Nonfullerene Tandem Organic Solar Cells with High Performance of 14.11
Fabricating solar cells with tandem structure is an efficient way to broaden the photon response range without further increasing the thermalization loss in the system. In this work, a tandem organic solar cell (TOSC) based on highly efficient nonfullerene acceptors (NFAs) with series connection typ...
Gespeichert in:
| Veröffentlicht in: | Advanced materials (Weinheim) Jg. 30; H. 18; S. e1707508 - n/a |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Germany
Wiley Subscription Services, Inc
03.05.2018
|
| Schlagworte: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Fabricating solar cells with tandem structure is an efficient way to broaden the photon response range without further increasing the thermalization loss in the system. In this work, a tandem organic solar cell (TOSC) based on highly efficient nonfullerene acceptors (NFAs) with series connection type is demonstrated. To meet the different demands of front and rear sub‐cells, two NFAs named F‐M and NOBDT with a whole absorption range from 300 to 900 nm are designed, when blended with wide bandgap polymer poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene))‐alt‐(5,5‐(1′,3′‐di‐2‐thienyl‐5′,7′‐bis(2‐ethylhexyl)benzo[1′,2′‐c:4′,5′‐c′]dithiophene‐4,8‐dione))] (PBDB‐T) and narrow bandgap polymer PTB7‐Th, respectively, the PBDB‐T: F‐M system exhibits a high Voc of 0.98 V and the PTB7‐Th: NOBDT system shows a remarkable Jsc of 19.16 mA cm−2, which demonstrate their potential in the TOSCs. With the guidance of optical simulation, by systematically optimizing the thickness of each layer in the TOSC, an outstanding power conversion efficiency of 14.11%, with a Voc of 1.71 V, a Jsc of 11.72 mA cm−2, and a satisfactory fill factor of 0.70 is achieved; this result is one of the top efficiencies reported to date in the field of organic solar cells.
A non‐fullerene tandem organic solar cell (OSC) with high efficiency is fabricated. Two non‐fullerene acceptors named F‐M and NOBDT with a whole absorption range from 300–900 nm are designed for the front and rear sub‐cell respectively; the tandem cell based on them demonstrates an outstanding PCE of 14.11%, which is among the top PCEs in the field of OSCs. |
|---|---|
| AbstractList | Fabricating solar cells with tandem structure is an efficient way to broaden the photon response range without further increasing the thermalization loss in the system. In this work, a tandem organic solar cell (TOSC) based on highly efficient nonfullerene acceptors (NFAs) with series connection type is demonstrated. To meet the different demands of front and rear sub‐cells, two NFAs named F‐M and NOBDT with a whole absorption range from 300 to 900 nm are designed, when blended with wide bandgap polymer poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene))‐alt‐(5,5‐(1′,3′‐di‐2‐thienyl‐5′,7′‐bis(2‐ethylhexyl)benzo[1′,2′‐c:4′,5′‐c′]dithiophene‐4,8‐dione))] (PBDB‐T) and narrow bandgap polymer PTB7‐Th, respectively, the PBDB‐T: F‐M system exhibits a high Voc of 0.98 V and the PTB7‐Th: NOBDT system shows a remarkable Jsc of 19.16 mA cm−2, which demonstrate their potential in the TOSCs. With the guidance of optical simulation, by systematically optimizing the thickness of each layer in the TOSC, an outstanding power conversion efficiency of 14.11%, with a Voc of 1.71 V, a Jsc of 11.72 mA cm−2, and a satisfactory fill factor of 0.70 is achieved; this result is one of the top efficiencies reported to date in the field of organic solar cells. Fabricating solar cells with tandem structure is an efficient way to broaden the photon response range without further increasing the thermalization loss in the system. In this work, a tandem organic solar cell (TOSC) based on highly efficient nonfullerene acceptors (NFAs) with series connection type is demonstrated. To meet the different demands of front and rear sub‐cells, two NFAs named F‐M and NOBDT with a whole absorption range from 300 to 900 nm are designed, when blended with wide bandgap polymer poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene))‐ alt ‐(5,5‐(1′,3′‐di‐2‐thienyl‐5′,7′‐bis(2‐ethylhexyl)benzo[1′,2′‐c:4′,5′‐c′]dithiophene‐4,8‐dione))] (PBDB‐T) and narrow bandgap polymer PTB7‐Th, respectively, the PBDB‐T: F‐M system exhibits a high V oc of 0.98 V and the PTB7‐Th: NOBDT system shows a remarkable J sc of 19.16 mA cm −2 , which demonstrate their potential in the TOSCs. With the guidance of optical simulation, by systematically optimizing the thickness of each layer in the TOSC, an outstanding power conversion efficiency of 14.11%, with a V oc of 1.71 V, a J sc of 11.72 mA cm −2 , and a satisfactory fill factor of 0.70 is achieved; this result is one of the top efficiencies reported to date in the field of organic solar cells. Fabricating solar cells with tandem structure is an efficient way to broaden the photon response range without further increasing the thermalization loss in the system. In this work, a tandem organic solar cell (TOSC) based on highly efficient nonfullerene acceptors (NFAs) with series connection type is demonstrated. To meet the different demands of front and rear sub-cells, two NFAs named F-M and NOBDT with a whole absorption range from 300 to 900 nm are designed, when blended with wide bandgap polymer poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))] (PBDB-T) and narrow bandgap polymer PTB7-Th, respectively, the PBDB-T: F-M system exhibits a high V of 0.98 V and the PTB7-Th: NOBDT system shows a remarkable J of 19.16 mA cm , which demonstrate their potential in the TOSCs. With the guidance of optical simulation, by systematically optimizing the thickness of each layer in the TOSC, an outstanding power conversion efficiency of 14.11%, with a V of 1.71 V, a J of 11.72 mA cm , and a satisfactory fill factor of 0.70 is achieved; this result is one of the top efficiencies reported to date in the field of organic solar cells. Fabricating solar cells with tandem structure is an efficient way to broaden the photon response range without further increasing the thermalization loss in the system. In this work, a tandem organic solar cell (TOSC) based on highly efficient nonfullerene acceptors (NFAs) with series connection type is demonstrated. To meet the different demands of front and rear sub-cells, two NFAs named F-M and NOBDT with a whole absorption range from 300 to 900 nm are designed, when blended with wide bandgap polymer poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))] (PBDB-T) and narrow bandgap polymer PTB7-Th, respectively, the PBDB-T: F-M system exhibits a high Voc of 0.98 V and the PTB7-Th: NOBDT system shows a remarkable Jsc of 19.16 mA cm-2 , which demonstrate their potential in the TOSCs. With the guidance of optical simulation, by systematically optimizing the thickness of each layer in the TOSC, an outstanding power conversion efficiency of 14.11%, with a Voc of 1.71 V, a Jsc of 11.72 mA cm-2 , and a satisfactory fill factor of 0.70 is achieved; this result is one of the top efficiencies reported to date in the field of organic solar cells.Fabricating solar cells with tandem structure is an efficient way to broaden the photon response range without further increasing the thermalization loss in the system. In this work, a tandem organic solar cell (TOSC) based on highly efficient nonfullerene acceptors (NFAs) with series connection type is demonstrated. To meet the different demands of front and rear sub-cells, two NFAs named F-M and NOBDT with a whole absorption range from 300 to 900 nm are designed, when blended with wide bandgap polymer poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))] (PBDB-T) and narrow bandgap polymer PTB7-Th, respectively, the PBDB-T: F-M system exhibits a high Voc of 0.98 V and the PTB7-Th: NOBDT system shows a remarkable Jsc of 19.16 mA cm-2 , which demonstrate their potential in the TOSCs. With the guidance of optical simulation, by systematically optimizing the thickness of each layer in the TOSC, an outstanding power conversion efficiency of 14.11%, with a Voc of 1.71 V, a Jsc of 11.72 mA cm-2 , and a satisfactory fill factor of 0.70 is achieved; this result is one of the top efficiencies reported to date in the field of organic solar cells. Fabricating solar cells with tandem structure is an efficient way to broaden the photon response range without further increasing the thermalization loss in the system. In this work, a tandem organic solar cell (TOSC) based on highly efficient nonfullerene acceptors (NFAs) with series connection type is demonstrated. To meet the different demands of front and rear sub‐cells, two NFAs named F‐M and NOBDT with a whole absorption range from 300 to 900 nm are designed, when blended with wide bandgap polymer poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene))‐alt‐(5,5‐(1′,3′‐di‐2‐thienyl‐5′,7′‐bis(2‐ethylhexyl)benzo[1′,2′‐c:4′,5′‐c′]dithiophene‐4,8‐dione))] (PBDB‐T) and narrow bandgap polymer PTB7‐Th, respectively, the PBDB‐T: F‐M system exhibits a high Voc of 0.98 V and the PTB7‐Th: NOBDT system shows a remarkable Jsc of 19.16 mA cm−2, which demonstrate their potential in the TOSCs. With the guidance of optical simulation, by systematically optimizing the thickness of each layer in the TOSC, an outstanding power conversion efficiency of 14.11%, with a Voc of 1.71 V, a Jsc of 11.72 mA cm−2, and a satisfactory fill factor of 0.70 is achieved; this result is one of the top efficiencies reported to date in the field of organic solar cells. A non‐fullerene tandem organic solar cell (OSC) with high efficiency is fabricated. Two non‐fullerene acceptors named F‐M and NOBDT with a whole absorption range from 300–900 nm are designed for the front and rear sub‐cell respectively; the tandem cell based on them demonstrates an outstanding PCE of 14.11%, which is among the top PCEs in the field of OSCs. |
| Author | Sun, Yanna Wang, Yanbo Xia, Ruoxi Cao, Yong Chen, Yongsheng Ke, Xin Zhang, Yamin Li, Chenxi Wan, Xiangjian Yip, Hin‐Lap Kan, Bin Yi, Yuan‐Qiu‐Qiang |
| Author_xml | – sequence: 1 givenname: Yamin surname: Zhang fullname: Zhang, Yamin organization: Nankai University – sequence: 2 givenname: Bin surname: Kan fullname: Kan, Bin organization: Nankai University – sequence: 3 givenname: Yanna surname: Sun fullname: Sun, Yanna organization: Nankai University – sequence: 4 givenname: Yanbo surname: Wang fullname: Wang, Yanbo organization: Nankai University – sequence: 5 givenname: Ruoxi surname: Xia fullname: Xia, Ruoxi organization: South China University of Technology – sequence: 6 givenname: Xin surname: Ke fullname: Ke, Xin organization: Nankai University – sequence: 7 givenname: Yuan‐Qiu‐Qiang surname: Yi fullname: Yi, Yuan‐Qiu‐Qiang organization: Nankai University – sequence: 8 givenname: Chenxi surname: Li fullname: Li, Chenxi organization: Nankai University – sequence: 9 givenname: Hin‐Lap surname: Yip fullname: Yip, Hin‐Lap organization: South China University of Technology – sequence: 10 givenname: Xiangjian surname: Wan fullname: Wan, Xiangjian organization: Nankai University – sequence: 11 givenname: Yong surname: Cao fullname: Cao, Yong organization: South China University of Technology – sequence: 12 givenname: Yongsheng orcidid: 0000-0003-1448-8177 surname: Chen fullname: Chen, Yongsheng email: yschen99@nankai.edu.cn organization: Nankai University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29575107$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1P3DAQhq0KVBbaa4-VpV56yXbsxHZ8XC3lQ6JQqfQceeMxGCU2tRMh_j1eLVAJqeppDn6emfG8h2QvxICEfGKwZAD8m7GjWXJgCpSA9h1ZMMFZ1YAWe2QBuhaVlk17QA5zvgMALUG-JwdcCyUYqAU5uYzBzcOACQPSaxMsjvQq3Zjge_orDibRNQ5Dpg9-uqVn_uaW_sTkYhpN6JFGR1mzZOwD2XdmyPjxuR6R3yffr9dn1cXV6fl6dVH1DeNt5ZSUwsmGm4ZDWytw2tpeoWSa27q8IHNWbsofpLJoW7sxvGXasF4IBNnWR-Trru99in9mzFM3-tyXBU3AOOeuXKKVUikJBf3yBr2Lcwplu0LVtWIC1Lbh52dq3oxou_vkR5Meu5cLFWC5A_oUc07oXhEG3TaCbhtB9xpBEZo3Qu8nM_kYpmT88G9N77QHP-Djf4Z0q-Mfq7_uEym0l30 |
| CitedBy_id | crossref_primary_10_1016_j_cclet_2019_07_018 crossref_primary_10_1002_advs_201903259 crossref_primary_10_1126_science_aat2612 crossref_primary_10_1038_s41928_019_0315_1 crossref_primary_10_1002_aenm_202102526 crossref_primary_10_3389_fchem_2018_00578 crossref_primary_10_1002_aenm_201801203 crossref_primary_10_1002_adfm_201903269 crossref_primary_10_1038_s41598_024_62085_0 crossref_primary_10_1002_smll_202308863 crossref_primary_10_1016_j_solener_2020_01_042 crossref_primary_10_1002_ange_201807865 crossref_primary_10_1039_C9PY01026B crossref_primary_10_1002_sstr_202000006 crossref_primary_10_3390_nano10010080 crossref_primary_10_1038_s41598_019_44232_0 crossref_primary_10_1002_adfm_201802324 crossref_primary_10_1002_marc_201900074 crossref_primary_10_1039_D5SM00024F crossref_primary_10_1039_C9NH00209J crossref_primary_10_3390_polym12122964 crossref_primary_10_1002_adom_202101246 crossref_primary_10_1002_smll_202205572 crossref_primary_10_1002_sstr_202000016 crossref_primary_10_1016_j_joule_2018_11_011 crossref_primary_10_1002_cey2_20 crossref_primary_10_1002_aenm_201901024 crossref_primary_10_1016_j_joule_2020_06_006 crossref_primary_10_3390_molecules27061800 crossref_primary_10_1016_j_mtener_2021_100707 crossref_primary_10_1016_j_mtcomm_2022_104757 crossref_primary_10_1016_j_solener_2020_02_035 crossref_primary_10_1002_chem_201804020 crossref_primary_10_1007_s00339_023_06533_0 crossref_primary_10_1016_j_jphotochem_2023_115162 crossref_primary_10_1002_adfm_202103283 crossref_primary_10_1002_adma_201804723 crossref_primary_10_1002_cey2_97 crossref_primary_10_1002_adts_201800116 crossref_primary_10_1002_aenm_201801968 crossref_primary_10_1016_j_mssp_2021_106381 crossref_primary_10_1002_aenm_201801609 crossref_primary_10_1002_admi_201801396 crossref_primary_10_1007_s11426_021_1180_6 crossref_primary_10_1088_1361_6528_ab758e crossref_primary_10_1002_sus2_50 crossref_primary_10_1080_08927022_2023_2165125 crossref_primary_10_1002_anie_202208383 crossref_primary_10_1016_j_nanoen_2018_08_059 crossref_primary_10_1002_solr_201800247 crossref_primary_10_1016_j_solener_2019_09_013 crossref_primary_10_1007_s13391_020_00235_y crossref_primary_10_1039_C8QM00512E crossref_primary_10_1002_er_4298 crossref_primary_10_1109_JPHOTOV_2019_2908789 crossref_primary_10_1002_anie_201807865 crossref_primary_10_1016_j_solmat_2019_110250 crossref_primary_10_1002_er_5664 crossref_primary_10_1016_j_orgel_2019_01_052 crossref_primary_10_1039_C8EE01700J crossref_primary_10_1002_ajoc_201800389 crossref_primary_10_1016_j_jpowsour_2020_228457 crossref_primary_10_1002_aenm_202000823 crossref_primary_10_1002_aesr_202000050 crossref_primary_10_1139_cjc_2024_0131 crossref_primary_10_1002_ente_202001100 crossref_primary_10_1002_solr_201900480 crossref_primary_10_1002_ange_202208383 crossref_primary_10_1016_j_solmat_2018_12_034 crossref_primary_10_1002_aesr_202300073 crossref_primary_10_1007_s11426_020_9820_2 crossref_primary_10_1016_j_joule_2021_12_017 crossref_primary_10_1016_j_joule_2020_04_014 crossref_primary_10_1039_D0EE02461A crossref_primary_10_1002_bkcs_11739 crossref_primary_10_1016_j_nanoen_2019_02_038 crossref_primary_10_1002_adma_201805708 crossref_primary_10_1007_s00339_019_3117_4 crossref_primary_10_1002_adma_201803769 crossref_primary_10_1016_j_heliyon_2024_e25477 crossref_primary_10_1002_adma_202501653 crossref_primary_10_1002_aenm_201904247 crossref_primary_10_1016_j_gee_2021_01_009 crossref_primary_10_1002_macp_201900084 crossref_primary_10_1039_C8SE00601F crossref_primary_10_1016_j_solener_2018_10_038 crossref_primary_10_1002_aenm_201803657 crossref_primary_10_1039_C9QM00314B crossref_primary_10_1016_j_orgel_2020_105690 crossref_primary_10_1002_cjoc_202200852 crossref_primary_10_1002_ente_202000751 crossref_primary_10_1039_D1QM01100F crossref_primary_10_3390_molecules27217615 crossref_primary_10_1002_adfm_202011168 crossref_primary_10_1002_aenm_202203496 crossref_primary_10_1002_adfm_201902478 crossref_primary_10_1002_aenm_202102908 crossref_primary_10_1002_adma_201903649 crossref_primary_10_1002_aenm_202003002 crossref_primary_10_1002_advs_201802028 crossref_primary_10_1039_D0QM00123F crossref_primary_10_1002_solr_202000355 crossref_primary_10_1002_smll_201900134 crossref_primary_10_1002_solr_202300642 crossref_primary_10_1002_admi_202000336 crossref_primary_10_1002_smll_202207694 crossref_primary_10_1016_j_nanoen_2019_104209 crossref_primary_10_1002_adma_201805843 crossref_primary_10_1016_j_dyepig_2020_108559 crossref_primary_10_1016_j_mattod_2019_10_023 crossref_primary_10_1002_adma_201806499 |
| Cites_doi | 10.1038/nphoton.2012.11 10.1016/j.solmat.2006.05.009 10.1002/adma.200702337 10.1126/science.270.5243.1789 10.1021/jacs.7b02677 10.1103/PhysRevApplied.4.014020 10.1016/j.orgel.2012.02.015 10.1038/nenergy.2016.89 10.1002/adma.201701308 10.1038/ncomms6293 10.1002/adma.201603178 10.1021/jacs.6b12755 10.1021/jacs.7b01170 10.1038/nphoton.2016.240 10.1002/adfm.200700517 10.1016/j.progpolymsci.2013.08.008 10.1063/1.96937 10.1002/adma.201504014 10.1002/adma.201702547 10.1021/jacs.7b01493 10.1002/adma.201700144 10.1038/ncomms13651 10.1021/ja401434x 10.1016/j.scib.2017.10.017 10.1021/jacs.5b00305 10.1002/adma.201604231 10.1002/adma.200601093 10.1021/jp050745x 10.1126/science.1141711 10.1002/adma.201704510 10.1002/adma.201703973 10.1021/jacs.6b02004 10.1016/j.solmat.2012.08.004 10.1002/adma.201602834 10.1021/ja211597w 10.1007/s11426-014-5273-x 10.1002/adma.201704904 10.1002/adma.201602776 10.1002/adma.201604964 10.1063/1.1729992 10.1002/adma.201600281 10.1039/c4ee00022f 10.1002/adma.200902750 10.1039/C4EE03048F 10.1038/nphoton.2015.84 10.1126/science.258.5087.1474 10.1021/jacs.6b09110 10.1039/C5EE01116G 10.1039/c3ee40388b |
| ContentType | Journal Article |
| Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.201707508 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database CrossRef PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | 29575107 10_1002_adma_201707508 ADMA201707508 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 91633301; 51773095 – fundername: 111 Project funderid: B12015 – fundername: Tianjin city funderid: 17JCZDJC31100 – fundername: Ministry of Science and Technology of China funderid: 2014CB643502 – fundername: Science and Technology Program of Guangzhou, China funderid: 201607020010 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADNMO AETEA AFFNX AGQPQ AIQQE ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE NPM RWI RWM WRC 7SR 8BQ 8FD JG9 7X8 |
| ID | FETCH-LOGICAL-c4128-f7665f642a4208370f9ddc7e6192d35f6e1fd6b15267ded8dba2819a1c55e0683 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 150 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000431615100025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Wed Oct 01 13:58:31 EDT 2025 Sat Jul 26 00:01:36 EDT 2025 Wed Feb 19 02:43:51 EST 2025 Sat Nov 29 07:22:36 EST 2025 Tue Nov 18 21:13:50 EST 2025 Sun Sep 21 06:19:20 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Keywords | high efficiency nonfullerene acceptors tandem organic solar cells |
| Language | English |
| License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4128-f7665f642a4208370f9ddc7e6192d35f6e1fd6b15267ded8dba2819a1c55e0683 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1448-8177 |
| PMID | 29575107 |
| PQID | 2033715078 |
| PQPubID | 2045203 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_2018667760 proquest_journals_2033715078 pubmed_primary_29575107 crossref_primary_10_1002_adma_201707508 crossref_citationtrail_10_1002_adma_201707508 wiley_primary_10_1002_adma_201707508_ADMA201707508 |
| PublicationCentury | 2000 |
| PublicationDate | May 3, 2018 |
| PublicationDateYYYYMMDD | 2018-05-03 |
| PublicationDate_xml | – month: 05 year: 2018 text: May 3, 2018 day: 03 |
| PublicationDecade | 2010 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv Mater |
| PublicationYear | 2018 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 62 2006; 90 2007; 19 2015; 58 2015; 4 2008; 18 2017; 29 2015; 9 2012; 13 2015; 8 2013; 6 2012; 107 1995; 270 2017; 139 2016; 11 2010; 22 1959; 30 2016; 7 2014; 5 2007; 317 2016; 1 2012; 134 2013; 38 2015; 137 1992; 258 1986; 48 2005; 109 2013; 135 2018; 30 2016; 138 2008; 20 2012; 6 2016; 28 2014; 7 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 e_1_2_5_31_1 e_1_2_5_50_1 |
| References_xml | – volume: 7 start-page: 1966 year: 2014 publication-title: Energy Environ. Sci. – volume: 8 start-page: 2448 year: 2015 publication-title: Energy Environ. Sci. – volume: 139 start-page: 4929 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 4955 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 58 start-page: 248 year: 2015 publication-title: Sci. China Chem. – volume: 139 start-page: 7302 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 585 year: 1959 publication-title: J. Chem. Phys. – volume: 28 start-page: 4734 year: 2016 publication-title: Adv. Mater. – volume: 134 start-page: 5432 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 258 start-page: 1474 year: 1992 publication-title: Science – volume: 109 start-page: 9505 year: 2005 publication-title: J. Phys. Chem. B – volume: 135 start-page: 5529 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 8184 year: 2016 publication-title: Adv. Mater. – volume: 6 start-page: 2390 year: 2013 publication-title: Energy Environ. Sci. – volume: 28 start-page: 9811 year: 2016 publication-title: Adv. Mater. – volume: 4 start-page: 014020 year: 2015 publication-title: Phys. Rev. Appl. – volume: 29 start-page: 1704510 year: 2017 publication-title: Adv. Mater. – volume: 62 start-page: 1494 year: 2017 publication-title: Sci. Bull. – volume: 20 start-page: 579 year: 2008 publication-title: Adv. Mater. – volume: 29 start-page: 1702547 year: 2017 publication-title: Adv. Mater. – volume: 5 start-page: 5293 year: 2014 publication-title: Nat. Commun. – volume: 28 start-page: 9423 year: 2016 publication-title: Adv. Mater. – volume: 11 start-page: 85 year: 2016 publication-title: Nat. Photonics – volume: 19 start-page: 1551 year: 2007 publication-title: Adv. Mater. – volume: 30 start-page: 1703973 year: 2018 publication-title: Adv. Mater. – volume: 139 start-page: 1336 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 7148 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 169 year: 2008 publication-title: Adv. Funct. Mater. – volume: 29 start-page: 1604964 year: 2017 publication-title: Adv. Mater. – volume: 6 start-page: 153 year: 2012 publication-title: Nat. Photonics – volume: 270 start-page: 1789 year: 1995 publication-title: Science – volume: 30 start-page: 1704904 year: 2018 publication-title: Adv. Mater. – volume: 13 start-page: 1018 year: 2012 publication-title: Org. Electron. – volume: 90 start-page: 3491 year: 2006 publication-title: Sol. Energy Mater. Sol. Cells – volume: 29 start-page: 1604231 year: 2017 publication-title: Adv. Mater. – volume: 138 start-page: 15011 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 1700144 year: 2017 publication-title: Adv. Mater. – volume: 22 start-page: E77 year: 2010 publication-title: Adv. Mater. – volume: 8 start-page: 303 year: 2015 publication-title: Energy Environ. Sci. – volume: 7 start-page: 13651 year: 2016 publication-title: Nat. Commun. – volume: 137 start-page: 3886 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 107 start-page: 51 year: 2012 publication-title: Sol. Energy Mater. Sol. Cells – volume: 9 start-page: 403 year: 2015 publication-title: Nat. Photonics – volume: 29 start-page: 1701308 year: 2017 publication-title: Adv. Mater. – volume: 38 start-page: 1941 year: 2013 publication-title: Prog. Polym. Sci. – volume: 317 start-page: 222 year: 2007 publication-title: Science – volume: 1 start-page: 16089 year: 2016 publication-title: Nat. Energy – volume: 48 start-page: 183 year: 1986 publication-title: Appl. Phys. Lett. – volume: 28 start-page: 967 year: 2016 publication-title: Adv. Mater. – ident: e_1_2_5_5_1 doi: 10.1038/nphoton.2012.11 – ident: e_1_2_5_25_1 doi: 10.1016/j.solmat.2006.05.009 – ident: e_1_2_5_23_1 doi: 10.1002/adma.200702337 – ident: e_1_2_5_4_1 doi: 10.1126/science.270.5243.1789 – ident: e_1_2_5_22_1 doi: 10.1021/jacs.7b02677 – ident: e_1_2_5_46_1 doi: 10.1103/PhysRevApplied.4.014020 – ident: e_1_2_5_28_1 doi: 10.1016/j.orgel.2012.02.015 – ident: e_1_2_5_44_1 doi: 10.1038/nenergy.2016.89 – ident: e_1_2_5_40_1 doi: 10.1002/adma.201701308 – ident: e_1_2_5_14_1 doi: 10.1038/ncomms6293 – ident: e_1_2_5_9_1 doi: 10.1038/ncomms6293 – ident: e_1_2_5_7_1 doi: 10.1002/adma.201603178 – ident: e_1_2_5_13_1 doi: 10.1021/jacs.6b12755 – ident: e_1_2_5_39_1 doi: 10.1021/jacs.7b01170 – ident: e_1_2_5_33_1 doi: 10.1038/nphoton.2016.240 – ident: e_1_2_5_36_1 doi: 10.1002/adfm.200700517 – ident: e_1_2_5_48_1 doi: 10.1016/j.progpolymsci.2013.08.008 – ident: e_1_2_5_3_1 doi: 10.1063/1.96937 – ident: e_1_2_5_6_1 doi: 10.1002/adma.201504014 – ident: e_1_2_5_32_1 doi: 10.1002/adma.201702547 – ident: e_1_2_5_34_1 doi: 10.1021/jacs.7b01493 – ident: e_1_2_5_21_1 doi: 10.1002/adma.201700144 – ident: e_1_2_5_12_1 doi: 10.1038/ncomms13651 – ident: e_1_2_5_37_1 doi: 10.1021/ja401434x – ident: e_1_2_5_18_1 doi: 10.1016/j.scib.2017.10.017 – ident: e_1_2_5_8_1 doi: 10.1021/jacs.5b00305 – ident: e_1_2_5_45_1 doi: 10.1002/adma.201604231 – ident: e_1_2_5_47_1 doi: 10.1002/adma.200601093 – ident: e_1_2_5_50_1 doi: 10.1021/jp050745x – ident: e_1_2_5_24_1 doi: 10.1126/science.1141711 – ident: e_1_2_5_19_1 doi: 10.1002/adma.201704510 – ident: e_1_2_5_20_1 doi: 10.1002/adma.201703973 – ident: e_1_2_5_41_1 doi: 10.1021/jacs.6b02004 – ident: e_1_2_5_26_1 doi: 10.1016/j.solmat.2012.08.004 – ident: e_1_2_5_15_1 doi: 10.1002/adma.201602834 – ident: e_1_2_5_30_1 doi: 10.1021/ja211597w – ident: e_1_2_5_11_1 doi: 10.1007/s11426-014-5273-x – ident: e_1_2_5_16_1 doi: 10.1002/adma.201704904 – ident: e_1_2_5_17_1 doi: 10.1002/adma.201602776 – ident: e_1_2_5_38_1 doi: 10.1002/adma.201604964 – ident: e_1_2_5_1_1 doi: 10.1063/1.1729992 – ident: e_1_2_5_43_1 doi: 10.1002/adma.201600281 – ident: e_1_2_5_49_1 doi: 10.1039/c4ee00022f – ident: e_1_2_5_29_1 doi: 10.1002/adma.200902750 – ident: e_1_2_5_31_1 doi: 10.1039/C4EE03048F – ident: e_1_2_5_10_1 doi: 10.1038/nphoton.2015.84 – ident: e_1_2_5_2_1 doi: 10.1126/science.258.5087.1474 – ident: e_1_2_5_42_1 doi: 10.1021/jacs.6b09110 – ident: e_1_2_5_27_1 doi: 10.1039/C5EE01116G – ident: e_1_2_5_35_1 doi: 10.1039/c3ee40388b |
| SSID | ssj0009606 |
| Score | 2.627182 |
| Snippet | Fabricating solar cells with tandem structure is an efficient way to broaden the photon response range without further increasing the thermalization loss in... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e1707508 |
| SubjectTerms | Energy conversion efficiency Energy gap high efficiency Materials science nonfullerene acceptors Photovoltaic cells Polymers Solar cells tandem organic solar cells Thermalization (energy absorption) Thickness |
| Title | Nonfullerene Tandem Organic Solar Cells with High Performance of 14.11 |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201707508 https://www.ncbi.nlm.nih.gov/pubmed/29575107 https://www.proquest.com/docview/2033715078 https://www.proquest.com/docview/2018667760 |
| Volume | 30 |
| WOSCitedRecordID | wos000431615100025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZg4wAH3o_xmIKExCmijzVpj9NGxWFMEw9ptypNUglpdIgyfj9x2nWbEEKCY2W3jew4duzkM8BV6EmjWxFRxzBQhNCiqfFCVKmAe75yNZMWXX_Ah8NwPI5GS7f4S3yIOuGGlmHXazRwkRY3C9BQoSxukMvR6YXr0PTM5A0a0Ow_xM-DBfAus_01sd5HI9YJ58CNjnez-oVVx_Qt2lwNXq33iXf-P-5d2K4iT9Itp8oerOl8H7aW8AgPIB5Oc8zH244p5Anzy6-kvK0pySNugklPTyYFwewtwSMiZLS4eECmGXE7ZnU8hOf49ql3R6tGC1R2jH-iGWcsyMxORGCx3edOFiklucbNlfINRbuZYqlx9YwrrUKVCqy_CVcGgXZY6B9BI5_m-gSIRog4V7kRT1VHyChECDmLec-U6wjVAjqXciIrFHJshjFJSvxkL0H5JLV8WnBd87-V-Bs_cp7PlZZUdlgYqu9zjHkN-bImGwvCsojI9XSGPAj6xzlzWnBcKrv-lRdhXcrhLfCsTn8ZQ9Lt33frp9O_vHQGmzgge6bSP4fGx_tMX8CG_Px4Kd7bsM7HYbua419HjfZs |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED90E9QHvz-mUyMIPoX1a0n7ODbHxG0M3WBvpUtSEGYn-_DvN5d2nUNEEB_LXdOQu-td7pLfAdz5jtCyjQJqaQaKEFp0pL0QlbLKHVfaigmDrt_m3a4_HAa97DQh3oVJ8SHyhBtahvlfo4FjQrqyQg2NpAEOsjl6PX8Tip7WJa3kxcZzc9BeIe8y02ATC340YJ6_RG60nMr6COue6Vu4uR69GvfT3P-HiR_AXhZ7klqqLIewoZIj2P2CSHgMze4kwXFMzxTSxwzzG0nvawrygttgUlfj8Yxg_pbgIRHSW109IJOY2J7-P57AoPnQr7do1mqBCk97KBpzxqqx3otEWG53uRUHUgqucHslXU1RdizZSDt7xqWSvhxFWIGLbFGtKov57ikUkkmizoEoBImzpR3wkfQiEfgIImdQ75m0rUiWgC6XORQZDjm2wxiHKYKyE-L6hPn6lOA-539PETh-5CwvpRZmljjTVNflGPVq8m1O1jaEhZEoUZMF8iDsH-fMKsFZKu38U06AlSmLl8AxQv1lDmGt0anlTxd_eekGtlv9TjtsP3afLmEHJ2dOWLplKMynC3UFW-Jj_jqbXmeq_glRuvl0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rS8MwED90E9EPvh_zGUHwU1hfS9qPY7MozjF0g30rXZKCMLuxh3-_ubTrHCKC-LHctQ13udzlLvkdwK3vCK3bOKCWZqAIoUUH2gtRKWvccaWtmDDo-i3ebvv9ftDJTxPiXZgMH6JIuKFlmPUaDVyNZVJdoobG0gAH2Ry9nr8OZQ87yZSg3HwJe60l8i4zDTax4EcD5vkL5EbLqa5-YdUzfQs3V6NX437C3X8Y-B7s5LEnqWeTZR_WVHoA218QCQ8hbI9SzMibnimkixnmd5Ld1xTkFbfBpKGGwynB_C3BQyKks7x6QEYJsT29Ph5BL7zvNh5o3mqBCk97KJpwxmqJ3ovEWG53uZUEUgqucHslXU1RdiLZQDt7xqWSvhzEWIGLbVGrKYv57jGU0lGqToEoBImzpR3wgfRiEfgIImdQ75m0rVhWgC7EHIkchxzbYQyjDEHZiVA-USGfCtwV_OMMgeNHzouF1qLcEqea6roco15NvinI2oawMBKnajRHHoT945xZFTjJtF38ygmwMmXxCjhGqb-MIao3n-vF09lfXrqGzU4zjFqP7adz2MKxmQOW7gWUZpO5uoQN8TF7m06u8pn-CeMY-O8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonfullerene+Tandem+Organic+Solar+Cells+with+High+Performance+of+14.11&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Yamin&rft.au=Kan%2C+Bin&rft.au=Sun%2C+Yanna&rft.au=Wang%2C+Yanbo&rft.date=2018-05-03&rft.eissn=1521-4095&rft.spage=e1707508&rft_id=info:doi/10.1002%2Fadma.201707508&rft_id=info%3Apmid%2F29575107&rft.externalDocID=29575107 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |