A Quantized Boundary Representation of 2D Flows

Analysis and visualization of complex vector fields remain major challenges when studying large scale simulation of physical phenomena. The primary reason is the gap between the concepts of smooth vector field theory and their computational realization. In practice, researchers must choose between e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum Jg. 31; H. 3pt1; S. 945 - 954
Hauptverfasser: Levine, J. A., Jadhav, S., Bhatia, H., Pascucci, V., Bremer, P.-T.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford, UK Blackwell Publishing Ltd 01.06.2012
Schlagworte:
ISSN:0167-7055, 1467-8659
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Analysis and visualization of complex vector fields remain major challenges when studying large scale simulation of physical phenomena. The primary reason is the gap between the concepts of smooth vector field theory and their computational realization. In practice, researchers must choose between either numerical techniques, with limited or no guarantees on how they preserve fundamental invariants, or discrete techniques which limit the precision at which the vector field can be represented. We propose a new representation of vector fields that combines the advantages of both approaches. In particular, we represent a subset of possible streamlines by storing their paths as they traverse the edges of a triangulation. Using only a finite set of streamlines creates a fully discrete version of a vector field that nevertheless approximates the smooth flow up to a user controlled error bound. The discrete nature of our representation enables us to directly compute and classify analogues of critical points, closed orbits, and other common topological structures. Further, by varying the number of divisions (quantizations) used per edge, we vary the resolution used to represent the field, allowing for controlled precision. This representation is compact in memory and supports standard vector field operations.
AbstractList Analysis and visualization of complex vector fields remain major challenges when studying large scale simulation of physical phenomena. The primary reason is the gap between the concepts of smooth vector field theory and their computational realization. In practice, researchers must choose between either numerical techniques, with limited or no guarantees on how they preserve fundamental invariants, or discrete techniques which limit the precision at which the vector field can be represented. We propose a new representation of vector fields that combines the advantages of both approaches. In particular, we represent a subset of possible streamlines by storing their paths as they traverse the edges of a triangulation. Using only a finite set of streamlines creates a fully discrete version of a vector field that nevertheless approximates the smooth flow up to a user controlled error bound. The discrete nature of our representation enables us to directly compute and classify analogues of critical points, closed orbits, and other common topological structures. Further, by varying the number of divisions (quantizations) used per edge, we vary the resolution used to represent the field, allowing for controlled precision. This representation is compact in memory and supports standard vector field operations.
Analysis and visualization of complex vector fields remain major challenges when studying large scale simulation of physical phenomena. The primary reason is the gap between the concepts of smooth vector field theory and their computational realization. In practice, researchers must choose between either numerical techniques, with limited or no guarantees on how they preserve fundamental invariants, or discrete techniques which limit the precision at which the vector field can be represented. We propose a new representation of vector fields that combines the advantages of both approaches. In particular, we represent a subset of possible streamlines by storing their paths as they traverse the edges of a triangulation. Using only a finite set of streamlines creates a fully discrete version of a vector field that nevertheless approximates the smooth flow up to a user controlled error bound. The discrete nature of our representation enables us to directly compute and classify analogues of critical points, closed orbits, and other common topological structures. Further, by varying the number of divisions (quantizations) used per edge, we vary the resolution used to represent the field, allowing for controlled precision. This representation is compact in memory and supports standard vector field operations. [PUBLICATION ABSTRACT]
Author Jadhav, S.
Bhatia, H.
Bremer, P.-T.
Levine, J. A.
Pascucci, V.
Author_xml – sequence: 1
  givenname: J. A.
  surname: Levine
  fullname: Levine, J. A.
  organization: Scientific Computing and Imaging Institute, University of Utah, USA
– sequence: 2
  givenname: S.
  surname: Jadhav
  fullname: Jadhav, S.
  organization: Scientific Computing and Imaging Institute, University of Utah, USA
– sequence: 3
  givenname: H.
  surname: Bhatia
  fullname: Bhatia, H.
  organization: Scientific Computing and Imaging Institute, University of Utah, USA
– sequence: 4
  givenname: V.
  surname: Pascucci
  fullname: Pascucci, V.
  organization: Scientific Computing and Imaging Institute, University of Utah, USA
– sequence: 5
  givenname: P.-T.
  surname: Bremer
  fullname: Bremer, P.-T.
  organization: Scientific Computing and Imaging Institute, University of Utah, USA
BookMark eNqNkM1LwzAchoNMcH78DwUvXlrz0STNQWGrbipDcQgeQ5pl0No1M2nZ9K83teLBk7nkB3mfl1-eYzBqbGMAiBBMUDiXVYJSxuOMUZFgiHACCcx4sj8A49-HERhDFGYOKT0Cx95XEMKUMzoGl5PouVNNW36aVTS1XbNS7iNamq0z3jStakvbRHYd4ZtoVtudPwWHa1V7c_Zzn4CX2e1Lfhcvnub3-WQR6xRhHhcs4wXnOBWFKFaapkQTojJDsaYZEYYhrqlYUSKggqJgRCvNldBQoZRiQk7AxVC7dfa9M76Vm9JrU9eqMbbzEkGSEZgKnoXo-Z9oZTvXhOVCCiPBOWN96npIaWe9d2YtdTn8rnWqrENU9jplJXtrsrcme53yW6fch4LsT8HWlZsg6z_o1YDuytp8_JuT-XzWT4GPB770rdn_8sq9ScYJp_L1cS7T5ZQznD_IGfkCG06aow
CitedBy_id crossref_primary_10_1007_s10586_016_0634_1
crossref_primary_10_1109_TVCG_2024_3456355
crossref_primary_10_1109_TVCG_2013_229
crossref_primary_10_1111_cgf_12933
Cites_doi 10.1109/TVCG.2006.57
10.1109/TVCG.2005.68
10.1109/VISUAL.2004.128
10.1063/1.1403336
10.1109/2945.928168
10.1111/j.1467-8659.2011.01934.x
10.1109/TVCG.2006.186
10.1147/sj.41.0025
10.1109/2.35197
10.1109/TVCG.2008.33
10.1007/978-3-642-23175-9_10
10.1109/MCSE.2007.82
10.1109/TVCG.2010.235
10.1007/978-3-540-70952-7_22
10.1007/PL00004638
10.1109/VISUAL.2001.964507
10.1109/VISUAL.2004.107
10.1109/TVCG.2007.1062
10.1109/VISUAL.2003.1250376
10.1007/978-3-540-88606-8_2
10.1007/s00791-011-0152-x
10.1109/2945.817352
ContentType Journal Article
Copyright 2012 The Author(s) Computer Graphics Forum © 2012 The Eurographics Association and Blackwell Publishing Ltd.
Copyright_xml – notice: 2012 The Author(s) Computer Graphics Forum © 2012 The Eurographics Association and Blackwell Publishing Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/j.1467-8659.2012.03087.x
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 954
ExternalDocumentID 2695370741
10_1111_j_1467_8659_2012_03087_x
CGF3087
ark_67375_WNG_4RB762CJ_F
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
WRC
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c4127-b687b77249b9bdc543c33a8e52c5839e617c59d5390a09b63cac7a9c0a145233
IEDL.DBID DRFUL
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000305603400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Fri Sep 05 14:05:05 EDT 2025
Fri Jul 25 23:46:41 EDT 2025
Sat Nov 29 08:02:53 EST 2025
Tue Nov 18 21:19:50 EST 2025
Wed Jan 22 17:10:24 EST 2025
Tue Nov 11 03:25:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3pt1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4127-b687b77249b9bdc543c33a8e52c5839e617c59d5390a09b63cac7a9c0a145233
Notes ArticleID:CGF3087
ark:/67375/WNG-4RB762CJ-F
istex:E3137F0460D95254128005E74805233B715756D7
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1021977668
PQPubID 30877
PageCount 10
ParticipantIDs proquest_miscellaneous_1038304978
proquest_journals_1021977668
crossref_citationtrail_10_1111_j_1467_8659_2012_03087_x
crossref_primary_10_1111_j_1467_8659_2012_03087_x
wiley_primary_10_1111_j_1467_8659_2012_03087_x_CGF3087
istex_primary_ark_67375_WNG_4RB762CJ_F
PublicationCentury 2000
PublicationDate June 2012
PublicationDateYYYYMMDD 2012-06-01
PublicationDate_xml – month: 06
  year: 2012
  text: June 2012
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Liu Z. II, R. J. M.: Robust loop detection for interactively placing evenly spaced streamlines. Computing in Science and Engineering 9, 4 (2007), 86-91. 2.
Wischgoll T., Scheuermann G.: Detection and visualization of closed streamlines in planar flows. IEEE Trans. Vis. Comp. Grap. 7, 2 (2001), 165-172. 2.
Bresenham J.: Algorithm for computer control of a digital plotter. IBM Systems Journal 4, 1 (1965), 25-30. 4.
Nielson G. M., Jung I.-H.: Tools for computing tangent curves for linearly varying vector fields over tetrahedral domains. IEEE Trans. Vis. Comp. Grap. 5, 4 (1999), 360-372. 5, 8.
Laney D., Bremer P. T., Mascarenhas A., Miller P., Pascucci V.: Understanding the structure of the turbulent mixing layer in hydrodynamic instabilities. IEEE Trans. Vis. Comp. Grap. 12, 5 (2006), 1053-1060. 2.
Szymczak A.: Stable Morse decompositions for piecewise constant vector fields on surfaces. Comp. Grap. Forum 30, 3 (2011), 851-860. 3.
Helman J., Hesselink L.: Representation and display of vector field topology in fluid flow data sets. IEEE Computer 22, 8 (1989), 27-36. 1, 2, 6.
Reininghaus J., Löwen C., Hotz I.: Fast combinatorial vector field topology. IEEE Trans. Vis. Comput. Graph. 17, 10(2011), 1433-1443. 2.
Chen G., Mischaikow K., Laramee R. S., Zhang E.: Efficient Morse decompositions of vector fields. IEEE Trans. Vis. Comp. Grap. 14, 4 (2008), 848-862. 2, 3, 7.
Forman R.: Combinatorial vector fields and dynamical systems. Math. Z. 228, 4 (1998), 629-681. 2.
Theisel H., Weinkauf T., Hege H.-C., Seidel H.-P.: Topological methods for 2D time-dependent vector fields based on stream lines and path lines. IEEE Trans. Vis. Comp. Grap. 11, 4 (2005), 383-394. 2.
Gyulassy A., Natarajan V., Pascucci V., Bremer P.-T., Hamann B.: A topological approach to simplification of three-dimensional scalar functions. IEEE Trans. Vis. Comp. Grap. 12, 4 (2006), 474-484. 2.
Helgeland A., Reif B., Andreassen Ø., Wasberg C.: Visualization of vorticity and vortices in wall-bounded turbulent flows. IEEE Trans. Vis. Comp. Grap. 13, 5 (2007), 1055-1067. 1.
1989; 22
2012
2006; 12
2001
2001; 7
2010
1965; 4
2008; 14
2009
1998; 228
2008
2007; 9
2011; 30
2006
2004
2003
1991
2002
2011; 17
1999; 5
2007; 13
2005; 11
e_1_2_11_30_2
e_1_2_11_13_2
e_1_2_11_12_2
e_1_2_11_10_2
e_1_2_11_6_2
e_1_2_11_28_2
e_1_2_11_5_2
e_1_2_11_27_2
e_1_2_11_4_2
e_1_2_11_26_2
e_1_2_11_3_2
e_1_2_11_25_2
e_1_2_11_2_2
e_1_2_11_29_2
e_1_2_11_20_2
e_1_2_11_24_2
e_1_2_11_9_2
e_1_2_11_23_2
e_1_2_11_8_2
e_1_2_11_22_2
e_1_2_11_7_2
e_1_2_11_21_2
Grinspun E. (e_1_2_11_11_2) 2008
e_1_2_11_17_2
e_1_2_11_16_2
e_1_2_11_15_2
e_1_2_11_14_2
e_1_2_11_19_2
e_1_2_11_18_2
References_xml – reference: Chen G., Mischaikow K., Laramee R. S., Zhang E.: Efficient Morse decompositions of vector fields. IEEE Trans. Vis. Comp. Grap. 14, 4 (2008), 848-862. 2, 3, 7.
– reference: Theisel H., Weinkauf T., Hege H.-C., Seidel H.-P.: Topological methods for 2D time-dependent vector fields based on stream lines and path lines. IEEE Trans. Vis. Comp. Grap. 11, 4 (2005), 383-394. 2.
– reference: Bresenham J.: Algorithm for computer control of a digital plotter. IBM Systems Journal 4, 1 (1965), 25-30. 4.
– reference: Helgeland A., Reif B., Andreassen Ø., Wasberg C.: Visualization of vorticity and vortices in wall-bounded turbulent flows. IEEE Trans. Vis. Comp. Grap. 13, 5 (2007), 1055-1067. 1.
– reference: Forman R.: Combinatorial vector fields and dynamical systems. Math. Z. 228, 4 (1998), 629-681. 2.
– reference: Nielson G. M., Jung I.-H.: Tools for computing tangent curves for linearly varying vector fields over tetrahedral domains. IEEE Trans. Vis. Comp. Grap. 5, 4 (1999), 360-372. 5, 8.
– reference: Reininghaus J., Löwen C., Hotz I.: Fast combinatorial vector field topology. IEEE Trans. Vis. Comput. Graph. 17, 10(2011), 1433-1443. 2.
– reference: Gyulassy A., Natarajan V., Pascucci V., Bremer P.-T., Hamann B.: A topological approach to simplification of three-dimensional scalar functions. IEEE Trans. Vis. Comp. Grap. 12, 4 (2006), 474-484. 2.
– reference: Helman J., Hesselink L.: Representation and display of vector field topology in fluid flow data sets. IEEE Computer 22, 8 (1989), 27-36. 1, 2, 6.
– reference: Wischgoll T., Scheuermann G.: Detection and visualization of closed streamlines in planar flows. IEEE Trans. Vis. Comp. Grap. 7, 2 (2001), 165-172. 2.
– reference: Liu Z. II, R. J. M.: Robust loop detection for interactively placing evenly spaced streamlines. Computing in Science and Engineering 9, 4 (2007), 86-91. 2.
– reference: Szymczak A.: Stable Morse decompositions for piecewise constant vector fields on surfaces. Comp. Grap. Forum 30, 3 (2011), 851-860. 3.
– reference: Laney D., Bremer P. T., Mascarenhas A., Miller P., Pascucci V.: Understanding the structure of the turbulent mixing layer in hydrodynamic instabilities. IEEE Trans. Vis. Comp. Grap. 12, 5 (2006), 1053-1060. 2.
– start-page: 179
  year: 2004
  end-page: 186
– start-page: 159
  year: 2001
  end-page: 166
– volume: 13
  start-page: 1055
  issue: 5
  year: 2007
  end-page: 1067
  article-title: Visualization of vorticity and vortices in wall‐bounded turbulent flows
  publication-title: IEEE Trans. Vis. Comp. Grap.
– volume: 9
  start-page: 86
  issue: 4
  year: 2007
  end-page: 91
  article-title: Robust loop detection for interactively placing evenly spaced streamlines
  publication-title: Computing in Science and Engineering
– start-page: 33
  year: 1991
  end-page: 41
– start-page: 316
  year: 2006
  end-page: 330
– volume: 228
  start-page: 629
  issue: 4
  year: 1998
  end-page: 681
  article-title: Combinatorial vector fields and dynamical systems
  publication-title: Math. Z.
– start-page: 377
  year: 2010
  end-page: 396
– volume: 12
  start-page: 474
  issue: 4
  year: 2006
  end-page: 484
  article-title: A topological approach to simplification of three‐dimensional scalar functions
  publication-title: IEEE Trans. Vis. Comp. Grap.
– start-page: 3365
  year: 2001
  end-page: 3385
– volume: 30
  start-page: 851
  issue: 3
  year: 2011
  end-page: 860
  article-title: Stable Morse decompositions for piecewise constant vector fields on surfaces
  publication-title: Comp. Grap. Forum
– volume: 4
  start-page: 25
  issue: 1
  year: 1965
  end-page: 30
  article-title: Algorithm for computer control of a digital plotter
  publication-title: IBM Systems Journal
– volume: 12
  start-page: 1053
  issue: 5
  year: 2006
  end-page: 1060
  article-title: Understanding the structure of the turbulent mixing layer in hydrodynamic instabilities
  publication-title: IEEE Trans. Vis. Comp. Grap.
– start-page: 225
  year: 2003
  end-page: 232
– start-page: 329
  year: 2004
  end-page: 336
– start-page: 227
  year: 2002
  end-page: 232
– start-page: 421
  year: 2004
  end-page: 428
– year: 2012
– volume: 17
  start-page: 1433
  issue: 10
  year: 2011
  end-page: 1443
  article-title: Fast combinatorial vector field topology
  publication-title: IEEE Trans. Vis. Comput. Graph.
– start-page: 15
  year: 2009
  end-page: 30
– volume: 7
  start-page: 165
  issue: 2
  year: 2001
  end-page: 172
  article-title: Detection and visualization of closed streamlines in planar flows
  publication-title: IEEE Trans. Vis. Comp. Grap.
– volume: 5
  start-page: 360
  issue: 4
  year: 1999
  end-page: 372
  article-title: Tools for computing tangent curves for linearly varying vector fields over tetrahedral domains
  publication-title: IEEE Trans. Vis. Comp. Grap.
– start-page: 141
  year: 2012
  end-page: 160
– volume: 22
  start-page: 27
  issue: 8
  year: 1989
  end-page: 36
  article-title: Representation and display of vector field topology in fluid flow data sets
  publication-title: IEEE Computer
– volume: 11
  start-page: 383
  issue: 4
  year: 2005
  end-page: 394
  article-title: Topological methods for 2D time‐dependent vector fields based on stream lines and path lines
  publication-title: IEEE Trans. Vis. Comp. Grap.
– volume: 14
  start-page: 848
  issue: 4
  year: 2008
  end-page: 862
  article-title: Efficient Morse decompositions of vector fields
  publication-title: IEEE Trans. Vis. Comp. Grap.
– start-page: 9:1
  year: 2008
  end-page: 9:4
– ident: e_1_2_11_10_2
  doi: 10.1109/TVCG.2006.57
– ident: e_1_2_11_28_2
  doi: 10.1109/TVCG.2005.68
– ident: e_1_2_11_22_2
  doi: 10.1109/VISUAL.2004.128
– ident: e_1_2_11_13_2
  doi: 10.1063/1.1403336
– ident: e_1_2_11_29_2
  doi: 10.1109/2945.928168
– ident: e_1_2_11_24_2
  doi: 10.1111/j.1467-8659.2011.01934.x
– ident: e_1_2_11_17_2
  doi: 10.1109/TVCG.2006.186
– ident: e_1_2_11_4_2
  doi: 10.1147/sj.41.0025
– ident: e_1_2_11_9_2
– ident: e_1_2_11_14_2
  doi: 10.1109/2.35197
– ident: e_1_2_11_6_2
  doi: 10.1109/TVCG.2008.33
– ident: e_1_2_11_16_2
  doi: 10.1007/978-3-642-23175-9_10
– ident: e_1_2_11_18_2
  doi: 10.1109/MCSE.2007.82
– ident: e_1_2_11_30_2
– ident: e_1_2_11_20_2
  doi: 10.1109/TVCG.2010.235
– ident: e_1_2_11_3_2
  doi: 10.1007/978-3-540-70952-7_22
– ident: e_1_2_11_2_2
– ident: e_1_2_11_8_2
  doi: 10.1007/PL00004638
– ident: e_1_2_11_25_2
  doi: 10.1109/VISUAL.2001.964507
– start-page: 9:1
  volume-title: ACM SIGGRAPH ASIA 2008 courses
  year: 2008
  ident: e_1_2_11_11_2
– ident: e_1_2_11_12_2
  doi: 10.1109/VISUAL.2004.107
– ident: e_1_2_11_15_2
  doi: 10.1109/TVCG.2007.1062
– ident: e_1_2_11_23_2
  doi: 10.1111/j.1467-8659.2011.01934.x
– ident: e_1_2_11_26_2
  doi: 10.1109/VISUAL.2003.1250376
– ident: e_1_2_11_21_2
  doi: 10.1007/978-3-540-88606-8_2
– ident: e_1_2_11_7_2
  doi: 10.1007/s00791-011-0152-x
– ident: e_1_2_11_5_2
– ident: e_1_2_11_27_2
– ident: e_1_2_11_19_2
  doi: 10.1109/2945.817352
SSID ssj0004765
Score 2.0136225
Snippet Analysis and visualization of complex vector fields remain major challenges when studying large scale simulation of physical phenomena. The primary reason is...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 945
SubjectTerms Computer graphics
Computer simulation
Field theory
G.1.2 [Numerical Analysis]: Approximation-Approximation of surfaces and contours
I.3.6 [Computer Graphics]: Methodology and Techniques-Graphics data structures and data types
Invariants
Mathematical analysis
Numerical analysis
Preserves
Quantization
Representations
Simulation
Studies
Topological manifolds
Vectors (mathematics)
Visualization
Title A Quantized Boundary Representation of 2D Flows
URI https://api.istex.fr/ark:/67375/WNG-4RB762CJ-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-8659.2012.03087.x
https://www.proquest.com/docview/1021977668
https://www.proquest.com/docview/1038304978
Volume 31
WOSCitedRecordID wos000305603400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6hhAM9lEdbkVKQkRA3gx_7sI9NgoNQFEGUtrmtdtcbKSJyqjxK6K_vjOOERHCIUG-W7Vl5Z_bzfrs7D4APoTEhEnPu56Mw9tlIcMScZb5ItA1zFo-C8kT3uit7vWQ4TL9X_k8UC7POD7HdcCNklP9rArg2879BnghO8Sa0pUfJ7T4hn6xHOIxZDertfnbV_RMlKQXfZPqmHDL7fj3_bGtvsqqT3ld7THSXz5YTUvb8MbvyAo4rWupdrsfRS3jiildwtJOs8AQ-X3o_lmiH8b3LvWZZjWn22-uXnrRVAFPhTUde1PayyfTX_BQG2ZdB66tflVvwLQsj6RuRSINkm6UmNbnlLLZxrBPHI8uRRjnkOpanOY_TQAepEbHVVurUBjpkuJyNz6BWTAv3GjxrmcGe5c4iAzA60RE2GRnpuLAuDZIGyI1ala1SkVNFjInaW5JIRRpRpBFVakStGhBuJW_X6TgOkPlYWm4roGc_yZ1NcnXT6yjWb-KE0PqmsgZcbEyrKiTPFZU-R44sBH71--1jxCAdrOjCTZf0Dq7zA6rV1wBRGvrgj1OtTkZX5_8r-Aae0e2199oF1BazpXsLT-3dYjyfvasw8AAO7v9t
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swED9N7SS2B9gYiA42Mgnxli0f_kgeS1n4WFdB1W28WbbjStVQOrUUCn89d2naUY0HhPYWKT7LufPFP9t3vwPYC40JEZhzP--Hsc_6gqPPWeaLRNswZ3E_KG90f7Zlp5NcXKRnVTkgyoWZ8UMsDtzIM8r_NTk4HUj_6-WJ4JRwQmd6xG73GQFlneGs4jWoH3azH-2_aZJS8DnVN5HILAf2PNrX0mpVJ8VPl6DoQ0BbrkjZ2n_9ljewWgFTrzmbSW_hhSvW4fUDusJ38KXpnU_QEoM7l3sHZT2m0a3XLWNpqxSmwhv2vejQyy6HN-MN6GVfe61jvyq44FsWRtI3IpEG4TZLTWpyy1ls41gnjkeWI5ByiHYsT3Mep4EOUiNiq63UqQ10yHBDG29CrRgWbgs8a5nBL8udRQxgdKIj7DIy0nFhXRokDZBzvSpbkZFTTYxLtbQpkYo0okgjqtSImjYgXEj-mRFyPEFmvzTdQkCPflNAm-TqV-dIse4BLgmtU5U1YGduW1X58lhR8XNEyULgqD8tXqMX0tWKLtxwQm1wpx9Qtb4GiNLSTx6cah1l9PT-uYK7sHLc-95W7ZPOt214RU1msWw7ULsaTdwHeGmvrwbj0cfKIe4Be8oDbA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swED9NdJrYA2zAtDIYmTTxli0f_ogfoV1gW1WxCjbeLNtxJDSUopYC21-_uzQtVOwBId4ixWfZd_nFP9v3AfAxtjZGYs7DoozTkJWCI-YcC0VmXFywtIzqG92fPdnvZ6en6qgpB0SxMNP8EPMDN0JG_b8mgPuLoryP8kxwCjihMz3KbvcJCWWLcSUQpa3uID_p3YZJSsFnqb4picyiY89_-1pYrVqk-JsFKnqX0NYrUr76pHN5BSsNMQ32pl_Sa3jmqzV4eSdd4Tp83gt-TNASZ399EezX9ZhGf4JB7UvbhDBVwbAMkm6Qnw-vxxtwnH857hyGTcGF0LE4kaEVmbRIt5myyhaOs9Slqck8TxxHIuWR7TiuCp6qyETKitQZJ41ykYkZbmjTN7BUDSv_FgLnmMWZFd4hB7AmMwl2mVjpuXBeRVkb5Eyv2jXJyKkmxrle2JRITRrRpBFda0TftCGeS15ME3I8QGa3Nt1cwIx-k0Ob5PpX_0CzwT4uCZ1vOm_D1sy2usHyWFPxc2TJQuCoP8xfIwrpasVUfjihNrjTj6haXxtEbekHD053DnJ62nys4A68OOrmuve1__0dLFOLqSvbFixdjiZ-G567q8uz8eh9g4d__Q4C5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Quantized+Boundary+Representation+of+2D+Flows&rft.jtitle=Computer+graphics+forum&rft.au=Levine%2C+J.+A.&rft.au=Jadhav%2C+S.&rft.au=Bhatia%2C+H.&rft.au=Pascucci%2C+V.&rft.date=2012-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=31&rft.issue=3pt1&rft.spage=945&rft.epage=954&rft_id=info:doi/10.1111%2Fj.1467-8659.2012.03087.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_4RB762CJ_F
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon