FastSKAT: Sequence kernel association tests for very large sets of markers

The sequence kernel association test (SKAT) is widely used to test for associations between a phenotype and a set of genetic variants that are usually rare. Evaluating tail probabilities or quantiles of the null distribution for SKAT requires computing the eigenvalues of a matrix related to the geno...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Genetic epidemiology Ročník 42; číslo 6; s. 516 - 527
Hlavní autoři: Lumley, Thomas, Brody, Jennifer, Peloso, Gina, Morrison, Alanna, Rice, Kenneth
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Wiley Subscription Services, Inc 01.09.2018
Témata:
ISSN:0741-0395, 1098-2272, 1098-2272
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The sequence kernel association test (SKAT) is widely used to test for associations between a phenotype and a set of genetic variants that are usually rare. Evaluating tail probabilities or quantiles of the null distribution for SKAT requires computing the eigenvalues of a matrix related to the genotype covariance between markers. Extracting the full set of eigenvalues of this matrix (an n×n matrix, for n subjects) has computational complexity proportional to n3. As SKAT is often used when n>104, this step becomes a major bottleneck in its use in practice. We therefore propose fastSKAT, a new computationally inexpensive but accurate approximations to the tail probabilities, in which the k largest eigenvalues of a weighted genotype covariance matrix or the largest singular values of a weighted genotype matrix are extracted, and a single term based on the Satterthwaite approximation is used for the remaining eigenvalues. While the method is not particularly sensitive to the choice of k, we also describe how to choose its value, and show how fastSKAT can automatically alert users to the rare cases where the choice may affect results. As well as providing faster implementation of SKAT, the new method also enables entirely new applications of SKAT that were not possible before; we give examples grouping variants by topologically associating domains, and comparing chromosome‐wide association by class of histone marker.
AbstractList The Sequence Kernel Association Test (SKAT) is widely used to test for associations between a phenotype and a set of genetic variants, that are usually rare. Evaluating tail probabilities or quantiles of the null distribution for SKAT requires computing the eigenvalues of a matrix related to the genotype covariance between markers. Extracting the full set of eigenvalues of this matrix (an n × n matrix, for n subjects) has computational complexity proportional to n3. As SKAT is often used when n > 104, this step becomes a major bottleneck in its use in practice. We therefore propose fastSKAT, a new computationally-inexpensive but accurate approximations to the tail probabilities, in which the k largest eigenvalues of a weighted genotype covariance matrix or the largest singular values of a weighted genotype matrix are extracted, and a single term based on the Satterthwaite approximation is used for the remaining eigenvalues. While the method is not particularly sensitive to the choice of k, we also describe how to choose its value, and show how fastSKAT can automatically alert users to the rare cases where the choice may affect results. As well as providing faster implementation of SKAT, the new method also enables entirely new applications of SKAT, that were not possible before; we give examples grouping variants by topologically assisted domains, and comparing chromosome-wide association by class of histone marker.
The sequence kernel association test (SKAT) is widely used to test for associations between a phenotype and a set of genetic variants that are usually rare. Evaluating tail probabilities or quantiles of the null distribution for SKAT requires computing the eigenvalues of a matrix related to the genotype covariance between markers. Extracting the full set of eigenvalues of this matrix (an n×n matrix, for n subjects) has computational complexity proportional to n3. As SKAT is often used when n>104, this step becomes a major bottleneck in its use in practice. We therefore propose fastSKAT, a new computationally inexpensive but accurate approximations to the tail probabilities, in which the k largest eigenvalues of a weighted genotype covariance matrix or the largest singular values of a weighted genotype matrix are extracted, and a single term based on the Satterthwaite approximation is used for the remaining eigenvalues. While the method is not particularly sensitive to the choice of k, we also describe how to choose its value, and show how fastSKAT can automatically alert users to the rare cases where the choice may affect results. As well as providing faster implementation of SKAT, the new method also enables entirely new applications of SKAT that were not possible before; we give examples grouping variants by topologically associating domains, and comparing chromosome‐wide association by class of histone marker.
The sequence kernel association test (SKAT) is widely used to test for associations between a phenotype and a set of genetic variants that are usually rare. Evaluating tail probabilities or quantiles of the null distribution for SKAT requires computing the eigenvalues of a matrix related to the genotype covariance between markers. Extracting the full set of eigenvalues of this matrix (an matrix, for n subjects) has computational complexity proportional to n . As SKAT is often used when , this step becomes a major bottleneck in its use in practice. We therefore propose fastSKAT, a new computationally inexpensive but accurate approximations to the tail probabilities, in which the k largest eigenvalues of a weighted genotype covariance matrix or the largest singular values of a weighted genotype matrix are extracted, and a single term based on the Satterthwaite approximation is used for the remaining eigenvalues. While the method is not particularly sensitive to the choice of k, we also describe how to choose its value, and show how fastSKAT can automatically alert users to the rare cases where the choice may affect results. As well as providing faster implementation of SKAT, the new method also enables entirely new applications of SKAT that were not possible before; we give examples grouping variants by topologically associating domains, and comparing chromosome-wide association by class of histone marker.
The sequence kernel association test (SKAT) is widely used to test for associations between a phenotype and a set of genetic variants that are usually rare. Evaluating tail probabilities or quantiles of the null distribution for SKAT requires computing the eigenvalues of a matrix related to the genotype covariance between markers. Extracting the full set of eigenvalues of this matrix (an n×n matrix, for n subjects) has computational complexity proportional to n3 . As SKAT is often used when n>104 , this step becomes a major bottleneck in its use in practice. We therefore propose fastSKAT, a new computationally inexpensive but accurate approximations to the tail probabilities, in which the k largest eigenvalues of a weighted genotype covariance matrix or the largest singular values of a weighted genotype matrix are extracted, and a single term based on the Satterthwaite approximation is used for the remaining eigenvalues. While the method is not particularly sensitive to the choice of k, we also describe how to choose its value, and show how fastSKAT can automatically alert users to the rare cases where the choice may affect results. As well as providing faster implementation of SKAT, the new method also enables entirely new applications of SKAT that were not possible before; we give examples grouping variants by topologically associating domains, and comparing chromosome-wide association by class of histone marker.The sequence kernel association test (SKAT) is widely used to test for associations between a phenotype and a set of genetic variants that are usually rare. Evaluating tail probabilities or quantiles of the null distribution for SKAT requires computing the eigenvalues of a matrix related to the genotype covariance between markers. Extracting the full set of eigenvalues of this matrix (an n×n matrix, for n subjects) has computational complexity proportional to n3 . As SKAT is often used when n>104 , this step becomes a major bottleneck in its use in practice. We therefore propose fastSKAT, a new computationally inexpensive but accurate approximations to the tail probabilities, in which the k largest eigenvalues of a weighted genotype covariance matrix or the largest singular values of a weighted genotype matrix are extracted, and a single term based on the Satterthwaite approximation is used for the remaining eigenvalues. While the method is not particularly sensitive to the choice of k, we also describe how to choose its value, and show how fastSKAT can automatically alert users to the rare cases where the choice may affect results. As well as providing faster implementation of SKAT, the new method also enables entirely new applications of SKAT that were not possible before; we give examples grouping variants by topologically associating domains, and comparing chromosome-wide association by class of histone marker.
The sequence kernel association test (SKAT) is widely used to test for associations between a phenotype and a set of genetic variants that are usually rare. Evaluating tail probabilities or quantiles of the null distribution for SKAT requires computing the eigenvalues of a matrix related to the genotype covariance between markers. Extracting the full set of eigenvalues of this matrix (an matrix, for n subjects) has computational complexity proportional to n 3 . As SKAT is often used when , this step becomes a major bottleneck in its use in practice. We therefore propose fastSKAT, a new computationally inexpensive but accurate approximations to the tail probabilities, in which the k largest eigenvalues of a weighted genotype covariance matrix or the largest singular values of a weighted genotype matrix are extracted, and a single term based on the Satterthwaite approximation is used for the remaining eigenvalues. While the method is not particularly sensitive to the choice of k , we also describe how to choose its value, and show how fastSKAT can automatically alert users to the rare cases where the choice may affect results. As well as providing faster implementation of SKAT, the new method also enables entirely new applications of SKAT that were not possible before; we give examples grouping variants by topologically associating domains, and comparing chromosome‐wide association by class of histone marker.
Author Morrison, Alanna
Rice, Kenneth
Brody, Jennifer
Lumley, Thomas
Peloso, Gina
AuthorAffiliation 4 University of Texas Health Science Center at Houston
2 Cardiovascular Health Research Unit, University of Washington
3 Department of Biostatistics, Boston University
1 Department of Statistics, University of Auckland
5 Department of Biostatistics, University of Washington
AuthorAffiliation_xml – name: 5 Department of Biostatistics, University of Washington
– name: 1 Department of Statistics, University of Auckland
– name: 3 Department of Biostatistics, Boston University
– name: 2 Cardiovascular Health Research Unit, University of Washington
– name: 4 University of Texas Health Science Center at Houston
Author_xml – sequence: 1
  givenname: Thomas
  surname: Lumley
  fullname: Lumley, Thomas
  organization: University of Auckland
– sequence: 2
  givenname: Jennifer
  surname: Brody
  fullname: Brody, Jennifer
  organization: University of Washington
– sequence: 3
  givenname: Gina
  surname: Peloso
  fullname: Peloso, Gina
  organization: Boston University
– sequence: 4
  givenname: Alanna
  surname: Morrison
  fullname: Morrison, Alanna
  organization: University of Texas Health Science Center at Houston
– sequence: 5
  givenname: Kenneth
  orcidid: 0000-0002-3071-7278
  surname: Rice
  fullname: Rice, Kenneth
  email: kenrice@u.washington.edu
  organization: University of Washington
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29932245$$D View this record in MEDLINE/PubMed
BookMark eNp9kV9LHDEUxUOx1FX70g9QBvpSCmOTO_kz6UNBRK2toKA-h2z2Zhs7m6zJrGW_faNrpZXSp8DN7xzuuWeHbMUUkZA3jO4zSuHjHJdhH4B18gWZMKr7FkDBFplQxVlLOy22yU4pN5QyxrV4RbZB6w6Aiwn5emzLePnt4OpTc4m3K4wOmx-YIw6NLSW5YMeQYjNiGUvjU27uMK-bweY5NgXrLPlmYXOVlD3y0tuh4OvHd5dcHx9dHX5pz85PTg8PzlrHGcjWSS_Bz2AG2kvNnfLcql6g6EBSrYSVbsrprEfFnaXUKau9lR16p6e9mNJul3ze-C5X0wXOHMYx28Esc6iLrE2ywfz9E8N3M093RjLQnPbV4P2jQU41chnNIhSHw2AjplUxQEUvaKeUrOi7Z-hNWuVY4xmot9cCFO8q9fbPjZ5W-X3mCnzYAC6nUjL6J4RRc9-hue_QPHRYYfoMdmF8qKGmCcO_JWwj-RkGXP_H3JwcXZxuNL8AWFmuWA
CitedBy_id crossref_primary_10_1165_rcmb_2018_0088OC
crossref_primary_10_1093_hmg_ddac247
crossref_primary_10_1016_j_ajhg_2024_08_004
crossref_primary_10_1093_bib_bbab497
crossref_primary_10_1093_bib_bbad412
crossref_primary_10_1371_journal_pcbi_1010172
crossref_primary_10_3389_fgene_2021_710055
crossref_primary_10_1186_s12859_021_04356_5
crossref_primary_10_1371_journal_pcbi_1011488
crossref_primary_10_1007_s00439_020_02190_y
crossref_primary_10_1016_j_ajhg_2018_12_012
crossref_primary_10_3389_fgene_2021_657499
crossref_primary_10_1093_genetics_iyaf158
crossref_primary_10_1016_j_ajhg_2023_09_003
crossref_primary_10_1016_j_csda_2019_05_002
crossref_primary_10_1002_gepi_22180
crossref_primary_10_1016_j_ajhg_2021_02_016
crossref_primary_10_1177_0962280220927728
Cites_doi 10.1142/S1793536911000787
10.1101/gr.083634.108
10.1093/biostatistics/kxs014
10.1002/gepi.21676
10.1080/03610919008812866
10.1161/CIRCGENETICS.108.829747
10.1002/gepi.21703
10.1016/j.csda.2008.11.025
10.1016/j.ajhg.2015.12.022
10.1137/1.9780898719604
10.1002/gepi.21820
10.1002/gepi.21913
10.1038/ng.548
10.1038/ng.2671
10.1038/ng1847
10.1161/CIRCGENETICS.113.000350
10.1145/1377603.1377607
10.1016/j.ajhg.2011.05.029
10.1016/j.ajhg.2012.06.007
10.1145/1824801.1824805
10.1002/gepi.21791
10.2307/2347721
10.1038/nature11082
10.1145/567806.567807
10.1145/3004053
10.3109/10409238.2015.1087961
10.2307/2346911
10.1137/090771806
10.1038/ng.3190
10.1093/biomet/86.4.929
10.1038/nrg2779
10.1016/j.ajhg.2014.06.009
10.1214/aoap/1177005712
10.1016/j.ajhg.2010.05.002
ContentType Journal Article
Copyright 2018 WILEY PERIODICALS, INC.
2018 Wiley Periodicals, Inc.
Copyright_xml – notice: 2018 WILEY PERIODICALS, INC.
– notice: 2018 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
P64
RC3
7X8
5PM
DOI 10.1002/gepi.22136
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Genetics Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
EISSN 1098-2272
EndPage 527
ExternalDocumentID PMC6129408
29932245
10_1002_gepi_22136
GEPI22136
Genre article
Research Support, American Recovery and Reinvestment Act
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute on Aging
  funderid: R01AG023629
– fundername: National Heart, Lung, and Blood Institute
  funderid: U01HL137162
– fundername: NHLBI NIH HHS
  grantid: RC2 HL102419
– fundername: NHLBI NIH HHS
  grantid: N01 HC085086
– fundername: NHLBI NIH HHS
  grantid: N01 HC085082
– fundername: NHLBI NIH HHS
  grantid: U01HL137162
– fundername: NHLBI NIH HHS
  grantid: U01 HL080295
– fundername: NHLBI NIH HHS
  grantid: N01 HC055222
– fundername: NHLBI NIH HHS
  grantid: R01 HL120393
– fundername: NHLBI NIH HHS
  grantid: N02 HL64278
– fundername: NHLBI NIH HHS
  grantid: R01 HL105756
– fundername: NHLBI NIH HHS
  grantid: N01 HC085081
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DVXWH
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M66
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWV
RX1
RYL
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WTM
WXSBR
WYISQ
XG1
XV2
ZGI
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c4126-c6f62fd2d29f694c7f4a785e53260975a6cb40d8e74ca00c7a9fa63efc9b85b03
IEDL.DBID DRFUL
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000443994100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0741-0395
1098-2272
IngestDate Tue Nov 04 02:01:49 EST 2025
Fri Jul 11 11:30:39 EDT 2025
Sat Nov 29 14:27:37 EST 2025
Mon Jul 21 06:03:19 EDT 2025
Tue Nov 18 22:32:56 EST 2025
Sat Nov 29 06:32:59 EST 2025
Wed Jan 22 16:34:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords genetic association
Lanczos algorithm
randomized trace estimator
convolution
stochastic singular value decomposition
Language English
License 2018 WILEY PERIODICALS, INC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4126-c6f62fd2d29f694c7f4a785e53260975a6cb40d8e74ca00c7a9fa63efc9b85b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ORCID 0000-0002-3071-7278
PMID 29932245
PQID 2100952743
PQPubID 105460
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6129408
proquest_miscellaneous_2058503776
proquest_journals_2100952743
pubmed_primary_29932245
crossref_primary_10_1002_gepi_22136
crossref_citationtrail_10_1002_gepi_22136
wiley_primary_10_1002_gepi_22136_GEPI22136
PublicationCentury 2000
PublicationDate September 2018
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: September 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Genetic epidemiology
PublicationTitleAlternate Genet Epidemiol
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 11
2015; 39
2013b; 37
2012; 485
2010; 37
1980; 29
2012
2011
2013a; 37
2013; 45
2015; 50
1990; 19
2006; 38
2017; 43
2016; 98
2011; 53
1996
2008; 35
1999; 86
2012; 36
2012; 13
2011; 3
1999
2002; 28
2010; 42
2012; 91
2015; 47
2010; 86
2009; 53
1984; 33
2014; 38
2016
2011; 89
2009; 19
2014; 95
2009; 2
2014; 7
1992; 2
Lumley T. (e_1_2_6_31_1) 2011
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_30_1
R Core Team (e_1_2_6_35_1) 2016
e_1_2_6_19_1
Fuller W. (e_1_2_6_14_1) 2011
Korobeynikov A. (e_1_2_6_21_1) 2016
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_20_1
Lee S. (e_1_2_6_25_1) 2016
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_24_1
e_1_2_6_3_1
Fitzmaurice G. M. (e_1_2_6_13_1) 2012
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
Golub G. H. (e_1_2_6_16_1) 1996
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – year: 2011
– volume: 53
  start-page: 217
  year: 2011
  end-page: 288
  article-title: Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions
  publication-title: SIAM Review
– volume: 91
  start-page: 224
  year: 2012
  end-page: 237
  article-title: Optimal unified approach for rare‐variant association testing with application to small‐sample case‐control whole‐exome sequencing studies
  publication-title: American Journal of Human Genetics
– volume: 86
  start-page: 929
  year: 1999
  end-page: 935
  article-title: Saddle point approximations for distributions of quadratic forms in normal variables
  publication-title: Biometrika
– volume: 47
  start-page: 284
  year: 2015
  end-page: 290
  article-title: Efficient Bayesian mixed‐model analysis increases association power in large cohorts
  publication-title: Nature Genetics
– volume: 2
  start-page: 481
  year: 1992
  end-page: 502
  article-title: The tail of the convolution of densities and its application to a model of HIV‐latency time
  publication-title: Annals of Applied Probability
– volume: 7
  start-page: 335
  year: 2014
  end-page: 343
  article-title: Strategies to design and analyze targeted sequencing data cohorts for heart and aging research in genomic epidemiology (charge) consortium targeted sequencing study
  publication-title: Circulation: Cardiovascular Genetics
– volume: 33
  start-page: 332
  year: 1984
  end-page: 339
  article-title: Algorithm as 204: The distribution of a positive linear combination of χ random variables
  publication-title: Journal of the Royal Statistical Society. Series C (Applied Statistics)
– volume: 89
  start-page: 82
  year: 2011
  end-page: 93
  article-title: Rare‐variant association testing for sequencing data with the sequence kernel association test
  publication-title: American Journal of Human Genetics
– volume: 37
  start-page: 196
  year: 2013b
  end-page: 204
  article-title: Sequence kernel association test for quantitative traits in family samples
  publication-title: Genetic Epidemiology
– volume: 19
  start-page: 136
  year: 2009
  end-page: 142
  article-title: Fast and flexible simulation of DNA sequence data
  publication-title: Genome Research
– volume: 11
  start-page: 415
  year: 2010
  end-page: 425
  article-title: Uncovering the roles of rare variants in common disease through whole‐genome sequencing
  publication-title: Nature Reviews Genetics
– year: 1996
– volume: 19
  start-page: 433
  year: 1990
  end-page: 450
  article-title: A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines
  publication-title: Communications in Statistics‐Simulation and Computation
– year: 2016
– volume: 36
  start-page: 797
  year: 2012
  end-page: 810
  article-title: SNP set association analysis for familial data
  publication-title: Genetic Epidemiology
– volume: 485
  start-page: 376
  year: 2012
  end-page: 380
  article-title: Topological domains in mammalian genomes identified by analysis of chromatin interactions
  publication-title: Nature
– volume: 45
  start-page: 899
  year: 2013
  article-title: Whole genome sequence‐based analysis of a model complex trait, high density lipoprotein cholesterol
  publication-title: Nature Genetics
– year: 2012
– volume: 38
  start-page: 191
  year: 2014
  end-page: 197
  article-title: Sequence kernel association test for survival traits
  publication-title: Genetic Epidemiology
– volume: 53
  start-page: 853
  year: 2009
  end-page: 856
  article-title: A new chi‐square approximation to the distribution of non‐negative definite quadratic forms in non‐central normal variables
  publication-title: Computational Statistics & Data Analysis
– volume: 38
  start-page: 904
  year: 2006
  end-page: 909
  article-title: Principal components analysis corrects for stratification in genome‐wide association studies
  publication-title: Nature Genetics
– volume: 86
  start-page: 929
  year: 2010
  end-page: 942
  article-title: Powerful SNP‐set analysis for case‐control genome‐wide association studies
  publication-title: American Journal of Human Genetics
– volume: 37
  start-page: 27
  year: 2010
  article-title: Adaptive projection subspace dimension for the thick‐restart Lanczos method
  publication-title: ACM Transactions on Mathematical Software (TOMS)
– volume: 3
  start-page: 115
  year: 2011
  end-page: 126
  article-title: Improved analysis of the subsampled randomized Hadamard transform
  publication-title: Advances in Adaptive Data Analysis
– volume: 38
  year: 2014
  article-title: Methods for collapsing multiple rare variants in whole‐genome sequence data
  publication-title: Genetic Epidemiology
– volume: 13
  start-page: 762
  year: 2012
  end-page: 775
  article-title: Optimal tests for rare variant effects in sequencing association studies
  publication-title: Biostatistics
– volume: 50
  start-page: 550
  year: 2015
  end-page: 573
  article-title: Demystifying the secret mission of enhancers: Linking distal regulatory elements to target genes
  publication-title: Critical Reviews in Biochemistry and Molecular Biology
– volume: 43
  start-page: 28
  year: 2017
  article-title: Algorithm 971: An implementation of a randomized algorithm for principal component analysis
  publication-title: ACM Transactions on Mathematical Software
– volume: 42
  start-page: 348
  year: 2010
  end-page: 354
  article-title: Variance component model to account for sample structure in genome‐wide association studies
  publication-title: Nature Genetics
– volume: 39
  start-page: 399
  year: 2015
  end-page: 405
  article-title: Sequence kernel association analysis of rare variant set based on the marginal regression model for binary traits
  publication-title: Genetic Epidemiology
– volume: 28
  start-page: 135
  year: 2002
  end-page: 151
  article-title: An updated set of basic linear algebra subprograms (blas)
  publication-title: ACM Transactions on Mathematical Software
– volume: 98
  start-page: 456
  year: 2016
  end-page: 472
  article-title: Fast principal‐component analysis reveals convergent evolution of adh1b in Europe and East Asia
  publication-title: American Journal of Human Genetics
– volume: 95
  start-page: 5
  year: 2014
  end-page: 23
  article-title: Rare‐variant association analysis: Study designs and statistical tests
  publication-title: American Journal of Human Genetics
– volume: 29
  start-page: 323
  year: 1980
  end-page: 333
  article-title: Algorithm as 155: The distribution of a linear combination of χ 2 random variables
  publication-title: Journal of the Royal Statistical Society. Series C (Applied Statistics)
– volume: 2
  start-page: 73
  year: 2009
  end-page: 80
  article-title: Cohorts for heart and aging research in genomic epidemiology (charge) consortium design of prospective meta‐analyses of genome‐wide association studies from 5 cohorts
  publication-title: Circulation: Cardiovascular Genetics
– volume: 35
  start-page: 4
  year: 2008
  article-title: High‐performance implementation of the level‐3 blas
  publication-title: ACM Transactions on Mathematical Software (TOMS)
– year: 1999
– volume: 37
  start-page: 196
  year: 2013a
  end-page: 204
  article-title: Sequence kernel association test for quantitative traits in family samples
  publication-title: Genetic Epidemiology
– ident: e_1_2_6_38_1
  doi: 10.1142/S1793536911000787
– ident: e_1_2_6_5_1
  doi: 10.1101/gr.083634.108
– volume-title: Matrix computations
  year: 1996
  ident: e_1_2_6_16_1
– ident: e_1_2_6_26_1
  doi: 10.1093/biostatistics/kxs014
– ident: e_1_2_6_36_1
  doi: 10.1002/gepi.21676
– volume-title: Applied longitudinal analysis
  year: 2012
  ident: e_1_2_6_13_1
– ident: e_1_2_6_19_1
  doi: 10.1080/03610919008812866
– ident: e_1_2_6_34_1
  doi: 10.1161/CIRCGENETICS.108.829747
– ident: e_1_2_6_7_1
  doi: 10.1002/gepi.21703
– ident: e_1_2_6_29_1
  doi: 10.1016/j.csda.2008.11.025
– ident: e_1_2_6_15_1
  doi: 10.1016/j.ajhg.2015.12.022
– volume-title: svd: Interfaces to various state‐of‐art SVD and eigensolvers
  year: 2016
  ident: e_1_2_6_21_1
– ident: e_1_2_6_2_1
  doi: 10.1137/1.9780898719604
– ident: e_1_2_6_37_1
  doi: 10.1002/gepi.21820
– ident: e_1_2_6_39_1
  doi: 10.1002/gepi.21913
– ident: e_1_2_6_8_1
  doi: 10.1002/gepi.21703
– volume-title: R: A language and environment for statistical computing
  year: 2016
  ident: e_1_2_6_35_1
– ident: e_1_2_6_20_1
  doi: 10.1038/ng.548
– ident: e_1_2_6_32_1
  doi: 10.1038/ng.2671
– ident: e_1_2_6_33_1
  doi: 10.1038/ng1847
– ident: e_1_2_6_28_1
  doi: 10.1161/CIRCGENETICS.113.000350
– ident: e_1_2_6_17_1
  doi: 10.1145/1377603.1377607
– ident: e_1_2_6_41_1
  doi: 10.1016/j.ajhg.2011.05.029
– ident: e_1_2_6_24_1
  doi: 10.1016/j.ajhg.2012.06.007
– volume-title: SKAT: SNP‐set (sequence) kernel association test
  year: 2016
  ident: e_1_2_6_25_1
– ident: e_1_2_6_42_1
  doi: 10.1145/1824801.1824805
– ident: e_1_2_6_6_1
  doi: 10.1002/gepi.21791
– ident: e_1_2_6_12_1
  doi: 10.2307/2347721
– ident: e_1_2_6_11_1
  doi: 10.1038/nature11082
– ident: e_1_2_6_4_1
  doi: 10.1145/567806.567807
– ident: e_1_2_6_27_1
  doi: 10.1145/3004053
– ident: e_1_2_6_43_1
  doi: 10.3109/10409238.2015.1087961
– ident: e_1_2_6_10_1
  doi: 10.2307/2346911
– ident: e_1_2_6_18_1
  doi: 10.1137/090771806
– ident: e_1_2_6_30_1
  doi: 10.1038/ng.3190
– ident: e_1_2_6_22_1
  doi: 10.1093/biomet/86.4.929
– ident: e_1_2_6_9_1
  doi: 10.1038/nrg2779
– ident: e_1_2_6_23_1
  doi: 10.1016/j.ajhg.2014.06.009
– ident: e_1_2_6_3_1
  doi: 10.1214/aoap/1177005712
– volume-title: Sampling statistics
  year: 2011
  ident: e_1_2_6_14_1
– volume-title: Complex surveys: A guide to analysis using R
  year: 2011
  ident: e_1_2_6_31_1
– ident: e_1_2_6_40_1
  doi: 10.1016/j.ajhg.2010.05.002
SSID ssj0011495
Score 2.3456643
Snippet The sequence kernel association test (SKAT) is widely used to test for associations between a phenotype and a set of genetic variants that are usually rare....
The Sequence Kernel Association Test (SKAT) is widely used to test for associations between a phenotype and a set of genetic variants, that are usually rare....
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 516
SubjectTerms Algorithms
Chromosomes, Human - metabolism
Computer applications
convolution
Eigenvalues
genetic association
Genetic Association Studies
Genetic diversity
Genetic Markers
Genotypes
Histones - metabolism
Humans
Lanczos algorithm
Phenotypes
randomized trace estimator
Sequence Analysis, DNA
Statistics as Topic
stochastic singular value decomposition
Time Factors
Title FastSKAT: Sequence kernel association tests for very large sets of markers
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fgepi.22136
https://www.ncbi.nlm.nih.gov/pubmed/29932245
https://www.proquest.com/docview/2100952743
https://www.proquest.com/docview/2058503776
https://pubmed.ncbi.nlm.nih.gov/PMC6129408
Volume 42
WOSCitedRecordID wos000443994100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1098-2272
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011495
  issn: 0741-0395
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9swED_adIPB2KN7NF1XNLYvG3h1ZFmPsS9la_aklLWFfDOSLLVhrVPidND_vifLcRY6BmPfjHW2Zd2d9JN0-h3Aq9RpRQ136GnKJyzTKpGUmUQwq2wguGPGN8kmxP6-HI3UwQq8n5-FifwQ3YJb8Iymvw4Ork29syANPXEX47eUDjK-CmsUDTfvwdrHH8Pj790uQkD_kYYzhA2pvKMnpTuLp5cHpBso82aw5O8gthmFhvf_r_4P4F6LPsluNJeHsOKqdbgd81FercPduIhH4tmkR_B1qOvZ4bfdo3fksA25Jj_dFL9M9EKtBNHqrCaIfgn6xRU5C8HlpHZ4b-LJeYj_mdaP4Xi4d_Thc9ImX0gsG1CeWO459SUtqfJcMSs800LmLke8lyqRa24NS0vpUKs6Ta3QymueOW-VkblJsyfQqyaV2wDiMm9Kzx11iF0oF0ay3A1KBBsZdZmUfXg910BhW2bykCDjrIicyrQIbVU0bdWHl53sReTj-KPU1lyRReuTdYGTW8STOAvP-vCiK0ZvClskunKTS5RJcfqUoo3iK55GvXefwYEbez-W90EsWUQnEJi6l0uq8WnD2I0wUrEUf_RNYxF_qXnxae_gS3O1-S_Cz-AOIjkZg9-2oDebXrrncMv-mo3r6TasipHcbr3jGsP2Eg4
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fTxQxEJ4oaDAxogh6ClqjL5gs9LrdbusbUU6Q80LkSHjbdLstXMQ9cnuY8N873S57XjAmhLfNdvZHOzPt13b6DcAHarViubDoacpFPNYqkoznUcqNMp7gjueuTjaRDgby5EQdNrE5_ixM4IdoF9y8Z9T9tXdwvyC9PWMNPbUXoy3GurG4D4sc7QgNfPHLj95xv91G8PA_8HD6uCGVtPykbHv29PyIdANm3oyW_BvF1sNQb_mOFXgKTxr8SXaCwTyDe7ZcgYchI-XVCjwOy3gknE56Dt96upoeHewMP5GjJuia_LQT_DTRM8USxKvTiiD-JegZV-Tch5eTyuK9sSO_fATQpFqF497u8PNe1KRfiAzvMhEZ4QRzBSuYckJxkzquU5nYBBEfVWmihck5LaRFvWpKTaqV0yK2zqhcJjmN12ChHJf2JRAbu7xwwjKL6IWJNJc8sd0C4UbMbCxlBzavVZCZhpvcp8g4zwKrMst8W2V1W3XgfSt7ERg5_im1fq3JrPHKKsPpLSJKnIfHHXjXFqM_-U0SXdrxJcpQnEBRtFJ8xYug-PYzOHRj_8eTDqRzJtEKeK7u-ZJydFZzdiOQVJxiRT_WJvGfP8--7h7u11evbiP8Fpb2ht_7WX9_cPAaHiGukyEUbh0WppNLuwEPzO_pqJq8aZzkD6s6FRY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9BBxPSxMc2oDDACF5AyuY6jmPzNrEFxqaqYpu0t8hxbKgYadV0k_bfc46zlGoICfEWxZcP--7sn-3z7wDeUqsVK4RFT1Mu4rFWkWS8iFJulPEEd7xwTbKJdDiUZ2dq1Mbm-LMwgR-iW3DzntH0197B7bR0OwvW0G92Ot5mbBCL27DCfRaZHqzsfc1Oj7ptBA__Aw-njxtSScdPynYWTy-PSDdg5s1oyd9RbDMMZQ_-swIP4X6LP8luMJhHcMtW63A3ZKS8Woe1sIxHwumkDfiS6Xp-fLh78oEct0HX5Ied4aeJXiiWIF6d1wTxL0HPuCLnPryc1BbvTRz56SOAZvUmnGb7Jx8_R236hcjwAROREU4wV7KSKScUN6njOpWJTRDxUZUmWpiC01Ja1Kum1KRaOS1i64wqZFLQ-DH0qkllnwKxsStKJyyziF6YSAvJEzsoEW7EzMZS9uHdtQpy03KT-xQZ53lgVWa5b6u8aas-vOlkp4GR449SW9eazFuvrHOc3iKixHl43IfXXTH6k98k0ZWdXKAMxQkURSvFVzwJiu8-g0M39n886UO6ZBKdgOfqXi6pxt8bzm4EkopTrOj7xiT-8uf5p_3RQXP17F-EX8HqaC_Ljw6Gh8_hHsI6GSLhtqA3n13YF3DHXM7H9exl6yO_ABkMFJE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FastSKAT%3A+Sequence+kernel+association+tests+for+very+large+sets+of+markers&rft.jtitle=Genetic+epidemiology&rft.au=Lumley%2C+Thomas&rft.au=Brody%2C+Jennifer&rft.au=Peloso%2C+Gina&rft.au=Morrison%2C+Alanna&rft.date=2018-09-01&rft.issn=1098-2272&rft.eissn=1098-2272&rft.volume=42&rft.issue=6&rft.spage=516&rft_id=info:doi/10.1002%2Fgepi.22136&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0741-0395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0741-0395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0741-0395&client=summon