A multi-objective optimization and multi-criteria evaluation integrated framework for distributed energy system optimal planning

•Propose an optimization and evaluation integrated framework.•Establish a Mixed Integer Non-linear Programming optimal planning model.•Conduct multi-objective optimization by Ɛ-constraint method.•Identify Pareto-optimal solution through three decision making methods.•An Analytic Hierarchy Process an...

Full description

Saved in:
Bibliographic Details
Published in:Energy conversion and management Vol. 166; pp. 445 - 462
Main Authors: Jing, Rui, Zhu, Xingyi, Zhu, Zhiyi, Wang, Wei, Meng, Chao, Shah, Nilay, Li, Ning, Zhao, Yingru
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 15.06.2018
Elsevier Science Ltd
Subjects:
ISSN:0196-8904, 1879-2227
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Propose an optimization and evaluation integrated framework.•Establish a Mixed Integer Non-linear Programming optimal planning model.•Conduct multi-objective optimization by Ɛ-constraint method.•Identify Pareto-optimal solution through three decision making methods.•An Analytic Hierarchy Process and Gray Relation Analysis combined evaluation. This study proposes an integrated framework for planning distributed energy system with addressing the multi-objective optimization and multi-criteria evaluation issues simultaneously. The framework can be decomposed into two stages. At the optimization stage, the system design and dispatch are optimized considering multiple objectives by Ɛ-constraint method. Three decision making approaches are applied to identify the Pareto optimal solution. At the evaluation stage, a combined Analytic Hierarchy Process and Gray Relation Analysis method is proposed to evaluate and rank various optimal solutions when different objectives and cases are considered. Two stages of work are integrated by introducing the baseline conditions. As an illustrative example, an optimal planning model for a solar-assisted Solid Oxide Fuel Cell distributed energy system is proposed by Mixed Integer Non-linear Programming approach firstly. Then, the system is applied to different cases considering two types of buildings located in three climate zones. The obtained optimal solutions are further evaluated by the proposed multi-criteria evaluation method. Therefore, the overall optimal system design and dispatch strategy, as well as the best demonstration site can be identified comprehensively considering multiple objectives. In general, the results have verified the effectiveness of the proposed framework.
AbstractList This study proposes an integrated framework for planning distributed energy system with addressing the multi-objective optimization and multi-criteria evaluation issues simultaneously. The framework can be decomposed into two stages. At the optimization stage, the system design and dispatch are optimized considering multiple objectives by Ɛ-constraint method. Three decision making approaches are applied to identify the Pareto optimal solution. At the evaluation stage, a combined Analytic Hierarchy Process and Gray Relation Analysis method is proposed to evaluate and rank various optimal solutions when different objectives and cases are considered. Two stages of work are integrated by introducing the baseline conditions. As an illustrative example, an optimal planning model for a solar-assisted Solid Oxide Fuel Cell distributed energy system is proposed by Mixed Integer Non-linear Programming approach firstly. Then, the system is applied to different cases considering two types of buildings located in three climate zones. The obtained optimal solutions are further evaluated by the proposed multi-criteria evaluation method. Therefore, the overall optimal system design and dispatch strategy, as well as the best demonstration site can be identified comprehensively considering multiple objectives. In general, the results have verified the effectiveness of the proposed framework.
•Propose an optimization and evaluation integrated framework.•Establish a Mixed Integer Non-linear Programming optimal planning model.•Conduct multi-objective optimization by Ɛ-constraint method.•Identify Pareto-optimal solution through three decision making methods.•An Analytic Hierarchy Process and Gray Relation Analysis combined evaluation. This study proposes an integrated framework for planning distributed energy system with addressing the multi-objective optimization and multi-criteria evaluation issues simultaneously. The framework can be decomposed into two stages. At the optimization stage, the system design and dispatch are optimized considering multiple objectives by Ɛ-constraint method. Three decision making approaches are applied to identify the Pareto optimal solution. At the evaluation stage, a combined Analytic Hierarchy Process and Gray Relation Analysis method is proposed to evaluate and rank various optimal solutions when different objectives and cases are considered. Two stages of work are integrated by introducing the baseline conditions. As an illustrative example, an optimal planning model for a solar-assisted Solid Oxide Fuel Cell distributed energy system is proposed by Mixed Integer Non-linear Programming approach firstly. Then, the system is applied to different cases considering two types of buildings located in three climate zones. The obtained optimal solutions are further evaluated by the proposed multi-criteria evaluation method. Therefore, the overall optimal system design and dispatch strategy, as well as the best demonstration site can be identified comprehensively considering multiple objectives. In general, the results have verified the effectiveness of the proposed framework.
Author Zhu, Xingyi
Li, Ning
Wang, Wei
Shah, Nilay
Jing, Rui
Zhu, Zhiyi
Meng, Chao
Zhao, Yingru
Author_xml – sequence: 1
  givenname: Rui
  surname: Jing
  fullname: Jing, Rui
  organization: College of Energy, Xiamen University, Xiamen, China
– sequence: 2
  givenname: Xingyi
  surname: Zhu
  fullname: Zhu, Xingyi
  organization: College of Energy, Xiamen University, Xiamen, China
– sequence: 3
  givenname: Zhiyi
  surname: Zhu
  fullname: Zhu, Zhiyi
  organization: East & West Region, CLP Power Hong Kong Limited, Hong Kong Special Administrative Region
– sequence: 4
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  organization: College of Energy, Xiamen University, Xiamen, China
– sequence: 5
  givenname: Chao
  surname: Meng
  fullname: Meng, Chao
  organization: College of Energy, Xiamen University, Xiamen, China
– sequence: 6
  givenname: Nilay
  surname: Shah
  fullname: Shah, Nilay
  organization: Department of Chemical Engineering, Imperial College London, London, UK
– sequence: 7
  givenname: Ning
  surname: Li
  fullname: Li, Ning
  organization: College of Energy, Xiamen University, Xiamen, China
– sequence: 8
  givenname: Yingru
  orcidid: 0000-0003-3513-9451
  surname: Zhao
  fullname: Zhao, Yingru
  email: yrzhao@xmu.edu.cn
  organization: College of Energy, Xiamen University, Xiamen, China
BookMark eNqFkUFv1DAUhC1UJLaFv4AsceGSYDuOE0scqKpCkSpxgbPl2C8rh8RebGfR9sRPx0vKpZee3mG-GT3NXKILHzwg9JaSmhIqPkw1eBP8on3NCO1rwmvS8hdoR_tOVoyx7gLtCJWi6iXhr9BlShMhpGmJ2KE_13hZ5-yqMExgsjsCDofsFvegswsea28fARNdhug0hqOe1011PsM-6gwWj1Ev8DvEn3gMEVuXcnTDelbAQ9yfcDqlDMuWrmd8mLX3zu9fo5ejnhO8ebxX6Mfn2-83d9X9ty9fb67vK8Mpy5WgIAar7ci0GAcCg-kMaCEFdIMcpGxay3tGCWn7kWtmR2sbLkQHvKGyldBcofdb7iGGXyukrBaXDMzlDQhrUqUn0nPWCFrQd0_QKazRl-8UI51oRC96VqiPG2ViSCnCqIzL_2rJUbtZUaLO86hJ_Z9HnedRhKsyT7GLJ_ZDLMXE0_PGT5sRSltHB1El4woJ1sWyoLLBPRfxFyO-tJI
CitedBy_id crossref_primary_10_1016_j_apenergy_2021_116773
crossref_primary_10_1016_j_apenergy_2021_117741
crossref_primary_10_1016_j_jobe_2025_111869
crossref_primary_10_1016_j_buildenv_2021_107855
crossref_primary_10_3389_fenrg_2022_855312
crossref_primary_10_1109_TTE_2023_3275080
crossref_primary_10_1016_j_enconman_2023_117323
crossref_primary_10_1016_j_enconman_2022_115817
crossref_primary_10_1016_j_enrev_2023_100048
crossref_primary_10_3390_en18133339
crossref_primary_10_1016_j_apenergy_2024_123472
crossref_primary_10_1016_j_ins_2022_07_149
crossref_primary_10_32604_ee_2023_028727
crossref_primary_10_1016_j_energy_2022_123995
crossref_primary_10_3389_fenrg_2022_975214
crossref_primary_10_1016_j_energy_2023_129612
crossref_primary_10_1016_j_energy_2020_118571
crossref_primary_10_3390_su10103800
crossref_primary_10_1016_j_applthermaleng_2023_121484
crossref_primary_10_1007_s00500_024_10351_8
crossref_primary_10_1016_j_apenergy_2020_115163
crossref_primary_10_3390_su16208930
crossref_primary_10_1016_j_apenergy_2022_119486
crossref_primary_10_1016_j_tsep_2025_103978
crossref_primary_10_1016_j_apenergy_2024_123917
crossref_primary_10_1049_gtd2_12820
crossref_primary_10_1016_j_enconman_2024_119351
crossref_primary_10_1016_j_enconman_2019_05_104
crossref_primary_10_1016_j_enconman_2019_111830
crossref_primary_10_3390_electronics11182816
crossref_primary_10_1016_j_enconman_2020_113800
crossref_primary_10_1016_j_enconman_2021_114316
crossref_primary_10_1016_j_apenergy_2024_123620
crossref_primary_10_1109_ACCESS_2024_3392911
crossref_primary_10_3390_electronics9010105
crossref_primary_10_1016_j_enconman_2018_10_083
crossref_primary_10_1016_j_enbuild_2019_04_023
crossref_primary_10_1016_j_enconman_2019_112081
crossref_primary_10_1016_j_energy_2020_119674
crossref_primary_10_1016_j_energy_2021_121205
crossref_primary_10_1088_1742_6596_2430_1_012009
crossref_primary_10_1016_j_renene_2023_119483
crossref_primary_10_1016_j_enconman_2018_10_006
crossref_primary_10_1016_j_ijhydene_2023_01_317
crossref_primary_10_1016_j_energy_2024_131089
crossref_primary_10_1109_TIA_2022_3217229
crossref_primary_10_1016_j_energy_2024_132455
crossref_primary_10_1016_j_ijepes_2021_107889
crossref_primary_10_1016_j_applthermaleng_2023_120655
crossref_primary_10_1016_j_apenergy_2022_119667
crossref_primary_10_1016_j_energy_2023_129443
crossref_primary_10_1016_j_seta_2022_102066
crossref_primary_10_1016_j_enconman_2022_116057
crossref_primary_10_1016_j_apenergy_2020_114859
crossref_primary_10_1016_j_enconman_2023_116924
crossref_primary_10_3390_fi17050215
crossref_primary_10_1016_j_jclepro_2023_135905
crossref_primary_10_1016_j_energy_2023_128987
crossref_primary_10_1016_j_ijhydene_2025_01_360
crossref_primary_10_1016_j_energy_2021_120783
crossref_primary_10_1155_2022_4578868
crossref_primary_10_1016_j_energy_2023_129679
crossref_primary_10_1016_j_enpol_2020_111578
crossref_primary_10_1016_j_heliyon_2022_e12230
crossref_primary_10_1016_j_rineng_2025_106295
crossref_primary_10_3390_pr9081308
crossref_primary_10_1016_j_apenergy_2023_122608
crossref_primary_10_1016_j_swevo_2025_101850
crossref_primary_10_1016_j_jobe_2024_109138
crossref_primary_10_1016_j_enconman_2019_05_043
crossref_primary_10_1049_gtd2_13221
crossref_primary_10_1002_etep_2708
crossref_primary_10_1016_j_enconman_2023_117334
crossref_primary_10_1016_j_enconman_2022_116347
crossref_primary_10_1186_s42162_025_00526_4
crossref_primary_10_1016_j_enconman_2022_115497
crossref_primary_10_1016_j_energy_2022_125201
crossref_primary_10_1108_IJLM_12_2019_0361
crossref_primary_10_1016_j_applthermaleng_2023_121871
crossref_primary_10_1016_j_energy_2025_136552
crossref_primary_10_1016_j_energy_2021_120258
crossref_primary_10_1016_j_jclepro_2019_02_052
crossref_primary_10_1016_j_energy_2025_136392
crossref_primary_10_1016_j_enconman_2019_05_012
crossref_primary_10_1016_j_applthermaleng_2023_120117
crossref_primary_10_1016_j_jclepro_2020_123620
crossref_primary_10_1016_j_apenergy_2020_115766
crossref_primary_10_1016_j_seta_2021_101394
crossref_primary_10_1016_j_ijepes_2020_106736
crossref_primary_10_1016_j_csite_2024_105161
crossref_primary_10_1016_j_seta_2021_101035
crossref_primary_10_1016_j_egyr_2023_03_102
crossref_primary_10_1016_j_enconman_2020_112589
crossref_primary_10_1016_j_enconman_2021_114249
crossref_primary_10_1016_j_enconman_2019_111915
crossref_primary_10_1016_j_applthermaleng_2025_125526
crossref_primary_10_3389_fenrg_2021_781634
crossref_primary_10_1016_j_ijepes_2022_108079
crossref_primary_10_1016_j_est_2023_107689
crossref_primary_10_1016_j_jclepro_2023_137588
crossref_primary_10_1016_j_apenergy_2020_116222
crossref_primary_10_1016_j_applthermaleng_2022_118423
crossref_primary_10_1016_j_rser_2022_112297
crossref_primary_10_1016_j_seta_2021_101682
crossref_primary_10_1016_j_jclepro_2021_128623
crossref_primary_10_1016_j_epsr_2025_112132
crossref_primary_10_1016_j_enconman_2023_116823
crossref_primary_10_1016_j_energy_2021_121120
crossref_primary_10_1016_j_enconman_2021_114245
crossref_primary_10_1016_j_enconman_2022_115996
crossref_primary_10_1016_j_energy_2021_122691
crossref_primary_10_1016_j_jclepro_2020_124050
crossref_primary_10_1016_j_apenergy_2023_121789
crossref_primary_10_1109_ACCESS_2023_3242546
crossref_primary_10_1016_j_energy_2021_122577
crossref_primary_10_1016_j_energy_2024_132393
crossref_primary_10_1016_j_jclepro_2023_138667
crossref_primary_10_1016_j_energy_2021_122215
crossref_primary_10_1016_j_swevo_2024_101782
crossref_primary_10_1016_j_apenergy_2020_115189
crossref_primary_10_1016_j_apenergy_2021_117324
crossref_primary_10_1016_j_energy_2025_137306
crossref_primary_10_1016_j_enconman_2019_06_039
crossref_primary_10_1016_j_scs_2023_104593
crossref_primary_10_1016_j_enbuild_2024_114749
crossref_primary_10_1016_j_rser_2022_112445
crossref_primary_10_1016_j_apenergy_2018_12_009
crossref_primary_10_1109_TITS_2020_3048362
crossref_primary_10_1016_j_energy_2025_138089
crossref_primary_10_1016_j_spc_2022_08_032
crossref_primary_10_1080_01430750_2019_1636870
crossref_primary_10_1016_j_apenergy_2019_113424
crossref_primary_10_1016_j_energy_2021_120588
crossref_primary_10_1016_j_enconman_2024_118073
crossref_primary_10_1007_s43979_022_00029_1
crossref_primary_10_1016_j_energy_2024_133731
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125779
crossref_primary_10_1109_TASE_2022_3171446
crossref_primary_10_1080_0013791X_2020_1853862
crossref_primary_10_1016_j_energy_2020_118357
crossref_primary_10_1016_j_csite_2025_106442
crossref_primary_10_3390_en14144179
crossref_primary_10_1016_j_ins_2022_03_093
crossref_primary_10_3390_electronics14112221
crossref_primary_10_1016_j_seta_2022_102656
crossref_primary_10_2478_amns_2023_2_00643
crossref_primary_10_1016_j_energy_2020_117827
crossref_primary_10_3390_pr10010133
crossref_primary_10_1016_j_enconman_2021_114338
crossref_primary_10_1016_j_knosys_2023_110708
crossref_primary_10_1080_01457632_2022_2113448
crossref_primary_10_1016_j_enconman_2021_115039
crossref_primary_10_1016_j_seta_2022_101956
crossref_primary_10_1016_j_enconman_2020_113354
crossref_primary_10_1109_JSYST_2021_3136586
crossref_primary_10_1016_j_apenergy_2022_119190
crossref_primary_10_1016_j_apenergy_2023_122412
crossref_primary_10_1016_j_energy_2022_126332
crossref_primary_10_1016_j_apenergy_2022_119873
crossref_primary_10_1016_j_energy_2020_117155
crossref_primary_10_3389_fenrg_2021_838852
crossref_primary_10_3390_su12072695
crossref_primary_10_1016_j_jpse_2025_100341
Cites_doi 10.1016/j.enconman.2015.02.045
10.1016/j.energy.2016.11.082
10.1016/j.energy.2017.02.174
10.1016/j.enconman.2016.12.011
10.1016/j.energy.2008.04.008
10.1016/j.apenergy.2017.01.056
10.1016/j.rser.2017.03.052
10.1016/j.apenergy.2016.07.017
10.1016/j.energy.2013.04.004
10.1016/j.apenergy.2016.05.005
10.1016/j.renene.2017.11.042
10.1016/j.enconman.2017.11.007
10.1016/j.energy.2017.05.001
10.1016/j.enbuild.2015.06.052
10.1016/j.enbuild.2013.05.030
10.1016/j.enconman.2015.11.056
10.1016/j.cherd.2015.07.005
10.1016/j.energy.2015.10.065
10.1016/j.enconman.2010.06.022
10.1016/j.rser.2017.03.069
10.1016/j.ijhydene.2017.01.202
10.1016/j.energy.2016.08.102
10.1016/j.enbuild.2015.12.029
10.1016/j.applthermaleng.2017.04.066
10.1016/j.energy.2015.03.003
10.1016/j.energy.2016.05.085
10.1016/j.energy.2016.02.156
10.1016/j.apenergy.2016.11.093
10.1016/j.energy.2016.01.027
10.1016/j.energy.2016.01.060
10.1016/j.ijepes.2014.07.027
10.1016/j.energy.2014.08.003
10.13044/j.sdewes.d5.0168
10.1016/j.ijhydene.2014.11.059
10.1016/j.jclepro.2017.12.132
10.1016/j.applthermaleng.2017.05.188
10.1016/j.apenergy.2016.06.105
10.1016/j.enconman.2013.06.025
10.1016/j.apenergy.2016.09.110
10.1016/j.apenergy.2017.03.132
10.1016/j.enbuild.2015.11.072
10.1016/j.enconman.2015.07.085
10.1016/j.enconman.2014.12.006
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier Science Ltd. Jun 15, 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Jun 15, 2018
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.enconman.2018.04.054
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aerospace Database

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2227
EndPage 462
ExternalDocumentID 10_1016_j_enconman_2018_04_054
S0196890418304023
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
8WZ
9DU
A6W
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SEW
WUQ
~HD
7ST
7TB
8FD
AGCQF
C1K
FR3
H8D
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c412t-61e6bdadf2a6fb0ebc7cea696e7b9b9935d48210058f4a2dfdd34667e431959e3
ISICitedReferencesCount 177
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000434004200038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-8904
IngestDate Wed Oct 01 14:22:47 EDT 2025
Wed Aug 13 08:01:17 EDT 2025
Sat Nov 29 02:32:18 EST 2025
Tue Nov 18 21:23:32 EST 2025
Fri Feb 23 02:33:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Distributed energy system
Multi-objective optimization
Solid Oxide Fuel Cell
Mixed Integer Non-linear Programming
Multi-criteria evaluation
Decision making
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c412t-61e6bdadf2a6fb0ebc7cea696e7b9b9935d48210058f4a2dfdd34667e431959e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3513-9451
PQID 2076368682
PQPubID 2047472
PageCount 18
ParticipantIDs proquest_miscellaneous_2220842361
proquest_journals_2076368682
crossref_citationtrail_10_1016_j_enconman_2018_04_054
crossref_primary_10_1016_j_enconman_2018_04_054
elsevier_sciencedirect_doi_10_1016_j_enconman_2018_04_054
PublicationCentury 2000
PublicationDate 2018-06-15
PublicationDateYYYYMMDD 2018-06-15
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-15
  day: 15
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy conversion and management
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Moradi, Mehrpooya (b0105) 2017; 130
Ahmadi, Ahmadi, Bayat, Ashouri, Feidt (b0190) 2015; 91
Tang, Sun, Yao, Wang (b0200) 2014; 75
Zeng, Li, Jiang, Liu, Zhang (b0210) 2016; 112
Li, Liao, Liu (b0175) 2015; 64
Wang, Jing, Zhang, Zhang, Shi (b0085) 2008; 33
Wang, Lu, Yang, Mao (b0110) 2016; 115
Kang, Yang, An, Deng, Zhao, Wang (b0050) 2017; 194
Mehr, Mahmoudi, Yari, Chitsaz (b0100) 2015; 105
Zheng, Wu, Zhai, Wang (b0150) 2016; 175
Zhang, Evangelisti, Lettieri, Papageorgiou (b0065) 2016; 110
Chen, Yang, Deng, Zhou, Wu (b0025) 2017; 42
Wei, Chen, Sun, Zhang (b0075) 2016; 98
Ju, Tan, Li, Tan, Yu, Song (b0070) 2016; 111
Soheyli, Shafiei Mayam, Mehrjoo (b0060) 2016; 184
Jin, Feng, Liu, Marnay, Spanos (b0040) 2017; 187
Bracco, Dentici, Siri (b0145) 2013; 55
Dodds, Staffell, Hawkes, Li, Grünewald, McDowall (b0125) 2015; 40
De-León Almaraz, Azzaro-Pantel, Montastruc, Boix (b0160) 2015; 104
Li, Mu, Li, Ma (b0010) 2016; 99
Wu, Ren, Gao, Ren (b0080) 2016; 103
Eriksson, Gray (b0140) 2017; 202
Ahmadi, Sayyaadi, Dehghani, Hosseinzade (b0180) 2013; 75
McLarty, Brouwer, Ainscough (b0205) 2016; 113
Huda, Zivanovic (b9000) 2017; 76
Feng, Zhang, Li, Yang, Shi (b0195) 2015; 96
Wei, Smith, Sohn (b0215) 2017; 191
US DOE hydrogen and fuel cells program: DOE fuel cell power analysis. FC power model solid oxide fuel cell, version 2.0. 2017.
Ramadhani, Hussain, Mokhils, Hajimolana (b0020) 2017; 76
Nojavan, Majidi, Zare (b0030) 2018; 156
Zhang, Liu, Liu, Sakaue, Li, Zhao (b0095) 2017; 121
Delgado-Torres, García-Rodríguez (b0115) 2010; 51
Sorace, Gandiglio, Santarelli (b0130) 2017; 120
Cui, Geng, Zhu, Han (b0170) 2017; 125
Leobner, Smolek, Heinzl, Raich, Schirrer, Kozek (b0005) 2017; 6
Luo, Wu, Li, Cai, Li, Gu (b0035) 2017; 125
[access: 2017/07/01].
Feng, Hung, Zhang, Li, Yang, Shi (b0185) 2015; 93
Napoli, Gandiglio, Lanzini, Santarelli (b0135) 2015; 103
GAMS Development Corporation. GAMS - a user’s guide; 2017.
Abdin, Noussan (b0225) 2018; 176
Ma, Wu, Hao (b0045) 2017; 133
He, Pang, Li, Zhang (b0220) 2018; 118
China meteorological data sharing service system.
Facci, Cigolotti, Jannelli, Ubertini (b0055) 2017; 192
LINDO Systems Inc. LINDO API – user manual; 2017.
Cao, Hasan, Sirén (b0155) 2013; 64
Fazlollahi, Becker, Ashouri, Maréchal (b0165) 2015; 84
Dodds (10.1016/j.enconman.2018.04.054_b0125) 2015; 40
Bracco (10.1016/j.enconman.2018.04.054_b0145) 2013; 55
Ma (10.1016/j.enconman.2018.04.054_b0045) 2017; 133
Tang (10.1016/j.enconman.2018.04.054_b0200) 2014; 75
Cui (10.1016/j.enconman.2018.04.054_b0170) 2017; 125
Wang (10.1016/j.enconman.2018.04.054_b0110) 2016; 115
De-León Almaraz (10.1016/j.enconman.2018.04.054_b0160) 2015; 104
Li (10.1016/j.enconman.2018.04.054_b0175) 2015; 64
Leobner (10.1016/j.enconman.2018.04.054_b0005) 2017; 6
Ramadhani (10.1016/j.enconman.2018.04.054_b0020) 2017; 76
Cao (10.1016/j.enconman.2018.04.054_b0155) 2013; 64
Ju (10.1016/j.enconman.2018.04.054_b0070) 2016; 111
Facci (10.1016/j.enconman.2018.04.054_b0055) 2017; 192
Moradi (10.1016/j.enconman.2018.04.054_b0105) 2017; 130
Abdin (10.1016/j.enconman.2018.04.054_b0225) 2018; 176
Li (10.1016/j.enconman.2018.04.054_b0010) 2016; 99
10.1016/j.enconman.2018.04.054_b0230
Wu (10.1016/j.enconman.2018.04.054_b0080) 2016; 103
Eriksson (10.1016/j.enconman.2018.04.054_b0140) 2017; 202
Kang (10.1016/j.enconman.2018.04.054_b0050) 2017; 194
Huda (10.1016/j.enconman.2018.04.054_b9000) 2017; 76
Chen (10.1016/j.enconman.2018.04.054_b0025) 2017; 42
Wang (10.1016/j.enconman.2018.04.054_b0085) 2008; 33
Soheyli (10.1016/j.enconman.2018.04.054_b0060) 2016; 184
Delgado-Torres (10.1016/j.enconman.2018.04.054_b0115) 2010; 51
Zeng (10.1016/j.enconman.2018.04.054_b0210) 2016; 112
10.1016/j.enconman.2018.04.054_b0235
Wei (10.1016/j.enconman.2018.04.054_b0215) 2017; 191
Feng (10.1016/j.enconman.2018.04.054_b0195) 2015; 96
Luo (10.1016/j.enconman.2018.04.054_b0035) 2017; 125
Fazlollahi (10.1016/j.enconman.2018.04.054_b0165) 2015; 84
10.1016/j.enconman.2018.04.054_b0090
Ahmadi (10.1016/j.enconman.2018.04.054_b0180) 2013; 75
Wei (10.1016/j.enconman.2018.04.054_b0075) 2016; 98
McLarty (10.1016/j.enconman.2018.04.054_b0205) 2016; 113
Zheng (10.1016/j.enconman.2018.04.054_b0150) 2016; 175
10.1016/j.enconman.2018.04.054_b0120
Sorace (10.1016/j.enconman.2018.04.054_b0130) 2017; 120
Jin (10.1016/j.enconman.2018.04.054_b0040) 2017; 187
He (10.1016/j.enconman.2018.04.054_b0220) 2018; 118
Feng (10.1016/j.enconman.2018.04.054_b0185) 2015; 93
Mehr (10.1016/j.enconman.2018.04.054_b0100) 2015; 105
Ahmadi (10.1016/j.enconman.2018.04.054_b0190) 2015; 91
Napoli (10.1016/j.enconman.2018.04.054_b0135) 2015; 103
Nojavan (10.1016/j.enconman.2018.04.054_b0030) 2018; 156
Zhang (10.1016/j.enconman.2018.04.054_b0065) 2016; 110
Zhang (10.1016/j.enconman.2018.04.054_b0095) 2017; 121
References_xml – reference: US DOE hydrogen and fuel cells program: DOE fuel cell power analysis. FC power model solid oxide fuel cell, version 2.0. 2017. <
– volume: 192
  start-page: 563
  year: 2017
  end-page: 574
  ident: b0055
  article-title: Technical and economic assessment of a SOFC-based energy system for combined cooling, heating and power
  publication-title: Appl Energy
– volume: 42
  start-page: 7836
  year: 2017
  end-page: 7846
  ident: b0025
  article-title: Multi-objective optimization of the hybrid wind/solar/fuel cell distributed generation system using Hammersley Sequence Sampling
  publication-title: Int J Hydrogen Energy
– volume: 125
  start-page: 513
  year: 2017
  end-page: 522
  ident: b0035
  article-title: A two-stage optimization and control for CCHP microgrid energy management
  publication-title: Appl Therm Eng
– volume: 191
  start-page: 346
  year: 2017
  end-page: 357
  ident: b0215
  article-title: Experience curve development and cost reduction disaggregation for fuel cell markets in Japan and the US
  publication-title: Appl Energy
– volume: 115
  start-page: 49
  year: 2016
  end-page: 59
  ident: b0110
  article-title: Thermodynamic performance analysis and optimization of a solar-assisted combined cooling, heating and power system
  publication-title: Energy
– volume: 64
  start-page: 167
  year: 2015
  end-page: 175
  ident: b0175
  article-title: Thermo-economic multi-objective optimization for a solar-dish Brayton system using NSGA-II and decision making
  publication-title: Int J Electr Power Energy Syst
– volume: 110
  start-page: 113
  year: 2016
  end-page: 124
  ident: b0065
  article-title: Economic and environmental scheduling of smart homes with microgrid: DER operation and electrical tasks
  publication-title: Energy Convers Manage
– volume: 64
  start-page: 423
  year: 2013
  end-page: 438
  ident: b0155
  article-title: On-site energy matching indices for buildings with energy conversion, storage and hybrid grid connections
  publication-title: Energy Build
– volume: 105
  start-page: 596
  year: 2015
  end-page: 606
  ident: b0100
  article-title: Thermodynamic and exergoeconomic analysis of biogas fed solid oxide fuel cell power plants emphasizing on anode and cathode recycling: a comparative study
  publication-title: Energy Convers Manage
– volume: 75
  start-page: 474
  year: 2014
  end-page: 482
  ident: b0200
  article-title: The selection of key technologies by the silicon photovoltaic industry based on the Delphi method and AHP (analytic hierarchy process): case study of China
  publication-title: Energy
– volume: 40
  start-page: 2065
  year: 2015
  end-page: 2083
  ident: b0125
  article-title: Hydrogen and fuel cell technologies for heating: a review
  publication-title: Int J Hydrogen Energy
– volume: 133
  start-page: 292
  year: 2017
  end-page: 306
  ident: b0045
  article-title: Energy flow modeling and optimal operation analysis of the micro energy grid based on energy hub
  publication-title: Energy Convers Manage
– volume: 130
  start-page: 530
  year: 2017
  end-page: 543
  ident: b0105
  article-title: Optimal design and economic analysis of a hybrid solid oxide fuel cell and parabolic solar dish collector, combined cooling, heating and power (CCHP) system used for a large commercial tower
  publication-title: Energy
– volume: 33
  start-page: 1427
  year: 2008
  end-page: 1437
  ident: b0085
  article-title: Integrated evaluation of distributed triple-generation systems using improved grey incidence approach
  publication-title: Energy
– reference: China meteorological data sharing service system. <
– volume: 112
  start-page: 149
  year: 2016
  end-page: 158
  ident: b0210
  article-title: A novel multi-objective optimization method for CCHP–GSHP coupling systems
  publication-title: Energy Build
– reference: GAMS Development Corporation. GAMS - a user’s guide; 2017. <
– volume: 120
  start-page: 262
  year: 2017
  end-page: 275
  ident: b0130
  article-title: Modeling and techno-economic analysis of the integration of a FC-based micro-CHP system for residential application with a heat pump
  publication-title: Energy
– volume: 75
  start-page: 282
  year: 2013
  end-page: 291
  ident: b0180
  article-title: Designing a solar powered Stirling heat engine based on multiple criteria: maximized thermal efficiency and power
  publication-title: Energy Convers Manage
– volume: 51
  start-page: 2846
  year: 2010
  end-page: 2856
  ident: b0115
  article-title: Analysis and optimization of the low-temperature solar organic Rankine cycle (ORC)
  publication-title: Energy Convers Manage
– volume: 96
  start-page: 58
  year: 2015
  end-page: 71
  ident: b0195
  article-title: Comparison between regenerative organic Rankine cycle (RORC) and basic organic Rankine cycle (BORC) based on thermoeconomic multi-objective optimization considering exergy efficiency and levelized energy cost (LEC)
  publication-title: Energy Convers Manage
– reference: LINDO Systems Inc. LINDO API – user manual; 2017. <
– volume: 104
  start-page: 11
  year: 2015
  end-page: 31
  ident: b0160
  article-title: Deployment of a hydrogen supply chain by multi-objective/multi-period optimisation at regional and national scales
  publication-title: Chem Eng Res Des
– volume: 103
  start-page: 131
  year: 2015
  end-page: 146
  ident: b0135
  article-title: Techno-economic analysis of PEMFC and SOFC micro-CHP fuel cell systems for the residential sector
  publication-title: Energy Build
– volume: 187
  start-page: 758
  year: 2017
  end-page: 776
  ident: b0040
  article-title: MOD-DR: microgrid optimal dispatch with demand response
  publication-title: Appl Energy
– volume: 202
  start-page: 348
  year: 2017
  end-page: 364
  ident: b0140
  article-title: Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems – a critical review
  publication-title: Appl Energy
– volume: 84
  start-page: 365
  year: 2015
  end-page: 381
  ident: b0165
  article-title: Multi-objective, multi-period optimization of district energy systems: IV – a case study
  publication-title: Energy
– volume: 98
  start-page: 296
  year: 2016
  end-page: 307
  ident: b0075
  article-title: Multi-objective optimal operation and energy coupling analysis of combined cooling and heating system
  publication-title: Energy
– volume: 76
  start-page: 974
  year: 2017
  end-page: 988
  ident: b9000
  article-title: Large-scale integration of distributed generation into distribution networks: Study objectives, review of models and computational tools
  publication-title: Renew Sustain Energy Rev
– volume: 194
  start-page: 454
  year: 2017
  end-page: 466
  ident: b0050
  article-title: Effects of load following operational strategy on CCHP system with an auxiliary ground source heat pump considering carbon tax and electricity feed in tariff
  publication-title: Appl Energy
– volume: 6
  start-page: 33
  year: 2017
  end-page: 46
  ident: b0005
  article-title: Simulation-based strategies for smart demand response
  publication-title: J Sustain Dev Energy Water Environ Syst
– volume: 156
  start-page: 34
  year: 2018
  end-page: 44
  ident: b0030
  article-title: Optimal scheduling of heating and power hubs under economic and environment issues in the presence of peak load management
  publication-title: Energy Convers Manage
– reference: > [access: 2017/07/01].
– volume: 93
  start-page: 2018
  year: 2015
  end-page: 2029
  ident: b0185
  article-title: Performance comparison of low-grade ORCs (organic Rankine cycles) using R245fa, pentane and their mixtures based on the thermoeconomic multi-objective optimization and decision makings
  publication-title: Energy
– volume: 125
  start-page: 681
  year: 2017
  end-page: 704
  ident: b0170
  article-title: Review: Multi-objective optimization methods and application in energy saving
  publication-title: Energy
– volume: 121
  start-page: 314
  year: 2017
  end-page: 324
  ident: b0095
  article-title: An efficient integration strategy for a SOFC-GT-SORC combined system with performance simulation and parametric optimization
  publication-title: Appl Therm Eng
– volume: 111
  start-page: 322
  year: 2016
  end-page: 340
  ident: b0070
  article-title: Multi-objective operation optimization and evaluation model for CCHP and renewable energy based hybrid energy system driven by distributed energy resources in China
  publication-title: Energy
– volume: 176
  start-page: 175
  year: 2018
  end-page: 186
  ident: b0225
  article-title: Electricity storage compared to net metering in residential PV applications
  publication-title: J Cleaner Prod
– volume: 76
  start-page: 460
  year: 2017
  end-page: 484
  ident: b0020
  article-title: Optimization strategies for solid oxide fuel cell (SOFC) application: a literature survey
  publication-title: Renew Sustain Energy Rev
– volume: 103
  start-page: 502
  year: 2016
  end-page: 512
  ident: b0080
  article-title: Multi-criteria assessment of building combined heat and power systems located in different climate zones: Japan-China comparison
  publication-title: Energy
– volume: 55
  start-page: 1014
  year: 2013
  end-page: 1024
  ident: b0145
  article-title: Economic and environmental optimization model for the design and the operation of a combined heat and power distributed generation system in an urban area
  publication-title: Energy
– volume: 99
  start-page: 202
  year: 2016
  end-page: 220
  ident: b0010
  article-title: Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system
  publication-title: Energy
– volume: 91
  start-page: 315
  year: 2015
  end-page: 322
  ident: b0190
  article-title: Thermo-economic optimization of Stirling heat pump by using non-dominated sorting genetic algorithm
  publication-title: Energy Convers Manage
– volume: 118
  start-page: 555
  year: 2018
  end-page: 564
  ident: b0220
  article-title: Dynamic subsidy model of photovoltaic distributed generation in China
  publication-title: Renew Energy
– volume: 184
  start-page: 375
  year: 2016
  end-page: 395
  ident: b0060
  article-title: Modeling a novel CCHP system including solar and wind renewable energy resources and sizing by a CC-MOPSO algorithm
  publication-title: Appl Energy
– volume: 175
  start-page: 168
  year: 2016
  end-page: 179
  ident: b0150
  article-title: Impacts of feed-in tariff policies on design and performance of CCHP system in different climate zones
  publication-title: Appl Energy
– volume: 113
  start-page: 112
  year: 2016
  end-page: 122
  ident: b0205
  article-title: Economic analysis of fuel cell installations at commercial buildings including regional pricing and complementary technologies
  publication-title: Energy Build
– volume: 96
  start-page: 58
  year: 2015
  ident: 10.1016/j.enconman.2018.04.054_b0195
  article-title: Comparison between regenerative organic Rankine cycle (RORC) and basic organic Rankine cycle (BORC) based on thermoeconomic multi-objective optimization considering exergy efficiency and levelized energy cost (LEC)
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2015.02.045
– ident: 10.1016/j.enconman.2018.04.054_b0230
– volume: 120
  start-page: 262
  year: 2017
  ident: 10.1016/j.enconman.2018.04.054_b0130
  article-title: Modeling and techno-economic analysis of the integration of a FC-based micro-CHP system for residential application with a heat pump
  publication-title: Energy
  doi: 10.1016/j.energy.2016.11.082
– volume: 125
  start-page: 681
  year: 2017
  ident: 10.1016/j.enconman.2018.04.054_b0170
  article-title: Review: Multi-objective optimization methods and application in energy saving
  publication-title: Energy
  doi: 10.1016/j.energy.2017.02.174
– volume: 133
  start-page: 292
  year: 2017
  ident: 10.1016/j.enconman.2018.04.054_b0045
  article-title: Energy flow modeling and optimal operation analysis of the micro energy grid based on energy hub
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.12.011
– volume: 33
  start-page: 1427
  year: 2008
  ident: 10.1016/j.enconman.2018.04.054_b0085
  article-title: Integrated evaluation of distributed triple-generation systems using improved grey incidence approach
  publication-title: Energy
  doi: 10.1016/j.energy.2008.04.008
– volume: 191
  start-page: 346
  year: 2017
  ident: 10.1016/j.enconman.2018.04.054_b0215
  article-title: Experience curve development and cost reduction disaggregation for fuel cell markets in Japan and the US
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.01.056
– volume: 76
  start-page: 460
  year: 2017
  ident: 10.1016/j.enconman.2018.04.054_b0020
  article-title: Optimization strategies for solid oxide fuel cell (SOFC) application: a literature survey
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.03.052
– volume: 194
  start-page: 454
  year: 2017
  ident: 10.1016/j.enconman.2018.04.054_b0050
  article-title: Effects of load following operational strategy on CCHP system with an auxiliary ground source heat pump considering carbon tax and electricity feed in tariff
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.07.017
– volume: 55
  start-page: 1014
  year: 2013
  ident: 10.1016/j.enconman.2018.04.054_b0145
  article-title: Economic and environmental optimization model for the design and the operation of a combined heat and power distributed generation system in an urban area
  publication-title: Energy
  doi: 10.1016/j.energy.2013.04.004
– volume: 175
  start-page: 168
  year: 2016
  ident: 10.1016/j.enconman.2018.04.054_b0150
  article-title: Impacts of feed-in tariff policies on design and performance of CCHP system in different climate zones
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.05.005
– volume: 118
  start-page: 555
  year: 2018
  ident: 10.1016/j.enconman.2018.04.054_b0220
  article-title: Dynamic subsidy model of photovoltaic distributed generation in China
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.11.042
– volume: 156
  start-page: 34
  year: 2018
  ident: 10.1016/j.enconman.2018.04.054_b0030
  article-title: Optimal scheduling of heating and power hubs under economic and environment issues in the presence of peak load management
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.11.007
– volume: 130
  start-page: 530
  year: 2017
  ident: 10.1016/j.enconman.2018.04.054_b0105
  article-title: Optimal design and economic analysis of a hybrid solid oxide fuel cell and parabolic solar dish collector, combined cooling, heating and power (CCHP) system used for a large commercial tower
  publication-title: Energy
  doi: 10.1016/j.energy.2017.05.001
– volume: 103
  start-page: 131
  year: 2015
  ident: 10.1016/j.enconman.2018.04.054_b0135
  article-title: Techno-economic analysis of PEMFC and SOFC micro-CHP fuel cell systems for the residential sector
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2015.06.052
– volume: 64
  start-page: 423
  year: 2013
  ident: 10.1016/j.enconman.2018.04.054_b0155
  article-title: On-site energy matching indices for buildings with energy conversion, storage and hybrid grid connections
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2013.05.030
– volume: 110
  start-page: 113
  year: 2016
  ident: 10.1016/j.enconman.2018.04.054_b0065
  article-title: Economic and environmental scheduling of smart homes with microgrid: DER operation and electrical tasks
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2015.11.056
– volume: 104
  start-page: 11
  year: 2015
  ident: 10.1016/j.enconman.2018.04.054_b0160
  article-title: Deployment of a hydrogen supply chain by multi-objective/multi-period optimisation at regional and national scales
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2015.07.005
– volume: 93
  start-page: 2018
  year: 2015
  ident: 10.1016/j.enconman.2018.04.054_b0185
  article-title: Performance comparison of low-grade ORCs (organic Rankine cycles) using R245fa, pentane and their mixtures based on the thermoeconomic multi-objective optimization and decision makings
  publication-title: Energy
  doi: 10.1016/j.energy.2015.10.065
– volume: 51
  start-page: 2846
  year: 2010
  ident: 10.1016/j.enconman.2018.04.054_b0115
  article-title: Analysis and optimization of the low-temperature solar organic Rankine cycle (ORC)
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2010.06.022
– ident: 10.1016/j.enconman.2018.04.054_b0120
– volume: 76
  start-page: 974
  year: 2017
  ident: 10.1016/j.enconman.2018.04.054_b9000
  article-title: Large-scale integration of distributed generation into distribution networks: Study objectives, review of models and computational tools
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.03.069
– volume: 42
  start-page: 7836
  year: 2017
  ident: 10.1016/j.enconman.2018.04.054_b0025
  article-title: Multi-objective optimization of the hybrid wind/solar/fuel cell distributed generation system using Hammersley Sequence Sampling
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.01.202
– ident: 10.1016/j.enconman.2018.04.054_b0090
– volume: 115
  start-page: 49
  year: 2016
  ident: 10.1016/j.enconman.2018.04.054_b0110
  article-title: Thermodynamic performance analysis and optimization of a solar-assisted combined cooling, heating and power system
  publication-title: Energy
  doi: 10.1016/j.energy.2016.08.102
– volume: 113
  start-page: 112
  year: 2016
  ident: 10.1016/j.enconman.2018.04.054_b0205
  article-title: Economic analysis of fuel cell installations at commercial buildings including regional pricing and complementary technologies
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2015.12.029
– volume: 121
  start-page: 314
  year: 2017
  ident: 10.1016/j.enconman.2018.04.054_b0095
  article-title: An efficient integration strategy for a SOFC-GT-SORC combined system with performance simulation and parametric optimization
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2017.04.066
– volume: 84
  start-page: 365
  year: 2015
  ident: 10.1016/j.enconman.2018.04.054_b0165
  article-title: Multi-objective, multi-period optimization of district energy systems: IV – a case study
  publication-title: Energy
  doi: 10.1016/j.energy.2015.03.003
– volume: 111
  start-page: 322
  year: 2016
  ident: 10.1016/j.enconman.2018.04.054_b0070
  article-title: Multi-objective operation optimization and evaluation model for CCHP and renewable energy based hybrid energy system driven by distributed energy resources in China
  publication-title: Energy
  doi: 10.1016/j.energy.2016.05.085
– volume: 103
  start-page: 502
  year: 2016
  ident: 10.1016/j.enconman.2018.04.054_b0080
  article-title: Multi-criteria assessment of building combined heat and power systems located in different climate zones: Japan-China comparison
  publication-title: Energy
  doi: 10.1016/j.energy.2016.02.156
– ident: 10.1016/j.enconman.2018.04.054_b0235
– volume: 187
  start-page: 758
  year: 2017
  ident: 10.1016/j.enconman.2018.04.054_b0040
  article-title: MOD-DR: microgrid optimal dispatch with demand response
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.11.093
– volume: 98
  start-page: 296
  year: 2016
  ident: 10.1016/j.enconman.2018.04.054_b0075
  article-title: Multi-objective optimal operation and energy coupling analysis of combined cooling and heating system
  publication-title: Energy
  doi: 10.1016/j.energy.2016.01.027
– volume: 99
  start-page: 202
  year: 2016
  ident: 10.1016/j.enconman.2018.04.054_b0010
  article-title: Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system
  publication-title: Energy
  doi: 10.1016/j.energy.2016.01.060
– volume: 64
  start-page: 167
  year: 2015
  ident: 10.1016/j.enconman.2018.04.054_b0175
  article-title: Thermo-economic multi-objective optimization for a solar-dish Brayton system using NSGA-II and decision making
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2014.07.027
– volume: 75
  start-page: 474
  year: 2014
  ident: 10.1016/j.enconman.2018.04.054_b0200
  article-title: The selection of key technologies by the silicon photovoltaic industry based on the Delphi method and AHP (analytic hierarchy process): case study of China
  publication-title: Energy
  doi: 10.1016/j.energy.2014.08.003
– volume: 6
  start-page: 33
  year: 2017
  ident: 10.1016/j.enconman.2018.04.054_b0005
  article-title: Simulation-based strategies for smart demand response
  publication-title: J Sustain Dev Energy Water Environ Syst
  doi: 10.13044/j.sdewes.d5.0168
– volume: 40
  start-page: 2065
  year: 2015
  ident: 10.1016/j.enconman.2018.04.054_b0125
  article-title: Hydrogen and fuel cell technologies for heating: a review
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.11.059
– volume: 176
  start-page: 175
  year: 2018
  ident: 10.1016/j.enconman.2018.04.054_b0225
  article-title: Electricity storage compared to net metering in residential PV applications
  publication-title: J Cleaner Prod
  doi: 10.1016/j.jclepro.2017.12.132
– volume: 125
  start-page: 513
  year: 2017
  ident: 10.1016/j.enconman.2018.04.054_b0035
  article-title: A two-stage optimization and control for CCHP microgrid energy management
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2017.05.188
– volume: 192
  start-page: 563
  year: 2017
  ident: 10.1016/j.enconman.2018.04.054_b0055
  article-title: Technical and economic assessment of a SOFC-based energy system for combined cooling, heating and power
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.06.105
– volume: 75
  start-page: 282
  year: 2013
  ident: 10.1016/j.enconman.2018.04.054_b0180
  article-title: Designing a solar powered Stirling heat engine based on multiple criteria: maximized thermal efficiency and power
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2013.06.025
– volume: 184
  start-page: 375
  year: 2016
  ident: 10.1016/j.enconman.2018.04.054_b0060
  article-title: Modeling a novel CCHP system including solar and wind renewable energy resources and sizing by a CC-MOPSO algorithm
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.09.110
– volume: 202
  start-page: 348
  year: 2017
  ident: 10.1016/j.enconman.2018.04.054_b0140
  article-title: Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems – a critical review
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.03.132
– volume: 112
  start-page: 149
  year: 2016
  ident: 10.1016/j.enconman.2018.04.054_b0210
  article-title: A novel multi-objective optimization method for CCHP–GSHP coupling systems
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2015.11.072
– volume: 105
  start-page: 596
  year: 2015
  ident: 10.1016/j.enconman.2018.04.054_b0100
  article-title: Thermodynamic and exergoeconomic analysis of biogas fed solid oxide fuel cell power plants emphasizing on anode and cathode recycling: a comparative study
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2015.07.085
– volume: 91
  start-page: 315
  year: 2015
  ident: 10.1016/j.enconman.2018.04.054_b0190
  article-title: Thermo-economic optimization of Stirling heat pump by using non-dominated sorting genetic algorithm
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2014.12.006
SSID ssj0003506
Score 2.624955
Snippet •Propose an optimization and evaluation integrated framework.•Establish a Mixed Integer Non-linear Programming optimal planning model.•Conduct multi-objective...
This study proposes an integrated framework for planning distributed energy system with addressing the multi-objective optimization and multi-criteria...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 445
SubjectTerms Analytic hierarchy process
buildings
climatic zones
Criteria
Decision making
Design engineering
Design optimization
Distributed control systems
Distributed energy system
Energy
Energy management
fuel cells
Mixed integer
Mixed Integer Non-linear Programming
Multi-criteria evaluation
Multi-objective optimization
Multiple criteria decision making
Multiple objective analysis
Nonlinear programming
Optimization
planning
Solid Oxide Fuel Cell
Solid oxide fuel cells
Systems design
systems engineering
Title A multi-objective optimization and multi-criteria evaluation integrated framework for distributed energy system optimal planning
URI https://dx.doi.org/10.1016/j.enconman.2018.04.054
https://www.proquest.com/docview/2076368682
https://www.proquest.com/docview/2220842361
Volume 166
WOSCitedRecordID wos000434004200038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMcEE8RKGiRuFUGx17v4xihIqhQhVChERdr17tWExWnapOqvfX38CuZ9awfSYHSAxcr2lfszJfZ2fHMN4S8ljpOtSjiqHApHFDsKI2UszriJjGZjkXJ6nI-3z6JvT05majPg8HPJhfm7EhUlTw_V8f_VdTQBsL2qbM3EHe7KDTAZxA6XEHscP0nwY8xSDCamxkqs-05qIUfId-yflmAA0BfeKJm3WP87tgj7HbZhG3VkYjWE-z62ljQ4zBfEEmgcXWfzxXKH634-nFkHdpe--Xw66-E3OyGyipfltPOk730LRPouVhv_H447doOgsf7wE37LoyR9KFWmMTZeDUVj6TCOsStWuZ9xcqQdDLs0Qw1-BX1j56I2RvPAVrBw_jQPVlT2SJT9Srf9to-2EYnNoFvs7xZJ_fr5DHLYZ1bZDMRmQINujn-uDPZbff9NKsrubYP08tH__0d_ckUWjMKaktn_z65F44odIzQekAGrnpI7vaIKx-RyzFdAxntg4yClOkqyGgHMtqBjLYgowAy2gMZRZBRBBkNIKMNyB6Tr-939t99iEItj6hgo2QR8ZHjxmpbJpqXJnamEIXTXHEnjDJgJGeWyWTkq1yWTCe2tDZlnAsHBq7KlEufkI1qXrmnhMpYG19I0sBZgBWlMMzBWJbGKhamsOWQZM3PmheB6N7XWznK_y7YIXnbzjtGqpdrZ6hGankwWNEQzQGQ187dasScB-1xCv2w3XPJZTIkr9puUPj-LZ6u3HwJY5IklsxzJj278Q0_J3e6_98W2VicLN0Lcrs4W0xPT14GQP8CjETbLw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-objective+optimization+and+multi-criteria+evaluation+integrated+framework+for+distributed+energy+system+optimal+planning&rft.jtitle=Energy+conversion+and+management&rft.au=Jing%2C+Rui&rft.au=Zhu%2C+Xingyi&rft.au=Zhu%2C+Zhiyi&rft.au=Wang%2C+Wei&rft.date=2018-06-15&rft.issn=0196-8904&rft.volume=166&rft.spage=445&rft.epage=462&rft_id=info:doi/10.1016%2Fj.enconman.2018.04.054&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enconman_2018_04_054
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon