Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny

To understand how infection by (Mtb) is modulated by host cell phenotype, we characterized those host phagocytes that controlled or supported bacterial growth during early infection, focusing on the ontologically distinct alveolar macrophage (AM) and interstitial macrophage (IM) lineages. Using fluo...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of experimental medicine Vol. 215; no. 4; p. 1135
Main Authors: Huang, Lu, Nazarova, Evgeniya V, Tan, Shumin, Liu, Yancheng, Russell, David G
Format: Journal Article
Language:English
Published: United States 02.04.2018
Subjects:
ISSN:1540-9538, 1540-9538
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract To understand how infection by (Mtb) is modulated by host cell phenotype, we characterized those host phagocytes that controlled or supported bacterial growth during early infection, focusing on the ontologically distinct alveolar macrophage (AM) and interstitial macrophage (IM) lineages. Using fluorescent Mtb reporter strains, we found that bacilli in AM exhibited lower stress and higher bacterial replication than those in IM. Interestingly, depletion of AM reduced bacterial burden, whereas depletion of IM increased bacterial burden. Transcriptomic analysis revealed that IMs were glycolytically active, whereas AMs were committed to fatty acid oxidation. Intoxication of infected mice with the glycolytic inhibitor, 2-deoxyglucose, decreased the number of IMs yet increased the bacterial burden in the lung. Furthermore, in in vitro macrophage infections, 2-deoxyglucose treatment increased bacterial growth, whereas the fatty acid oxidation inhibitor etomoxir constrained bacterial growth. We hypothesize that different macrophage lineages respond divergently to Mtb infection, with IMs exhibiting nutritional restriction and controlling bacterial growth and AMs representing a more nutritionally permissive environment.
AbstractList To understand how infection by (Mtb) is modulated by host cell phenotype, we characterized those host phagocytes that controlled or supported bacterial growth during early infection, focusing on the ontologically distinct alveolar macrophage (AM) and interstitial macrophage (IM) lineages. Using fluorescent Mtb reporter strains, we found that bacilli in AM exhibited lower stress and higher bacterial replication than those in IM. Interestingly, depletion of AM reduced bacterial burden, whereas depletion of IM increased bacterial burden. Transcriptomic analysis revealed that IMs were glycolytically active, whereas AMs were committed to fatty acid oxidation. Intoxication of infected mice with the glycolytic inhibitor, 2-deoxyglucose, decreased the number of IMs yet increased the bacterial burden in the lung. Furthermore, in in vitro macrophage infections, 2-deoxyglucose treatment increased bacterial growth, whereas the fatty acid oxidation inhibitor etomoxir constrained bacterial growth. We hypothesize that different macrophage lineages respond divergently to Mtb infection, with IMs exhibiting nutritional restriction and controlling bacterial growth and AMs representing a more nutritionally permissive environment.
To understand how infection by Mycobacterium tuberculosis (Mtb) is modulated by host cell phenotype, we characterized those host phagocytes that controlled or supported bacterial growth during early infection, focusing on the ontologically distinct alveolar macrophage (AM) and interstitial macrophage (IM) lineages. Using fluorescent Mtb reporter strains, we found that bacilli in AM exhibited lower stress and higher bacterial replication than those in IM. Interestingly, depletion of AM reduced bacterial burden, whereas depletion of IM increased bacterial burden. Transcriptomic analysis revealed that IMs were glycolytically active, whereas AMs were committed to fatty acid oxidation. Intoxication of infected mice with the glycolytic inhibitor, 2-deoxyglucose, decreased the number of IMs yet increased the bacterial burden in the lung. Furthermore, in in vitro macrophage infections, 2-deoxyglucose treatment increased bacterial growth, whereas the fatty acid oxidation inhibitor etomoxir constrained bacterial growth. We hypothesize that different macrophage lineages respond divergently to Mtb infection, with IMs exhibiting nutritional restriction and controlling bacterial growth and AMs representing a more nutritionally permissive environment.To understand how infection by Mycobacterium tuberculosis (Mtb) is modulated by host cell phenotype, we characterized those host phagocytes that controlled or supported bacterial growth during early infection, focusing on the ontologically distinct alveolar macrophage (AM) and interstitial macrophage (IM) lineages. Using fluorescent Mtb reporter strains, we found that bacilli in AM exhibited lower stress and higher bacterial replication than those in IM. Interestingly, depletion of AM reduced bacterial burden, whereas depletion of IM increased bacterial burden. Transcriptomic analysis revealed that IMs were glycolytically active, whereas AMs were committed to fatty acid oxidation. Intoxication of infected mice with the glycolytic inhibitor, 2-deoxyglucose, decreased the number of IMs yet increased the bacterial burden in the lung. Furthermore, in in vitro macrophage infections, 2-deoxyglucose treatment increased bacterial growth, whereas the fatty acid oxidation inhibitor etomoxir constrained bacterial growth. We hypothesize that different macrophage lineages respond divergently to Mtb infection, with IMs exhibiting nutritional restriction and controlling bacterial growth and AMs representing a more nutritionally permissive environment.
Author Huang, Lu
Tan, Shumin
Nazarova, Evgeniya V
Liu, Yancheng
Russell, David G
Author_xml – sequence: 1
  givenname: Lu
  orcidid: 0000-0002-7820-2177
  surname: Huang
  fullname: Huang, Lu
  organization: Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
– sequence: 2
  givenname: Evgeniya V
  orcidid: 0000-0001-5745-3172
  surname: Nazarova
  fullname: Nazarova, Evgeniya V
  organization: Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
– sequence: 3
  givenname: Shumin
  surname: Tan
  fullname: Tan, Shumin
  organization: Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
– sequence: 4
  givenname: Yancheng
  surname: Liu
  fullname: Liu, Yancheng
  organization: Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
– sequence: 5
  givenname: David G
  orcidid: 0000-0002-9748-750X
  surname: Russell
  fullname: Russell, David G
  email: dgr8@cornell.edu
  organization: Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY dgr8@cornell.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29500179$$D View this record in MEDLINE/PubMed
BookMark eNpNkD1PwzAYhC0Eoh-wMSOPLCn-SuyMqIKCVMQCc-Q4b1NXcVxsp1X_PZEoEtPdSc_dcDN02fseELqjZEGJEo87cAtGqGSEkQs0pbkgWZlzdfnPT9Asxh0hVIi8uEYTVuZjkOUUNavgj2mL_Qa_n4yvtUkQ7OBwGmoIZuh8tBHbHh_sweMIbYBWJ4j4aMfW1seEnTbB77e6Bewg6dp3Njqs-wb7PvkW-tMNutroLsLtWefo6-X5c_marT9Wb8undWYEZSljinLOwRipoGFKaJlryakkhhImhCRQ5qZuCkkKpQ3TpRJFDbLeGJZzyjWbo4ff3X3w3wPEVDkbDXSd7sEPsRpvIlwRztWI3p_RoXbQVPtgnQ6n6u8Z9gN8d2fx
CitedBy_id crossref_primary_10_3389_fimmu_2024_1360412
crossref_primary_10_1016_j_micpath_2020_104674
crossref_primary_10_3389_fcimb_2022_968543
crossref_primary_10_3390_ijms23031803
crossref_primary_10_1016_j_cell_2022_08_018
crossref_primary_10_3389_fimmu_2019_03103
crossref_primary_10_1016_j_bbadis_2022_166488
crossref_primary_10_3389_fimmu_2021_663695
crossref_primary_10_1128_iai_00430_22
crossref_primary_10_1002_eji_201948448
crossref_primary_10_3389_fimmu_2021_722500
crossref_primary_10_1128_microbiolspec_GPP3_0067_2019
crossref_primary_10_1038_s41467_020_19412_6
crossref_primary_10_1371_journal_ppat_1010459
crossref_primary_10_1016_j_immuni_2022_08_010
crossref_primary_10_1146_annurev_immunol_093019_125148
crossref_primary_10_1126_sciimmunol_abc2934
crossref_primary_10_3389_fimmu_2021_782495
crossref_primary_10_1128_IAI_00911_19
crossref_primary_10_3389_fimmu_2020_01609
crossref_primary_10_3389_fimmu_2023_1260859
crossref_primary_10_1164_rccm_201910_2063OC
crossref_primary_10_3389_fcimb_2020_00037
crossref_primary_10_1038_s41467_024_48515_7
crossref_primary_10_1515_tjb_2024_0302
crossref_primary_10_3389_fimmu_2024_1402024
crossref_primary_10_1093_infdis_jiab558
crossref_primary_10_3389_fimmu_2020_00630
crossref_primary_10_1016_j_coi_2024_102508
crossref_primary_10_1084_jem_20210469
crossref_primary_10_3389_fimmu_2021_722735
crossref_primary_10_1016_j_immuni_2024_08_002
crossref_primary_10_1038_s41590_019_0352_y
crossref_primary_10_3389_fcimb_2018_00275
crossref_primary_10_1016_j_ebiom_2020_102964
crossref_primary_10_1016_j_micpath_2024_107014
crossref_primary_10_4049_jimmunol_2200728
crossref_primary_10_3389_fimmu_2024_1430955
crossref_primary_10_7554_eLife_102980
crossref_primary_10_1042_BCJ20210263
crossref_primary_10_1128_IAI_00916_19
crossref_primary_10_1128_msphere_00704_23
crossref_primary_10_3389_fmolb_2020_00209
crossref_primary_10_1371_journal_ppat_1012188
crossref_primary_10_1002_iub_1862
crossref_primary_10_1007_s10528_022_10297_2
crossref_primary_10_3389_fimmu_2021_706727
crossref_primary_10_1038_s41467_024_52846_w
crossref_primary_10_1016_j_immuni_2022_04_009
crossref_primary_10_3389_fcimb_2020_00163
crossref_primary_10_7554_eLife_74690
crossref_primary_10_1128_iai_00522_21
crossref_primary_10_3390_antiox10020177
crossref_primary_10_1126_sciimmunol_aaz4415
crossref_primary_10_1016_j_smim_2022_101672
crossref_primary_10_1128_msphere_00033_22
crossref_primary_10_3389_fmolb_2019_00105
crossref_primary_10_1172_JCI175264
crossref_primary_10_1016_j_biocel_2020_105895
crossref_primary_10_3389_fimmu_2018_02296
crossref_primary_10_1016_j_micinf_2023_105271
crossref_primary_10_1038_s41385_020_0321_7
crossref_primary_10_1128_mSphere_00247_21
crossref_primary_10_1128_iai_00063_25
crossref_primary_10_1038_s41598_025_88212_z
crossref_primary_10_4049_jimmunol_2300885
crossref_primary_10_4167_jbv_2024_54_3_167
crossref_primary_10_1002_eji_202350610
crossref_primary_10_3389_fimmu_2019_02265
crossref_primary_10_4049_jimmunol_1900495
crossref_primary_10_1128_mbio_01436_25
crossref_primary_10_1038_s41564_024_01797_5
crossref_primary_10_1111_imr_12952
crossref_primary_10_1089_jir_2022_0027
crossref_primary_10_1002_JLB_MR0318_095RR
crossref_primary_10_1084_jem_20250466
crossref_primary_10_3389_fcimb_2019_00116
crossref_primary_10_1016_j_cell_2023_09_016
crossref_primary_10_1371_journal_ppat_1011871
crossref_primary_10_1016_j_cellimm_2024_104825
crossref_primary_10_1172_JCI141833
crossref_primary_10_4049_jimmunol_2300753
crossref_primary_10_1016_j_fsi_2019_11_051
crossref_primary_10_1038_s41598_024_63588_6
crossref_primary_10_1128_IAI_00156_21
crossref_primary_10_1016_j_ijantimicag_2024_107138
crossref_primary_10_1016_j_trac_2023_116919
crossref_primary_10_1016_j_mucimm_2023_06_006
crossref_primary_10_1146_annurev_pathol_042120_032916
crossref_primary_10_1186_s40001_023_01371_5
crossref_primary_10_1016_j_jaci_2020_07_038
crossref_primary_10_1371_journal_pone_0284498
crossref_primary_10_7554_eLife_98449
crossref_primary_10_1016_j_biocel_2025_106802
crossref_primary_10_1016_j_chom_2018_08_001
crossref_primary_10_1111_imr_13199
crossref_primary_10_7554_eLife_102980_3
crossref_primary_10_1016_j_chom_2019_11_011
crossref_primary_10_33549_physiolres_935058
crossref_primary_10_1007_s43939_024_00133_2
crossref_primary_10_1002_JLB_4MR0220_446R
crossref_primary_10_1084_jem_20240496
crossref_primary_10_1007_s00018_023_04914_5
crossref_primary_10_3389_fcimb_2025_1584777
crossref_primary_10_1016_j_micpath_2025_107757
crossref_primary_10_1038_s41467_024_53637_z
crossref_primary_10_1016_j_chom_2024_04_019
crossref_primary_10_1172_JCI140073
crossref_primary_10_1186_s40001_024_01991_5
crossref_primary_10_1016_j_tube_2022_102227
crossref_primary_10_1172_JCI147268
crossref_primary_10_1038_s41385_020_00356_5
crossref_primary_10_1002_1878_0261_13618
crossref_primary_10_1016_j_clim_2022_109216
crossref_primary_10_1016_j_cell_2024_09_016
crossref_primary_10_1016_j_chom_2019_11_002
crossref_primary_10_1038_s41598_020_62911_1
crossref_primary_10_1016_j_chom_2018_08_011
crossref_primary_10_1093_infdis_jiae060
crossref_primary_10_1084_jem_20232192
crossref_primary_10_3390_cells10040903
crossref_primary_10_1371_journal_ppat_1011297
crossref_primary_10_3389_fmicb_2018_01028
crossref_primary_10_1126_sciimmunol_abl7482
crossref_primary_10_1371_journal_ppat_1012148
crossref_primary_10_3389_fimmu_2023_1223260
crossref_primary_10_1084_jem_20212477
crossref_primary_10_1007_s12038_023_00374_y
crossref_primary_10_1371_journal_ppat_1011173
crossref_primary_10_1371_journal_pbio_3001355
crossref_primary_10_1038_s12276_024_01313_z
crossref_primary_10_1007_s13346_023_01319_6
crossref_primary_10_1038_s41467_020_17310_5
crossref_primary_10_1016_j_tube_2021_102141
crossref_primary_10_1073_pnas_1919211117
crossref_primary_10_1111_cmi_13337
crossref_primary_10_3390_ijms241713261
crossref_primary_10_3390_microorganisms7070185
crossref_primary_10_1016_j_immuni_2021_01_003
crossref_primary_10_1165_rcmb_2017_0382OC
crossref_primary_10_3389_fimmu_2022_864817
crossref_primary_10_1093_biolre_ioaf122
crossref_primary_10_1016_j_isci_2025_111975
crossref_primary_10_3390_cells9020483
crossref_primary_10_1038_s41467_020_16877_3
crossref_primary_10_1038_s41590_019_0407_0
crossref_primary_10_1371_journal_ppat_1012137
crossref_primary_10_1038_s42003_022_03387_9
crossref_primary_10_1016_j_tube_2024_102494
crossref_primary_10_3389_fimmu_2024_1463224
crossref_primary_10_3390_biomedicines9091209
crossref_primary_10_1038_s41385_019_0147_3
crossref_primary_10_3389_fcimb_2022_981827
crossref_primary_10_3389_fimmu_2025_1591026
crossref_primary_10_1002_cti2_1158
crossref_primary_10_1172_JCI148013
crossref_primary_10_3389_fcimb_2020_00493
crossref_primary_10_1186_s13099_025_00747_8
crossref_primary_10_1183_16000617_0252_2021
crossref_primary_10_15252_embj_2023113490
crossref_primary_10_4155_fmc_2019_0263
crossref_primary_10_1016_j_ijbiomac_2024_138639
crossref_primary_10_1093_infdis_jiae042
crossref_primary_10_1128_mbio_01559_25
crossref_primary_10_1038_s41385_021_00480_w
crossref_primary_10_3389_fimmu_2021_653571
crossref_primary_10_1172_JCI136288
crossref_primary_10_3389_fimmu_2021_739938
crossref_primary_10_1016_j_chom_2023_05_009
crossref_primary_10_1002_cyto_a_24030
crossref_primary_10_1016_j_metabol_2025_156349
crossref_primary_10_1111_sji_13011
crossref_primary_10_1128_iai_00438_22
crossref_primary_10_3389_fcimb_2020_586101
crossref_primary_10_4049_jimmunol_2000532
crossref_primary_10_1002_adhm_202304299
crossref_primary_10_3389_fmicb_2019_00402
crossref_primary_10_1016_j_mucimm_2024_05_007
crossref_primary_10_1097_MOL_0000000000000987
crossref_primary_10_1038_s41577_024_01080_y
crossref_primary_10_4049_jimmunol_2200555
crossref_primary_10_1128_Spectrum_00604_21
crossref_primary_10_1073_pnas_2413946122
crossref_primary_10_1126_sciimmunol_aaw6693
crossref_primary_10_3389_fimmu_2024_1440935
crossref_primary_10_1038_s41577_019_0124_9
crossref_primary_10_15252_msb_202110280
crossref_primary_10_3389_fimmu_2019_00917
crossref_primary_10_3389_fcimb_2022_956607
crossref_primary_10_1371_journal_ppat_1013208
crossref_primary_10_1111_cmi_13075
crossref_primary_10_1146_annurev_immunol_093019_010426
crossref_primary_10_1128_msphere_00517_24
crossref_primary_10_1038_s41531_023_00450_y
crossref_primary_10_3389_fimmu_2020_00910
crossref_primary_10_3389_fmicb_2020_00433
crossref_primary_10_1371_journal_ppat_1012595
crossref_primary_10_1134_S2079086425600146
crossref_primary_10_1099_mgen_0_000862
crossref_primary_10_3389_fimmu_2020_628432
crossref_primary_10_1038_s41467_022_28506_2
crossref_primary_10_1038_s41423_021_00791_9
crossref_primary_10_3389_fimmu_2024_1347045
crossref_primary_10_1084_jem_20210615
crossref_primary_10_1016_j_coviro_2024_101399
crossref_primary_10_1038_s41564_018_0245_0
crossref_primary_10_1165_rcmb_2019_0329ED
crossref_primary_10_1111_febs_15436
crossref_primary_10_1038_s41577_024_01124_3
crossref_primary_10_1371_journal_pone_0327718
crossref_primary_10_1002_jcp_31073
crossref_primary_10_1093_jleuko_qiad076
crossref_primary_10_1126_sciimmunol_adf8161
crossref_primary_10_1128_microbiolspec_BAI_0001_2019
crossref_primary_10_1128_mSphere_00153_21
crossref_primary_10_1016_j_celrep_2023_112522
crossref_primary_10_1017_erm_2021_21
crossref_primary_10_1038_s41385_019_0156_2
crossref_primary_10_3389_fcimb_2020_00446
crossref_primary_10_1016_j_tim_2020_04_010
crossref_primary_10_1016_j_intimp_2025_115211
crossref_primary_10_1126_scitranslmed_adg3451
crossref_primary_10_3389_fimmu_2020_00226
crossref_primary_10_7554_eLife_43621
crossref_primary_10_1111_mmi_14886
crossref_primary_10_1172_JCI161944
crossref_primary_10_1007_s13353_023_00808_1
crossref_primary_10_15252_msb_20188584
crossref_primary_10_1038_s41577_025_01192_z
crossref_primary_10_15789_2220_7619_EPO_17880
crossref_primary_10_3389_fcimb_2020_00457
crossref_primary_10_1016_j_imlet_2020_02_010
crossref_primary_10_3389_fimmu_2022_832015
crossref_primary_10_3389_fimmu_2022_1044592
crossref_primary_10_1016_j_tube_2020_102047
crossref_primary_10_14348_molcells_2021_0058
crossref_primary_10_1021_jasms_1c00205
crossref_primary_10_1038_s42003_022_03650_z
crossref_primary_10_3389_fimmu_2023_1305325
crossref_primary_10_1093_infdis_jiy579
crossref_primary_10_3389_fimmu_2021_711462
crossref_primary_10_1016_j_ijbiomac_2025_141740
crossref_primary_10_3390_microorganisms7060177
crossref_primary_10_1016_j_cca_2024_120020
crossref_primary_10_1186_s41479_023_00106_8
crossref_primary_10_4049_jimmunol_2101029
crossref_primary_10_1038_s41385_019_0217_6
crossref_primary_10_3390_vaccines8020253
crossref_primary_10_1126_science_aat7148
crossref_primary_10_4049_jimmunol_1900108
crossref_primary_10_7554_eLife_82933
crossref_primary_10_1371_journal_ppat_1012205
crossref_primary_10_1016_j_jconrel_2022_07_040
crossref_primary_10_1159_000539278
crossref_primary_10_1128_jvi_00102_23
crossref_primary_10_3389_fcimb_2019_00299
crossref_primary_10_1016_j_cell_2022_10_025
crossref_primary_10_3389_fimmu_2022_780839
crossref_primary_10_1038_s41385_018_0071_y
crossref_primary_10_1155_2024_7325606
crossref_primary_10_3389_fcell_2020_613116
crossref_primary_10_1016_j_coi_2023_102367
crossref_primary_10_1016_j_immuni_2025_05_004
crossref_primary_10_3389_fimmu_2020_557809
crossref_primary_10_3390_microbiolres12010014
crossref_primary_10_1016_j_coi_2023_102366
crossref_primary_10_1080_15257770_2024_2308522
crossref_primary_10_3389_fimmu_2022_936167
crossref_primary_10_1016_j_cmet_2025_05_012
crossref_primary_10_1073_pnas_2218812120
crossref_primary_10_1016_j_tim_2018_09_001
crossref_primary_10_1038_s41467_023_43588_2
crossref_primary_10_1016_j_micpath_2025_107914
crossref_primary_10_3389_fimmu_2024_1339467
crossref_primary_10_4049_jimmunol_2000628
crossref_primary_10_1016_j_cell_2023_11_002
crossref_primary_10_3389_fimmu_2020_00836
crossref_primary_10_1038_s41590_018_0276_y
crossref_primary_10_1371_journal_ppat_1009941
crossref_primary_10_1038_s41564_022_01080_5
crossref_primary_10_1146_annurev_immunol_082323_120757
crossref_primary_10_1016_j_bbadis_2022_166458
crossref_primary_10_3389_fmicb_2022_835620
crossref_primary_10_3389_fimmu_2020_00036
crossref_primary_10_1016_j_tim_2020_10_013
crossref_primary_10_1165_rcmb_2018_0162OC
crossref_primary_10_3389_fendo_2022_919223
crossref_primary_10_3389_fimmu_2022_747799
crossref_primary_10_3389_fimmu_2025_1535796
crossref_primary_10_1016_j_meegid_2020_104552
crossref_primary_10_1093_infdis_jiae583
crossref_primary_10_2147_ITT_S518628
crossref_primary_10_3389_fcimb_2022_934460
crossref_primary_10_1038_s41541_020_00255_7
crossref_primary_10_1038_s41467_022_34632_8
crossref_primary_10_1371_journal_pcbi_1007280
crossref_primary_10_20900_immunometab20200007
crossref_primary_10_3390_microorganisms11071722
crossref_primary_10_1016_j_dci_2022_104594
crossref_primary_10_3390_cells10040868
crossref_primary_10_3389_fimmu_2021_674643
crossref_primary_10_3389_fimmu_2020_569127
crossref_primary_10_1016_j_mib_2020_08_008
crossref_primary_10_3389_fimmu_2022_1087010
crossref_primary_10_1111_imcb_12493
crossref_primary_10_1126_sciimmunol_abi9768
crossref_primary_10_1186_s12977_020_00540_2
crossref_primary_10_3389_fimmu_2020_01599
crossref_primary_10_3389_fimmu_2018_02656
crossref_primary_10_1038_s41467_023_40545_x
crossref_primary_10_1111_tra_12752
crossref_primary_10_1093_femspd_ftab016
crossref_primary_10_1186_s40001_025_02443_4
crossref_primary_10_1165_rcmb_2018_0225ED
crossref_primary_10_15252_emmm_202216888
crossref_primary_10_3389_fimmu_2021_747387
crossref_primary_10_1111_imm_13276
crossref_primary_10_1111_imm_13154
crossref_primary_10_1164_rccm_201908_1506PP
crossref_primary_10_1038_s41423_024_01125_1
crossref_primary_10_1111_imm_13277
crossref_primary_10_1038_s41570_023_00472_3
crossref_primary_10_1099_jmm_0_001994
crossref_primary_10_1002_mco2_193
crossref_primary_10_3390_ijms26146573
crossref_primary_10_3390_metabo13080958
crossref_primary_10_3389_fmicb_2025_1634229
crossref_primary_10_1016_j_intimp_2024_112012
crossref_primary_10_1172_JCI168366
crossref_primary_10_1177_17534259241296630
crossref_primary_10_1111_imm_13947
crossref_primary_10_1016_j_immuni_2019_01_019
crossref_primary_10_1016_j_pharmthera_2022_108208
crossref_primary_10_3390_ijms24097928
crossref_primary_10_3389_fcimb_2020_576596
crossref_primary_10_7554_eLife_98449_4
crossref_primary_10_1038_s41598_024_71180_1
crossref_primary_10_1128_iai_00291_21
crossref_primary_10_1016_j_immuni_2021_10_015
crossref_primary_10_1038_s41467_023_42218_1
crossref_primary_10_1038_s41579_022_00763_4
crossref_primary_10_3389_fimmu_2022_1054477
ContentType Journal Article
Copyright 2018 Huang et al.
Copyright_xml – notice: 2018 Huang et al.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1084/jem.20172020
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1540-9538
ExternalDocumentID 29500179
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R00 AI114952
– fundername: NIAID NIH HHS
  grantid: K99 AI114952
– fundername: NIAID NIH HHS
  grantid: R01 AI118582
– fundername: NIAID NIH HHS
  grantid: R01 AI134183
GroupedDBID ---
-~X
18M
29K
2WC
36B
4.4
53G
5GY
5RE
5VS
ABOCM
ABZEH
ACGFO
ACNCT
ACPRK
ADBBV
AENEX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C45
CGR
CS3
CUY
CVF
D-I
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
EMB
F5P
F9R
FRP
GX1
H13
HYE
IH2
K-O
KQ8
L7B
N9A
NPM
O5R
O5S
OK1
P2P
P6G
R.V
RHF
RHI
RPM
SJN
TR2
TRP
UHB
W8F
WOQ
7X8
ID FETCH-LOGICAL-c412t-281333ecc78ed284a75a73170c1024470e95cbd67068ac2a9846be7bfc25313a2
IEDL.DBID 7X8
ISICitedReferencesCount 397
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000440817800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1540-9538
IngestDate Fri Sep 05 06:12:42 EDT 2025
Wed Feb 19 02:36:23 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License 2018 Huang et al.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-281333ecc78ed284a75a73170c1024470e95cbd67068ac2a9846be7bfc25313a2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9748-750X
0000-0002-7820-2177
0000-0001-5745-3172
OpenAccessLink https://rupress.org/jem/article-pdf/215/4/1135/1170604/jem_20172020.pdf
PMID 29500179
PQID 2010380338
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2010380338
pubmed_primary_29500179
PublicationCentury 2000
PublicationDate 20180402
PublicationDateYYYYMMDD 2018-04-02
PublicationDate_xml – month: 4
  year: 2018
  text: 20180402
  day: 2
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of experimental medicine
PublicationTitleAlternate J Exp Med
PublicationYear 2018
SSID ssj0014456
Score 2.6776772
Snippet To understand how infection by (Mtb) is modulated by host cell phenotype, we characterized those host phagocytes that controlled or supported bacterial growth...
To understand how infection by Mycobacterium tuberculosis (Mtb) is modulated by host cell phenotype, we characterized those host phagocytes that controlled or...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1135
SubjectTerms Animals
Bystander Effect
Cell Cycle
Cell Proliferation
Cellular Reprogramming
Fatty Acids - metabolism
Genes, Reporter
Glycolysis
Host-Pathogen Interactions
Macrophages, Alveolar - metabolism
Macrophages, Alveolar - microbiology
Macrophages, Alveolar - pathology
Metabolic Networks and Pathways
Mice, Inbred C57BL
Models, Biological
Monocytes - pathology
Mycobacterium tuberculosis - growth & development
Oxidation-Reduction
Phagocytes - metabolism
Transcription, Genetic
Tuberculosis - microbiology
Tuberculosis - pathology
Title Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny
URI https://www.ncbi.nlm.nih.gov/pubmed/29500179
https://www.proquest.com/docview/2010380338
Volume 215
WOSCitedRecordID wos000440817800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB7UinhxX-rGCF5DJzPTZHISEauXlh4UeguzhUZMUpuk0H_vmzSlJ0HwEsghEGbe8n3vm3kPoQdFjCQBsZ4ItPa4DzxFCaO8RCRK-1YoqnUzbCIcjcRkEo3bglvZHqtcx8QmUJtCuxp5z6m2TBBgVI-zb89NjXLqajtCYxt1GEAZZ9XhZKMicN5Mb_Wd-B-BZ7cH34ngvU_rrqFD9iaU_A4umyQzOPzv7x2hgxZe4qeVPRyjLZufoL1hK6CfIvMKtLua4iLBw6UGX256NdcZrmpl57r-Ksq0xGmOF-miwKUFNu7qbCV29VrsboTgTLqpX1OIQzizFdjQV1pmWOYGu1YIYI_LM_QxeHl_fvPaQQue5j6tPCqAqTLYzFBYA_lKhn0ZArAgGuAH5yGxUV8rE4QkEFJTGQFoUTZUiabgwkzSc7STF7m9RJibxCSaGSYCCA_aV75hwOmUUQm3lrEuul-vXwyG7NQJmduiLuPNCnbRxWoT4tmq40ZMo75Lp9HVH76-RvvwIprTNfQGdRJwY3uLdvWiSsv5XWMh8ByNhz9qDchU
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Growth+of+Mycobacterium+tuberculosis+in+vivo+segregates+with+host+macrophage+metabolism+and+ontogeny&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Huang%2C+Lu&rft.au=Nazarova%2C+Evgeniya+V&rft.au=Tan%2C+Shumin&rft.au=Liu%2C+Yancheng&rft.date=2018-04-02&rft.issn=1540-9538&rft.eissn=1540-9538&rft.volume=215&rft.issue=4&rft.spage=1135&rft_id=info:doi/10.1084%2Fjem.20172020&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1540-9538&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1540-9538&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1540-9538&client=summon