FastSKAT: Sequence kernel association tests for very large sets of markers
The sequence kernel association test (SKAT) is widely used to test for associations between a phenotype and a set of genetic variants that are usually rare. Evaluating tail probabilities or quantiles of the null distribution for SKAT requires computing the eigenvalues of a matrix related to the geno...
Uloženo v:
| Vydáno v: | Genetic epidemiology Ročník 42; číslo 6; s. 516 - 527 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Wiley Subscription Services, Inc
01.09.2018
|
| Témata: | |
| ISSN: | 0741-0395, 1098-2272, 1098-2272 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The sequence kernel association test (SKAT) is widely used to test for associations between a phenotype and a set of genetic variants that are usually rare. Evaluating tail probabilities or quantiles of the null distribution for SKAT requires computing the eigenvalues of a matrix related to the genotype covariance between markers. Extracting the full set of eigenvalues of this matrix (an n×n matrix, for n subjects) has computational complexity proportional to n3. As SKAT is often used when n>104, this step becomes a major bottleneck in its use in practice. We therefore propose fastSKAT, a new computationally inexpensive but accurate approximations to the tail probabilities, in which the k largest eigenvalues of a weighted genotype covariance matrix or the largest singular values of a weighted genotype matrix are extracted, and a single term based on the Satterthwaite approximation is used for the remaining eigenvalues. While the method is not particularly sensitive to the choice of k, we also describe how to choose its value, and show how fastSKAT can automatically alert users to the rare cases where the choice may affect results. As well as providing faster implementation of SKAT, the new method also enables entirely new applications of SKAT that were not possible before; we give examples grouping variants by topologically associating domains, and comparing chromosome‐wide association by class of histone marker. |
|---|---|
| AbstractList | The Sequence Kernel Association Test (SKAT) is widely used to test for associations between a phenotype and a set of genetic variants, that are usually rare. Evaluating tail probabilities or quantiles of the null distribution for SKAT requires computing the eigenvalues of a matrix related to the genotype covariance between markers. Extracting the full set of eigenvalues of this matrix (an n × n matrix, for n subjects) has computational complexity proportional to n3. As SKAT is often used when n > 104, this step becomes a major bottleneck in its use in practice. We therefore propose fastSKAT, a new computationally-inexpensive but accurate approximations to the tail probabilities, in which the k largest eigenvalues of a weighted genotype covariance matrix or the largest singular values of a weighted genotype matrix are extracted, and a single term based on the Satterthwaite approximation is used for the remaining eigenvalues. While the method is not particularly sensitive to the choice of k, we also describe how to choose its value, and show how fastSKAT can automatically alert users to the rare cases where the choice may affect results. As well as providing faster implementation of SKAT, the new method also enables entirely new applications of SKAT, that were not possible before; we give examples grouping variants by topologically assisted domains, and comparing chromosome-wide association by class of histone marker. The sequence kernel association test (SKAT) is widely used to test for associations between a phenotype and a set of genetic variants that are usually rare. Evaluating tail probabilities or quantiles of the null distribution for SKAT requires computing the eigenvalues of a matrix related to the genotype covariance between markers. Extracting the full set of eigenvalues of this matrix (an n×n matrix, for n subjects) has computational complexity proportional to n3. As SKAT is often used when n>104, this step becomes a major bottleneck in its use in practice. We therefore propose fastSKAT, a new computationally inexpensive but accurate approximations to the tail probabilities, in which the k largest eigenvalues of a weighted genotype covariance matrix or the largest singular values of a weighted genotype matrix are extracted, and a single term based on the Satterthwaite approximation is used for the remaining eigenvalues. While the method is not particularly sensitive to the choice of k, we also describe how to choose its value, and show how fastSKAT can automatically alert users to the rare cases where the choice may affect results. As well as providing faster implementation of SKAT, the new method also enables entirely new applications of SKAT that were not possible before; we give examples grouping variants by topologically associating domains, and comparing chromosome‐wide association by class of histone marker. The sequence kernel association test (SKAT) is widely used to test for associations between a phenotype and a set of genetic variants that are usually rare. Evaluating tail probabilities or quantiles of the null distribution for SKAT requires computing the eigenvalues of a matrix related to the genotype covariance between markers. Extracting the full set of eigenvalues of this matrix (an matrix, for n subjects) has computational complexity proportional to n . As SKAT is often used when , this step becomes a major bottleneck in its use in practice. We therefore propose fastSKAT, a new computationally inexpensive but accurate approximations to the tail probabilities, in which the k largest eigenvalues of a weighted genotype covariance matrix or the largest singular values of a weighted genotype matrix are extracted, and a single term based on the Satterthwaite approximation is used for the remaining eigenvalues. While the method is not particularly sensitive to the choice of k, we also describe how to choose its value, and show how fastSKAT can automatically alert users to the rare cases where the choice may affect results. As well as providing faster implementation of SKAT, the new method also enables entirely new applications of SKAT that were not possible before; we give examples grouping variants by topologically associating domains, and comparing chromosome-wide association by class of histone marker. The sequence kernel association test (SKAT) is widely used to test for associations between a phenotype and a set of genetic variants that are usually rare. Evaluating tail probabilities or quantiles of the null distribution for SKAT requires computing the eigenvalues of a matrix related to the genotype covariance between markers. Extracting the full set of eigenvalues of this matrix (an n×n matrix, for n subjects) has computational complexity proportional to n3 . As SKAT is often used when n>104 , this step becomes a major bottleneck in its use in practice. We therefore propose fastSKAT, a new computationally inexpensive but accurate approximations to the tail probabilities, in which the k largest eigenvalues of a weighted genotype covariance matrix or the largest singular values of a weighted genotype matrix are extracted, and a single term based on the Satterthwaite approximation is used for the remaining eigenvalues. While the method is not particularly sensitive to the choice of k, we also describe how to choose its value, and show how fastSKAT can automatically alert users to the rare cases where the choice may affect results. As well as providing faster implementation of SKAT, the new method also enables entirely new applications of SKAT that were not possible before; we give examples grouping variants by topologically associating domains, and comparing chromosome-wide association by class of histone marker.The sequence kernel association test (SKAT) is widely used to test for associations between a phenotype and a set of genetic variants that are usually rare. Evaluating tail probabilities or quantiles of the null distribution for SKAT requires computing the eigenvalues of a matrix related to the genotype covariance between markers. Extracting the full set of eigenvalues of this matrix (an n×n matrix, for n subjects) has computational complexity proportional to n3 . As SKAT is often used when n>104 , this step becomes a major bottleneck in its use in practice. We therefore propose fastSKAT, a new computationally inexpensive but accurate approximations to the tail probabilities, in which the k largest eigenvalues of a weighted genotype covariance matrix or the largest singular values of a weighted genotype matrix are extracted, and a single term based on the Satterthwaite approximation is used for the remaining eigenvalues. While the method is not particularly sensitive to the choice of k, we also describe how to choose its value, and show how fastSKAT can automatically alert users to the rare cases where the choice may affect results. As well as providing faster implementation of SKAT, the new method also enables entirely new applications of SKAT that were not possible before; we give examples grouping variants by topologically associating domains, and comparing chromosome-wide association by class of histone marker. The sequence kernel association test (SKAT) is widely used to test for associations between a phenotype and a set of genetic variants that are usually rare. Evaluating tail probabilities or quantiles of the null distribution for SKAT requires computing the eigenvalues of a matrix related to the genotype covariance between markers. Extracting the full set of eigenvalues of this matrix (an matrix, for n subjects) has computational complexity proportional to n 3 . As SKAT is often used when , this step becomes a major bottleneck in its use in practice. We therefore propose fastSKAT, a new computationally inexpensive but accurate approximations to the tail probabilities, in which the k largest eigenvalues of a weighted genotype covariance matrix or the largest singular values of a weighted genotype matrix are extracted, and a single term based on the Satterthwaite approximation is used for the remaining eigenvalues. While the method is not particularly sensitive to the choice of k , we also describe how to choose its value, and show how fastSKAT can automatically alert users to the rare cases where the choice may affect results. As well as providing faster implementation of SKAT, the new method also enables entirely new applications of SKAT that were not possible before; we give examples grouping variants by topologically associating domains, and comparing chromosome‐wide association by class of histone marker. |
| Author | Morrison, Alanna Rice, Kenneth Brody, Jennifer Lumley, Thomas Peloso, Gina |
| AuthorAffiliation | 4 University of Texas Health Science Center at Houston 2 Cardiovascular Health Research Unit, University of Washington 3 Department of Biostatistics, Boston University 1 Department of Statistics, University of Auckland 5 Department of Biostatistics, University of Washington |
| AuthorAffiliation_xml | – name: 5 Department of Biostatistics, University of Washington – name: 1 Department of Statistics, University of Auckland – name: 3 Department of Biostatistics, Boston University – name: 2 Cardiovascular Health Research Unit, University of Washington – name: 4 University of Texas Health Science Center at Houston |
| Author_xml | – sequence: 1 givenname: Thomas surname: Lumley fullname: Lumley, Thomas organization: University of Auckland – sequence: 2 givenname: Jennifer surname: Brody fullname: Brody, Jennifer organization: University of Washington – sequence: 3 givenname: Gina surname: Peloso fullname: Peloso, Gina organization: Boston University – sequence: 4 givenname: Alanna surname: Morrison fullname: Morrison, Alanna organization: University of Texas Health Science Center at Houston – sequence: 5 givenname: Kenneth orcidid: 0000-0002-3071-7278 surname: Rice fullname: Rice, Kenneth email: kenrice@u.washington.edu organization: University of Washington |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29932245$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kV9LHDEUxUOx1FX70g9QBvpSCmOTO_kz6UNBRK2toKA-h2z2Zhs7m6zJrGW_faNrpZXSp8DN7xzuuWeHbMUUkZA3jO4zSuHjHJdhH4B18gWZMKr7FkDBFplQxVlLOy22yU4pN5QyxrV4RbZB6w6Aiwn5emzLePnt4OpTc4m3K4wOmx-YIw6NLSW5YMeQYjNiGUvjU27uMK-bweY5NgXrLPlmYXOVlD3y0tuh4OvHd5dcHx9dHX5pz85PTg8PzlrHGcjWSS_Bz2AG2kvNnfLcql6g6EBSrYSVbsrprEfFnaXUKau9lR16p6e9mNJul3ze-C5X0wXOHMYx28Esc6iLrE2ywfz9E8N3M093RjLQnPbV4P2jQU41chnNIhSHw2AjplUxQEUvaKeUrOi7Z-hNWuVY4xmot9cCFO8q9fbPjZ5W-X3mCnzYAC6nUjL6J4RRc9-hue_QPHRYYfoMdmF8qKGmCcO_JWwj-RkGXP_H3JwcXZxuNL8AWFmuWA |
| CitedBy_id | crossref_primary_10_1165_rcmb_2018_0088OC crossref_primary_10_1093_hmg_ddac247 crossref_primary_10_1016_j_ajhg_2024_08_004 crossref_primary_10_1093_bib_bbab497 crossref_primary_10_1093_bib_bbad412 crossref_primary_10_1371_journal_pcbi_1010172 crossref_primary_10_3389_fgene_2021_710055 crossref_primary_10_1186_s12859_021_04356_5 crossref_primary_10_1371_journal_pcbi_1011488 crossref_primary_10_1007_s00439_020_02190_y crossref_primary_10_1016_j_ajhg_2018_12_012 crossref_primary_10_3389_fgene_2021_657499 crossref_primary_10_1093_genetics_iyaf158 crossref_primary_10_1016_j_ajhg_2023_09_003 crossref_primary_10_1016_j_csda_2019_05_002 crossref_primary_10_1002_gepi_22180 crossref_primary_10_1016_j_ajhg_2021_02_016 crossref_primary_10_1177_0962280220927728 |
| Cites_doi | 10.1142/S1793536911000787 10.1101/gr.083634.108 10.1093/biostatistics/kxs014 10.1002/gepi.21676 10.1080/03610919008812866 10.1161/CIRCGENETICS.108.829747 10.1002/gepi.21703 10.1016/j.csda.2008.11.025 10.1016/j.ajhg.2015.12.022 10.1137/1.9780898719604 10.1002/gepi.21820 10.1002/gepi.21913 10.1038/ng.548 10.1038/ng.2671 10.1038/ng1847 10.1161/CIRCGENETICS.113.000350 10.1145/1377603.1377607 10.1016/j.ajhg.2011.05.029 10.1016/j.ajhg.2012.06.007 10.1145/1824801.1824805 10.1002/gepi.21791 10.2307/2347721 10.1038/nature11082 10.1145/567806.567807 10.1145/3004053 10.3109/10409238.2015.1087961 10.2307/2346911 10.1137/090771806 10.1038/ng.3190 10.1093/biomet/86.4.929 10.1038/nrg2779 10.1016/j.ajhg.2014.06.009 10.1214/aoap/1177005712 10.1016/j.ajhg.2010.05.002 |
| ContentType | Journal Article |
| Copyright | 2018 WILEY PERIODICALS, INC. 2018 Wiley Periodicals, Inc. |
| Copyright_xml | – notice: 2018 WILEY PERIODICALS, INC. – notice: 2018 Wiley Periodicals, Inc. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 K9. P64 RC3 7X8 5PM |
| DOI | 10.1002/gepi.22136 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Genetics Abstracts CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health Biology |
| EISSN | 1098-2272 |
| EndPage | 527 |
| ExternalDocumentID | PMC6129408 29932245 10_1002_gepi_22136 GEPI22136 |
| Genre | article Research Support, American Recovery and Reinvestment Act Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: National Institute on Aging funderid: R01AG023629 – fundername: National Heart, Lung, and Blood Institute funderid: U01HL137162 – fundername: NHLBI NIH HHS grantid: RC2 HL102419 – fundername: NHLBI NIH HHS grantid: N01 HC085086 – fundername: NHLBI NIH HHS grantid: N01 HC085082 – fundername: NHLBI NIH HHS grantid: U01HL137162 – fundername: NHLBI NIH HHS grantid: U01 HL080295 – fundername: NHLBI NIH HHS grantid: N01 HC055222 – fundername: NHLBI NIH HHS grantid: R01 HL120393 – fundername: NHLBI NIH HHS grantid: N02 HL64278 – fundername: NHLBI NIH HHS grantid: R01 HL105756 – fundername: NHLBI NIH HHS grantid: N01 HC085081 |
| GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DVXWH EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M66 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWV RX1 RYL SAMSI SUPJJ SV3 UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WTM WXSBR WYISQ XG1 XV2 ZGI ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 K9. P64 RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c4126-c6f62fd2d29f694c7f4a785e53260975a6cb40d8e74ca00c7a9fa63efc9b85b03 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000443994100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0741-0395 1098-2272 |
| IngestDate | Tue Nov 04 02:01:49 EST 2025 Fri Jul 11 11:30:39 EDT 2025 Sat Nov 29 14:27:37 EST 2025 Mon Jul 21 06:03:19 EDT 2025 Tue Nov 18 22:32:56 EST 2025 Sat Nov 29 06:32:59 EST 2025 Wed Jan 22 16:34:45 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | genetic association Lanczos algorithm randomized trace estimator convolution stochastic singular value decomposition |
| Language | English |
| License | 2018 WILEY PERIODICALS, INC. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4126-c6f62fd2d29f694c7f4a785e53260975a6cb40d8e74ca00c7a9fa63efc9b85b03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
| ORCID | 0000-0002-3071-7278 |
| PMID | 29932245 |
| PQID | 2100952743 |
| PQPubID | 105460 |
| PageCount | 12 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6129408 proquest_miscellaneous_2058503776 proquest_journals_2100952743 pubmed_primary_29932245 crossref_primary_10_1002_gepi_22136 crossref_citationtrail_10_1002_gepi_22136 wiley_primary_10_1002_gepi_22136_GEPI22136 |
| PublicationCentury | 2000 |
| PublicationDate | September 2018 |
| PublicationDateYYYYMMDD | 2018-09-01 |
| PublicationDate_xml | – month: 09 year: 2018 text: September 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Genetic epidemiology |
| PublicationTitleAlternate | Genet Epidemiol |
| PublicationYear | 2018 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2010; 11 2015; 39 2013b; 37 2012; 485 2010; 37 1980; 29 2012 2011 2013a; 37 2013; 45 2015; 50 1990; 19 2006; 38 2017; 43 2016; 98 2011; 53 1996 2008; 35 1999; 86 2012; 36 2012; 13 2011; 3 1999 2002; 28 2010; 42 2012; 91 2015; 47 2010; 86 2009; 53 1984; 33 2014; 38 2016 2011; 89 2009; 19 2014; 95 2009; 2 2014; 7 1992; 2 Lumley T. (e_1_2_6_31_1) 2011 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_30_1 R Core Team (e_1_2_6_35_1) 2016 e_1_2_6_19_1 Fuller W. (e_1_2_6_14_1) 2011 Korobeynikov A. (e_1_2_6_21_1) 2016 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_20_1 Lee S. (e_1_2_6_25_1) 2016 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_24_1 e_1_2_6_3_1 Fitzmaurice G. M. (e_1_2_6_13_1) 2012 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 Golub G. H. (e_1_2_6_16_1) 1996 e_1_2_6_27_1 e_1_2_6_26_1 |
| References_xml | – year: 2011 – volume: 53 start-page: 217 year: 2011 end-page: 288 article-title: Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions publication-title: SIAM Review – volume: 91 start-page: 224 year: 2012 end-page: 237 article-title: Optimal unified approach for rare‐variant association testing with application to small‐sample case‐control whole‐exome sequencing studies publication-title: American Journal of Human Genetics – volume: 86 start-page: 929 year: 1999 end-page: 935 article-title: Saddle point approximations for distributions of quadratic forms in normal variables publication-title: Biometrika – volume: 47 start-page: 284 year: 2015 end-page: 290 article-title: Efficient Bayesian mixed‐model analysis increases association power in large cohorts publication-title: Nature Genetics – volume: 2 start-page: 481 year: 1992 end-page: 502 article-title: The tail of the convolution of densities and its application to a model of HIV‐latency time publication-title: Annals of Applied Probability – volume: 7 start-page: 335 year: 2014 end-page: 343 article-title: Strategies to design and analyze targeted sequencing data cohorts for heart and aging research in genomic epidemiology (charge) consortium targeted sequencing study publication-title: Circulation: Cardiovascular Genetics – volume: 33 start-page: 332 year: 1984 end-page: 339 article-title: Algorithm as 204: The distribution of a positive linear combination of χ random variables publication-title: Journal of the Royal Statistical Society. Series C (Applied Statistics) – volume: 89 start-page: 82 year: 2011 end-page: 93 article-title: Rare‐variant association testing for sequencing data with the sequence kernel association test publication-title: American Journal of Human Genetics – volume: 37 start-page: 196 year: 2013b end-page: 204 article-title: Sequence kernel association test for quantitative traits in family samples publication-title: Genetic Epidemiology – volume: 19 start-page: 136 year: 2009 end-page: 142 article-title: Fast and flexible simulation of DNA sequence data publication-title: Genome Research – volume: 11 start-page: 415 year: 2010 end-page: 425 article-title: Uncovering the roles of rare variants in common disease through whole‐genome sequencing publication-title: Nature Reviews Genetics – year: 1996 – volume: 19 start-page: 433 year: 1990 end-page: 450 article-title: A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines publication-title: Communications in Statistics‐Simulation and Computation – year: 2016 – volume: 36 start-page: 797 year: 2012 end-page: 810 article-title: SNP set association analysis for familial data publication-title: Genetic Epidemiology – volume: 485 start-page: 376 year: 2012 end-page: 380 article-title: Topological domains in mammalian genomes identified by analysis of chromatin interactions publication-title: Nature – volume: 45 start-page: 899 year: 2013 article-title: Whole genome sequence‐based analysis of a model complex trait, high density lipoprotein cholesterol publication-title: Nature Genetics – year: 2012 – volume: 38 start-page: 191 year: 2014 end-page: 197 article-title: Sequence kernel association test for survival traits publication-title: Genetic Epidemiology – volume: 53 start-page: 853 year: 2009 end-page: 856 article-title: A new chi‐square approximation to the distribution of non‐negative definite quadratic forms in non‐central normal variables publication-title: Computational Statistics & Data Analysis – volume: 38 start-page: 904 year: 2006 end-page: 909 article-title: Principal components analysis corrects for stratification in genome‐wide association studies publication-title: Nature Genetics – volume: 86 start-page: 929 year: 2010 end-page: 942 article-title: Powerful SNP‐set analysis for case‐control genome‐wide association studies publication-title: American Journal of Human Genetics – volume: 37 start-page: 27 year: 2010 article-title: Adaptive projection subspace dimension for the thick‐restart Lanczos method publication-title: ACM Transactions on Mathematical Software (TOMS) – volume: 3 start-page: 115 year: 2011 end-page: 126 article-title: Improved analysis of the subsampled randomized Hadamard transform publication-title: Advances in Adaptive Data Analysis – volume: 38 year: 2014 article-title: Methods for collapsing multiple rare variants in whole‐genome sequence data publication-title: Genetic Epidemiology – volume: 13 start-page: 762 year: 2012 end-page: 775 article-title: Optimal tests for rare variant effects in sequencing association studies publication-title: Biostatistics – volume: 50 start-page: 550 year: 2015 end-page: 573 article-title: Demystifying the secret mission of enhancers: Linking distal regulatory elements to target genes publication-title: Critical Reviews in Biochemistry and Molecular Biology – volume: 43 start-page: 28 year: 2017 article-title: Algorithm 971: An implementation of a randomized algorithm for principal component analysis publication-title: ACM Transactions on Mathematical Software – volume: 42 start-page: 348 year: 2010 end-page: 354 article-title: Variance component model to account for sample structure in genome‐wide association studies publication-title: Nature Genetics – volume: 39 start-page: 399 year: 2015 end-page: 405 article-title: Sequence kernel association analysis of rare variant set based on the marginal regression model for binary traits publication-title: Genetic Epidemiology – volume: 28 start-page: 135 year: 2002 end-page: 151 article-title: An updated set of basic linear algebra subprograms (blas) publication-title: ACM Transactions on Mathematical Software – volume: 98 start-page: 456 year: 2016 end-page: 472 article-title: Fast principal‐component analysis reveals convergent evolution of adh1b in Europe and East Asia publication-title: American Journal of Human Genetics – volume: 95 start-page: 5 year: 2014 end-page: 23 article-title: Rare‐variant association analysis: Study designs and statistical tests publication-title: American Journal of Human Genetics – volume: 29 start-page: 323 year: 1980 end-page: 333 article-title: Algorithm as 155: The distribution of a linear combination of χ 2 random variables publication-title: Journal of the Royal Statistical Society. Series C (Applied Statistics) – volume: 2 start-page: 73 year: 2009 end-page: 80 article-title: Cohorts for heart and aging research in genomic epidemiology (charge) consortium design of prospective meta‐analyses of genome‐wide association studies from 5 cohorts publication-title: Circulation: Cardiovascular Genetics – volume: 35 start-page: 4 year: 2008 article-title: High‐performance implementation of the level‐3 blas publication-title: ACM Transactions on Mathematical Software (TOMS) – year: 1999 – volume: 37 start-page: 196 year: 2013a end-page: 204 article-title: Sequence kernel association test for quantitative traits in family samples publication-title: Genetic Epidemiology – ident: e_1_2_6_38_1 doi: 10.1142/S1793536911000787 – ident: e_1_2_6_5_1 doi: 10.1101/gr.083634.108 – volume-title: Matrix computations year: 1996 ident: e_1_2_6_16_1 – ident: e_1_2_6_26_1 doi: 10.1093/biostatistics/kxs014 – ident: e_1_2_6_36_1 doi: 10.1002/gepi.21676 – volume-title: Applied longitudinal analysis year: 2012 ident: e_1_2_6_13_1 – ident: e_1_2_6_19_1 doi: 10.1080/03610919008812866 – ident: e_1_2_6_34_1 doi: 10.1161/CIRCGENETICS.108.829747 – ident: e_1_2_6_7_1 doi: 10.1002/gepi.21703 – ident: e_1_2_6_29_1 doi: 10.1016/j.csda.2008.11.025 – ident: e_1_2_6_15_1 doi: 10.1016/j.ajhg.2015.12.022 – volume-title: svd: Interfaces to various state‐of‐art SVD and eigensolvers year: 2016 ident: e_1_2_6_21_1 – ident: e_1_2_6_2_1 doi: 10.1137/1.9780898719604 – ident: e_1_2_6_37_1 doi: 10.1002/gepi.21820 – ident: e_1_2_6_39_1 doi: 10.1002/gepi.21913 – ident: e_1_2_6_8_1 doi: 10.1002/gepi.21703 – volume-title: R: A language and environment for statistical computing year: 2016 ident: e_1_2_6_35_1 – ident: e_1_2_6_20_1 doi: 10.1038/ng.548 – ident: e_1_2_6_32_1 doi: 10.1038/ng.2671 – ident: e_1_2_6_33_1 doi: 10.1038/ng1847 – ident: e_1_2_6_28_1 doi: 10.1161/CIRCGENETICS.113.000350 – ident: e_1_2_6_17_1 doi: 10.1145/1377603.1377607 – ident: e_1_2_6_41_1 doi: 10.1016/j.ajhg.2011.05.029 – ident: e_1_2_6_24_1 doi: 10.1016/j.ajhg.2012.06.007 – volume-title: SKAT: SNP‐set (sequence) kernel association test year: 2016 ident: e_1_2_6_25_1 – ident: e_1_2_6_42_1 doi: 10.1145/1824801.1824805 – ident: e_1_2_6_6_1 doi: 10.1002/gepi.21791 – ident: e_1_2_6_12_1 doi: 10.2307/2347721 – ident: e_1_2_6_11_1 doi: 10.1038/nature11082 – ident: e_1_2_6_4_1 doi: 10.1145/567806.567807 – ident: e_1_2_6_27_1 doi: 10.1145/3004053 – ident: e_1_2_6_43_1 doi: 10.3109/10409238.2015.1087961 – ident: e_1_2_6_10_1 doi: 10.2307/2346911 – ident: e_1_2_6_18_1 doi: 10.1137/090771806 – ident: e_1_2_6_30_1 doi: 10.1038/ng.3190 – ident: e_1_2_6_22_1 doi: 10.1093/biomet/86.4.929 – ident: e_1_2_6_9_1 doi: 10.1038/nrg2779 – ident: e_1_2_6_23_1 doi: 10.1016/j.ajhg.2014.06.009 – ident: e_1_2_6_3_1 doi: 10.1214/aoap/1177005712 – volume-title: Sampling statistics year: 2011 ident: e_1_2_6_14_1 – volume-title: Complex surveys: A guide to analysis using R year: 2011 ident: e_1_2_6_31_1 – ident: e_1_2_6_40_1 doi: 10.1016/j.ajhg.2010.05.002 |
| SSID | ssj0011495 |
| Score | 2.3456643 |
| Snippet | The sequence kernel association test (SKAT) is widely used to test for associations between a phenotype and a set of genetic variants that are usually rare.... The Sequence Kernel Association Test (SKAT) is widely used to test for associations between a phenotype and a set of genetic variants, that are usually rare.... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 516 |
| SubjectTerms | Algorithms Chromosomes, Human - metabolism Computer applications convolution Eigenvalues genetic association Genetic Association Studies Genetic diversity Genetic Markers Genotypes Histones - metabolism Humans Lanczos algorithm Phenotypes randomized trace estimator Sequence Analysis, DNA Statistics as Topic stochastic singular value decomposition Time Factors |
| Title | FastSKAT: Sequence kernel association tests for very large sets of markers |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fgepi.22136 https://www.ncbi.nlm.nih.gov/pubmed/29932245 https://www.proquest.com/docview/2100952743 https://www.proquest.com/docview/2058503776 https://pubmed.ncbi.nlm.nih.gov/PMC6129408 |
| Volume | 42 |
| WOSCitedRecordID | wos000443994100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1098-2272 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011495 issn: 0741-0395 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9swED_adIPB2KN7NF1XNLYvG3h1ZFmPsS9la_aklLWFfDOSLLVhrVPidND_vifLcRY6BmPfjHW2Zd2d9JN0-h3Aq9RpRQ136GnKJyzTKpGUmUQwq2wguGPGN8kmxP6-HI3UwQq8n5-FifwQ3YJb8Iymvw4Ork29syANPXEX47eUDjK-CmsUDTfvwdrHH8Pj790uQkD_kYYzhA2pvKMnpTuLp5cHpBso82aw5O8gthmFhvf_r_4P4F6LPsluNJeHsOKqdbgd81FercPduIhH4tmkR_B1qOvZ4bfdo3fksA25Jj_dFL9M9EKtBNHqrCaIfgn6xRU5C8HlpHZ4b-LJeYj_mdaP4Xi4d_Thc9ImX0gsG1CeWO459SUtqfJcMSs800LmLke8lyqRa24NS0vpUKs6Ta3QymueOW-VkblJsyfQqyaV2wDiMm9Kzx11iF0oF0ay3A1KBBsZdZmUfXg910BhW2bykCDjrIicyrQIbVU0bdWHl53sReTj-KPU1lyRReuTdYGTW8STOAvP-vCiK0ZvClskunKTS5RJcfqUoo3iK55GvXefwYEbez-W90EsWUQnEJi6l0uq8WnD2I0wUrEUf_RNYxF_qXnxae_gS3O1-S_Cz-AOIjkZg9-2oDebXrrncMv-mo3r6TasipHcbr3jGsP2Eg4 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fTxQxEJ4oaDAxogh6ClqjL5gs9LrdbusbUU6Q80LkSHjbdLstXMQ9cnuY8N873S57XjAmhLfNdvZHOzPt13b6DcAHarViubDoacpFPNYqkoznUcqNMp7gjueuTjaRDgby5EQdNrE5_ixM4IdoF9y8Z9T9tXdwvyC9PWMNPbUXoy3GurG4D4sc7QgNfPHLj95xv91G8PA_8HD6uCGVtPykbHv29PyIdANm3oyW_BvF1sNQb_mOFXgKTxr8SXaCwTyDe7ZcgYchI-XVCjwOy3gknE56Dt96upoeHewMP5GjJuia_LQT_DTRM8USxKvTiiD-JegZV-Tch5eTyuK9sSO_fATQpFqF497u8PNe1KRfiAzvMhEZ4QRzBSuYckJxkzquU5nYBBEfVWmihck5LaRFvWpKTaqV0yK2zqhcJjmN12ChHJf2JRAbu7xwwjKL6IWJNJc8sd0C4UbMbCxlBzavVZCZhpvcp8g4zwKrMst8W2V1W3XgfSt7ERg5_im1fq3JrPHKKsPpLSJKnIfHHXjXFqM_-U0SXdrxJcpQnEBRtFJ8xYug-PYzOHRj_8eTDqRzJtEKeK7u-ZJydFZzdiOQVJxiRT_WJvGfP8--7h7u11evbiP8Fpb2ht_7WX9_cPAaHiGukyEUbh0WppNLuwEPzO_pqJq8aZzkD6s6FRY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9BBxPSxMc2oDDACF5AyuY6jmPzNrEFxqaqYpu0t8hxbKgYadV0k_bfc46zlGoICfEWxZcP--7sn-3z7wDeUqsVK4RFT1Mu4rFWkWS8iFJulPEEd7xwTbKJdDiUZ2dq1Mbm-LMwgR-iW3DzntH0197B7bR0OwvW0G92Ot5mbBCL27DCfRaZHqzsfc1Oj7ptBA__Aw-njxtSScdPynYWTy-PSDdg5s1oyd9RbDMMZQ_-swIP4X6LP8luMJhHcMtW63A3ZKS8Woe1sIxHwumkDfiS6Xp-fLh78oEct0HX5Ied4aeJXiiWIF6d1wTxL0HPuCLnPryc1BbvTRz56SOAZvUmnGb7Jx8_R236hcjwAROREU4wV7KSKScUN6njOpWJTRDxUZUmWpiC01Ja1Kum1KRaOS1i64wqZFLQ-DH0qkllnwKxsStKJyyziF6YSAvJEzsoEW7EzMZS9uHdtQpy03KT-xQZ53lgVWa5b6u8aas-vOlkp4GR449SW9eazFuvrHOc3iKixHl43IfXXTH6k98k0ZWdXKAMxQkURSvFVzwJiu8-g0M39n886UO6ZBKdgOfqXi6pxt8bzm4EkopTrOj7xiT-8uf5p_3RQXP17F-EX8HqaC_Ljw6Gh8_hHsI6GSLhtqA3n13YF3DHXM7H9exl6yO_ABkMFJE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FastSKAT%3A+Sequence+kernel+association+tests+for+very+large+sets+of+markers&rft.jtitle=Genetic+epidemiology&rft.au=Lumley%2C+Thomas&rft.au=Brody%2C+Jennifer&rft.au=Peloso%2C+Gina&rft.au=Morrison%2C+Alanna&rft.date=2018-09-01&rft.issn=1098-2272&rft.eissn=1098-2272&rft.volume=42&rft.issue=6&rft.spage=516&rft_id=info:doi/10.1002%2Fgepi.22136&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0741-0395&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0741-0395&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0741-0395&client=summon |