A Substitution-Translation-Restoration Framework for Handling Unknown Words in Statistical Machine Translation

Unknown words are one of the key factors that greatly affect the translation quality. Traditionally, nearly all the related researches focus on obtaining the translation of the unknown words. However, these approaches have two disadvantages. On the one hand, they usually rely on many additional reso...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computer science and technology Vol. 28; no. 5; pp. 907 - 918
Main Authors: Zhang, Jia-Jun, Zhai, Fei-Fei, Zong, Cheng-Qing
Format: Journal Article
Language:English
Published: Boston Springer US 01.09.2013
Springer Nature B.V
National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
Subjects:
ISSN:1000-9000, 1860-4749
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Unknown words are one of the key factors that greatly affect the translation quality. Traditionally, nearly all the related researches focus on obtaining the translation of the unknown words. However, these approaches have two disadvantages. On the one hand, they usually rely on many additional resources such as bilingual web data; on the other hand, they cannot guarantee good reordering and lexical selection of surrounding words. This paper gives a new perspective on handling unknown words in statistical machine translation (SMT). Instead of making great efforts to find the translation of unknown words, we focus on determining the semantic function of the unknown word in the test sentence and keeping the semantic function unchanged in the translation process. In this way, unknown words can help the phrase reordering and lexical selection of their surrounding words even though they still remain untranslated. In order to determine the semantic function of an unknown word, we employ the distributional semantic model and the bidirectional language model. Extensive experiments on both phrase-based and linguistically syntax-based SMT models in Chinese-to-English translation show that our method can substantially improve the translation quality.
AbstractList Unknown words are one of the key factors that greatly affect the translation quality. Traditionally, nearly all the related researches focus on obtaining the translation of the unknown words. However, these approaches have two disadvantages. On the one hand, they usually rely on many additional resources such as bilingual web data; on the other hand, they cannot guarantee good reordering and lexical selection of surrounding words. This paper gives a new perspective on handling unknown words in statistical machine translation (SMT). Instead of making great efforts to find the translation of unknown words, we focus on determining the semantic function of the unknown word in the test sentence and keeping the semantic function unchanged in the translation process. In this way, unknown words can help the phrase reordering and lexical selection of their surrounding words even though they still remain untranslated. In order to determine the semantic function of an unknown word, we employ the distributional semantic model and the bidirectional language model. Extensive experiments on both phrase-based and linguistically syntax-based SMT models in Chinese-to-English translation show that our method can substantially improve the translation quality.[PUBLICATION ABSTRACT]
Unknown words are one of the key factors that greatly affect the translation quality. Traditionally, nearly all the related researches focus on obtaining the translation of the unknown words. However, these approaches have two disadvantages. On the one hand, they usually rely on many additional resources such as bilingual web data; on the other hand, they cannot guarantee good reordering and lexical selection of surrounding words. This paper gives a new perspective on handling unknown words in statistical machine translation (SMT). Instead of making great efforts to find the translation of unknown words, we focus on determining the semantic function of the unknown word in the test sentence and keeping the semantic function unchanged in the translation process. In this way, unknown words can help the phrase reordering and lexical selection of their surrounding words even though they still remain untranslated. In order to determine the semantic function of an unknown word, we employ the distributional semantic model and the bidirectional language model. Extensive experiments on both phrase-based and linguistically syntax-based SMT models in Chinese-to-English translation show that our method can substantially improve the translation quality.
Unknown words are one of the key factors that greatly affect the translation quality. Traditionally, nearly all the related researches focus on obtaining the translation of the unknown words. However, these approaches have two disadvantages. On the one hand, they usually rely on many additional resources such as bilingual web data; on the other hand, they cannot guarantee good reordering and lexical selection of surrounding words. This paper gives a new perspective on handling unknown words in statistical machine translation (SMT). Instead of making great efforts to find the translation of unknown words, we focus on determining the semantic function of the unknown word in the test sentence and keeping the semantic function unchanged in the translation process. In this way, unknown words can help the phrase reordering and lexical selection of their surrounding words even though they still remain untranslated. In order to determine the semantic function of an unknown word, we employ the distributional semantic model and the bidirectional language model. Extensive experiments on both phrase-based and linguistically syntax-based SMT models in Chinese-to-English translation show that our method can substantially improve the translation quality.
Author Zong, Cheng-Qing
Zhang, Jia-Jun
Zhai, Fei-Fei
AuthorAffiliation National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
AuthorAffiliation_xml – name: National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
Author_xml – sequence: 1
  givenname: Jia-Jun
  surname: Zhang
  fullname: Zhang, Jia-Jun
  email: jjzhang@nlpr.ia.ac.cn
  organization: National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
– sequence: 2
  givenname: Fei-Fei
  surname: Zhai
  fullname: Zhai, Fei-Fei
  organization: National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
– sequence: 3
  givenname: Cheng-Qing
  surname: Zong
  fullname: Zong, Cheng-Qing
  organization: National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
BookMark eNp9kUFP3DAQhaOKSgXaH9Cbq156qOk4duzkiBAUJKpKBdSj5TjO4mx2DHaipf--ZoMQ4oBk2XP43nvjmYNiDwO6ovjM4IgBqB-JMd4ABcYp47Wk1btin9USqFCi2cs1ANAmXx-Kg5QGAK5AiP0Cj8nV3KbJT_PkA9LraDCNZlf_cWkKcVeTs2g2bhvimvQhknOD3ehxRW5wjWGL5G-IXSIeydWU-WxnzUh-GXvr0ZEXnh-L970Zk_v09B4WN2en1yfn9PL3z4uT40tqBSsnWlasYdJ2beMs1KoD5VjXOgmyBQOur7l0qpStNMJCxctOma6qQUEr63wsPyy-L75bg73BlR7CHDEn6iEN64chPbTalXlaUAETGf-24Hcx3M_523rjk3XjaNCFOWkmFROM80Zl9Osr9Nk6GynFRcnrTKmFsjGkFF2vrZ92E5ii8aNmoB_Xppe16dyIflybrrKSvVLeRb8x8d-bmnLRpMziysUXPb0h-vIUdBtwdZ91z0lCgRRlVvwHjJ634A
CitedBy_id crossref_primary_10_1080_24751839_2020_1838713
crossref_primary_10_3390_app14020486
crossref_primary_10_3390_info10060202
Cites_doi 10.3115/1073083.1073150
10.3115/1119282.1119285
10.1177/001316446002000104
10.1007/978-3-642-34456-5_17
10.3115/1610075.1610083
10.3115/1699510.1699560
10.1007/978-3-642-23808-6_13
10.3115/1220175.1220296
10.21236/ADA460212
10.3115/1075096.1075117
10.3115/1067807.1067833
10.1017/CBO9780511921803
10.3758/BF03204766
10.3115/1690219.1690257
10.1037/0033-295X.104.2.211
10.3115/1118037.1118050
10.1145/219717.219748
10.3115/1220355.1220444
10.3115/1557769.1557821
10.1613/jair.2934
10.3115/976909.979634
ContentType Journal Article
Copyright Springer Science+Business Media New York & Science Press, China 2013
Springer Science+Business Media New York & Science Press, China 2013.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media New York & Science Press, China 2013
– notice: Springer Science+Business Media New York & Science Press, China 2013.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7TB
FR3
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s11390-013-1386-5
DatabaseName CQVIP
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Collection (ProQuest)
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList ABI/INFORM Global (Corporate)

Technology Research Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate A Substitution-Translation-Restoration Framework for Handling Unknown Words in Statistical Machine Translation
EISSN 1860-4749
EndPage 918
ExternalDocumentID jsjkxjsxb_e201305014
3085834911
10_1007_s11390_013_1386_5
47064211
GrantInformation_xml – fundername: the National High Technology Research and Development 863 Program of China under Grant Nos.2011AA01A207,2012AA011101,and 2012AA011102
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
28-
29K
2B.
2C0
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VR
5VS
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
92H
92I
92L
92R
93N
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAOBN
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAWWR
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADGRI
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYWE
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCEZO
CCPQU
CHBEP
COF
CQIGP
CS3
CSCUP
CUBFJ
CW9
D-I
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCL
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TCJ
TGT
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W92
WK8
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~A9
~EX
~WA
-SI
-S~
5XA
5XJ
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ABQSL
ACDTI
ACPIV
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
BSONS
CAJEI
H13
PQBZA
Q--
U1G
U5S
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
IVC
PHGZM
PHGZT
PQGLB
TGMPQ
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L6V
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
7TB
FR3
PUEGO
4A8
PMFND
PSX
ID FETCH-LOGICAL-c412t-251916cdb9ec087d07e1dbe606b0a0ef836e726b6a4c0532d7ad58070b68b68c3
IEDL.DBID RSV
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000324661300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1000-9000
IngestDate Thu May 29 04:00:15 EDT 2025
Thu Oct 02 10:51:54 EDT 2025
Tue Nov 04 19:53:19 EST 2025
Sat Nov 29 03:05:36 EST 2025
Tue Nov 18 22:23:19 EST 2025
Fri Feb 21 02:40:04 EST 2025
Wed Feb 14 10:50:11 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Statistical machine translation
Distributional semantics
Bidirectional language model
bidirectional language model
distributional semantics
statistical machine translation
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-251916cdb9ec087d07e1dbe606b0a0ef836e726b6a4c0532d7ad58070b68b68c3
Notes Unknown words are one of the key factors that greatly affect the translation quality. Traditionally, nearly all the related researches focus on obtaining the translation of the unknown words. However, these approaches have two disadvantages. On the one hand, they usually rely on many additional resources such as bilingual web data; on the other hand, they cannot guarantee good reordering and lexical selection of surrounding words. This paper gives a new perspective on handling unknown words in statistical machine translation (SMT). Instead of making great efforts to find the translation of unknown words, we focus on determining the semantic function of the unknown word in the test sentence and keeping the semantic function unchanged in the translation process. In this way, unknown words can help the phrase reordering and lexical selection of their surrounding words even though they still remain untranslated. In order to determine the semantic function of an unknown word, we employ the distributional semantic model and the bidirectional language model. Extensive experiments on both phrase-based and linguistically syntax-based SMT models in Chinese-to-English translation show that our method can substantially improve the translation quality.
11-2296/TP
statistical machine translation, distributional semantics, bidirectional language model
Jia-Jun Zhang , Member, CCF, FeimFei Zhai and Cheng-Qing Zong , Senior Member, CCF (National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China E-marl: {jjzhang, ffzhai, cqzong}@nlpr.ia.ac.cn Received December 4, 2012; revised May 7, 2013)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1437734238
PQPubID 326258
PageCount 12
ParticipantIDs wanfang_journals_jsjkxjsxb_e201305014
proquest_miscellaneous_1671413397
proquest_journals_1437734238
crossref_citationtrail_10_1007_s11390_013_1386_5
crossref_primary_10_1007_s11390_013_1386_5
springer_journals_10_1007_s11390_013_1386_5
chongqing_primary_47064211
PublicationCentury 2000
PublicationDate 2013-09-01
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: Beijing
PublicationTitle Journal of computer science and technology
PublicationTitleAbbrev J. Comput. Sci. Technol
PublicationTitleAlternate Journal of Computer Science and Technology
PublicationTitle_FL Journal of Computer Science and Technology
PublicationYear 2013
Publisher Springer US
Springer Nature B.V
National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
References Tanaka T, Baldwin T. Noun-noun compound machine translation: A feasibility study on shallow processing. In Proc. the ACL Workshop on Multiword Expressions: Analysis, Acquisition, and Treatment, July 2003, pp.17-24.
Och F J. Minimum error rate training for statistical machine translation. In Proc. the 41st ACL, July 2003, pp.160-167.
MillerGAWordNet: A lexical database for EnglishMagazine Communications of the ACM19953811394110.1145/219717.219748
Fung P, Cheung P. Mining very-non-parallel corpora: Parallel sentence and lexicon extraction via bootstrapping and EM. In Proc. the 1st EMNLP, July 2004, pp.57-63.
Langlais P, Patry A. Translating unknown words by analogical learning. In Proc. the 4th EMNLP, June 2007, pp.877-886.
LandauerTDumaisSA solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledgePsychological Review1997104221124010.1037/0033-295X.104.2.211
Jiang L, Zhou M, Chien L, Niu C. Named entity translation with web mining and transliteration. In Proc. the 20th IJCAI, January 2007, pp.1629-1634.
Koehn P, Hoang H, Birch A et al. Moses: Open source toolkit for statistical machine translation. In Proc. the 45th ACL, June 2007, pp.177-180.
Zhang J, Zhai F, Zong C. Augmenting string-to-tree translation models with fuzzy use of source-side syntax. In Proc. the 8th EMNLP, July 2011, pp.204-215.
Xia F. The part-of-speech guidelines for the Penn Chinese treebank (3:0). Technical Report, IRCS Report 00–07, University of Pennsylvania, Oct. 2000.
Evert S. Distributional semantic models. In Tutorial of NAACL-HLT, June 2010, http://wordspace.collocations.de/doku.php/course:acl2010:schedule, July 2013.
Galley M, Hopkins M, Knight K, Marcu D. What’s in a translation rule? In Proc. the NAACL, May 2004, pp.273-280.
Li Z, Yarowsky D. Unsupervised translation induction for Chinese abbreviations using monolingual corpora. In Proc. the 46th ACL, June 2008, pp.425-433.
Zhang J, Zhai F, Zong C. Handling unknown words in statistical machine translation from a new perspective. In Proc. the 1st CCF Conference on NLP&CC, October 31-November 5, 2012, pp.176-187.
Shao L, Ng H. Mining new word translations from comparable corpora. In Proc. the 20th COLING, August 2004, Article No. 618.
Koehn P. Statistical significance tests for machine translation evaluation. In Proc. the 1st EMNLP, July 2004, pp.388-395.
Knight K, Graehl J. Machine transliteration. In Proc. the 35th ACL, July 1997, pp.128-135.
Shah M. Generalized agreement statistics over fixed group of experts. In Proc. the ECML PKDD 2011, Part III, September 2011, pp.191-206.
Al-Onaizan Y, Knight K. Translating named entities using monolingual and bilingual resources. In Proc. the 40th ACL, July 2002, pp.400-408.
WangKZongCSuKIntegrating generative and discriminative character-based models for Chinese word segmentationACM Transactions on Asian Language Information Processing2012112
LundKBurgessCProducing high-dimensional semantic spaces from lexical cooccurrenceBehavior Research Methods199628220320810.3758/BF03204766
Marcu D, Wang W, Echihabi A, Knight K. SPMT: Statistical machine translation with syntactified target language phrases. In Proc. the 3rd EMNLP, July 2006, pp.44-52.
Mirkin S, Specia L, Cancedda N, Dagan I, Dymetman M, Szpektor I. Source-language entailment modeling for translating unknown terms. In Proc. the 47th ACL, August 2009, pp.791-799.
Nagata M, Saito T, Suzuki K. Using the web as a bilingual dictionary. In Proc. the Workshop on Data-Driven Methods in Machine Translation, July 2001, Vol.14.
Li H, Duan N, Zhao Y, Liu S, Cui L, Hwang M, Axelrod A, Gao J, Zhang Y, Deng L. The MSRA machine translation system for IWSLT-2010. In Proc. the 7th IWSLT, December 2010, pp.135-138.
Xiong D, Zhang M, Li H. Enhancing language models in statistical machine translation with backward n-grams and mutual information triggers. In Proc. the 49th ACL, June 2011, pp.1288-1297.
Koehn P, Knight K. Empirical methods for compound splitting. In Proc. the 10th EACL, April 2003, pp.187-193.
TurneyPPantelPFrom frequency to meaning: Vector space models of semanticsJournal of Artificial Intelligence Research201037114118826026201185.68765
Aziz W, Dymetman M, Mirkin S, Specia L, Cancedda N, Dagan I. Learning an expert from human annotations in statistical machine translation: The case of out-of-vocabulary words. In Proc. the 14th EAMT, May 2010.
Arora K, Paul M, Sumita E. Translation of unknown words in phrase-based statistical machine translation for languages of rich morphology. In Proc. the 1st Workshop on Spoken Language Technologies for Under-Resourced Languages, May 2008, pp.70-75.
Japkowicz N, Shah M. Evaluating Learning Algorithms: A Classification Perspective. Cambridge University Press, March 2011.
HuangCYenHYangPHuangSChangJUsing sublexical translations to handle the OOV problem in machine translationACM Transaction on Asian Language Information Processing2011103
Marton Y, Callison-Burch C, Resnik P. Improved statistical machine translation using monolingually-derived paraphrases. In Proc. the 6th EMNLP, August 2009, pp.381-390.
Cohen J. A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1): 37–46.
Galley M, Graehl J, Knight K, Marcu D, DeNeefe S, Wang W, Thayer I. Scalable inference and training of context-rich syntactic translation models. In Proc. the 21st COLING and 44th ACL, July 2006, pp.961-968.
Eck M, Vogel S, Waibel A. Communicating unknown words in machine translation. In Proc. the 6th LREC, May 26-June 1, 2008, pp.1542-1547.
1386_CR15
1386_CR16
1386_CR13
P Turney (1386_CR23) 2010; 37
1386_CR35
1386_CR14
1386_CR36
1386_CR19
1386_CR17
1386_CR18
T Landauer (1386_CR21) 1997; 104
1386_CR30
K Wang (1386_CR25) 2012; 11
1386_CR11
1386_CR33
1386_CR12
1386_CR34
1386_CR31
1386_CR10
1386_CR32
1386_CR26
1386_CR8
1386_CR27
1386_CR7
1386_CR24
1386_CR6
K Lund (1386_CR22) 1996; 28
1386_CR28
1386_CR29
1386_CR1
1386_CR5
1386_CR4
1386_CR2
C Huang (1386_CR3) 2011; 10
GA Miller (1386_CR9) 1995; 38
1386_CR20
References_xml – reference: Evert S. Distributional semantic models. In Tutorial of NAACL-HLT, June 2010, http://wordspace.collocations.de/doku.php/course:acl2010:schedule, July 2013.
– reference: HuangCYenHYangPHuangSChangJUsing sublexical translations to handle the OOV problem in machine translationACM Transaction on Asian Language Information Processing2011103
– reference: Shao L, Ng H. Mining new word translations from comparable corpora. In Proc. the 20th COLING, August 2004, Article No. 618.
– reference: Zhang J, Zhai F, Zong C. Handling unknown words in statistical machine translation from a new perspective. In Proc. the 1st CCF Conference on NLP&CC, October 31-November 5, 2012, pp.176-187.
– reference: Japkowicz N, Shah M. Evaluating Learning Algorithms: A Classification Perspective. Cambridge University Press, March 2011.
– reference: Tanaka T, Baldwin T. Noun-noun compound machine translation: A feasibility study on shallow processing. In Proc. the ACL Workshop on Multiword Expressions: Analysis, Acquisition, and Treatment, July 2003, pp.17-24.
– reference: LandauerTDumaisSA solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledgePsychological Review1997104221124010.1037/0033-295X.104.2.211
– reference: Langlais P, Patry A. Translating unknown words by analogical learning. In Proc. the 4th EMNLP, June 2007, pp.877-886.
– reference: WangKZongCSuKIntegrating generative and discriminative character-based models for Chinese word segmentationACM Transactions on Asian Language Information Processing2012112
– reference: Koehn P. Statistical significance tests for machine translation evaluation. In Proc. the 1st EMNLP, July 2004, pp.388-395.
– reference: Fung P, Cheung P. Mining very-non-parallel corpora: Parallel sentence and lexicon extraction via bootstrapping and EM. In Proc. the 1st EMNLP, July 2004, pp.57-63.
– reference: Zhang J, Zhai F, Zong C. Augmenting string-to-tree translation models with fuzzy use of source-side syntax. In Proc. the 8th EMNLP, July 2011, pp.204-215.
– reference: Koehn P, Hoang H, Birch A et al. Moses: Open source toolkit for statistical machine translation. In Proc. the 45th ACL, June 2007, pp.177-180.
– reference: Al-Onaizan Y, Knight K. Translating named entities using monolingual and bilingual resources. In Proc. the 40th ACL, July 2002, pp.400-408.
– reference: Marton Y, Callison-Burch C, Resnik P. Improved statistical machine translation using monolingually-derived paraphrases. In Proc. the 6th EMNLP, August 2009, pp.381-390.
– reference: Marcu D, Wang W, Echihabi A, Knight K. SPMT: Statistical machine translation with syntactified target language phrases. In Proc. the 3rd EMNLP, July 2006, pp.44-52.
– reference: Aziz W, Dymetman M, Mirkin S, Specia L, Cancedda N, Dagan I. Learning an expert from human annotations in statistical machine translation: The case of out-of-vocabulary words. In Proc. the 14th EAMT, May 2010.
– reference: MillerGAWordNet: A lexical database for EnglishMagazine Communications of the ACM19953811394110.1145/219717.219748
– reference: Och F J. Minimum error rate training for statistical machine translation. In Proc. the 41st ACL, July 2003, pp.160-167.
– reference: LundKBurgessCProducing high-dimensional semantic spaces from lexical cooccurrenceBehavior Research Methods199628220320810.3758/BF03204766
– reference: Eck M, Vogel S, Waibel A. Communicating unknown words in machine translation. In Proc. the 6th LREC, May 26-June 1, 2008, pp.1542-1547.
– reference: Koehn P, Knight K. Empirical methods for compound splitting. In Proc. the 10th EACL, April 2003, pp.187-193.
– reference: Arora K, Paul M, Sumita E. Translation of unknown words in phrase-based statistical machine translation for languages of rich morphology. In Proc. the 1st Workshop on Spoken Language Technologies for Under-Resourced Languages, May 2008, pp.70-75.
– reference: Li H, Duan N, Zhao Y, Liu S, Cui L, Hwang M, Axelrod A, Gao J, Zhang Y, Deng L. The MSRA machine translation system for IWSLT-2010. In Proc. the 7th IWSLT, December 2010, pp.135-138.
– reference: Cohen J. A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1): 37–46.
– reference: Jiang L, Zhou M, Chien L, Niu C. Named entity translation with web mining and transliteration. In Proc. the 20th IJCAI, January 2007, pp.1629-1634.
– reference: Galley M, Graehl J, Knight K, Marcu D, DeNeefe S, Wang W, Thayer I. Scalable inference and training of context-rich syntactic translation models. In Proc. the 21st COLING and 44th ACL, July 2006, pp.961-968.
– reference: Nagata M, Saito T, Suzuki K. Using the web as a bilingual dictionary. In Proc. the Workshop on Data-Driven Methods in Machine Translation, July 2001, Vol.14.
– reference: Xiong D, Zhang M, Li H. Enhancing language models in statistical machine translation with backward n-grams and mutual information triggers. In Proc. the 49th ACL, June 2011, pp.1288-1297.
– reference: Li Z, Yarowsky D. Unsupervised translation induction for Chinese abbreviations using monolingual corpora. In Proc. the 46th ACL, June 2008, pp.425-433.
– reference: Xia F. The part-of-speech guidelines for the Penn Chinese treebank (3:0). Technical Report, IRCS Report 00–07, University of Pennsylvania, Oct. 2000.
– reference: Shah M. Generalized agreement statistics over fixed group of experts. In Proc. the ECML PKDD 2011, Part III, September 2011, pp.191-206.
– reference: Mirkin S, Specia L, Cancedda N, Dagan I, Dymetman M, Szpektor I. Source-language entailment modeling for translating unknown terms. In Proc. the 47th ACL, August 2009, pp.791-799.
– reference: Knight K, Graehl J. Machine transliteration. In Proc. the 35th ACL, July 1997, pp.128-135.
– reference: Galley M, Hopkins M, Knight K, Marcu D. What’s in a translation rule? In Proc. the NAACL, May 2004, pp.273-280.
– reference: TurneyPPantelPFrom frequency to meaning: Vector space models of semanticsJournal of Artificial Intelligence Research201037114118826026201185.68765
– ident: 1386_CR1
– ident: 1386_CR17
  doi: 10.3115/1073083.1073150
– volume: 10
  issue: 3
  year: 2011
  ident: 1386_CR3
  publication-title: ACM Transaction on Asian Language Information Processing
– ident: 1386_CR12
  doi: 10.3115/1119282.1119285
– ident: 1386_CR28
  doi: 10.1177/001316446002000104
– volume: 11
  issue: 2
  year: 2012
  ident: 1386_CR25
  publication-title: ACM Transactions on Asian Language Information Processing
– ident: 1386_CR15
  doi: 10.1007/978-3-642-34456-5_17
– ident: 1386_CR29
– ident: 1386_CR35
  doi: 10.3115/1610075.1610083
– ident: 1386_CR5
  doi: 10.3115/1699510.1699560
– ident: 1386_CR27
  doi: 10.1007/978-3-642-23808-6_13
– ident: 1386_CR34
  doi: 10.3115/1220175.1220296
– ident: 1386_CR2
– ident: 1386_CR18
– ident: 1386_CR33
  doi: 10.21236/ADA460212
– ident: 1386_CR32
  doi: 10.3115/1075096.1075117
– ident: 1386_CR14
  doi: 10.3115/1067807.1067833
– ident: 1386_CR20
– ident: 1386_CR30
  doi: 10.1017/CBO9780511921803
– volume: 28
  start-page: 203
  issue: 2
  year: 1996
  ident: 1386_CR22
  publication-title: Behavior Research Methods
  doi: 10.3758/BF03204766
– ident: 1386_CR24
– ident: 1386_CR4
– ident: 1386_CR26
– ident: 1386_CR8
– ident: 1386_CR6
  doi: 10.3115/1690219.1690257
– volume: 104
  start-page: 211
  issue: 2
  year: 1997
  ident: 1386_CR21
  publication-title: Psychological Review
  doi: 10.1037/0033-295X.104.2.211
– ident: 1386_CR7
  doi: 10.3115/1118037.1118050
– volume: 38
  start-page: 39
  issue: 11
  year: 1995
  ident: 1386_CR9
  publication-title: Magazine Communications of the ACM
  doi: 10.1145/219717.219748
– ident: 1386_CR16
  doi: 10.3115/1220355.1220444
– ident: 1386_CR31
  doi: 10.3115/1557769.1557821
– ident: 1386_CR11
– ident: 1386_CR13
– volume: 37
  start-page: 141
  issue: 1
  year: 2010
  ident: 1386_CR23
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.2934
– ident: 1386_CR10
  doi: 10.3115/976909.979634
– ident: 1386_CR19
– ident: 1386_CR36
SSID ssj0037044
Score 1.9794312
Snippet Unknown words are one of the key factors that greatly affect the translation quality. Traditionally, nearly all the related researches focus on obtaining the...
SourceID wanfang
proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 907
SubjectTerms Artificial Intelligence
Bilingualism
Computer Science
Computer simulation
Data mining
Data Structures and Information Theory
Experiments
Handling
Information Systems Applications (incl.Internet)
Language
Machine translation
Mathematical analysis
Mathematical models
Regular Paper
Semantics
Sentences
SMT
Software Engineering
Studies
Theory of Computation
Translations
Words (language)
框架
统计机器翻译
网络数据
翻译质量
翻译过程
语义模型
语言模型
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PaxQxFA5aPXix_sSpVSLoRQlO5keSOUkRl4JYRCz2FpJMUl0l23ba0j-_72WT3fVgL8IeBjaTmeFL3vuS9_I-Ql63fXBAjC3rhHKscyawwfCOSR96OwRnRO2S2IQ8OFBHR8PXvOE25bTKYhOToR4XDvfI34NflxLL1akPJ6cMVaMwupolNG6TO7xpOI7zz5IVS9zKOom54hY2Q3HMEtVMR-eA-mBKVotV-ATrsbbCz0U8PgWP8bePWhPPVaw0nfCJwcTjDWc02_7fz3hA7mcaSveW4-YhueXjI7JdJB5onvGPSdyjaFpSPgEgyJJrW6bPsW9JlCZd01nJ8aJAguk-lm6AT6CHEffsIv0BS9yJ_ooUuW0qDQ0P_5LyOD3d6PMJOZx9-v5xn2WJBuY63pwzPPfKhRvt4F2t5FhLz0frYVVka1P7oFrhZSOsMJ1DDYpRmrFXYGasUPBz7VOyFRfRPyOUt8EYIA9SwRLHBmjViNEGNRiPwdqmIjsrgPTJshSH7mQ6qcsrUhfEtMvFzVFj449el2VGwDUArhFw3Vfk7eqW0t0NjXcLnDpP8kmvsazIq9XfMD0x5mKiX1xAGyE58ARgfRV5V4bPRhf_fuCbPMLWjefT_PfVfLqy2jcYcMaQ8M7NL_ac3GuSfgcmxe2SrfOzC_-C3HWXgPXZyzRbrgGFJxrL
  priority: 102
  providerName: ProQuest
Title A Substitution-Translation-Restoration Framework for Handling Unknown Words in Statistical Machine Translation
URI http://lib.cqvip.com/qk/85226X/201305/47064211.html
https://link.springer.com/article/10.1007/s11390-013-1386-5
https://www.proquest.com/docview/1437734238
https://www.proquest.com/docview/1671413397
https://d.wanfangdata.com.cn/periodical/jsjkxjsxb-e201305014
Volume 28
WOSCitedRecordID wos000324661300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: 7WY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: M0C
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: K7-
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9s64Mv1k_cWo8I-qIE9jPJPtbSo1B6HFdrqy9Lks1WT8lpr5X--c7kNncnWEFhCbtsdrJkMskvmS-AV0XVWQTGhpdCWV5a3fFaZyWXrqtM3VktUhuSTcjRSJ2f1-Pej3serd2jSjLM1CtnNwQrZERVUNw8wasN2MLVTpE0Tk4-xOm3kGnI4Ern1pwyYkZV5p9IUECFzzN_8QOb-31hWqHNpYI0uPX4TvuLtRVouP1f__4A7veAk-0tRshDuOP8I9iOyRxYL9uPwe8xmkSC5QDyiodFbGEoxych_Uy4Z8NozcUQ7rJDCtKAf8JOPZ3OeXaGm9k5--IZodgQBBobPw4Wm46t0XwCp8OD9_uHvE_GwG2Z5VecPFwzYVtTO5sq2abSZa1xuP8xqU5dpwrhZC6M0KWlbBOt1G2lcEIxQuFli6ew6WfePQOWFZ3WCBOkws2M6bBWLlrTqVo7UsvmCewsudJ8XwTdaEoZfHKzBNLIpsb2Ycwpm8a3ZhWAmTq7wc5uqLObKoE3y08iub9U3o28b3pxnuP-qJCSYiWqBF4uX6MgknZFeze7xjpCZogIEN8l8DaOgjUStzf4uh9Wq8rT-fTrzXR-YxqXk2qZlL87_0T1OdzLQ-IOsobbhc2ry2v3Au7an8j6ywFsyLOPA9h6dzAaT_DpSHIsj9N9KuUJluPq0yDI1S_BLRbC
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VgkQvlKdIKWAkegFZ7NPePSBUFaJUbSOEWtGbsb3e0oCctmmh_Cl-IzPOOgkHeusBKYdIcbyvzzPfeh4fwMu8bC0SY8MLUVleWN3yWqcFl64tTd1aLRIbxCbkcFgdHtYfl-B3rIWhtMpoE4OhbsaW9sjfoF-XktrVVe9OTjmpRlF0NUpoTGGx4379xFe2ydvt9_h8N7Ks_2F_a8A7VQFuizQ751SqmQrbmNrZpJJNIl3aGIdE3iQ6cW2VCyczYYQuLMkmNFI3ZYUrw4gKPzbHeW_AzaLA5UCpgslWtPy5TIJ4LG2ZcxLjjFHUUKqHVItSwHLq-id4Sb0cvo790Sl6qL994pzozmKzoaLIt9ofLTi__ur_dtvuwp2OZrPN6bq4B0vO34fVKGHBOov2APwmI9MZ8iUQoTy47ml6IP8URHfCd9aPOWwMST4bUGsKvGXswNOepGef6cLYsWfE3UPrazz4XshTdWxhzodwcC1X_QiW_di7x8DSvNUayZGs8BXOtDgqE41pq1o7CkZnPVibAUKdTFuNqEKGSuS0B0lEiLJd83bSEPmu5m2nCWAKAaYIYKrswavZX-J0Vwxej_BRnRGbqDl2evBi9jOaH4opae_GFzhGyBR5ELLaHryOcF2Y4t8H3OgQPR88moy-XY4ml0a5jALqFPJeu_rEnsPtwf7ertrdHu48gZUsaJVQAuA6LJ-fXbincMv-wOd-9iysVAZfrhvjfwD0Cndi
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB-0ivTF-olbq0bQFyV0P5O9x6IeFfUoarVvIckm1avkavcq_fOdyW3uTlBBhHs4uNxkN5kkM5mZ3w_gSdV4i4ax4bVoLa-t9nyki5pL5xsz8laL3EayCTmZtEdHo4OB57RP2e4pJLmoaSCUpjDfPe387qrwDQ0XSqiqCENP8OYyXKmJM4jc9Q-f0lZcyTyyudIdNid2zBTW_J0IAlf4MgvH37HrXw-pleW5DJbGEp_gdTheO43GW__9Hjfg-mCIsr2F5tyESy7cgq1E8sCGNX8bwh6jzSVmFOAc8ni4LRLo-PtISxO_s3HK8mJoBrN9Am_Ap2KHgW7tAvuMTm7PvgZG1m0Eh8bO38VMTsfWZN6Bw_Grjy_2-UDSwG1dlHNOla-FsJ0ZOZu3ssulKzrj0C8yuc6dbyvhZCmM0LUlFopO6q5pcaMxosWPre7CRpgFdw9YUXmt0XyQLTo5xmOrUnTGtyPtKFxbZrC9nCF1ugDjULWMtbpFBnmaMmUHeHNi2fimVsDMNNgKB1vRYKsmg2fLvyRxf2m8k_RADcu8R7-pkpIwFNsMHi9_xgVKURcd3Owc2whZoKWAdl8Gz5NGrIn4c4dPBxVbNZ7205OLaX9hlCsp5ExB4e1_kvoIrh28HKu3rydv7sNmGbk9KGFuBzbmZ-fuAVy1P1ALzh7GhfQTRkEcPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Substitution-Translation-Restoration+Framework+for+Handling+Unknown+Words+in+Statistical+Machine+Translation&rft.jtitle=Journal+of+computer+science+and+technology&rft.au=Zhang%2C+Jia-Jun&rft.au=Zhai%2C+Fei-Fei&rft.au=Zong%2C+Cheng-Qing&rft.date=2013-09-01&rft.issn=1000-9000&rft.eissn=1860-4749&rft.volume=28&rft.issue=5&rft.spage=907&rft.epage=918&rft_id=info:doi/10.1007%2Fs11390-013-1386-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11390_013_1386_5
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85226X%2F85226X.jpg
http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxjsxb-e%2Fjsjkxjsxb-e.jpg