_s12598_023_02355_4 crossref_primary_10_1016_j_diamond_2022_109611 crossref_primary_10_1002_admi_202200078 crossref_primary_10_1007_s10765_024_03470_9 crossref_primary_10_1103_PhysRevResearch_6_013168 crossref_primary_10_1016_j_carbon_2023_118264 crossref_primary_10_1016_j_ijthermalsci_2025_110018 crossref_primary_10_1002_adfm_202301549 crossref_primary_10_1016_j_physb_2023_414828 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124715 crossref_primary_10_1007_s00707_024_03929_8 crossref_primary_10_1016_j_physe_2025_116232 crossref_primary_10_1063_5_0129590 crossref_primary_10_1088_2631_7990_acfd68 crossref_primary_10_1063_5_0187032 crossref_primary_10_1088_1402_4896_ad8847 crossref_primary_10_1002_pssb_202300381 crossref_primary_10_1007_s00033_024_02208_9 crossref_primary_10_2298_TSCI240705245C crossref_primary_10_1002_adma_202206997 crossref_primary_10_1007_s10876_024_02690_1 crossref_primary_10_1016_j_apmate_2022_01_005 crossref_primary_10_1002_sstr_202500102 crossref_primary_10_3390_e25071091 crossref_primary_10_1073_pnas_2320337121 crossref_primary_10_1088_2399_6528_ac9774 crossref_primary_10_1002_adfm_202407333 crossref_primary_10_1016_j_jcp_2025_114364 crossref_primary_10_1007_s11433_022_1952_3 crossref_primary_10_1016_j_jcp_2022_111436 crossref_primary_10_1007_s00033_025_02481_2 |
| ContentType | Journal Article |
| Copyright | Copyright Nature Publishing Group Aug 2021 |
| Copyright_xml | – notice: Copyright Nature Publishing Group Aug 2021 |
| DBID | 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO GNUQQ HCIFZ KB. L6V M2P M7S PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1038/s42254-021-00334-1 |
| DatabaseName | ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ProQuest Central Student SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Science Database Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic |
| DatabaseTitle | ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2522-5820 |
| EndPage | 569 |
| GroupedDBID | 3V. 7XB 88I 8FE 8FG 8FK AARCD AAWYQ AAYZH ABJCF ABJNI ABUWG AFANA AFKRA AFSHS AIBTJ ALMA_UNASSIGNED_HOLDINGS ATHPR AZQEC BENPR BGLVJ CCPQU D1I DWQXO EBS EJD FSGXE GNUQQ HCIFZ KB. L6V M2P M7S NNMJJ PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U RNT SIXXV SNYQT SOJ TBHMF |
| ID | FETCH-LOGICAL-c412t-7752b4952b78c80c61ce0ab6fa184b5c2ff48a1fe99e6504e103887c7779f3573 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 217 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000669763100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Sat Aug 23 12:50:18 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c412t-7752b4952b78c80c61ce0ab6fa184b5c2ff48a1fe99e6504e103887c7779f3573 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3226300609 |
| PQPubID | 7343578 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_3226300609 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-01 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Nature reviews physics |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group |
| SSID | ssj0002144503 |
| Score | 2.5782359 |
| SecondaryResourceType | review_article |
| Snippet | The description of phonon heat conduction has typically been based on Fourier diffusion theory. However, over the past three decades, a host of interesting... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| StartPage | 555 |
| SubjectTerms | Anderson localization Conduction heating Conductive heat transfer Conductivity Diffusion theory Electrical conduction Heat conductivity High temperature Localization Nanowires Phonons Size effects Temperature Thermal conductivity Thin films Transport phenomena |
| Title | Non-Fourier phonon heat conduction at the microscale and nanoscale |
| URI | https://www.proquest.com/docview/3226300609 |
| Volume | 3 |
| WOSCitedRecordID | wos000669763100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7RFiQW3ohn5YHV1E6cOJ4QRa2QEFHFQ-pW2Y4jMZBCU_j9nBMXBiQWlkhWFuvu8vnu_OU-gAul8CuyGLxWC4MFikmpkVxR4RjTLtKYMZtGbELmeTadqklouNWBVrnCxAaoi7n1PfIBBp6fDpUydfX2Tr1qlL9dDRIaHej5KQm8oe49fvdY_DiwhMXhXxkWZ4NaYPwK6nkJXsVMUP4Lg5uDZbz93y3twFZIKcl1GwO7sOaqPdhoqJ223odhPq_ouJWmI56JPq-IR2CClXDRzo4luMJEkLx6dl6NXnNEVwWpdNWuDuB5PHq6uaVBOYFawaMlpsxJZLD0iYxERzCbcuuYNmmpsaAziY3KUmSal04phymacN44mbRSSlXGiYwPoYu7cUdAJJNFpqSzWHqgMVNEz5KzIvGzspgo3DGcrYwzC-Ffz34sc_L361PYjBpneEbdGXSXiw93Duv2c_lSL_rQG47yyUMfOnfDS3zeR5N-4-EvdKOq5Q |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED6VAoKFN-JRwAOMFo7rxPGAEK-qVduoQ5G6lcRxJAZSaAqIP8Vv5JwHDEhsHRitKJGT-853n_P5DuBUKfQijeDVoYiQoEQejaSjqDCMhYaHmDFHebMJGQT-aKQGNfiszsJYWWW1JuYLdTzRdo_8HIFnq0N5TF0-v1DbNcr-Xa1aaBSw6JqPd6Rs2UXnFu17xnnrbnjTpmVXAaqFw2eYTro8QlrAI4mTZNpztGFh5CUhkp3I1TxJhB86iVHKYPoijC0h7kstpVRJ05VNfO4CLAqMhFZC2OeD7z0dW37MZc3ybA7edp4J9BdBrQ7Cdk0T1Pm15ueBrLX-3z7BBqyVKTO5KjC-CTWTbsFyLl3V2TZcB5OUtorWe8Qq7ScpsRGGINOPi9q4BEeY6JInqz7MEJWGhGlM0jAtRjtwP5cX2IU6zsbsAZFMxr6SRiO1QuN5GB0Sh8WurQXGRGz2oVEZY1y6dzb-scTB35dPYKU97PfGvU7QPYRVngPBqgcbUJ9NX80RLOm32WM2Pc6RROBh3nb7AgAGArs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-Fourier+phonon+heat+conduction+at+the+microscale+and+nanoscale&rft.jtitle=Nature+reviews+physics&rft.au=Chen%2C+Gang&rft.date=2021-08-01&rft.pub=Nature+Publishing+Group&rft.eissn=2522-5820&rft.volume=3&rft.issue=8&rft.spage=555&rft.epage=569&rft_id=info:doi/10.1038%2Fs42254-021-00334-1 |