Nonfullerene Tandem Organic Solar Cells with High Performance of 14.11

Fabricating solar cells with tandem structure is an efficient way to broaden the photon response range without further increasing the thermalization loss in the system. In this work, a tandem organic solar cell (TOSC) based on highly efficient nonfullerene acceptors (NFAs) with series connection typ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) Jg. 30; H. 18; S. e1707508 - n/a
Hauptverfasser: Zhang, Yamin, Kan, Bin, Sun, Yanna, Wang, Yanbo, Xia, Ruoxi, Ke, Xin, Yi, Yuan‐Qiu‐Qiang, Li, Chenxi, Yip, Hin‐Lap, Wan, Xiangjian, Cao, Yong, Chen, Yongsheng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Wiley Subscription Services, Inc 03.05.2018
Schlagworte:
ISSN:0935-9648, 1521-4095, 1521-4095
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Fabricating solar cells with tandem structure is an efficient way to broaden the photon response range without further increasing the thermalization loss in the system. In this work, a tandem organic solar cell (TOSC) based on highly efficient nonfullerene acceptors (NFAs) with series connection type is demonstrated. To meet the different demands of front and rear sub‐cells, two NFAs named F‐M and NOBDT with a whole absorption range from 300 to 900 nm are designed, when blended with wide bandgap polymer poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene))‐alt‐(5,5‐(1′,3′‐di‐2‐thienyl‐5′,7′‐bis(2‐ethylhexyl)benzo[1′,2′‐c:4′,5′‐c′]dithiophene‐4,8‐dione))] (PBDB‐T) and narrow bandgap polymer PTB7‐Th, respectively, the PBDB‐T: F‐M system exhibits a high Voc of 0.98 V and the PTB7‐Th: NOBDT system shows a remarkable Jsc of 19.16 mA cm−2, which demonstrate their potential in the TOSCs. With the guidance of optical simulation, by systematically optimizing the thickness of each layer in the TOSC, an outstanding power conversion efficiency of 14.11%, with a Voc of 1.71 V, a Jsc of 11.72 mA cm−2, and a satisfactory fill factor of 0.70 is achieved; this result is one of the top efficiencies reported to date in the field of organic solar cells. A non‐fullerene tandem organic solar cell (OSC) with high efficiency is fabricated. Two non‐fullerene acceptors named F‐M and NOBDT with a whole absorption range from 300–900 nm are designed for the front and rear sub‐cell respectively; the tandem cell based on them demonstrates an outstanding PCE of 14.11%, which is among the top PCEs in the field of OSCs.
AbstractList Fabricating solar cells with tandem structure is an efficient way to broaden the photon response range without further increasing the thermalization loss in the system. In this work, a tandem organic solar cell (TOSC) based on highly efficient nonfullerene acceptors (NFAs) with series connection type is demonstrated. To meet the different demands of front and rear sub‐cells, two NFAs named F‐M and NOBDT with a whole absorption range from 300 to 900 nm are designed, when blended with wide bandgap polymer poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene))‐alt‐(5,5‐(1′,3′‐di‐2‐thienyl‐5′,7′‐bis(2‐ethylhexyl)benzo[1′,2′‐c:4′,5′‐c′]dithiophene‐4,8‐dione))] (PBDB‐T) and narrow bandgap polymer PTB7‐Th, respectively, the PBDB‐T: F‐M system exhibits a high Voc of 0.98 V and the PTB7‐Th: NOBDT system shows a remarkable Jsc of 19.16 mA cm−2, which demonstrate their potential in the TOSCs. With the guidance of optical simulation, by systematically optimizing the thickness of each layer in the TOSC, an outstanding power conversion efficiency of 14.11%, with a Voc of 1.71 V, a Jsc of 11.72 mA cm−2, and a satisfactory fill factor of 0.70 is achieved; this result is one of the top efficiencies reported to date in the field of organic solar cells.
Fabricating solar cells with tandem structure is an efficient way to broaden the photon response range without further increasing the thermalization loss in the system. In this work, a tandem organic solar cell (TOSC) based on highly efficient nonfullerene acceptors (NFAs) with series connection type is demonstrated. To meet the different demands of front and rear sub‐cells, two NFAs named F‐M and NOBDT with a whole absorption range from 300 to 900 nm are designed, when blended with wide bandgap polymer poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene))‐ alt ‐(5,5‐(1′,3′‐di‐2‐thienyl‐5′,7′‐bis(2‐ethylhexyl)benzo[1′,2′‐c:4′,5′‐c′]dithiophene‐4,8‐dione))] (PBDB‐T) and narrow bandgap polymer PTB7‐Th, respectively, the PBDB‐T: F‐M system exhibits a high V oc of 0.98 V and the PTB7‐Th: NOBDT system shows a remarkable J sc of 19.16 mA cm −2 , which demonstrate their potential in the TOSCs. With the guidance of optical simulation, by systematically optimizing the thickness of each layer in the TOSC, an outstanding power conversion efficiency of 14.11%, with a V oc of 1.71 V, a J sc of 11.72 mA cm −2 , and a satisfactory fill factor of 0.70 is achieved; this result is one of the top efficiencies reported to date in the field of organic solar cells.
Fabricating solar cells with tandem structure is an efficient way to broaden the photon response range without further increasing the thermalization loss in the system. In this work, a tandem organic solar cell (TOSC) based on highly efficient nonfullerene acceptors (NFAs) with series connection type is demonstrated. To meet the different demands of front and rear sub-cells, two NFAs named F-M and NOBDT with a whole absorption range from 300 to 900 nm are designed, when blended with wide bandgap polymer poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))] (PBDB-T) and narrow bandgap polymer PTB7-Th, respectively, the PBDB-T: F-M system exhibits a high V of 0.98 V and the PTB7-Th: NOBDT system shows a remarkable J of 19.16 mA cm , which demonstrate their potential in the TOSCs. With the guidance of optical simulation, by systematically optimizing the thickness of each layer in the TOSC, an outstanding power conversion efficiency of 14.11%, with a V of 1.71 V, a J of 11.72 mA cm , and a satisfactory fill factor of 0.70 is achieved; this result is one of the top efficiencies reported to date in the field of organic solar cells.
Fabricating solar cells with tandem structure is an efficient way to broaden the photon response range without further increasing the thermalization loss in the system. In this work, a tandem organic solar cell (TOSC) based on highly efficient nonfullerene acceptors (NFAs) with series connection type is demonstrated. To meet the different demands of front and rear sub-cells, two NFAs named F-M and NOBDT with a whole absorption range from 300 to 900 nm are designed, when blended with wide bandgap polymer poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))] (PBDB-T) and narrow bandgap polymer PTB7-Th, respectively, the PBDB-T: F-M system exhibits a high Voc of 0.98 V and the PTB7-Th: NOBDT system shows a remarkable Jsc of 19.16 mA cm-2 , which demonstrate their potential in the TOSCs. With the guidance of optical simulation, by systematically optimizing the thickness of each layer in the TOSC, an outstanding power conversion efficiency of 14.11%, with a Voc of 1.71 V, a Jsc of 11.72 mA cm-2 , and a satisfactory fill factor of 0.70 is achieved; this result is one of the top efficiencies reported to date in the field of organic solar cells.Fabricating solar cells with tandem structure is an efficient way to broaden the photon response range without further increasing the thermalization loss in the system. In this work, a tandem organic solar cell (TOSC) based on highly efficient nonfullerene acceptors (NFAs) with series connection type is demonstrated. To meet the different demands of front and rear sub-cells, two NFAs named F-M and NOBDT with a whole absorption range from 300 to 900 nm are designed, when blended with wide bandgap polymer poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))] (PBDB-T) and narrow bandgap polymer PTB7-Th, respectively, the PBDB-T: F-M system exhibits a high Voc of 0.98 V and the PTB7-Th: NOBDT system shows a remarkable Jsc of 19.16 mA cm-2 , which demonstrate their potential in the TOSCs. With the guidance of optical simulation, by systematically optimizing the thickness of each layer in the TOSC, an outstanding power conversion efficiency of 14.11%, with a Voc of 1.71 V, a Jsc of 11.72 mA cm-2 , and a satisfactory fill factor of 0.70 is achieved; this result is one of the top efficiencies reported to date in the field of organic solar cells.
Fabricating solar cells with tandem structure is an efficient way to broaden the photon response range without further increasing the thermalization loss in the system. In this work, a tandem organic solar cell (TOSC) based on highly efficient nonfullerene acceptors (NFAs) with series connection type is demonstrated. To meet the different demands of front and rear sub‐cells, two NFAs named F‐M and NOBDT with a whole absorption range from 300 to 900 nm are designed, when blended with wide bandgap polymer poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene))‐alt‐(5,5‐(1′,3′‐di‐2‐thienyl‐5′,7′‐bis(2‐ethylhexyl)benzo[1′,2′‐c:4′,5′‐c′]dithiophene‐4,8‐dione))] (PBDB‐T) and narrow bandgap polymer PTB7‐Th, respectively, the PBDB‐T: F‐M system exhibits a high Voc of 0.98 V and the PTB7‐Th: NOBDT system shows a remarkable Jsc of 19.16 mA cm−2, which demonstrate their potential in the TOSCs. With the guidance of optical simulation, by systematically optimizing the thickness of each layer in the TOSC, an outstanding power conversion efficiency of 14.11%, with a Voc of 1.71 V, a Jsc of 11.72 mA cm−2, and a satisfactory fill factor of 0.70 is achieved; this result is one of the top efficiencies reported to date in the field of organic solar cells. A non‐fullerene tandem organic solar cell (OSC) with high efficiency is fabricated. Two non‐fullerene acceptors named F‐M and NOBDT with a whole absorption range from 300–900 nm are designed for the front and rear sub‐cell respectively; the tandem cell based on them demonstrates an outstanding PCE of 14.11%, which is among the top PCEs in the field of OSCs.
Author Sun, Yanna
Wang, Yanbo
Xia, Ruoxi
Cao, Yong
Chen, Yongsheng
Ke, Xin
Zhang, Yamin
Li, Chenxi
Wan, Xiangjian
Yip, Hin‐Lap
Kan, Bin
Yi, Yuan‐Qiu‐Qiang
Author_xml – sequence: 1
  givenname: Yamin
  surname: Zhang
  fullname: Zhang, Yamin
  organization: Nankai University
– sequence: 2
  givenname: Bin
  surname: Kan
  fullname: Kan, Bin
  organization: Nankai University
– sequence: 3
  givenname: Yanna
  surname: Sun
  fullname: Sun, Yanna
  organization: Nankai University
– sequence: 4
  givenname: Yanbo
  surname: Wang
  fullname: Wang, Yanbo
  organization: Nankai University
– sequence: 5
  givenname: Ruoxi
  surname: Xia
  fullname: Xia, Ruoxi
  organization: South China University of Technology
– sequence: 6
  givenname: Xin
  surname: Ke
  fullname: Ke, Xin
  organization: Nankai University
– sequence: 7
  givenname: Yuan‐Qiu‐Qiang
  surname: Yi
  fullname: Yi, Yuan‐Qiu‐Qiang
  organization: Nankai University
– sequence: 8
  givenname: Chenxi
  surname: Li
  fullname: Li, Chenxi
  organization: Nankai University
– sequence: 9
  givenname: Hin‐Lap
  surname: Yip
  fullname: Yip, Hin‐Lap
  organization: South China University of Technology
– sequence: 10
  givenname: Xiangjian
  surname: Wan
  fullname: Wan, Xiangjian
  organization: Nankai University
– sequence: 11
  givenname: Yong
  surname: Cao
  fullname: Cao, Yong
  organization: South China University of Technology
– sequence: 12
  givenname: Yongsheng
  orcidid: 0000-0003-1448-8177
  surname: Chen
  fullname: Chen, Yongsheng
  email: yschen99@nankai.edu.cn
  organization: Nankai University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29575107$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1P3DAQhq0KVBbaa4-VpV56yXbsxHZ8XC3lQ6JQqfQceeMxGCU2tRMh_j1eLVAJqeppDn6emfG8h2QvxICEfGKwZAD8m7GjWXJgCpSA9h1ZMMFZ1YAWe2QBuhaVlk17QA5zvgMALUG-JwdcCyUYqAU5uYzBzcOACQPSaxMsjvQq3Zjge_orDibRNQ5Dpg9-uqVn_uaW_sTkYhpN6JFGR1mzZOwD2XdmyPjxuR6R3yffr9dn1cXV6fl6dVH1DeNt5ZSUwsmGm4ZDWytw2tpeoWSa27q8IHNWbsofpLJoW7sxvGXasF4IBNnWR-Trru99in9mzFM3-tyXBU3AOOeuXKKVUikJBf3yBr2Lcwplu0LVtWIC1Lbh52dq3oxou_vkR5Meu5cLFWC5A_oUc07oXhEG3TaCbhtB9xpBEZo3Qu8nM_kYpmT88G9N77QHP-Djf4Z0q-Mfq7_uEym0l30
CitedBy_id crossref_primary_10_1016_j_cclet_2019_07_018
crossref_primary_10_1002_advs_201903259
crossref_primary_10_1126_science_aat2612
crossref_primary_10_1038_s41928_019_0315_1
crossref_primary_10_1002_aenm_202102526
crossref_primary_10_3389_fchem_2018_00578
crossref_primary_10_1002_aenm_201801203
crossref_primary_10_1002_adfm_201903269
crossref_primary_10_1038_s41598_024_62085_0
crossref_primary_10_1002_smll_202308863
crossref_primary_10_1016_j_solener_2020_01_042
crossref_primary_10_1002_ange_201807865
crossref_primary_10_1039_C9PY01026B
crossref_primary_10_1002_sstr_202000006
crossref_primary_10_3390_nano10010080
crossref_primary_10_1038_s41598_019_44232_0
crossref_primary_10_1002_adfm_201802324
crossref_primary_10_1002_marc_201900074
crossref_primary_10_1039_D5SM00024F
crossref_primary_10_1039_C9NH00209J
crossref_primary_10_3390_polym12122964
crossref_primary_10_1002_adom_202101246
crossref_primary_10_1002_smll_202205572
crossref_primary_10_1002_sstr_202000016
crossref_primary_10_1016_j_joule_2018_11_011
crossref_primary_10_1002_cey2_20
crossref_primary_10_1002_aenm_201901024
crossref_primary_10_1016_j_joule_2020_06_006
crossref_primary_10_3390_molecules27061800
crossref_primary_10_1016_j_mtener_2021_100707
crossref_primary_10_1016_j_mtcomm_2022_104757
crossref_primary_10_1016_j_solener_2020_02_035
crossref_primary_10_1002_chem_201804020
crossref_primary_10_1007_s00339_023_06533_0
crossref_primary_10_1016_j_jphotochem_2023_115162
crossref_primary_10_1002_adfm_202103283
crossref_primary_10_1002_adma_201804723
crossref_primary_10_1002_cey2_97
crossref_primary_10_1002_adts_201800116
crossref_primary_10_1002_aenm_201801968
crossref_primary_10_1016_j_mssp_2021_106381
crossref_primary_10_1002_aenm_201801609
crossref_primary_10_1002_admi_201801396
crossref_primary_10_1007_s11426_021_1180_6
crossref_primary_10_1088_1361_6528_ab758e
crossref_primary_10_1002_sus2_50
crossref_primary_10_1080_08927022_2023_2165125
crossref_primary_10_1002_anie_202208383
crossref_primary_10_1016_j_nanoen_2018_08_059
crossref_primary_10_1002_solr_201800247
crossref_primary_10_1016_j_solener_2019_09_013
crossref_primary_10_1007_s13391_020_00235_y
crossref_primary_10_1039_C8QM00512E
crossref_primary_10_1002_er_4298
crossref_primary_10_1109_JPHOTOV_2019_2908789
crossref_primary_10_1002_anie_201807865
crossref_primary_10_1016_j_solmat_2019_110250
crossref_primary_10_1002_er_5664
crossref_primary_10_1016_j_orgel_2019_01_052
crossref_primary_10_1039_C8EE01700J
crossref_primary_10_1002_ajoc_201800389
crossref_primary_10_1016_j_jpowsour_2020_228457
crossref_primary_10_1002_aenm_202000823
crossref_primary_10_1002_aesr_202000050
crossref_primary_10_1139_cjc_2024_0131
crossref_primary_10_1002_ente_202001100
crossref_primary_10_1002_solr_201900480
crossref_primary_10_1002_ange_202208383
crossref_primary_10_1016_j_solmat_2018_12_034
crossref_primary_10_1002_aesr_202300073
crossref_primary_10_1007_s11426_020_9820_2
crossref_primary_10_1016_j_joule_2021_12_017
crossref_primary_10_1016_j_joule_2020_04_014
crossref_primary_10_1039_D0EE02461A
crossref_primary_10_1002_bkcs_11739
crossref_primary_10_1016_j_nanoen_2019_02_038
crossref_primary_10_1002_adma_201805708
crossref_primary_10_1007_s00339_019_3117_4
crossref_primary_10_1002_adma_201803769
crossref_primary_10_1016_j_heliyon_2024_e25477
crossref_primary_10_1002_adma_202501653
crossref_primary_10_1002_aenm_201904247
crossref_primary_10_1016_j_gee_2021_01_009
crossref_primary_10_1002_macp_201900084
crossref_primary_10_1039_C8SE00601F
crossref_primary_10_1016_j_solener_2018_10_038
crossref_primary_10_1002_aenm_201803657
crossref_primary_10_1039_C9QM00314B
crossref_primary_10_1016_j_orgel_2020_105690
crossref_primary_10_1002_cjoc_202200852
crossref_primary_10_1002_ente_202000751
crossref_primary_10_1039_D1QM01100F
crossref_primary_10_3390_molecules27217615
crossref_primary_10_1002_adfm_202011168
crossref_primary_10_1002_aenm_202203496
crossref_primary_10_1002_adfm_201902478
crossref_primary_10_1002_aenm_202102908
crossref_primary_10_1002_adma_201903649
crossref_primary_10_1002_aenm_202003002
crossref_primary_10_1002_advs_201802028
crossref_primary_10_1039_D0QM00123F
crossref_primary_10_1002_solr_202000355
crossref_primary_10_1002_smll_201900134
crossref_primary_10_1002_solr_202300642
crossref_primary_10_1002_admi_202000336
crossref_primary_10_1002_smll_202207694
crossref_primary_10_1016_j_nanoen_2019_104209
crossref_primary_10_1002_adma_201805843
crossref_primary_10_1016_j_dyepig_2020_108559
crossref_primary_10_1016_j_mattod_2019_10_023
crossref_primary_10_1002_adma_201806499
Cites_doi 10.1038/nphoton.2012.11
10.1016/j.solmat.2006.05.009
10.1002/adma.200702337
10.1126/science.270.5243.1789
10.1021/jacs.7b02677
10.1103/PhysRevApplied.4.014020
10.1016/j.orgel.2012.02.015
10.1038/nenergy.2016.89
10.1002/adma.201701308
10.1038/ncomms6293
10.1002/adma.201603178
10.1021/jacs.6b12755
10.1021/jacs.7b01170
10.1038/nphoton.2016.240
10.1002/adfm.200700517
10.1016/j.progpolymsci.2013.08.008
10.1063/1.96937
10.1002/adma.201504014
10.1002/adma.201702547
10.1021/jacs.7b01493
10.1002/adma.201700144
10.1038/ncomms13651
10.1021/ja401434x
10.1016/j.scib.2017.10.017
10.1021/jacs.5b00305
10.1002/adma.201604231
10.1002/adma.200601093
10.1021/jp050745x
10.1126/science.1141711
10.1002/adma.201704510
10.1002/adma.201703973
10.1021/jacs.6b02004
10.1016/j.solmat.2012.08.004
10.1002/adma.201602834
10.1021/ja211597w
10.1007/s11426-014-5273-x
10.1002/adma.201704904
10.1002/adma.201602776
10.1002/adma.201604964
10.1063/1.1729992
10.1002/adma.201600281
10.1039/c4ee00022f
10.1002/adma.200902750
10.1039/C4EE03048F
10.1038/nphoton.2015.84
10.1126/science.258.5087.1474
10.1021/jacs.6b09110
10.1039/C5EE01116G
10.1039/c3ee40388b
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201707508
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 29575107
10_1002_adma_201707508
ADMA201707508
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 91633301; 51773095
– fundername: 111 Project
  funderid: B12015
– fundername: Tianjin city
  funderid: 17JCZDJC31100
– fundername: Ministry of Science and Technology of China
  funderid: 2014CB643502
– fundername: Science and Technology Program of Guangzhou, China
  funderid: 201607020010
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
AETEA
AFFNX
AGQPQ
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
NPM
RWI
RWM
WRC
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4128-f7665f642a4208370f9ddc7e6192d35f6e1fd6b15267ded8dba2819a1c55e0683
IEDL.DBID DRFUL
ISICitedReferencesCount 150
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000431615100025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Wed Oct 01 13:58:31 EDT 2025
Sat Jul 26 00:01:36 EDT 2025
Wed Feb 19 02:43:51 EST 2025
Sat Nov 29 07:22:36 EST 2025
Tue Nov 18 21:13:50 EST 2025
Sun Sep 21 06:19:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords high efficiency
nonfullerene acceptors
tandem organic solar cells
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4128-f7665f642a4208370f9ddc7e6192d35f6e1fd6b15267ded8dba2819a1c55e0683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1448-8177
PMID 29575107
PQID 2033715078
PQPubID 2045203
PageCount 7
ParticipantIDs proquest_miscellaneous_2018667760
proquest_journals_2033715078
pubmed_primary_29575107
crossref_primary_10_1002_adma_201707508
crossref_citationtrail_10_1002_adma_201707508
wiley_primary_10_1002_adma_201707508_ADMA201707508
PublicationCentury 2000
PublicationDate May 3, 2018
PublicationDateYYYYMMDD 2018-05-03
PublicationDate_xml – month: 05
  year: 2018
  text: May 3, 2018
  day: 03
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 62
2006; 90
2007; 19
2015; 58
2015; 4
2008; 18
2017; 29
2015; 9
2012; 13
2015; 8
2013; 6
2012; 107
1995; 270
2017; 139
2016; 11
2010; 22
1959; 30
2016; 7
2014; 5
2007; 317
2016; 1
2012; 134
2013; 38
2015; 137
1992; 258
1986; 48
2005; 109
2013; 135
2018; 30
2016; 138
2008; 20
2012; 6
2016; 28
2014; 7
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_31_1
e_1_2_5_50_1
References_xml – volume: 7
  start-page: 1966
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 2448
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 139
  start-page: 4929
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 4955
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 58
  start-page: 248
  year: 2015
  publication-title: Sci. China Chem.
– volume: 139
  start-page: 7302
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 585
  year: 1959
  publication-title: J. Chem. Phys.
– volume: 28
  start-page: 4734
  year: 2016
  publication-title: Adv. Mater.
– volume: 134
  start-page: 5432
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 258
  start-page: 1474
  year: 1992
  publication-title: Science
– volume: 109
  start-page: 9505
  year: 2005
  publication-title: J. Phys. Chem. B
– volume: 135
  start-page: 5529
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 8184
  year: 2016
  publication-title: Adv. Mater.
– volume: 6
  start-page: 2390
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 28
  start-page: 9811
  year: 2016
  publication-title: Adv. Mater.
– volume: 4
  start-page: 014020
  year: 2015
  publication-title: Phys. Rev. Appl.
– volume: 29
  start-page: 1704510
  year: 2017
  publication-title: Adv. Mater.
– volume: 62
  start-page: 1494
  year: 2017
  publication-title: Sci. Bull.
– volume: 20
  start-page: 579
  year: 2008
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1702547
  year: 2017
  publication-title: Adv. Mater.
– volume: 5
  start-page: 5293
  year: 2014
  publication-title: Nat. Commun.
– volume: 28
  start-page: 9423
  year: 2016
  publication-title: Adv. Mater.
– volume: 11
  start-page: 85
  year: 2016
  publication-title: Nat. Photonics
– volume: 19
  start-page: 1551
  year: 2007
  publication-title: Adv. Mater.
– volume: 30
  start-page: 1703973
  year: 2018
  publication-title: Adv. Mater.
– volume: 139
  start-page: 1336
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 7148
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 169
  year: 2008
  publication-title: Adv. Funct. Mater.
– volume: 29
  start-page: 1604964
  year: 2017
  publication-title: Adv. Mater.
– volume: 6
  start-page: 153
  year: 2012
  publication-title: Nat. Photonics
– volume: 270
  start-page: 1789
  year: 1995
  publication-title: Science
– volume: 30
  start-page: 1704904
  year: 2018
  publication-title: Adv. Mater.
– volume: 13
  start-page: 1018
  year: 2012
  publication-title: Org. Electron.
– volume: 90
  start-page: 3491
  year: 2006
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 29
  start-page: 1604231
  year: 2017
  publication-title: Adv. Mater.
– volume: 138
  start-page: 15011
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 1700144
  year: 2017
  publication-title: Adv. Mater.
– volume: 22
  start-page: E77
  year: 2010
  publication-title: Adv. Mater.
– volume: 8
  start-page: 303
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 13651
  year: 2016
  publication-title: Nat. Commun.
– volume: 137
  start-page: 3886
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 107
  start-page: 51
  year: 2012
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 9
  start-page: 403
  year: 2015
  publication-title: Nat. Photonics
– volume: 29
  start-page: 1701308
  year: 2017
  publication-title: Adv. Mater.
– volume: 38
  start-page: 1941
  year: 2013
  publication-title: Prog. Polym. Sci.
– volume: 317
  start-page: 222
  year: 2007
  publication-title: Science
– volume: 1
  start-page: 16089
  year: 2016
  publication-title: Nat. Energy
– volume: 48
  start-page: 183
  year: 1986
  publication-title: Appl. Phys. Lett.
– volume: 28
  start-page: 967
  year: 2016
  publication-title: Adv. Mater.
– ident: e_1_2_5_5_1
  doi: 10.1038/nphoton.2012.11
– ident: e_1_2_5_25_1
  doi: 10.1016/j.solmat.2006.05.009
– ident: e_1_2_5_23_1
  doi: 10.1002/adma.200702337
– ident: e_1_2_5_4_1
  doi: 10.1126/science.270.5243.1789
– ident: e_1_2_5_22_1
  doi: 10.1021/jacs.7b02677
– ident: e_1_2_5_46_1
  doi: 10.1103/PhysRevApplied.4.014020
– ident: e_1_2_5_28_1
  doi: 10.1016/j.orgel.2012.02.015
– ident: e_1_2_5_44_1
  doi: 10.1038/nenergy.2016.89
– ident: e_1_2_5_40_1
  doi: 10.1002/adma.201701308
– ident: e_1_2_5_14_1
  doi: 10.1038/ncomms6293
– ident: e_1_2_5_9_1
  doi: 10.1038/ncomms6293
– ident: e_1_2_5_7_1
  doi: 10.1002/adma.201603178
– ident: e_1_2_5_13_1
  doi: 10.1021/jacs.6b12755
– ident: e_1_2_5_39_1
  doi: 10.1021/jacs.7b01170
– ident: e_1_2_5_33_1
  doi: 10.1038/nphoton.2016.240
– ident: e_1_2_5_36_1
  doi: 10.1002/adfm.200700517
– ident: e_1_2_5_48_1
  doi: 10.1016/j.progpolymsci.2013.08.008
– ident: e_1_2_5_3_1
  doi: 10.1063/1.96937
– ident: e_1_2_5_6_1
  doi: 10.1002/adma.201504014
– ident: e_1_2_5_32_1
  doi: 10.1002/adma.201702547
– ident: e_1_2_5_34_1
  doi: 10.1021/jacs.7b01493
– ident: e_1_2_5_21_1
  doi: 10.1002/adma.201700144
– ident: e_1_2_5_12_1
  doi: 10.1038/ncomms13651
– ident: e_1_2_5_37_1
  doi: 10.1021/ja401434x
– ident: e_1_2_5_18_1
  doi: 10.1016/j.scib.2017.10.017
– ident: e_1_2_5_8_1
  doi: 10.1021/jacs.5b00305
– ident: e_1_2_5_45_1
  doi: 10.1002/adma.201604231
– ident: e_1_2_5_47_1
  doi: 10.1002/adma.200601093
– ident: e_1_2_5_50_1
  doi: 10.1021/jp050745x
– ident: e_1_2_5_24_1
  doi: 10.1126/science.1141711
– ident: e_1_2_5_19_1
  doi: 10.1002/adma.201704510
– ident: e_1_2_5_20_1
  doi: 10.1002/adma.201703973
– ident: e_1_2_5_41_1
  doi: 10.1021/jacs.6b02004
– ident: e_1_2_5_26_1
  doi: 10.1016/j.solmat.2012.08.004
– ident: e_1_2_5_15_1
  doi: 10.1002/adma.201602834
– ident: e_1_2_5_30_1
  doi: 10.1021/ja211597w
– ident: e_1_2_5_11_1
  doi: 10.1007/s11426-014-5273-x
– ident: e_1_2_5_16_1
  doi: 10.1002/adma.201704904
– ident: e_1_2_5_17_1
  doi: 10.1002/adma.201602776
– ident: e_1_2_5_38_1
  doi: 10.1002/adma.201604964
– ident: e_1_2_5_1_1
  doi: 10.1063/1.1729992
– ident: e_1_2_5_43_1
  doi: 10.1002/adma.201600281
– ident: e_1_2_5_49_1
  doi: 10.1039/c4ee00022f
– ident: e_1_2_5_29_1
  doi: 10.1002/adma.200902750
– ident: e_1_2_5_31_1
  doi: 10.1039/C4EE03048F
– ident: e_1_2_5_10_1
  doi: 10.1038/nphoton.2015.84
– ident: e_1_2_5_2_1
  doi: 10.1126/science.258.5087.1474
– ident: e_1_2_5_42_1
  doi: 10.1021/jacs.6b09110
– ident: e_1_2_5_27_1
  doi: 10.1039/C5EE01116G
– ident: e_1_2_5_35_1
  doi: 10.1039/c3ee40388b
SSID ssj0009606
Score 2.627182
Snippet Fabricating solar cells with tandem structure is an efficient way to broaden the photon response range without further increasing the thermalization loss in...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1707508
SubjectTerms Energy conversion efficiency
Energy gap
high efficiency
Materials science
nonfullerene acceptors
Photovoltaic cells
Polymers
Solar cells
tandem organic solar cells
Thermalization (energy absorption)
Thickness
Title Nonfullerene Tandem Organic Solar Cells with High Performance of 14.11
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201707508
https://www.ncbi.nlm.nih.gov/pubmed/29575107
https://www.proquest.com/docview/2033715078
https://www.proquest.com/docview/2018667760
Volume 30
WOSCitedRecordID wos000431615100025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZg4wAH3o_xmIKExCmijzVpj9NGxWFMEw9ptypNUglpdIgyfj9x2nWbEEKCY2W3jew4duzkM8BV6EmjWxFRxzBQhNCiqfFCVKmAe75yNZMWXX_Ah8NwPI5GS7f4S3yIOuGGlmHXazRwkRY3C9BQoSxukMvR6YXr0PTM5A0a0Ow_xM-DBfAus_01sd5HI9YJ58CNjnez-oVVx_Qt2lwNXq33iXf-P-5d2K4iT9Itp8oerOl8H7aW8AgPIB5Oc8zH244p5Anzy6-kvK0pySNugklPTyYFwewtwSMiZLS4eECmGXE7ZnU8hOf49ql3R6tGC1R2jH-iGWcsyMxORGCx3edOFiklucbNlfINRbuZYqlx9YwrrUKVCqy_CVcGgXZY6B9BI5_m-gSIRog4V7kRT1VHyChECDmLec-U6wjVAjqXciIrFHJshjFJSvxkL0H5JLV8WnBd87-V-Bs_cp7PlZZUdlgYqu9zjHkN-bImGwvCsojI9XSGPAj6xzlzWnBcKrv-lRdhXcrhLfCsTn8ZQ9Lt33frp9O_vHQGmzgge6bSP4fGx_tMX8CG_Px4Kd7bsM7HYbua419HjfZs
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED90E9QHvz-mUyMIPoX1a0n7ODbHxG0M3WBvpUtSEGYn-_DvN5d2nUNEEB_LXdOQu-td7pLfAdz5jtCyjQJqaQaKEFp0pL0QlbLKHVfaigmDrt_m3a4_HAa97DQh3oVJ8SHyhBtahvlfo4FjQrqyQg2NpAEOsjl6PX8Tip7WJa3kxcZzc9BeIe8y02ATC340YJ6_RG60nMr6COue6Vu4uR69GvfT3P-HiR_AXhZ7klqqLIewoZIj2P2CSHgMze4kwXFMzxTSxwzzG0nvawrygttgUlfj8Yxg_pbgIRHSW109IJOY2J7-P57AoPnQr7do1mqBCk97KBpzxqqx3otEWG53uRUHUgqucHslXU1RdizZSDt7xqWSvhxFWIGLbFGtKov57ikUkkmizoEoBImzpR3wkfQiEfgIImdQ75m0rUiWgC6XORQZDjm2wxiHKYKyE-L6hPn6lOA-539PETh-5CwvpRZmljjTVNflGPVq8m1O1jaEhZEoUZMF8iDsH-fMKsFZKu38U06AlSmLl8AxQv1lDmGt0anlTxd_eekGtlv9TjtsP3afLmEHJ2dOWLplKMynC3UFW-Jj_jqbXmeq_glRuvl0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rS8MwED90E9EPvh_zGUHwU1hfS9qPY7MozjF0g30rXZKCMLuxh3-_ubTrHCKC-LHctQ13udzlLvkdwK3vCK3bOKCWZqAIoUUH2gtRKWvccaWtmDDo-i3ebvv9ftDJTxPiXZgMH6JIuKFlmPUaDVyNZVJdoobG0gAH2Ry9nr8OZQ87yZSg3HwJe60l8i4zDTax4EcD5vkL5EbLqa5-YdUzfQs3V6NX437C3X8Y-B7s5LEnqWeTZR_WVHoA218QCQ8hbI9SzMibnimkixnmd5Ld1xTkFbfBpKGGwynB_C3BQyKks7x6QEYJsT29Ph5BL7zvNh5o3mqBCk97KJpwxmqJ3ovEWG53uZUEUgqucHslXU1RdiLZQDt7xqWSvhzEWIGLbVGrKYv57jGU0lGqToEoBImzpR3wgfRiEfgIImdQ75m0rVhWgC7EHIkchxzbYQyjDEHZiVA-USGfCtwV_OMMgeNHzouF1qLcEqea6roco15NvinI2oawMBKnajRHHoT945xZFTjJtF38ygmwMmXxCjhGqb-MIao3n-vF09lfXrqGzU4zjFqP7adz2MKxmQOW7gWUZpO5uoQN8TF7m06u8pn-CeMY-O8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonfullerene+Tandem+Organic+Solar+Cells+with+High+Performance+of+14.11&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Yamin&rft.au=Kan%2C+Bin&rft.au=Sun%2C+Yanna&rft.au=Wang%2C+Yanbo&rft.date=2018-05-03&rft.eissn=1521-4095&rft.spage=e1707508&rft_id=info:doi/10.1002%2Fadma.201707508&rft_id=info%3Apmid%2F29575107&rft.externalDocID=29575107
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon