A Substitution-Translation-Restoration Framework for Handling Unknown Words in Statistical Machine Translation
Unknown words are one of the key factors that greatly affect the translation quality. Traditionally, nearly all the related researches focus on obtaining the translation of the unknown words. However, these approaches have two disadvantages. On the one hand, they usually rely on many additional reso...
Saved in:
| Published in: | Journal of computer science and technology Vol. 28; no. 5; pp. 907 - 918 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Boston
Springer US
01.09.2013
Springer Nature B.V National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China |
| Subjects: | |
| ISSN: | 1000-9000, 1860-4749 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Unknown words are one of the key factors that greatly affect the translation quality. Traditionally, nearly all the related researches focus on obtaining the translation of the unknown words. However, these approaches have two disadvantages. On the one hand, they usually rely on many additional resources such as bilingual web data; on the other hand, they cannot guarantee good reordering and lexical selection of surrounding words. This paper gives a new perspective on handling unknown words in statistical machine translation (SMT). Instead of making great efforts to find the translation of unknown words, we focus on determining the semantic function of the unknown word in the test sentence and keeping the semantic function unchanged in the translation process. In this way, unknown words can help the phrase reordering and lexical selection of their surrounding words even though they still remain untranslated. In order to determine the semantic function of an unknown word, we employ the distributional semantic model and the bidirectional language model. Extensive experiments on both phrase-based and linguistically syntax-based SMT models in Chinese-to-English translation show that our method can substantially improve the translation quality. |
|---|---|
| AbstractList | Unknown words are one of the key factors that greatly affect the translation quality. Traditionally, nearly all the related researches focus on obtaining the translation of the unknown words. However, these approaches have two disadvantages. On the one hand, they usually rely on many additional resources such as bilingual web data; on the other hand, they cannot guarantee good reordering and lexical selection of surrounding words. This paper gives a new perspective on handling unknown words in statistical machine translation (SMT). Instead of making great efforts to find the translation of unknown words, we focus on determining the semantic function of the unknown word in the test sentence and keeping the semantic function unchanged in the translation process. In this way, unknown words can help the phrase reordering and lexical selection of their surrounding words even though they still remain untranslated. In order to determine the semantic function of an unknown word, we employ the distributional semantic model and the bidirectional language model. Extensive experiments on both phrase-based and linguistically syntax-based SMT models in Chinese-to-English translation show that our method can substantially improve the translation quality.[PUBLICATION ABSTRACT] Unknown words are one of the key factors that greatly affect the translation quality. Traditionally, nearly all the related researches focus on obtaining the translation of the unknown words. However, these approaches have two disadvantages. On the one hand, they usually rely on many additional resources such as bilingual web data; on the other hand, they cannot guarantee good reordering and lexical selection of surrounding words. This paper gives a new perspective on handling unknown words in statistical machine translation (SMT). Instead of making great efforts to find the translation of unknown words, we focus on determining the semantic function of the unknown word in the test sentence and keeping the semantic function unchanged in the translation process. In this way, unknown words can help the phrase reordering and lexical selection of their surrounding words even though they still remain untranslated. In order to determine the semantic function of an unknown word, we employ the distributional semantic model and the bidirectional language model. Extensive experiments on both phrase-based and linguistically syntax-based SMT models in Chinese-to-English translation show that our method can substantially improve the translation quality. Unknown words are one of the key factors that greatly affect the translation quality. Traditionally, nearly all the related researches focus on obtaining the translation of the unknown words. However, these approaches have two disadvantages. On the one hand, they usually rely on many additional resources such as bilingual web data; on the other hand, they cannot guarantee good reordering and lexical selection of surrounding words. This paper gives a new perspective on handling unknown words in statistical machine translation (SMT). Instead of making great efforts to find the translation of unknown words, we focus on determining the semantic function of the unknown word in the test sentence and keeping the semantic function unchanged in the translation process. In this way, unknown words can help the phrase reordering and lexical selection of their surrounding words even though they still remain untranslated. In order to determine the semantic function of an unknown word, we employ the distributional semantic model and the bidirectional language model. Extensive experiments on both phrase-based and linguistically syntax-based SMT models in Chinese-to-English translation show that our method can substantially improve the translation quality. |
| Author | Zong, Cheng-Qing Zhang, Jia-Jun Zhai, Fei-Fei |
| AuthorAffiliation | National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China |
| AuthorAffiliation_xml | – name: National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China |
| Author_xml | – sequence: 1 givenname: Jia-Jun surname: Zhang fullname: Zhang, Jia-Jun email: jjzhang@nlpr.ia.ac.cn organization: National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences – sequence: 2 givenname: Fei-Fei surname: Zhai fullname: Zhai, Fei-Fei organization: National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences – sequence: 3 givenname: Cheng-Qing surname: Zong fullname: Zong, Cheng-Qing organization: National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences |
| BookMark | eNp9kUFP3DAQhaOKSgXaH9Cbq156qOk4duzkiBAUJKpKBdSj5TjO4mx2DHaipf--ZoMQ4oBk2XP43nvjmYNiDwO6ovjM4IgBqB-JMd4ABcYp47Wk1btin9USqFCi2cs1ANAmXx-Kg5QGAK5AiP0Cj8nV3KbJT_PkA9LraDCNZlf_cWkKcVeTs2g2bhvimvQhknOD3ehxRW5wjWGL5G-IXSIeydWU-WxnzUh-GXvr0ZEXnh-L970Zk_v09B4WN2en1yfn9PL3z4uT40tqBSsnWlasYdJ2beMs1KoD5VjXOgmyBQOur7l0qpStNMJCxctOma6qQUEr63wsPyy-L75bg73BlR7CHDEn6iEN64chPbTalXlaUAETGf-24Hcx3M_523rjk3XjaNCFOWkmFROM80Zl9Osr9Nk6GynFRcnrTKmFsjGkFF2vrZ92E5ii8aNmoB_Xppe16dyIflybrrKSvVLeRb8x8d-bmnLRpMziysUXPb0h-vIUdBtwdZ91z0lCgRRlVvwHjJ634A |
| CitedBy_id | crossref_primary_10_1080_24751839_2020_1838713 crossref_primary_10_3390_app14020486 crossref_primary_10_3390_info10060202 |
| Cites_doi | 10.3115/1073083.1073150 10.3115/1119282.1119285 10.1177/001316446002000104 10.1007/978-3-642-34456-5_17 10.3115/1610075.1610083 10.3115/1699510.1699560 10.1007/978-3-642-23808-6_13 10.3115/1220175.1220296 10.21236/ADA460212 10.3115/1075096.1075117 10.3115/1067807.1067833 10.1017/CBO9780511921803 10.3758/BF03204766 10.3115/1690219.1690257 10.1037/0033-295X.104.2.211 10.3115/1118037.1118050 10.1145/219717.219748 10.3115/1220355.1220444 10.3115/1557769.1557821 10.1613/jair.2934 10.3115/976909.979634 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media New York & Science Press, China 2013 Springer Science+Business Media New York & Science Press, China 2013. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Springer Science+Business Media New York & Science Press, China 2013 – notice: Springer Science+Business Media New York & Science Press, China 2013. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7TB FR3 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.1007/s11390-013-1386-5 |
| DatabaseName | CQVIP 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Collection (ProQuest) Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Mechanical & Transportation Engineering Abstracts Engineering Research Database Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) Mechanical & Transportation Engineering Abstracts Engineering Research Database |
| DatabaseTitleList | ABI/INFORM Global (Corporate) Technology Research Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| DocumentTitleAlternate | A Substitution-Translation-Restoration Framework for Handling Unknown Words in Statistical Machine Translation |
| EISSN | 1860-4749 |
| EndPage | 918 |
| ExternalDocumentID | jsjkxjsxb_e201305014 3085834911 10_1007_s11390_013_1386_5 47064211 |
| GrantInformation_xml | – fundername: the National High Technology Research and Development 863 Program of China under Grant Nos.2011AA01A207,2012AA011101,and 2012AA011102 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 28- 29K 2B. 2C0 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VR 5VS 67Z 6NX 7WY 8FE 8FG 8FL 8TC 8UJ 92H 92I 92L 92R 93N 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAOBN AARHV AARTL AATNV AATVU AAUYE AAWCG AAWWR AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ACZOJ ADGRI ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AEYWE AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCEZO CCPQU CHBEP COF CQIGP CS3 CSCUP CUBFJ CW9 D-I DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M4Y M7S MA- N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PQBIZ PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCL SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TCJ TGT TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W92 WK8 YLTOR Z7R Z7U Z7X Z7Z Z81 Z83 Z88 Z8R Z8W Z92 ZMTXR ~A9 ~EX ~WA -SI -S~ 5XA 5XJ AACDK AAJBT AASML AAXDM AAYZH ABAKF ABQSL ACDTI ACPIV AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU BSONS CAJEI H13 PQBZA Q-- U1G U5S AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ICD IVC PHGZM PHGZT PQGLB TGMPQ 7SC 7XB 8AL 8FD 8FK JQ2 L.- L6V L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U 7TB FR3 PUEGO 4A8 PMFND PSX |
| ID | FETCH-LOGICAL-c412t-251916cdb9ec087d07e1dbe606b0a0ef836e726b6a4c0532d7ad58070b68b68c3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000324661300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1000-9000 |
| IngestDate | Thu May 29 04:00:15 EDT 2025 Thu Oct 02 10:51:54 EDT 2025 Tue Nov 04 19:53:19 EST 2025 Sat Nov 29 03:05:36 EST 2025 Tue Nov 18 22:23:19 EST 2025 Fri Feb 21 02:40:04 EST 2025 Wed Feb 14 10:50:11 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Statistical machine translation Distributional semantics Bidirectional language model bidirectional language model distributional semantics statistical machine translation |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c412t-251916cdb9ec087d07e1dbe606b0a0ef836e726b6a4c0532d7ad58070b68b68c3 |
| Notes | Unknown words are one of the key factors that greatly affect the translation quality. Traditionally, nearly all the related researches focus on obtaining the translation of the unknown words. However, these approaches have two disadvantages. On the one hand, they usually rely on many additional resources such as bilingual web data; on the other hand, they cannot guarantee good reordering and lexical selection of surrounding words. This paper gives a new perspective on handling unknown words in statistical machine translation (SMT). Instead of making great efforts to find the translation of unknown words, we focus on determining the semantic function of the unknown word in the test sentence and keeping the semantic function unchanged in the translation process. In this way, unknown words can help the phrase reordering and lexical selection of their surrounding words even though they still remain untranslated. In order to determine the semantic function of an unknown word, we employ the distributional semantic model and the bidirectional language model. Extensive experiments on both phrase-based and linguistically syntax-based SMT models in Chinese-to-English translation show that our method can substantially improve the translation quality. 11-2296/TP statistical machine translation, distributional semantics, bidirectional language model Jia-Jun Zhang , Member, CCF, FeimFei Zhai and Cheng-Qing Zong , Senior Member, CCF (National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China E-marl: {jjzhang, ffzhai, cqzong}@nlpr.ia.ac.cn Received December 4, 2012; revised May 7, 2013) ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 1437734238 |
| PQPubID | 326258 |
| PageCount | 12 |
| ParticipantIDs | wanfang_journals_jsjkxjsxb_e201305014 proquest_miscellaneous_1671413397 proquest_journals_1437734238 crossref_citationtrail_10_1007_s11390_013_1386_5 crossref_primary_10_1007_s11390_013_1386_5 springer_journals_10_1007_s11390_013_1386_5 chongqing_primary_47064211 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-09-01 |
| PublicationDateYYYYMMDD | 2013-09-01 |
| PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Boston |
| PublicationPlace_xml | – name: Boston – name: Beijing |
| PublicationTitle | Journal of computer science and technology |
| PublicationTitleAbbrev | J. Comput. Sci. Technol |
| PublicationTitleAlternate | Journal of Computer Science and Technology |
| PublicationTitle_FL | Journal of Computer Science and Technology |
| PublicationYear | 2013 |
| Publisher | Springer US Springer Nature B.V National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China |
| References | Tanaka T, Baldwin T. Noun-noun compound machine translation: A feasibility study on shallow processing. In Proc. the ACL Workshop on Multiword Expressions: Analysis, Acquisition, and Treatment, July 2003, pp.17-24. Och F J. Minimum error rate training for statistical machine translation. In Proc. the 41st ACL, July 2003, pp.160-167. MillerGAWordNet: A lexical database for EnglishMagazine Communications of the ACM19953811394110.1145/219717.219748 Fung P, Cheung P. Mining very-non-parallel corpora: Parallel sentence and lexicon extraction via bootstrapping and EM. In Proc. the 1st EMNLP, July 2004, pp.57-63. Langlais P, Patry A. Translating unknown words by analogical learning. In Proc. the 4th EMNLP, June 2007, pp.877-886. LandauerTDumaisSA solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledgePsychological Review1997104221124010.1037/0033-295X.104.2.211 Jiang L, Zhou M, Chien L, Niu C. Named entity translation with web mining and transliteration. In Proc. the 20th IJCAI, January 2007, pp.1629-1634. Koehn P, Hoang H, Birch A et al. Moses: Open source toolkit for statistical machine translation. In Proc. the 45th ACL, June 2007, pp.177-180. Zhang J, Zhai F, Zong C. Augmenting string-to-tree translation models with fuzzy use of source-side syntax. In Proc. the 8th EMNLP, July 2011, pp.204-215. Xia F. The part-of-speech guidelines for the Penn Chinese treebank (3:0). Technical Report, IRCS Report 00–07, University of Pennsylvania, Oct. 2000. Evert S. Distributional semantic models. In Tutorial of NAACL-HLT, June 2010, http://wordspace.collocations.de/doku.php/course:acl2010:schedule, July 2013. Galley M, Hopkins M, Knight K, Marcu D. What’s in a translation rule? In Proc. the NAACL, May 2004, pp.273-280. Li Z, Yarowsky D. Unsupervised translation induction for Chinese abbreviations using monolingual corpora. In Proc. the 46th ACL, June 2008, pp.425-433. Zhang J, Zhai F, Zong C. Handling unknown words in statistical machine translation from a new perspective. In Proc. the 1st CCF Conference on NLP&CC, October 31-November 5, 2012, pp.176-187. Shao L, Ng H. Mining new word translations from comparable corpora. In Proc. the 20th COLING, August 2004, Article No. 618. Koehn P. Statistical significance tests for machine translation evaluation. In Proc. the 1st EMNLP, July 2004, pp.388-395. Knight K, Graehl J. Machine transliteration. In Proc. the 35th ACL, July 1997, pp.128-135. Shah M. Generalized agreement statistics over fixed group of experts. In Proc. the ECML PKDD 2011, Part III, September 2011, pp.191-206. Al-Onaizan Y, Knight K. Translating named entities using monolingual and bilingual resources. In Proc. the 40th ACL, July 2002, pp.400-408. WangKZongCSuKIntegrating generative and discriminative character-based models for Chinese word segmentationACM Transactions on Asian Language Information Processing2012112 LundKBurgessCProducing high-dimensional semantic spaces from lexical cooccurrenceBehavior Research Methods199628220320810.3758/BF03204766 Marcu D, Wang W, Echihabi A, Knight K. SPMT: Statistical machine translation with syntactified target language phrases. In Proc. the 3rd EMNLP, July 2006, pp.44-52. Mirkin S, Specia L, Cancedda N, Dagan I, Dymetman M, Szpektor I. Source-language entailment modeling for translating unknown terms. In Proc. the 47th ACL, August 2009, pp.791-799. Nagata M, Saito T, Suzuki K. Using the web as a bilingual dictionary. In Proc. the Workshop on Data-Driven Methods in Machine Translation, July 2001, Vol.14. Li H, Duan N, Zhao Y, Liu S, Cui L, Hwang M, Axelrod A, Gao J, Zhang Y, Deng L. The MSRA machine translation system for IWSLT-2010. In Proc. the 7th IWSLT, December 2010, pp.135-138. Xiong D, Zhang M, Li H. Enhancing language models in statistical machine translation with backward n-grams and mutual information triggers. In Proc. the 49th ACL, June 2011, pp.1288-1297. Koehn P, Knight K. Empirical methods for compound splitting. In Proc. the 10th EACL, April 2003, pp.187-193. TurneyPPantelPFrom frequency to meaning: Vector space models of semanticsJournal of Artificial Intelligence Research201037114118826026201185.68765 Aziz W, Dymetman M, Mirkin S, Specia L, Cancedda N, Dagan I. Learning an expert from human annotations in statistical machine translation: The case of out-of-vocabulary words. In Proc. the 14th EAMT, May 2010. Arora K, Paul M, Sumita E. Translation of unknown words in phrase-based statistical machine translation for languages of rich morphology. In Proc. the 1st Workshop on Spoken Language Technologies for Under-Resourced Languages, May 2008, pp.70-75. Japkowicz N, Shah M. Evaluating Learning Algorithms: A Classification Perspective. Cambridge University Press, March 2011. HuangCYenHYangPHuangSChangJUsing sublexical translations to handle the OOV problem in machine translationACM Transaction on Asian Language Information Processing2011103 Marton Y, Callison-Burch C, Resnik P. Improved statistical machine translation using monolingually-derived paraphrases. In Proc. the 6th EMNLP, August 2009, pp.381-390. Cohen J. A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1): 37–46. Galley M, Graehl J, Knight K, Marcu D, DeNeefe S, Wang W, Thayer I. Scalable inference and training of context-rich syntactic translation models. In Proc. the 21st COLING and 44th ACL, July 2006, pp.961-968. Eck M, Vogel S, Waibel A. Communicating unknown words in machine translation. In Proc. the 6th LREC, May 26-June 1, 2008, pp.1542-1547. 1386_CR15 1386_CR16 1386_CR13 P Turney (1386_CR23) 2010; 37 1386_CR35 1386_CR14 1386_CR36 1386_CR19 1386_CR17 1386_CR18 T Landauer (1386_CR21) 1997; 104 1386_CR30 K Wang (1386_CR25) 2012; 11 1386_CR11 1386_CR33 1386_CR12 1386_CR34 1386_CR31 1386_CR10 1386_CR32 1386_CR26 1386_CR8 1386_CR27 1386_CR7 1386_CR24 1386_CR6 K Lund (1386_CR22) 1996; 28 1386_CR28 1386_CR29 1386_CR1 1386_CR5 1386_CR4 1386_CR2 C Huang (1386_CR3) 2011; 10 GA Miller (1386_CR9) 1995; 38 1386_CR20 |
| References_xml | – reference: Evert S. Distributional semantic models. In Tutorial of NAACL-HLT, June 2010, http://wordspace.collocations.de/doku.php/course:acl2010:schedule, July 2013. – reference: HuangCYenHYangPHuangSChangJUsing sublexical translations to handle the OOV problem in machine translationACM Transaction on Asian Language Information Processing2011103 – reference: Shao L, Ng H. Mining new word translations from comparable corpora. In Proc. the 20th COLING, August 2004, Article No. 618. – reference: Zhang J, Zhai F, Zong C. Handling unknown words in statistical machine translation from a new perspective. In Proc. the 1st CCF Conference on NLP&CC, October 31-November 5, 2012, pp.176-187. – reference: Japkowicz N, Shah M. Evaluating Learning Algorithms: A Classification Perspective. Cambridge University Press, March 2011. – reference: Tanaka T, Baldwin T. Noun-noun compound machine translation: A feasibility study on shallow processing. In Proc. the ACL Workshop on Multiword Expressions: Analysis, Acquisition, and Treatment, July 2003, pp.17-24. – reference: LandauerTDumaisSA solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledgePsychological Review1997104221124010.1037/0033-295X.104.2.211 – reference: Langlais P, Patry A. Translating unknown words by analogical learning. In Proc. the 4th EMNLP, June 2007, pp.877-886. – reference: WangKZongCSuKIntegrating generative and discriminative character-based models for Chinese word segmentationACM Transactions on Asian Language Information Processing2012112 – reference: Koehn P. Statistical significance tests for machine translation evaluation. In Proc. the 1st EMNLP, July 2004, pp.388-395. – reference: Fung P, Cheung P. Mining very-non-parallel corpora: Parallel sentence and lexicon extraction via bootstrapping and EM. In Proc. the 1st EMNLP, July 2004, pp.57-63. – reference: Zhang J, Zhai F, Zong C. Augmenting string-to-tree translation models with fuzzy use of source-side syntax. In Proc. the 8th EMNLP, July 2011, pp.204-215. – reference: Koehn P, Hoang H, Birch A et al. Moses: Open source toolkit for statistical machine translation. In Proc. the 45th ACL, June 2007, pp.177-180. – reference: Al-Onaizan Y, Knight K. Translating named entities using monolingual and bilingual resources. In Proc. the 40th ACL, July 2002, pp.400-408. – reference: Marton Y, Callison-Burch C, Resnik P. Improved statistical machine translation using monolingually-derived paraphrases. In Proc. the 6th EMNLP, August 2009, pp.381-390. – reference: Marcu D, Wang W, Echihabi A, Knight K. SPMT: Statistical machine translation with syntactified target language phrases. In Proc. the 3rd EMNLP, July 2006, pp.44-52. – reference: Aziz W, Dymetman M, Mirkin S, Specia L, Cancedda N, Dagan I. Learning an expert from human annotations in statistical machine translation: The case of out-of-vocabulary words. In Proc. the 14th EAMT, May 2010. – reference: MillerGAWordNet: A lexical database for EnglishMagazine Communications of the ACM19953811394110.1145/219717.219748 – reference: Och F J. Minimum error rate training for statistical machine translation. In Proc. the 41st ACL, July 2003, pp.160-167. – reference: LundKBurgessCProducing high-dimensional semantic spaces from lexical cooccurrenceBehavior Research Methods199628220320810.3758/BF03204766 – reference: Eck M, Vogel S, Waibel A. Communicating unknown words in machine translation. In Proc. the 6th LREC, May 26-June 1, 2008, pp.1542-1547. – reference: Koehn P, Knight K. Empirical methods for compound splitting. In Proc. the 10th EACL, April 2003, pp.187-193. – reference: Arora K, Paul M, Sumita E. Translation of unknown words in phrase-based statistical machine translation for languages of rich morphology. In Proc. the 1st Workshop on Spoken Language Technologies for Under-Resourced Languages, May 2008, pp.70-75. – reference: Li H, Duan N, Zhao Y, Liu S, Cui L, Hwang M, Axelrod A, Gao J, Zhang Y, Deng L. The MSRA machine translation system for IWSLT-2010. In Proc. the 7th IWSLT, December 2010, pp.135-138. – reference: Cohen J. A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1): 37–46. – reference: Jiang L, Zhou M, Chien L, Niu C. Named entity translation with web mining and transliteration. In Proc. the 20th IJCAI, January 2007, pp.1629-1634. – reference: Galley M, Graehl J, Knight K, Marcu D, DeNeefe S, Wang W, Thayer I. Scalable inference and training of context-rich syntactic translation models. In Proc. the 21st COLING and 44th ACL, July 2006, pp.961-968. – reference: Nagata M, Saito T, Suzuki K. Using the web as a bilingual dictionary. In Proc. the Workshop on Data-Driven Methods in Machine Translation, July 2001, Vol.14. – reference: Xiong D, Zhang M, Li H. Enhancing language models in statistical machine translation with backward n-grams and mutual information triggers. In Proc. the 49th ACL, June 2011, pp.1288-1297. – reference: Li Z, Yarowsky D. Unsupervised translation induction for Chinese abbreviations using monolingual corpora. In Proc. the 46th ACL, June 2008, pp.425-433. – reference: Xia F. The part-of-speech guidelines for the Penn Chinese treebank (3:0). Technical Report, IRCS Report 00–07, University of Pennsylvania, Oct. 2000. – reference: Shah M. Generalized agreement statistics over fixed group of experts. In Proc. the ECML PKDD 2011, Part III, September 2011, pp.191-206. – reference: Mirkin S, Specia L, Cancedda N, Dagan I, Dymetman M, Szpektor I. Source-language entailment modeling for translating unknown terms. In Proc. the 47th ACL, August 2009, pp.791-799. – reference: Knight K, Graehl J. Machine transliteration. In Proc. the 35th ACL, July 1997, pp.128-135. – reference: Galley M, Hopkins M, Knight K, Marcu D. What’s in a translation rule? In Proc. the NAACL, May 2004, pp.273-280. – reference: TurneyPPantelPFrom frequency to meaning: Vector space models of semanticsJournal of Artificial Intelligence Research201037114118826026201185.68765 – ident: 1386_CR1 – ident: 1386_CR17 doi: 10.3115/1073083.1073150 – volume: 10 issue: 3 year: 2011 ident: 1386_CR3 publication-title: ACM Transaction on Asian Language Information Processing – ident: 1386_CR12 doi: 10.3115/1119282.1119285 – ident: 1386_CR28 doi: 10.1177/001316446002000104 – volume: 11 issue: 2 year: 2012 ident: 1386_CR25 publication-title: ACM Transactions on Asian Language Information Processing – ident: 1386_CR15 doi: 10.1007/978-3-642-34456-5_17 – ident: 1386_CR29 – ident: 1386_CR35 doi: 10.3115/1610075.1610083 – ident: 1386_CR5 doi: 10.3115/1699510.1699560 – ident: 1386_CR27 doi: 10.1007/978-3-642-23808-6_13 – ident: 1386_CR34 doi: 10.3115/1220175.1220296 – ident: 1386_CR2 – ident: 1386_CR18 – ident: 1386_CR33 doi: 10.21236/ADA460212 – ident: 1386_CR32 doi: 10.3115/1075096.1075117 – ident: 1386_CR14 doi: 10.3115/1067807.1067833 – ident: 1386_CR20 – ident: 1386_CR30 doi: 10.1017/CBO9780511921803 – volume: 28 start-page: 203 issue: 2 year: 1996 ident: 1386_CR22 publication-title: Behavior Research Methods doi: 10.3758/BF03204766 – ident: 1386_CR24 – ident: 1386_CR4 – ident: 1386_CR26 – ident: 1386_CR8 – ident: 1386_CR6 doi: 10.3115/1690219.1690257 – volume: 104 start-page: 211 issue: 2 year: 1997 ident: 1386_CR21 publication-title: Psychological Review doi: 10.1037/0033-295X.104.2.211 – ident: 1386_CR7 doi: 10.3115/1118037.1118050 – volume: 38 start-page: 39 issue: 11 year: 1995 ident: 1386_CR9 publication-title: Magazine Communications of the ACM doi: 10.1145/219717.219748 – ident: 1386_CR16 doi: 10.3115/1220355.1220444 – ident: 1386_CR31 doi: 10.3115/1557769.1557821 – ident: 1386_CR11 – ident: 1386_CR13 – volume: 37 start-page: 141 issue: 1 year: 2010 ident: 1386_CR23 publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.2934 – ident: 1386_CR10 doi: 10.3115/976909.979634 – ident: 1386_CR19 – ident: 1386_CR36 |
| SSID | ssj0037044 |
| Score | 1.9794312 |
| Snippet | Unknown words are one of the key factors that greatly affect the translation quality. Traditionally, nearly all the related researches focus on obtaining the... |
| SourceID | wanfang proquest crossref springer chongqing |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 907 |
| SubjectTerms | Artificial Intelligence Bilingualism Computer Science Computer simulation Data mining Data Structures and Information Theory Experiments Handling Information Systems Applications (incl.Internet) Language Machine translation Mathematical analysis Mathematical models Regular Paper Semantics Sentences SMT Software Engineering Studies Theory of Computation Translations Words (language) 框架 统计机器翻译 网络数据 翻译质量 翻译过程 语义模型 语言模型 |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PaxQxFA5aPXix_sSpVSLoRQlO5keSOUkRl4JYRCz2FpJMUl0l23ba0j-_72WT3fVgL8IeBjaTmeFL3vuS9_I-Ql63fXBAjC3rhHKscyawwfCOSR96OwRnRO2S2IQ8OFBHR8PXvOE25bTKYhOToR4XDvfI34NflxLL1akPJ6cMVaMwupolNG6TO7xpOI7zz5IVS9zKOom54hY2Q3HMEtVMR-eA-mBKVotV-ATrsbbCz0U8PgWP8bePWhPPVaw0nfCJwcTjDWc02_7fz3hA7mcaSveW4-YhueXjI7JdJB5onvGPSdyjaFpSPgEgyJJrW6bPsW9JlCZd01nJ8aJAguk-lm6AT6CHEffsIv0BS9yJ_ooUuW0qDQ0P_5LyOD3d6PMJOZx9-v5xn2WJBuY63pwzPPfKhRvt4F2t5FhLz0frYVVka1P7oFrhZSOsMJ1DDYpRmrFXYGasUPBz7VOyFRfRPyOUt8EYIA9SwRLHBmjViNEGNRiPwdqmIjsrgPTJshSH7mQ6qcsrUhfEtMvFzVFj449el2VGwDUArhFw3Vfk7eqW0t0NjXcLnDpP8kmvsazIq9XfMD0x5mKiX1xAGyE58ARgfRV5V4bPRhf_fuCbPMLWjefT_PfVfLqy2jcYcMaQ8M7NL_ac3GuSfgcmxe2SrfOzC_-C3HWXgPXZyzRbrgGFJxrL priority: 102 providerName: ProQuest |
| Title | A Substitution-Translation-Restoration Framework for Handling Unknown Words in Statistical Machine Translation |
| URI | http://lib.cqvip.com/qk/85226X/201305/47064211.html https://link.springer.com/article/10.1007/s11390-013-1386-5 https://www.proquest.com/docview/1437734238 https://www.proquest.com/docview/1671413397 https://d.wanfangdata.com.cn/periodical/jsjkxjsxb-e201305014 |
| Volume | 28 |
| WOSCitedRecordID | wos000324661300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1860-4749 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: 7WY dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1860-4749 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: M0C dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1860-4749 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: K7- dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1860-4749 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: M7S dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1860-4749 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: P5Z dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1860-4749 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1860-4749 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9s64Mv1k_cWo8I-qIE9jPJPtbSo1B6HFdrqy9Lks1WT8lpr5X--c7kNncnWEFhCbtsdrJkMskvmS-AV0XVWQTGhpdCWV5a3fFaZyWXrqtM3VktUhuSTcjRSJ2f1-Pej3serd2jSjLM1CtnNwQrZERVUNw8wasN2MLVTpE0Tk4-xOm3kGnI4Ern1pwyYkZV5p9IUECFzzN_8QOb-31hWqHNpYI0uPX4TvuLtRVouP1f__4A7veAk-0tRshDuOP8I9iOyRxYL9uPwe8xmkSC5QDyiodFbGEoxych_Uy4Z8NozcUQ7rJDCtKAf8JOPZ3OeXaGm9k5--IZodgQBBobPw4Wm46t0XwCp8OD9_uHvE_GwG2Z5VecPFwzYVtTO5sq2abSZa1xuP8xqU5dpwrhZC6M0KWlbBOt1G2lcEIxQuFli6ew6WfePQOWFZ3WCBOkws2M6bBWLlrTqVo7UsvmCewsudJ8XwTdaEoZfHKzBNLIpsb2Ycwpm8a3ZhWAmTq7wc5uqLObKoE3y08iub9U3o28b3pxnuP-qJCSYiWqBF4uX6MgknZFeze7xjpCZogIEN8l8DaOgjUStzf4uh9Wq8rT-fTrzXR-YxqXk2qZlL87_0T1OdzLQ-IOsobbhc2ry2v3Au7an8j6ywFsyLOPA9h6dzAaT_DpSHIsj9N9KuUJluPq0yDI1S_BLRbC |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VgkQvlKdIKWAkegFZ7NPePSBUFaJUbSOEWtGbsb3e0oCctmmh_Cl-IzPOOgkHeusBKYdIcbyvzzPfeh4fwMu8bC0SY8MLUVleWN3yWqcFl64tTd1aLRIbxCbkcFgdHtYfl-B3rIWhtMpoE4OhbsaW9sjfoF-XktrVVe9OTjmpRlF0NUpoTGGx4379xFe2ydvt9_h8N7Ks_2F_a8A7VQFuizQ751SqmQrbmNrZpJJNIl3aGIdE3iQ6cW2VCyczYYQuLMkmNFI3ZYUrw4gKPzbHeW_AzaLA5UCpgslWtPy5TIJ4LG2ZcxLjjFHUUKqHVItSwHLq-id4Sb0cvo790Sl6qL994pzozmKzoaLIt9ofLTi__ur_dtvuwp2OZrPN6bq4B0vO34fVKGHBOov2APwmI9MZ8iUQoTy47ml6IP8URHfCd9aPOWwMST4bUGsKvGXswNOepGef6cLYsWfE3UPrazz4XshTdWxhzodwcC1X_QiW_di7x8DSvNUayZGs8BXOtDgqE41pq1o7CkZnPVibAUKdTFuNqEKGSuS0B0lEiLJd83bSEPmu5m2nCWAKAaYIYKrswavZX-J0Vwxej_BRnRGbqDl2evBi9jOaH4opae_GFzhGyBR5ELLaHryOcF2Y4t8H3OgQPR88moy-XY4ml0a5jALqFPJeu_rEnsPtwf7ertrdHu48gZUsaJVQAuA6LJ-fXbincMv-wOd-9iysVAZfrhvjfwD0Cndi |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB-0ivTF-olbq0bQFyV0P5O9x6IeFfUoarVvIckm1avkavcq_fOdyW3uTlBBhHs4uNxkN5kkM5mZ3w_gSdV4i4ax4bVoLa-t9nyki5pL5xsz8laL3EayCTmZtEdHo4OB57RP2e4pJLmoaSCUpjDfPe387qrwDQ0XSqiqCENP8OYyXKmJM4jc9Q-f0lZcyTyyudIdNid2zBTW_J0IAlf4MgvH37HrXw-pleW5DJbGEp_gdTheO43GW__9Hjfg-mCIsr2F5tyESy7cgq1E8sCGNX8bwh6jzSVmFOAc8ni4LRLo-PtISxO_s3HK8mJoBrN9Am_Ap2KHgW7tAvuMTm7PvgZG1m0Eh8bO38VMTsfWZN6Bw_Grjy_2-UDSwG1dlHNOla-FsJ0ZOZu3ssulKzrj0C8yuc6dbyvhZCmM0LUlFopO6q5pcaMxosWPre7CRpgFdw9YUXmt0XyQLTo5xmOrUnTGtyPtKFxbZrC9nCF1ugDjULWMtbpFBnmaMmUHeHNi2fimVsDMNNgKB1vRYKsmg2fLvyRxf2m8k_RADcu8R7-pkpIwFNsMHi9_xgVKURcd3Owc2whZoKWAdl8Gz5NGrIn4c4dPBxVbNZ7205OLaX9hlCsp5ExB4e1_kvoIrh28HKu3rydv7sNmGbk9KGFuBzbmZ-fuAVy1P1ALzh7GhfQTRkEcPw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Substitution-Translation-Restoration+Framework+for+Handling+Unknown+Words+in+Statistical+Machine+Translation&rft.jtitle=Journal+of+computer+science+and+technology&rft.au=Zhang%2C+Jia-Jun&rft.au=Zhai%2C+Fei-Fei&rft.au=Zong%2C+Cheng-Qing&rft.date=2013-09-01&rft.issn=1000-9000&rft.eissn=1860-4749&rft.volume=28&rft.issue=5&rft.spage=907&rft.epage=918&rft_id=info:doi/10.1007%2Fs11390-013-1386-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11390_013_1386_5 |
| thumbnail_s | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85226X%2F85226X.jpg http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxjsxb-e%2Fjsjkxjsxb-e.jpg |