Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny
To understand how infection by (Mtb) is modulated by host cell phenotype, we characterized those host phagocytes that controlled or supported bacterial growth during early infection, focusing on the ontologically distinct alveolar macrophage (AM) and interstitial macrophage (IM) lineages. Using fluo...
Saved in:
| Published in: | The Journal of experimental medicine Vol. 215; no. 4; p. 1135 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
02.04.2018
|
| Subjects: | |
| ISSN: | 1540-9538, 1540-9538 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | To understand how infection by
(Mtb) is modulated by host cell phenotype, we characterized those host phagocytes that controlled or supported bacterial growth during early infection, focusing on the ontologically distinct alveolar macrophage (AM) and interstitial macrophage (IM) lineages. Using fluorescent Mtb reporter strains, we found that bacilli in AM exhibited lower stress and higher bacterial replication than those in IM. Interestingly, depletion of AM reduced bacterial burden, whereas depletion of IM increased bacterial burden. Transcriptomic analysis revealed that IMs were glycolytically active, whereas AMs were committed to fatty acid oxidation. Intoxication of infected mice with the glycolytic inhibitor, 2-deoxyglucose, decreased the number of IMs yet increased the bacterial burden in the lung. Furthermore, in in vitro macrophage infections, 2-deoxyglucose treatment increased bacterial growth, whereas the fatty acid oxidation inhibitor etomoxir constrained bacterial growth. We hypothesize that different macrophage lineages respond divergently to Mtb infection, with IMs exhibiting nutritional restriction and controlling bacterial growth and AMs representing a more nutritionally permissive environment. |
|---|---|
| AbstractList | To understand how infection by
(Mtb) is modulated by host cell phenotype, we characterized those host phagocytes that controlled or supported bacterial growth during early infection, focusing on the ontologically distinct alveolar macrophage (AM) and interstitial macrophage (IM) lineages. Using fluorescent Mtb reporter strains, we found that bacilli in AM exhibited lower stress and higher bacterial replication than those in IM. Interestingly, depletion of AM reduced bacterial burden, whereas depletion of IM increased bacterial burden. Transcriptomic analysis revealed that IMs were glycolytically active, whereas AMs were committed to fatty acid oxidation. Intoxication of infected mice with the glycolytic inhibitor, 2-deoxyglucose, decreased the number of IMs yet increased the bacterial burden in the lung. Furthermore, in in vitro macrophage infections, 2-deoxyglucose treatment increased bacterial growth, whereas the fatty acid oxidation inhibitor etomoxir constrained bacterial growth. We hypothesize that different macrophage lineages respond divergently to Mtb infection, with IMs exhibiting nutritional restriction and controlling bacterial growth and AMs representing a more nutritionally permissive environment. To understand how infection by Mycobacterium tuberculosis (Mtb) is modulated by host cell phenotype, we characterized those host phagocytes that controlled or supported bacterial growth during early infection, focusing on the ontologically distinct alveolar macrophage (AM) and interstitial macrophage (IM) lineages. Using fluorescent Mtb reporter strains, we found that bacilli in AM exhibited lower stress and higher bacterial replication than those in IM. Interestingly, depletion of AM reduced bacterial burden, whereas depletion of IM increased bacterial burden. Transcriptomic analysis revealed that IMs were glycolytically active, whereas AMs were committed to fatty acid oxidation. Intoxication of infected mice with the glycolytic inhibitor, 2-deoxyglucose, decreased the number of IMs yet increased the bacterial burden in the lung. Furthermore, in in vitro macrophage infections, 2-deoxyglucose treatment increased bacterial growth, whereas the fatty acid oxidation inhibitor etomoxir constrained bacterial growth. We hypothesize that different macrophage lineages respond divergently to Mtb infection, with IMs exhibiting nutritional restriction and controlling bacterial growth and AMs representing a more nutritionally permissive environment.To understand how infection by Mycobacterium tuberculosis (Mtb) is modulated by host cell phenotype, we characterized those host phagocytes that controlled or supported bacterial growth during early infection, focusing on the ontologically distinct alveolar macrophage (AM) and interstitial macrophage (IM) lineages. Using fluorescent Mtb reporter strains, we found that bacilli in AM exhibited lower stress and higher bacterial replication than those in IM. Interestingly, depletion of AM reduced bacterial burden, whereas depletion of IM increased bacterial burden. Transcriptomic analysis revealed that IMs were glycolytically active, whereas AMs were committed to fatty acid oxidation. Intoxication of infected mice with the glycolytic inhibitor, 2-deoxyglucose, decreased the number of IMs yet increased the bacterial burden in the lung. Furthermore, in in vitro macrophage infections, 2-deoxyglucose treatment increased bacterial growth, whereas the fatty acid oxidation inhibitor etomoxir constrained bacterial growth. We hypothesize that different macrophage lineages respond divergently to Mtb infection, with IMs exhibiting nutritional restriction and controlling bacterial growth and AMs representing a more nutritionally permissive environment. |
| Author | Huang, Lu Tan, Shumin Nazarova, Evgeniya V Liu, Yancheng Russell, David G |
| Author_xml | – sequence: 1 givenname: Lu orcidid: 0000-0002-7820-2177 surname: Huang fullname: Huang, Lu organization: Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY – sequence: 2 givenname: Evgeniya V orcidid: 0000-0001-5745-3172 surname: Nazarova fullname: Nazarova, Evgeniya V organization: Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY – sequence: 3 givenname: Shumin surname: Tan fullname: Tan, Shumin organization: Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA – sequence: 4 givenname: Yancheng surname: Liu fullname: Liu, Yancheng organization: Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY – sequence: 5 givenname: David G orcidid: 0000-0002-9748-750X surname: Russell fullname: Russell, David G email: dgr8@cornell.edu organization: Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY dgr8@cornell.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29500179$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkD1PwzAYhC0Eoh-wMSOPLCn-SuyMqIKCVMQCc-Q4b1NXcVxsp1X_PZEoEtPdSc_dcDN02fseELqjZEGJEo87cAtGqGSEkQs0pbkgWZlzdfnPT9Asxh0hVIi8uEYTVuZjkOUUNavgj2mL_Qa_n4yvtUkQ7OBwGmoIZuh8tBHbHh_sweMIbYBWJ4j4aMfW1seEnTbB77e6Bewg6dp3Njqs-wb7PvkW-tMNutroLsLtWefo6-X5c_marT9Wb8undWYEZSljinLOwRipoGFKaJlryakkhhImhCRQ5qZuCkkKpQ3TpRJFDbLeGJZzyjWbo4ff3X3w3wPEVDkbDXSd7sEPsRpvIlwRztWI3p_RoXbQVPtgnQ6n6u8Z9gN8d2fx |
| CitedBy_id | crossref_primary_10_3389_fimmu_2024_1360412 crossref_primary_10_1016_j_micpath_2020_104674 crossref_primary_10_3389_fcimb_2022_968543 crossref_primary_10_3390_ijms23031803 crossref_primary_10_1016_j_cell_2022_08_018 crossref_primary_10_3389_fimmu_2019_03103 crossref_primary_10_1016_j_bbadis_2022_166488 crossref_primary_10_3389_fimmu_2021_663695 crossref_primary_10_1128_iai_00430_22 crossref_primary_10_1002_eji_201948448 crossref_primary_10_3389_fimmu_2021_722500 crossref_primary_10_1128_microbiolspec_GPP3_0067_2019 crossref_primary_10_1038_s41467_020_19412_6 crossref_primary_10_1371_journal_ppat_1010459 crossref_primary_10_1016_j_immuni_2022_08_010 crossref_primary_10_1146_annurev_immunol_093019_125148 crossref_primary_10_1126_sciimmunol_abc2934 crossref_primary_10_3389_fimmu_2021_782495 crossref_primary_10_1128_IAI_00911_19 crossref_primary_10_3389_fimmu_2020_01609 crossref_primary_10_3389_fimmu_2023_1260859 crossref_primary_10_1164_rccm_201910_2063OC crossref_primary_10_3389_fcimb_2020_00037 crossref_primary_10_1038_s41467_024_48515_7 crossref_primary_10_1515_tjb_2024_0302 crossref_primary_10_3389_fimmu_2024_1402024 crossref_primary_10_1093_infdis_jiab558 crossref_primary_10_3389_fimmu_2020_00630 crossref_primary_10_1016_j_coi_2024_102508 crossref_primary_10_1084_jem_20210469 crossref_primary_10_3389_fimmu_2021_722735 crossref_primary_10_1016_j_immuni_2024_08_002 crossref_primary_10_1038_s41590_019_0352_y crossref_primary_10_3389_fcimb_2018_00275 crossref_primary_10_1016_j_ebiom_2020_102964 crossref_primary_10_1016_j_micpath_2024_107014 crossref_primary_10_4049_jimmunol_2200728 crossref_primary_10_3389_fimmu_2024_1430955 crossref_primary_10_7554_eLife_102980 crossref_primary_10_1042_BCJ20210263 crossref_primary_10_1128_IAI_00916_19 crossref_primary_10_1128_msphere_00704_23 crossref_primary_10_3389_fmolb_2020_00209 crossref_primary_10_1371_journal_ppat_1012188 crossref_primary_10_1002_iub_1862 crossref_primary_10_1007_s10528_022_10297_2 crossref_primary_10_3389_fimmu_2021_706727 crossref_primary_10_1038_s41467_024_52846_w crossref_primary_10_1016_j_immuni_2022_04_009 crossref_primary_10_3389_fcimb_2020_00163 crossref_primary_10_7554_eLife_74690 crossref_primary_10_1128_iai_00522_21 crossref_primary_10_3390_antiox10020177 crossref_primary_10_1126_sciimmunol_aaz4415 crossref_primary_10_1016_j_smim_2022_101672 crossref_primary_10_1128_msphere_00033_22 crossref_primary_10_3389_fmolb_2019_00105 crossref_primary_10_1172_JCI175264 crossref_primary_10_1016_j_biocel_2020_105895 crossref_primary_10_3389_fimmu_2018_02296 crossref_primary_10_1016_j_micinf_2023_105271 crossref_primary_10_1038_s41385_020_0321_7 crossref_primary_10_1128_mSphere_00247_21 crossref_primary_10_1128_iai_00063_25 crossref_primary_10_1038_s41598_025_88212_z crossref_primary_10_4049_jimmunol_2300885 crossref_primary_10_4167_jbv_2024_54_3_167 crossref_primary_10_1002_eji_202350610 crossref_primary_10_3389_fimmu_2019_02265 crossref_primary_10_4049_jimmunol_1900495 crossref_primary_10_1128_mbio_01436_25 crossref_primary_10_1038_s41564_024_01797_5 crossref_primary_10_1111_imr_12952 crossref_primary_10_1089_jir_2022_0027 crossref_primary_10_1002_JLB_MR0318_095RR crossref_primary_10_1084_jem_20250466 crossref_primary_10_3389_fcimb_2019_00116 crossref_primary_10_1016_j_cell_2023_09_016 crossref_primary_10_1371_journal_ppat_1011871 crossref_primary_10_1016_j_cellimm_2024_104825 crossref_primary_10_1172_JCI141833 crossref_primary_10_4049_jimmunol_2300753 crossref_primary_10_1016_j_fsi_2019_11_051 crossref_primary_10_1038_s41598_024_63588_6 crossref_primary_10_1128_IAI_00156_21 crossref_primary_10_1016_j_ijantimicag_2024_107138 crossref_primary_10_1016_j_trac_2023_116919 crossref_primary_10_1016_j_mucimm_2023_06_006 crossref_primary_10_1146_annurev_pathol_042120_032916 crossref_primary_10_1186_s40001_023_01371_5 crossref_primary_10_1016_j_jaci_2020_07_038 crossref_primary_10_1371_journal_pone_0284498 crossref_primary_10_7554_eLife_98449 crossref_primary_10_1016_j_biocel_2025_106802 crossref_primary_10_1016_j_chom_2018_08_001 crossref_primary_10_1111_imr_13199 crossref_primary_10_7554_eLife_102980_3 crossref_primary_10_1016_j_chom_2019_11_011 crossref_primary_10_33549_physiolres_935058 crossref_primary_10_1007_s43939_024_00133_2 crossref_primary_10_1002_JLB_4MR0220_446R crossref_primary_10_1084_jem_20240496 crossref_primary_10_1007_s00018_023_04914_5 crossref_primary_10_3389_fcimb_2025_1584777 crossref_primary_10_1016_j_micpath_2025_107757 crossref_primary_10_1038_s41467_024_53637_z crossref_primary_10_1016_j_chom_2024_04_019 crossref_primary_10_1172_JCI140073 crossref_primary_10_1186_s40001_024_01991_5 crossref_primary_10_1016_j_tube_2022_102227 crossref_primary_10_1172_JCI147268 crossref_primary_10_1038_s41385_020_00356_5 crossref_primary_10_1002_1878_0261_13618 crossref_primary_10_1016_j_clim_2022_109216 crossref_primary_10_1016_j_cell_2024_09_016 crossref_primary_10_1016_j_chom_2019_11_002 crossref_primary_10_1038_s41598_020_62911_1 crossref_primary_10_1016_j_chom_2018_08_011 crossref_primary_10_1093_infdis_jiae060 crossref_primary_10_1084_jem_20232192 crossref_primary_10_3390_cells10040903 crossref_primary_10_1371_journal_ppat_1011297 crossref_primary_10_3389_fmicb_2018_01028 crossref_primary_10_1126_sciimmunol_abl7482 crossref_primary_10_1371_journal_ppat_1012148 crossref_primary_10_3389_fimmu_2023_1223260 crossref_primary_10_1084_jem_20212477 crossref_primary_10_1007_s12038_023_00374_y crossref_primary_10_1371_journal_ppat_1011173 crossref_primary_10_1371_journal_pbio_3001355 crossref_primary_10_1038_s12276_024_01313_z crossref_primary_10_1007_s13346_023_01319_6 crossref_primary_10_1038_s41467_020_17310_5 crossref_primary_10_1016_j_tube_2021_102141 crossref_primary_10_1073_pnas_1919211117 crossref_primary_10_1111_cmi_13337 crossref_primary_10_3390_ijms241713261 crossref_primary_10_3390_microorganisms7070185 crossref_primary_10_1016_j_immuni_2021_01_003 crossref_primary_10_1165_rcmb_2017_0382OC crossref_primary_10_3389_fimmu_2022_864817 crossref_primary_10_1093_biolre_ioaf122 crossref_primary_10_1016_j_isci_2025_111975 crossref_primary_10_3390_cells9020483 crossref_primary_10_1038_s41467_020_16877_3 crossref_primary_10_1038_s41590_019_0407_0 crossref_primary_10_1371_journal_ppat_1012137 crossref_primary_10_1038_s42003_022_03387_9 crossref_primary_10_1016_j_tube_2024_102494 crossref_primary_10_3389_fimmu_2024_1463224 crossref_primary_10_3390_biomedicines9091209 crossref_primary_10_1038_s41385_019_0147_3 crossref_primary_10_3389_fcimb_2022_981827 crossref_primary_10_3389_fimmu_2025_1591026 crossref_primary_10_1002_cti2_1158 crossref_primary_10_1172_JCI148013 crossref_primary_10_3389_fcimb_2020_00493 crossref_primary_10_1186_s13099_025_00747_8 crossref_primary_10_1183_16000617_0252_2021 crossref_primary_10_15252_embj_2023113490 crossref_primary_10_4155_fmc_2019_0263 crossref_primary_10_1016_j_ijbiomac_2024_138639 crossref_primary_10_1093_infdis_jiae042 crossref_primary_10_1128_mbio_01559_25 crossref_primary_10_1038_s41385_021_00480_w crossref_primary_10_3389_fimmu_2021_653571 crossref_primary_10_1172_JCI136288 crossref_primary_10_3389_fimmu_2021_739938 crossref_primary_10_1016_j_chom_2023_05_009 crossref_primary_10_1002_cyto_a_24030 crossref_primary_10_1016_j_metabol_2025_156349 crossref_primary_10_1111_sji_13011 crossref_primary_10_1128_iai_00438_22 crossref_primary_10_3389_fcimb_2020_586101 crossref_primary_10_4049_jimmunol_2000532 crossref_primary_10_1002_adhm_202304299 crossref_primary_10_3389_fmicb_2019_00402 crossref_primary_10_1016_j_mucimm_2024_05_007 crossref_primary_10_1097_MOL_0000000000000987 crossref_primary_10_1038_s41577_024_01080_y crossref_primary_10_4049_jimmunol_2200555 crossref_primary_10_1128_Spectrum_00604_21 crossref_primary_10_1073_pnas_2413946122 crossref_primary_10_1126_sciimmunol_aaw6693 crossref_primary_10_3389_fimmu_2024_1440935 crossref_primary_10_1038_s41577_019_0124_9 crossref_primary_10_15252_msb_202110280 crossref_primary_10_3389_fimmu_2019_00917 crossref_primary_10_3389_fcimb_2022_956607 crossref_primary_10_1371_journal_ppat_1013208 crossref_primary_10_1111_cmi_13075 crossref_primary_10_1146_annurev_immunol_093019_010426 crossref_primary_10_1128_msphere_00517_24 crossref_primary_10_1038_s41531_023_00450_y crossref_primary_10_3389_fimmu_2020_00910 crossref_primary_10_3389_fmicb_2020_00433 crossref_primary_10_1371_journal_ppat_1012595 crossref_primary_10_1134_S2079086425600146 crossref_primary_10_1099_mgen_0_000862 crossref_primary_10_3389_fimmu_2020_628432 crossref_primary_10_1038_s41467_022_28506_2 crossref_primary_10_1038_s41423_021_00791_9 crossref_primary_10_3389_fimmu_2024_1347045 crossref_primary_10_1084_jem_20210615 crossref_primary_10_1016_j_coviro_2024_101399 crossref_primary_10_1038_s41564_018_0245_0 crossref_primary_10_1165_rcmb_2019_0329ED crossref_primary_10_1111_febs_15436 crossref_primary_10_1038_s41577_024_01124_3 crossref_primary_10_1371_journal_pone_0327718 crossref_primary_10_1002_jcp_31073 crossref_primary_10_1093_jleuko_qiad076 crossref_primary_10_1126_sciimmunol_adf8161 crossref_primary_10_1128_microbiolspec_BAI_0001_2019 crossref_primary_10_1128_mSphere_00153_21 crossref_primary_10_1016_j_celrep_2023_112522 crossref_primary_10_1017_erm_2021_21 crossref_primary_10_1038_s41385_019_0156_2 crossref_primary_10_3389_fcimb_2020_00446 crossref_primary_10_1016_j_tim_2020_04_010 crossref_primary_10_1016_j_intimp_2025_115211 crossref_primary_10_1126_scitranslmed_adg3451 crossref_primary_10_3389_fimmu_2020_00226 crossref_primary_10_7554_eLife_43621 crossref_primary_10_1111_mmi_14886 crossref_primary_10_1172_JCI161944 crossref_primary_10_1007_s13353_023_00808_1 crossref_primary_10_15252_msb_20188584 crossref_primary_10_1038_s41577_025_01192_z crossref_primary_10_15789_2220_7619_EPO_17880 crossref_primary_10_3389_fcimb_2020_00457 crossref_primary_10_1016_j_imlet_2020_02_010 crossref_primary_10_3389_fimmu_2022_832015 crossref_primary_10_3389_fimmu_2022_1044592 crossref_primary_10_1016_j_tube_2020_102047 crossref_primary_10_14348_molcells_2021_0058 crossref_primary_10_1021_jasms_1c00205 crossref_primary_10_1038_s42003_022_03650_z crossref_primary_10_3389_fimmu_2023_1305325 crossref_primary_10_1093_infdis_jiy579 crossref_primary_10_3389_fimmu_2021_711462 crossref_primary_10_1016_j_ijbiomac_2025_141740 crossref_primary_10_3390_microorganisms7060177 crossref_primary_10_1016_j_cca_2024_120020 crossref_primary_10_1186_s41479_023_00106_8 crossref_primary_10_4049_jimmunol_2101029 crossref_primary_10_1038_s41385_019_0217_6 crossref_primary_10_3390_vaccines8020253 crossref_primary_10_1126_science_aat7148 crossref_primary_10_4049_jimmunol_1900108 crossref_primary_10_7554_eLife_82933 crossref_primary_10_1371_journal_ppat_1012205 crossref_primary_10_1016_j_jconrel_2022_07_040 crossref_primary_10_1159_000539278 crossref_primary_10_1128_jvi_00102_23 crossref_primary_10_3389_fcimb_2019_00299 crossref_primary_10_1016_j_cell_2022_10_025 crossref_primary_10_3389_fimmu_2022_780839 crossref_primary_10_1038_s41385_018_0071_y crossref_primary_10_1155_2024_7325606 crossref_primary_10_3389_fcell_2020_613116 crossref_primary_10_1016_j_coi_2023_102367 crossref_primary_10_1016_j_immuni_2025_05_004 crossref_primary_10_3389_fimmu_2020_557809 crossref_primary_10_3390_microbiolres12010014 crossref_primary_10_1016_j_coi_2023_102366 crossref_primary_10_1080_15257770_2024_2308522 crossref_primary_10_3389_fimmu_2022_936167 crossref_primary_10_1016_j_cmet_2025_05_012 crossref_primary_10_1073_pnas_2218812120 crossref_primary_10_1016_j_tim_2018_09_001 crossref_primary_10_1038_s41467_023_43588_2 crossref_primary_10_1016_j_micpath_2025_107914 crossref_primary_10_3389_fimmu_2024_1339467 crossref_primary_10_4049_jimmunol_2000628 crossref_primary_10_1016_j_cell_2023_11_002 crossref_primary_10_3389_fimmu_2020_00836 crossref_primary_10_1038_s41590_018_0276_y crossref_primary_10_1371_journal_ppat_1009941 crossref_primary_10_1038_s41564_022_01080_5 crossref_primary_10_1146_annurev_immunol_082323_120757 crossref_primary_10_1016_j_bbadis_2022_166458 crossref_primary_10_3389_fmicb_2022_835620 crossref_primary_10_3389_fimmu_2020_00036 crossref_primary_10_1016_j_tim_2020_10_013 crossref_primary_10_1165_rcmb_2018_0162OC crossref_primary_10_3389_fendo_2022_919223 crossref_primary_10_3389_fimmu_2022_747799 crossref_primary_10_3389_fimmu_2025_1535796 crossref_primary_10_1016_j_meegid_2020_104552 crossref_primary_10_1093_infdis_jiae583 crossref_primary_10_2147_ITT_S518628 crossref_primary_10_3389_fcimb_2022_934460 crossref_primary_10_1038_s41541_020_00255_7 crossref_primary_10_1038_s41467_022_34632_8 crossref_primary_10_1371_journal_pcbi_1007280 crossref_primary_10_20900_immunometab20200007 crossref_primary_10_3390_microorganisms11071722 crossref_primary_10_1016_j_dci_2022_104594 crossref_primary_10_3390_cells10040868 crossref_primary_10_3389_fimmu_2021_674643 crossref_primary_10_3389_fimmu_2020_569127 crossref_primary_10_1016_j_mib_2020_08_008 crossref_primary_10_3389_fimmu_2022_1087010 crossref_primary_10_1111_imcb_12493 crossref_primary_10_1126_sciimmunol_abi9768 crossref_primary_10_1186_s12977_020_00540_2 crossref_primary_10_3389_fimmu_2020_01599 crossref_primary_10_3389_fimmu_2018_02656 crossref_primary_10_1038_s41467_023_40545_x crossref_primary_10_1111_tra_12752 crossref_primary_10_1093_femspd_ftab016 crossref_primary_10_1186_s40001_025_02443_4 crossref_primary_10_1165_rcmb_2018_0225ED crossref_primary_10_15252_emmm_202216888 crossref_primary_10_3389_fimmu_2021_747387 crossref_primary_10_1111_imm_13276 crossref_primary_10_1111_imm_13154 crossref_primary_10_1164_rccm_201908_1506PP crossref_primary_10_1038_s41423_024_01125_1 crossref_primary_10_1111_imm_13277 crossref_primary_10_1038_s41570_023_00472_3 crossref_primary_10_1099_jmm_0_001994 crossref_primary_10_1002_mco2_193 crossref_primary_10_3390_ijms26146573 crossref_primary_10_3390_metabo13080958 crossref_primary_10_3389_fmicb_2025_1634229 crossref_primary_10_1016_j_intimp_2024_112012 crossref_primary_10_1172_JCI168366 crossref_primary_10_1177_17534259241296630 crossref_primary_10_1111_imm_13947 crossref_primary_10_1016_j_immuni_2019_01_019 crossref_primary_10_1016_j_pharmthera_2022_108208 crossref_primary_10_3390_ijms24097928 crossref_primary_10_3389_fcimb_2020_576596 crossref_primary_10_7554_eLife_98449_4 crossref_primary_10_1038_s41598_024_71180_1 crossref_primary_10_1128_iai_00291_21 crossref_primary_10_1016_j_immuni_2021_10_015 crossref_primary_10_1038_s41467_023_42218_1 crossref_primary_10_1038_s41579_022_00763_4 crossref_primary_10_3389_fimmu_2022_1054477 |
| ContentType | Journal Article |
| Copyright | 2018 Huang et al. |
| Copyright_xml | – notice: 2018 Huang et al. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1084/jem.20172020 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1540-9538 |
| ExternalDocumentID | 29500179 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R00 AI114952 – fundername: NIAID NIH HHS grantid: K99 AI114952 – fundername: NIAID NIH HHS grantid: R01 AI118582 – fundername: NIAID NIH HHS grantid: R01 AI134183 |
| GroupedDBID | --- -~X 18M 29K 2WC 36B 4.4 53G 5GY 5RE 5VS ABOCM ABZEH ACGFO ACNCT ACPRK ADBBV AENEX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C45 CGR CS3 CUY CVF D-I DIK DU5 E3Z EBS ECM EIF EJD EMB F5P F9R FRP GX1 H13 HYE IH2 K-O KQ8 L7B N9A NPM O5R O5S OK1 P2P P6G R.V RHF RHI RPM SJN TR2 TRP UHB W8F WOQ 7X8 |
| ID | FETCH-LOGICAL-c412t-281333ecc78ed284a75a73170c1024470e95cbd67068ac2a9846be7bfc25313a2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 397 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000440817800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1540-9538 |
| IngestDate | Fri Sep 05 06:12:42 EDT 2025 Wed Feb 19 02:36:23 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | 2018 Huang et al. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c412t-281333ecc78ed284a75a73170c1024470e95cbd67068ac2a9846be7bfc25313a2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-9748-750X 0000-0002-7820-2177 0000-0001-5745-3172 |
| OpenAccessLink | https://rupress.org/jem/article-pdf/215/4/1135/1170604/jem_20172020.pdf |
| PMID | 29500179 |
| PQID | 2010380338 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2010380338 pubmed_primary_29500179 |
| PublicationCentury | 2000 |
| PublicationDate | 20180402 |
| PublicationDateYYYYMMDD | 2018-04-02 |
| PublicationDate_xml | – month: 4 year: 2018 text: 20180402 day: 2 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | The Journal of experimental medicine |
| PublicationTitleAlternate | J Exp Med |
| PublicationYear | 2018 |
| SSID | ssj0014456 |
| Score | 2.6776772 |
| Snippet | To understand how infection by
(Mtb) is modulated by host cell phenotype, we characterized those host phagocytes that controlled or supported bacterial growth... To understand how infection by Mycobacterium tuberculosis (Mtb) is modulated by host cell phenotype, we characterized those host phagocytes that controlled or... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 1135 |
| SubjectTerms | Animals Bystander Effect Cell Cycle Cell Proliferation Cellular Reprogramming Fatty Acids - metabolism Genes, Reporter Glycolysis Host-Pathogen Interactions Macrophages, Alveolar - metabolism Macrophages, Alveolar - microbiology Macrophages, Alveolar - pathology Metabolic Networks and Pathways Mice, Inbred C57BL Models, Biological Monocytes - pathology Mycobacterium tuberculosis - growth & development Oxidation-Reduction Phagocytes - metabolism Transcription, Genetic Tuberculosis - microbiology Tuberculosis - pathology |
| Title | Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29500179 https://www.proquest.com/docview/2010380338 |
| Volume | 215 |
| WOSCitedRecordID | wos000440817800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB7UinhxX-rGCF5DJzPTZHISEauXlh4UeguzhUZMUpuk0H_vmzSlJ0HwEsghEGbe8n3vm3kPoQdFjCQBsZ4ItPa4DzxFCaO8RCRK-1YoqnUzbCIcjcRkEo3bglvZHqtcx8QmUJtCuxp5z6m2TBBgVI-zb89NjXLqajtCYxt1GEAZZ9XhZKMicN5Mb_Wd-B-BZ7cH34ngvU_rrqFD9iaU_A4umyQzOPzv7x2hgxZe4qeVPRyjLZufoL1hK6CfIvMKtLua4iLBw6UGX256NdcZrmpl57r-Ksq0xGmOF-miwKUFNu7qbCV29VrsboTgTLqpX1OIQzizFdjQV1pmWOYGu1YIYI_LM_QxeHl_fvPaQQue5j6tPCqAqTLYzFBYA_lKhn0ZArAgGuAH5yGxUV8rE4QkEFJTGQFoUTZUiabgwkzSc7STF7m9RJibxCSaGSYCCA_aV75hwOmUUQm3lrEuul-vXwyG7NQJmduiLuPNCnbRxWoT4tmq40ZMo75Lp9HVH76-RvvwIprTNfQGdRJwY3uLdvWiSsv5XWMh8ByNhz9qDchU |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Growth+of+Mycobacterium+tuberculosis+in+vivo+segregates+with+host+macrophage+metabolism+and+ontogeny&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Huang%2C+Lu&rft.au=Nazarova%2C+Evgeniya+V&rft.au=Tan%2C+Shumin&rft.au=Liu%2C+Yancheng&rft.date=2018-04-02&rft.issn=1540-9538&rft.eissn=1540-9538&rft.volume=215&rft.issue=4&rft.spage=1135&rft_id=info:doi/10.1084%2Fjem.20172020&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1540-9538&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1540-9538&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1540-9538&client=summon |