Robust genetic programming-based detection of atrial fibrillation using RR intervals

In this study, two variants of genetic programming, namely linear genetic programming (LGP) and multi‐expression programming (MEP) are utilized to detect atrial fibrillation (AF) episodes. LGP‐ and MEP‐based models are derived to classify samples of AF and Normal episodes based on the analysis of RR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems Jg. 29; H. 2; S. 183 - 199
Hauptverfasser: Yaghouby, Farid, Ayatollahi, Ahmad, Bahramali, Reihaneh, Yaghouby, Maryam
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Blackwell Publishing Ltd 01.05.2012
Schlagworte:
ISSN:0266-4720, 1468-0394
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this study, two variants of genetic programming, namely linear genetic programming (LGP) and multi‐expression programming (MEP) are utilized to detect atrial fibrillation (AF) episodes. LGP‐ and MEP‐based models are derived to classify samples of AF and Normal episodes based on the analysis of RR interval signals. A weighted least‐squares (WLS) regression analysis is performed using the same features and data sets to benchmark the models. Another important contribution of this paper is identification of the effective time domain features of heart rate variability (HRV) signals upon an improved forward floating selection (IFFS) analysis. The models are developed using MIT‐BIH arrhythmia database. The diagnostic performances of the LGP and MEP classifiers are evaluated through receiver operating characteristics (ROC) analysis. The results indicate that the LGP and MEP models are able to diagnose the AF arrhythmia with an acceptable high accuracy. The proposed models have significantly better diagnosis performances than the regression and several models found in the literature.
AbstractList In this study, two variants of genetic programming, namely linear genetic programming (LGP) and multi‐expression programming (MEP) are utilized to detect atrial fibrillation (AF) episodes. LGP‐ and MEP‐based models are derived to classify samples of AF and Normal episodes based on the analysis of RR interval signals. A weighted least‐squares (WLS) regression analysis is performed using the same features and data sets to benchmark the models. Another important contribution of this paper is identification of the effective time domain features of heart rate variability (HRV) signals upon an improved forward floating selection (IFFS) analysis. The models are developed using MIT‐BIH arrhythmia database. The diagnostic performances of the LGP and MEP classifiers are evaluated through receiver operating characteristics (ROC) analysis. The results indicate that the LGP and MEP models are able to diagnose the AF arrhythmia with an acceptable high accuracy. The proposed models have significantly better diagnosis performances than the regression and several models found in the literature.
In this study, two variants of genetic programming, namely linear genetic programming (LGP) and multi-expression programming (MEP) are utilized to detect atrial fibrillation (AF) episodes. LGP- and MEP-based models are derived to classify samples of AF and Normal episodes based on the analysis of RR interval signals. A weighted least-squares (WLS) regression analysis is performed using the same features and data sets to benchmark the models. Another important contribution of this paper is identification of the effective time domain features of heart rate variability (HRV) signals upon an improved forward floating selection (IFFS) analysis. The models are developed using MIT-BIH arrhythmia database. The diagnostic performances of the LGP and MEP classifiers are evaluated through receiver operating characteristics (ROC) analysis. The results indicate that the LGP and MEP models are able to diagnose the AF arrhythmia with an acceptable high accuracy. The proposed models have significantly better diagnosis performances than the regression and several models found in the literature. [PUBLICATION ABSTRACT]
Author Yaghouby, Farid
Ayatollahi, Ahmad
Yaghouby, Maryam
Bahramali, Reihaneh
Author_xml – sequence: 1
  givenname: Farid
  surname: Yaghouby
  fullname: Yaghouby, Farid
  email: farid.yaghouby@gmail.com, f.yaghouby@uky.edu
  organization: Wenner-Gren Research Lab, Center for Biomedical Engineering, University of Kentucky, KY, Lexington, USA
– sequence: 2
  givenname: Ahmad
  surname: Ayatollahi
  fullname: Ayatollahi, Ahmad
  organization: School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
– sequence: 3
  givenname: Reihaneh
  surname: Bahramali
  fullname: Bahramali, Reihaneh
  organization: Unit of Dadeh Pardazi Iran (DPI), University of Applied Science and Technology, Tehran, Iran
– sequence: 4
  givenname: Maryam
  surname: Yaghouby
  fullname: Yaghouby, Maryam
  organization: Faculty of Engineering, Azad University of Mashhad, Mashhad, Iran
BookMark eNqNkFtPAjEQhRujiaD-hyY-L7bd7u1BE4N4iUQNYry8NKU7JcVlF9uu4r-3gOHBJ-dlJtPznU5OF-3WTQ0IYUp6NNTJrEd5mkckLniPkbAlJMlob7mDOtuHXdQhLE0jnjGyj7rOzQghNMvSDhqPmknrPJ5CDd4ovLDN1Mr53NTTaCIdlLgED8qbpsaNxtJbIyuszcSaqpLrdeuCGI9G2NQe7Kes3CHa06HB0W8_QE-Xg3H_OhreX930z4eR4pTRCIBJWhCds0SB5pRAzmRRMAos1SxWWiopVam4zHkCBZOaTXKdlJxwnpcliQ_Q8cY3XP3RgvNi1rS2Dl8KSijLWM5JHFRnG5WyjXMWtFDGr0_3VpoqSMUqSTETq8DEKjCxSlKskxTLYJD_MVhYM5f2-z_o6Qb9MhV8_5sTg5fH1zAFPtrwxnlYbnlp30WaxVkinu-uRH-YvF08xIW4jX8AItWdig
CitedBy_id crossref_primary_10_1016_j_compbiomed_2018_07_001
crossref_primary_10_1371_journal_pone_0136544
crossref_primary_10_1016_j_gsf_2014_10_004
crossref_primary_10_3846_13923730_2016_1210214
crossref_primary_10_1016_j_asoc_2015_01_027
crossref_primary_10_3390_a15070231
crossref_primary_10_1016_j_asoc_2015_03_039
crossref_primary_10_1016_j_wasman_2024_07_027
crossref_primary_10_3389_fphys_2018_01206
crossref_primary_10_1016_j_gsf_2014_12_005
Cites_doi 10.1007/BF02345439
10.1016/j.patrec.2007.02.015
10.1109/TBME.1985.325532
10.1007/s00366-009-0140-7
10.1111/j.1468-0394.2005.00295.x
10.1016/0167-8655(94)90127-9
10.1109/ITAB.2008.4570638
10.1016/j.patcog.2007.03.008
10.1109/NNSP.1999.788166
10.1109/IEMBS.2008.4649359
10.1111/j.1468-0394.2008.00486.x
10.1109/51.932724
10.1007/BFb0055923
10.1093/oxfordjournals.eurheartj.a060911
10.1109/IEMBS.2008.4650455
10.1109/IEMBS.2008.4649224
10.1109/IEMBS.2008.4649119
10.1109/IEMBS.2008.4649824
10.1016/j.medengphy.2008.04.013
10.1016/S0002-8703(98)70030-4
10.1109/CIC.2005.1588177
10.1111/j.1540-8167.2007.00832.x
10.1016/j.artmed.2008.04.007
10.1016/S0031-3203(99)00041-2
10.1109/TBME.1986.325695
10.1617/s11527-009-9559-y
10.1109/TBME.2007.890741
10.1161/01.CIR.83.1.162
10.1007/978-3-540-46239-2_20
10.1111/j.1468-0394.2009.00478.x
10.1016/0735-1097(93)90381-A
10.1111/j.1468-0394.2007.00432.x
ContentType Journal Article
Copyright 2010 Blackwell Publishing Ltd
Copyright © 2012 Blackwell Publishing Ltd.
Copyright_xml – notice: 2010 Blackwell Publishing Ltd
– notice: Copyright © 2012 Blackwell Publishing Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1111/j.1468-0394.2010.00571.x
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1468-0394
EndPage 199
ExternalDocumentID 2660042571
10_1111_j_1468_0394_2010_00571_x
EXSY571
ark_67375_WNG_CL5ZDP39_K
Genre article
Feature
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
77I
77K
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
9M8
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHC
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AI.
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TAE
TH9
TN5
TUS
UB1
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
ZL0
ZZTAW
~02
~IA
~WT
0B8
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
RIG
WRC
AAYXX
CITATION
O8X
7SC
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c4121-ee2a190f825cef410e82a9921e26f23cfacaacdc4a845e92af2b8f5d40448dd03
IEDL.DBID DRFUL
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000305990300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0266-4720
IngestDate Sun Jul 13 05:06:15 EDT 2025
Tue Nov 18 22:03:00 EST 2025
Sat Nov 29 08:14:03 EST 2025
Wed Jan 22 16:31:32 EST 2025
Tue Nov 11 03:30:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4121-ee2a190f825cef410e82a9921e26f23cfacaacdc4a845e92af2b8f5d40448dd03
Notes ark:/67375/WNG-CL5ZDP39-K
istex:C244CA5479B63A9671EF81B660A30D257614F0A4
ArticleID:EXSY571
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 1012728403
PQPubID 32130
PageCount 17
ParticipantIDs proquest_journals_1012728403
crossref_citationtrail_10_1111_j_1468_0394_2010_00571_x
crossref_primary_10_1111_j_1468_0394_2010_00571_x
wiley_primary_10_1111_j_1468_0394_2010_00571_x_EXSY571
istex_primary_ark_67375_WNG_CL5ZDP39_K
PublicationCentury 2000
PublicationDate May 2012
PublicationDateYYYYMMDD 2012-05-01
PublicationDate_xml – month: 05
  year: 2012
  text: May 2012
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Expert systems
PublicationTitleAlternate Expert Systems
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Guler, I. and D.Ubeyli (2005) An expert system for detection of electrocardiographic changes in patients with partial epilepsy using wavelet-based neural networks, Expert System, 22, 62-71.
Koza, J.R. (1992) Genetic Programming: On the Programming of Computers by Means of Natural Selection, Cambridge, MA: MIT Press.
Fox, S.I. (1996) Human Physiology, Boston: W.C. Brown Publishers.
Hong-Wei, L., S.Ying, L.Min, L.Pi-Ding and Z.Zheng (2009) A probability density function method for detecting atrial fibrillation using R-R intervals, Medical Engineering and Physics, 31, 116-123.
Nakariyakul, S. and D.P.Casasent (2007) Adaptive branch and bound algorithm for selecting optimal features, Pattern Recognition Letters, 28, 1415-1427.
Ng, J. and J.J.Goldberger (2007) Understanding and interpreting dominant frequency analysis of AF electrograms, Journal of Cardiovascular Electrophysiology, 18, 680-685.
Polat, K. and S.Gunes (2007) An improved approach to medical data sets classification: artificial immune recognition system with fuzzy resource allocation mechanism, Expert Systems, 24, 252-270.
Rodriguez, C.A.R. and M.A.H.Silveira (2001) Multi-thread implementation of a fuzzy neural network for automatic ECG arrhythmia detection, Computing in Cardiology, 28, 297-300.
Conrads, M., O.Dolezal, F.D.Francone and P.Nordin (2004) Discipulus - Fast Genetic Programming Based on AIM Learning Technology, Littleton, CO: Register Machine Learning Technologies Inc.
Gujarati, D.N. (1995) Basic Econometrics, 3rd edn, New York: McGraw-Hill.
Dilaveris, P.E., E.Gialafos and S.Sideris (1998) Simple electrocardiographic markers for the prediction of paroxysmal idiopathic atrial fibrillation, American Heart Journal, 135, 73-78.
Ubeyli, E. (2009) Analysis of electrocardiographic changes in partial epileptic patients by combining eigenvector methods and support vector machines, Expert Systems, 26, 249-259.
Asl, B.M., K.Setarehdan and M.Mohebbi (2008) Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal', Artificial Intelligence in Medicine, 44, 51-64.
Fukunami, M., T.Yamada, M.Ohmori, K.Kumagai, K.Umemoto, A.Sakai, N.Kondoh, T.Minamino and N.Hoki (1991) Detection of patients at risk for paroxysmal atrial fibrillation during sinus rhythm by P wave-triggered signal-averaged electrocardiogram, Circulation, 83, 162-169.
Alavi, A.H., A.H.Gandomi, M.G.Sahab and M.Gandomi (2010) Multi expression programming: a new approach to formulation of soil classification, Engineering with Computers, 26, 111-118.
Oltean, M. and C.Grosşan (2003a) A comparison of several linear genetic programming techniques, Complex Systems, 14, 1-29.
Chiarugi, F., M.Varanini, F.Cantini, F.Conforti and G.Vrouchos (2007) Noninvasive ECG as a tool for predicting termination of paroxysmal atrial fibrillation, IEEE Transaction on Biomedical Engineering, 54, 1399-1406.
Francone, F. (2000) Discipulus™ Owner's Manual, Version 3.0, Littleton, Colorado: Register Machine Learning Technologies.
Maravall, A. and V.Gomez (2004) EViews Software, Version 5, Irvine, CA: Quantitative Micro Software, LLC.
Ryan, T.P. (1997) Modern Regression Methods, New York: Wiley.
Banzhaf, W., P.Nordin, R.Keller and F.Francone (1998) Genetic Programming - An Introduction: On the Automatic Evolution of Computer Programs and its Application, Heidelberg/San Francisco: Morgan Kaufmann.
Pan, J. and W.J.Tompkins (1985) A real-time QRS detection algorithm, IEEE Bio-Medical Engineering, 32, 230-236.
Tateno, K. and L.Glass (2000) A method for detection of atrial fibrillation using RR intervals, Computers in Cardiology, 391-394.
Pudil, P., J.Novovicova and J.Kittler (1994) Floating search methods in feature selection, Pattern Recognition Letters, 15, 1119-1125.
Tateno, K. and L.Glass (2001) Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and ΔRR intervals, Medical and Biological Engineering and Computing, 39, 664-671.
Ricci, R.P., M.Russo and M.Santini (2006) Management of atrial fibrillation - what are the possibilities of early detection with home monitoring?, Clinical Research in Cardiology, 95, 1861-1892.
Aho, A., R.Sethi and J.Ullman (1986) Compilers: Principles, Techniques, and Tools, Reading, MA: Addison-Wesley.
Brameier, M. and W.Banzhaf (2007) Linear Genetic Programming, New York: Springer Science+Business Media, LLC.
Hamilton, P.S. and W.J.Tompkins (1986) Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmia database, IEEE Bio-Medical Engineering, 33, 1157-1165.
Kara, S. and M.Okandan (2007) Atrial fibrillation classification with artificial neural networks, Pattern Recognition, 40, 2967-2973.
Mehta, S., N.Lingayat and S.Sanghvi (2009) Detection and delineation of P and T waves in 12-lead electrocardiograms, Expert Systems, 26, 125-143.
Moody, G. and R.Mark (2001) The impact of the MIT-BIH arrhythmia database, IEEE Engineering in Medical Biology, 20, 45-50.
Christov, I., G.Bortolan and I.Daskalov (2001) Sequential analysis for automatic detection of atrial fibrillation and flutter, Computers in Cardiology, 28, 293-296.
Gandomi, A.H., A.H.Alavi and M.G.Sahab (2010) New formulation for compressive strength of CFRP confined concrete cylinders using linear genetic programming, Materials and Structures, 43, 963-83.
Kudo, M. and J.Sklansky (2000) Comparison of algorithms that select features for pattern classifiers, Pattern Recognition, 33, 25-41.
Guidera, S. and J.Steinberg (1993) The signal-averaged P wave duration: a rapid and noninvasive marker of risk of atrial fibrillation, Journal of the American College Cardiology, 21, 1645-1651.
Wheeldon, N.M. (1995) Atrial fibrillation and anticoagulant therapy, European Heart Journal, 16, 302-331.
2007; 18
2003b; 2801
2006; 95
1995; 16
1986; 33
2008b
2008a
1993; 21
1998
2008
1997
2007
1996
2003a; 14
1995
2005
1994
2004
2001; 28
1992
2002
2007; 54
1998; 135
2005; 22
2009; 26
2001; 20
1999
2007; 28
2010; 43
2010; 26
2009; 31
2000
2000; 33
1991; 83
1986
1983
2008; 44
1994; 15
2007; 40
2001; 39
1985; 32
2007; 24
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_7_1
e_1_2_7_17_1
e_1_2_7_15_1
Ricci R.P. (e_1_2_7_46_1) 2006; 95
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Brameier M. (e_1_2_7_6_1) 2007
Oltean M. (e_1_2_7_41_1) 2003; 14
Aho A. (e_1_2_7_2_1) 1986
Maravall A. (e_1_2_7_30_1) 2004
e_1_2_7_25_1
e_1_2_7_31_1
Ryan T.P. (e_1_2_7_48_1) 1997
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_37_1
Koza J.R. (e_1_2_7_27_1) 1992
Christov I. (e_1_2_7_9_1) 2001; 28
e_1_2_7_39_1
Moody G. (e_1_2_7_35_1) 1983
e_1_2_7_4_1
Fox S.I. (e_1_2_7_13_1) 1996
e_1_2_7_8_1
e_1_2_7_18_1
Nordin P.J. (e_1_2_7_38_1) 1994
Rodriguez C.A.R. (e_1_2_7_47_1) 2001; 28
e_1_2_7_16_1
Gujarati D.N. (e_1_2_7_19_1) 1995
e_1_2_7_40_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_29_1
Francone F. (e_1_2_7_14_1) 2000
Tateno K. (e_1_2_7_50_1) 2000
e_1_2_7_51_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
Conrads M. (e_1_2_7_10_1) 2004
Oltean M. (e_1_2_7_42_1) 2003
References_xml – reference: Ricci, R.P., M.Russo and M.Santini (2006) Management of atrial fibrillation - what are the possibilities of early detection with home monitoring?, Clinical Research in Cardiology, 95, 1861-1892.
– reference: Christov, I., G.Bortolan and I.Daskalov (2001) Sequential analysis for automatic detection of atrial fibrillation and flutter, Computers in Cardiology, 28, 293-296.
– reference: Fukunami, M., T.Yamada, M.Ohmori, K.Kumagai, K.Umemoto, A.Sakai, N.Kondoh, T.Minamino and N.Hoki (1991) Detection of patients at risk for paroxysmal atrial fibrillation during sinus rhythm by P wave-triggered signal-averaged electrocardiogram, Circulation, 83, 162-169.
– reference: Hong-Wei, L., S.Ying, L.Min, L.Pi-Ding and Z.Zheng (2009) A probability density function method for detecting atrial fibrillation using R-R intervals, Medical Engineering and Physics, 31, 116-123.
– reference: Guler, I. and D.Ubeyli (2005) An expert system for detection of electrocardiographic changes in patients with partial epilepsy using wavelet-based neural networks, Expert System, 22, 62-71.
– reference: Kudo, M. and J.Sklansky (2000) Comparison of algorithms that select features for pattern classifiers, Pattern Recognition, 33, 25-41.
– reference: Polat, K. and S.Gunes (2007) An improved approach to medical data sets classification: artificial immune recognition system with fuzzy resource allocation mechanism, Expert Systems, 24, 252-270.
– reference: Koza, J.R. (1992) Genetic Programming: On the Programming of Computers by Means of Natural Selection, Cambridge, MA: MIT Press.
– reference: Dilaveris, P.E., E.Gialafos and S.Sideris (1998) Simple electrocardiographic markers for the prediction of paroxysmal idiopathic atrial fibrillation, American Heart Journal, 135, 73-78.
– reference: Guidera, S. and J.Steinberg (1993) The signal-averaged P wave duration: a rapid and noninvasive marker of risk of atrial fibrillation, Journal of the American College Cardiology, 21, 1645-1651.
– reference: Francone, F. (2000) Discipulus™ Owner's Manual, Version 3.0, Littleton, Colorado: Register Machine Learning Technologies.
– reference: Gandomi, A.H., A.H.Alavi and M.G.Sahab (2010) New formulation for compressive strength of CFRP confined concrete cylinders using linear genetic programming, Materials and Structures, 43, 963-83.
– reference: Asl, B.M., K.Setarehdan and M.Mohebbi (2008) Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal', Artificial Intelligence in Medicine, 44, 51-64.
– reference: Pudil, P., J.Novovicova and J.Kittler (1994) Floating search methods in feature selection, Pattern Recognition Letters, 15, 1119-1125.
– reference: Rodriguez, C.A.R. and M.A.H.Silveira (2001) Multi-thread implementation of a fuzzy neural network for automatic ECG arrhythmia detection, Computing in Cardiology, 28, 297-300.
– reference: Maravall, A. and V.Gomez (2004) EViews Software, Version 5, Irvine, CA: Quantitative Micro Software, LLC.
– reference: Chiarugi, F., M.Varanini, F.Cantini, F.Conforti and G.Vrouchos (2007) Noninvasive ECG as a tool for predicting termination of paroxysmal atrial fibrillation, IEEE Transaction on Biomedical Engineering, 54, 1399-1406.
– reference: Ng, J. and J.J.Goldberger (2007) Understanding and interpreting dominant frequency analysis of AF electrograms, Journal of Cardiovascular Electrophysiology, 18, 680-685.
– reference: Tateno, K. and L.Glass (2001) Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and ΔRR intervals, Medical and Biological Engineering and Computing, 39, 664-671.
– reference: Brameier, M. and W.Banzhaf (2007) Linear Genetic Programming, New York: Springer Science+Business Media, LLC.
– reference: Moody, G. and R.Mark (2001) The impact of the MIT-BIH arrhythmia database, IEEE Engineering in Medical Biology, 20, 45-50.
– reference: Ryan, T.P. (1997) Modern Regression Methods, New York: Wiley.
– reference: Kara, S. and M.Okandan (2007) Atrial fibrillation classification with artificial neural networks, Pattern Recognition, 40, 2967-2973.
– reference: Pan, J. and W.J.Tompkins (1985) A real-time QRS detection algorithm, IEEE Bio-Medical Engineering, 32, 230-236.
– reference: Alavi, A.H., A.H.Gandomi, M.G.Sahab and M.Gandomi (2010) Multi expression programming: a new approach to formulation of soil classification, Engineering with Computers, 26, 111-118.
– reference: Mehta, S., N.Lingayat and S.Sanghvi (2009) Detection and delineation of P and T waves in 12-lead electrocardiograms, Expert Systems, 26, 125-143.
– reference: Ubeyli, E. (2009) Analysis of electrocardiographic changes in partial epileptic patients by combining eigenvector methods and support vector machines, Expert Systems, 26, 249-259.
– reference: Wheeldon, N.M. (1995) Atrial fibrillation and anticoagulant therapy, European Heart Journal, 16, 302-331.
– reference: Nakariyakul, S. and D.P.Casasent (2007) Adaptive branch and bound algorithm for selecting optimal features, Pattern Recognition Letters, 28, 1415-1427.
– reference: Tateno, K. and L.Glass (2000) A method for detection of atrial fibrillation using RR intervals, Computers in Cardiology, 391-394.
– reference: Aho, A., R.Sethi and J.Ullman (1986) Compilers: Principles, Techniques, and Tools, Reading, MA: Addison-Wesley.
– reference: Hamilton, P.S. and W.J.Tompkins (1986) Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmia database, IEEE Bio-Medical Engineering, 33, 1157-1165.
– reference: Oltean, M. and C.Grosşan (2003a) A comparison of several linear genetic programming techniques, Complex Systems, 14, 1-29.
– reference: Conrads, M., O.Dolezal, F.D.Francone and P.Nordin (2004) Discipulus - Fast Genetic Programming Based on AIM Learning Technology, Littleton, CO: Register Machine Learning Technologies Inc.
– reference: Fox, S.I. (1996) Human Physiology, Boston: W.C. Brown Publishers.
– reference: Gujarati, D.N. (1995) Basic Econometrics, 3rd edn, New York: McGraw-Hill.
– reference: Banzhaf, W., P.Nordin, R.Keller and F.Francone (1998) Genetic Programming - An Introduction: On the Automatic Evolution of Computer Programs and its Application, Heidelberg/San Francisco: Morgan Kaufmann.
– volume: 26
  start-page: 111
  year: 2010
  end-page: 118
  article-title: Multi expression programming
  publication-title: Engineering with Computers
– start-page: 5482
  year: 2008
  end-page: 5485
– year: 2005
– start-page: 311
  year: 1994
  end-page: 331
– volume: 54
  start-page: 1399
  year: 2007
  end-page: 1406
  article-title: Noninvasive ECG as a tool for predicting termination of paroxysmal atrial fibrillation
  publication-title: IEEE Transaction on Biomedical Engineering
– volume: 32
  start-page: 230
  year: 1985
  end-page: 236
  article-title: A real‐time QRS detection algorithm
  publication-title: IEEE Bio‐Medical Engineering
– start-page: 1128
  year: 2008
  end-page: 1131
– year: 1998
– volume: 28
  start-page: 297
  year: 2001
  end-page: 300
  article-title: Multi‐thread implementation of a fuzzy neural network for automatic ECG arrhythmia detection
  publication-title: Computing in Cardiology
– year: 1986
– start-page: 271
  year: 2000
  end-page: 282
– volume: 83
  start-page: 162
  year: 1991
  end-page: 169
  article-title: Detection of patients at risk for paroxysmal atrial fibrillation during sinus rhythm by P wave–triggered signal–averaged electrocardiogram
  publication-title: Circulation
– volume: 15
  start-page: 1119
  year: 1994
  end-page: 1125
  article-title: Floating search methods in feature selection
  publication-title: Pattern Recognition Letters
– volume: 40
  start-page: 2967
  year: 2007
  end-page: 2973
  article-title: Atrial fibrillation classification with artificial neural networks
  publication-title: Pattern Recognition
– volume: 18
  start-page: 680
  year: 2007
  end-page: 685
  article-title: Understanding and interpreting dominant frequency analysis of AF electrograms
  publication-title: Journal of Cardiovascular Electrophysiology
– volume: 22
  start-page: 62
  year: 2005
  end-page: 71
  article-title: An expert system for detection of electrocardiographic changes in patients with partial epilepsy using wavelet‐based neural networks
  publication-title: Expert System
– year: 2004
– year: 1997
– volume: 44
  start-page: 51
  year: 2008
  end-page: 64
  article-title: Support vector machine‐based arrhythmia classification using reduced features of heart rate variability signal'
  publication-title: Artificial Intelligence in Medicine
– volume: 33
  start-page: 1157
  year: 1986
  end-page: 1165
  article-title: Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmia database
  publication-title: IEEE Bio-Medical Engineering
– volume: 43
  start-page: 963
  year: 2010
  end-page: 83
  article-title: New formulation for compressive strength of CFRP confined concrete cylinders using linear genetic programming
  publication-title: Materials and Structures
– volume: 26
  start-page: 249
  year: 2009
  end-page: 259
  article-title: Analysis of electrocardiographic changes in partial epileptic patients by combining eigenvector methods and support vector machines
  publication-title: Expert Systems
– year: 2007
– volume: 135
  start-page: 73
  year: 1998
  end-page: 78
  article-title: Simple electrocardiographic markers for the prediction of paroxysmal idiopathic atrial fibrillation
  publication-title: American Heart Journal
– year: 1996
– year: 2000
– volume: 16
  start-page: 302
  year: 1995
  end-page: 331
  article-title: Atrial fibrillation and anticoagulant therapy
  publication-title: European Heart Journal
– volume: 39
  start-page: 664
  year: 2001
  end-page: 671
  article-title: Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and ΔRR intervals
  publication-title: Medical and Biological Engineering and Computing
– volume: 20
  start-page: 45
  year: 2001
  end-page: 50
  article-title: The impact of the MIT‐BIH arrhythmia database
  publication-title: IEEE Engineering in Medical Biology
– year: 1992
– start-page: 391
  year: 2000
  end-page: 394
  article-title: A method for detection of atrial fibrillation using RR intervals
  publication-title: Computers in Cardiology
– volume: 33
  start-page: 25
  year: 2000
  end-page: 41
  article-title: Comparison of algorithms that select features for pattern classifiers
  publication-title: Pattern Recognition
– volume: 28
  start-page: 1415
  year: 2007
  end-page: 1427
  article-title: Adaptive branch and bound algorithm for selecting optimal features
  publication-title: Pattern Recognition Letters
– volume: 95
  start-page: 1861
  year: 2006
  end-page: 1892
  article-title: Management of atrial fibrillation – what are the possibilities of early detection with home monitoring?
  publication-title: Clinical Research in Cardiology
– start-page: 619
  year: 2005
  end-page: 622
– volume: 21
  start-page: 1645
  year: 1993
  end-page: 1651
  article-title: The signal‐averaged P wave duration
  publication-title: Journal of the American College Cardiology
– volume: 2801
  start-page: 651
  year: 2003b
  end-page: 658
– start-page: 601
  year: 2008
  end-page: 604
– start-page: 362
  year: 2008a
  end-page: 365
– volume: 14
  start-page: 1
  year: 2003a
  end-page: 29
  article-title: A comparison of several linear genetic programming techniques
  publication-title: Complex Systems
– start-page: 177
  year: 2008
  end-page: 180
– year: 2002
– volume: 31
  start-page: 116
  year: 2009
  end-page: 123
  article-title: A probability density function method for detecting atrial fibrillation using R‐R intervals
  publication-title: Medical Engineering and Physics
– year: 1995
– volume: 26
  start-page: 125
  year: 2009
  end-page: 143
  article-title: Detection and delineation of P and T waves in 12‐lead electrocardiograms
  publication-title: Expert Systems
– volume: 24
  start-page: 252
  year: 2007
  end-page: 270
  article-title: An improved approach to medical data sets classification
  publication-title: Expert Systems
– volume: 28
  start-page: 293
  year: 2001
  end-page: 296
  article-title: Sequential analysis for automatic detection of atrial fibrillation and flutter
  publication-title: Computers in Cardiology
– start-page: 2960
  year: 2008b
  end-page: 2963
– start-page: 227
  year: 1983
  end-page: 230
– year: 1999
– ident: e_1_2_7_51_1
  doi: 10.1007/BF02345439
– ident: e_1_2_7_36_1
  doi: 10.1016/j.patrec.2007.02.015
– volume-title: Discipulus – Fast Genetic Programming Based on AIM Learning Technology
  year: 2004
  ident: e_1_2_7_10_1
– ident: e_1_2_7_43_1
  doi: 10.1109/TBME.1985.325532
– ident: e_1_2_7_3_1
  doi: 10.1007/s00366-009-0140-7
– start-page: 311
  volume-title: Proceedings of the International Conference on Advances in Genetic Programming
  year: 1994
  ident: e_1_2_7_38_1
– ident: e_1_2_7_20_1
  doi: 10.1111/j.1468-0394.2005.00295.x
– volume-title: Basic Econometrics
  year: 1995
  ident: e_1_2_7_19_1
– volume: 95
  start-page: 1861
  year: 2006
  ident: e_1_2_7_46_1
  article-title: Management of atrial fibrillation – what are the possibilities of early detection with home monitoring?
  publication-title: Clinical Research in Cardiology
– ident: e_1_2_7_39_1
– ident: e_1_2_7_45_1
  doi: 10.1016/0167-8655(94)90127-9
– ident: e_1_2_7_25_1
  doi: 10.1109/ITAB.2008.4570638
– ident: e_1_2_7_23_1
  doi: 10.1016/j.patcog.2007.03.008
– ident: e_1_2_7_55_1
  doi: 10.1109/NNSP.1999.788166
– start-page: 227
  volume-title: Computers in Cardiology
  year: 1983
  ident: e_1_2_7_35_1
– ident: e_1_2_7_53_1
  doi: 10.1109/IEMBS.2008.4649359
– volume-title: Human Physiology
  year: 1996
  ident: e_1_2_7_13_1
– volume-title: Genetic Programming: On the Programming of Computers by Means of Natural Selection
  year: 1992
  ident: e_1_2_7_27_1
– ident: e_1_2_7_32_1
  doi: 10.1111/j.1468-0394.2008.00486.x
– ident: e_1_2_7_34_1
  doi: 10.1109/51.932724
– ident: e_1_2_7_49_1
– ident: e_1_2_7_5_1
  doi: 10.1007/BFb0055923
– volume: 28
  start-page: 297
  year: 2001
  ident: e_1_2_7_47_1
  article-title: Multi‐thread implementation of a fuzzy neural network for automatic ECG arrhythmia detection
  publication-title: Computing in Cardiology
– volume-title: Linear Genetic Programming
  year: 2007
  ident: e_1_2_7_6_1
– ident: e_1_2_7_54_1
  doi: 10.1093/oxfordjournals.eurheartj.a060911
– ident: e_1_2_7_24_1
  doi: 10.1109/IEMBS.2008.4650455
– ident: e_1_2_7_17_1
  doi: 10.1109/IEMBS.2008.4649224
– ident: e_1_2_7_33_1
  doi: 10.1109/IEMBS.2008.4649119
– ident: e_1_2_7_26_1
  doi: 10.1109/IEMBS.2008.4649824
– ident: e_1_2_7_22_1
  doi: 10.1016/j.medengphy.2008.04.013
– ident: e_1_2_7_11_1
  doi: 10.1016/S0002-8703(98)70030-4
– volume: 14
  start-page: 1
  year: 2003
  ident: e_1_2_7_41_1
  article-title: A comparison of several linear genetic programming techniques
  publication-title: Complex Systems
– ident: e_1_2_7_29_1
  doi: 10.1109/CIC.2005.1588177
– ident: e_1_2_7_37_1
  doi: 10.1111/j.1540-8167.2007.00832.x
– ident: e_1_2_7_40_1
– ident: e_1_2_7_4_1
  doi: 10.1016/j.artmed.2008.04.007
– ident: e_1_2_7_28_1
  doi: 10.1016/S0031-3203(99)00041-2
– start-page: 391
  year: 2000
  ident: e_1_2_7_50_1
  article-title: A method for detection of atrial fibrillation using RR intervals
  publication-title: Computers in Cardiology
– ident: e_1_2_7_21_1
  doi: 10.1109/TBME.1986.325695
– ident: e_1_2_7_7_1
– volume-title: Modern Regression Methods
  year: 1997
  ident: e_1_2_7_48_1
– ident: e_1_2_7_16_1
  doi: 10.1617/s11527-009-9559-y
– volume: 28
  start-page: 293
  year: 2001
  ident: e_1_2_7_9_1
  article-title: Sequential analysis for automatic detection of atrial fibrillation and flutter
  publication-title: Computers in Cardiology
– ident: e_1_2_7_8_1
  doi: 10.1109/TBME.2007.890741
– volume-title: Compilers: Principles, Techniques, and Tools
  year: 1986
  ident: e_1_2_7_2_1
– start-page: 651
  volume-title: The 7th European conference on artificial life, September 14–17, Dortmund
  year: 2003
  ident: e_1_2_7_42_1
– volume-title: Discipulus™ Owner's Manual, Version 3.0
  year: 2000
  ident: e_1_2_7_14_1
– volume-title: EViews Software, Version 5
  year: 2004
  ident: e_1_2_7_30_1
– ident: e_1_2_7_15_1
  doi: 10.1161/01.CIR.83.1.162
– ident: e_1_2_7_12_1
  doi: 10.1007/978-3-540-46239-2_20
– ident: e_1_2_7_52_1
  doi: 10.1111/j.1468-0394.2009.00478.x
– ident: e_1_2_7_18_1
  doi: 10.1016/0735-1097(93)90381-A
– ident: e_1_2_7_44_1
  doi: 10.1111/j.1468-0394.2007.00432.x
– ident: e_1_2_7_31_1
SSID ssj0001776
Score 1.9847064
Snippet In this study, two variants of genetic programming, namely linear genetic programming (LGP) and multi‐expression programming (MEP) are utilized to detect...
In this study, two variants of genetic programming, namely linear genetic programming (LGP) and multi-expression programming (MEP) are utilized to detect...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 183
SubjectTerms arrhythmia detection
atrial fibrillation
Cardiac arrhythmia
Cardiovascular disease
Expert systems
forward floating selection
Heart rate
heart rate variability signal
linear genetic programming
Linear programming
multi-expression programming
Studies
Title Robust genetic programming-based detection of atrial fibrillation using RR intervals
URI https://api.istex.fr/ark:/67375/WNG-CL5ZDP39-K/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1468-0394.2010.00571.x
https://www.proquest.com/docview/1012728403
Volume 29
WOSCitedRecordID wos000305990300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1468-0394
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001776
  issn: 0266-4720
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6hhAOXFiioLi3aA-Jm5H3Y6z1WaQMSVRQZWgKX1XofVdSSoDhBPfIT-I38ku6unYggDhHiZlkaW573eL-ZAXjFfBZCqRYp1Yal4WQpFYrR1HDKTZGRWhgVl03w0aicTMS4wz-FXph2PsTmh1uwjOivg4GruvnTyEN7mGBrhFbO8RufT_aJV-O8B_2zanh5sfHLmMdVc77oKFLGSbaN6_nrs7aCVT_w_W4rE_09n40Babj_Pz_lMex1aSk6bfXoCTyws6ewv175gDoPcABX1bxeNUvk1S50P6IO3vXVB8BfP36GkGiQscuI75qhuUMqrgVBLnQW3La4OxSw9teoqtA0Ai69ATyDy-H5x8G7tFvNkGqGCU6tJcqnEs7Xl9o6hjNbEiUEwZYUjlDtlFZKG81UyXIriHKkLl1uWObLQWMy-hx6s_nMHgIqnca1L6KUcAVTlgktvHRyXNeCU1rjBPhaBlJ3c8vD-oxbuVW_lDKwTwb2ycg-eZcA3lB-a2d37EDzOop5Q6AWNwH7xnP5afRWDi7yL2djKuT7BI7XeiA7s28CXo5wH_AzmkARJb7zi-X55MNnf3X0r4Qv4JG_TVow5jH0louVPYGH-vty2ixedsZwD6ORBys
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB4hUoleGkpbkZa2e0C9GXkf9nqPVSBQESKU8ki5rNb7qFBpUuWBOPIT-I38ku6unaipOCDEzQePLc9jZ2b9zX4A28xXIZRqkVBtWBL-LCVCMZoYTrnJU1IKoyLZBO_1isFAHNd0QGEWpjofYrHhFiIjrtchwMOG9P9RHubDBJtDtDKOd3xB2WDeq7y7N3b7ndPuYmHGPHLN-a4jTxgn6TKw58FnLWWrRlD8zVIp-m9BGzNSp_ms37IOr-rCFH2tPOk1rNjhBjTnpA-oXgPewFl_VM4mU-QdL8w_ohrg9dunwPvbu5AUDTJ2GhFeQzRySEViEOTCbMFVhbxDAW3_E_X76DJCLn0IvIXTzt5J-yCpyRkSzTDBibVE-WLC-Q5TW8dwaguihCDYktwRqp3SSmmjmSpYZgVRjpSFywxLfUNoTErfwepwNLSbgAqncenbKCVczpRlQgtvngyXpeCUlrgFfG4EqeuTywOBxpVc6mAKGdQng_pkVJ-8aQFeSP6pTu94hMyXaOeFgBr_Cug3nsnz3r5sd7OL3WMq5GELtuaOIOvAnwTEHOE-5ae0BXk0-aNfLPcG33_4q_dPFfwMawcnR13Z_dY7_AAv_S2kgmZuwep0PLMf4YW-nl5Oxp_qyPgLdX4LGw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB5VSVX1AvQlwqPdA-rNlfdhr_eICIGKKIrS0qa9rNb7QBGQoCQgjvwEfiO_hN21EzVVD6ji5oPHluexM-P9Zj-APearEEq1SKg2LAk7S4lQjCaGU27ylJTCqEg2wXu9YjgU_ZoOKMzCVOdDLH-4hciI63UIcHtl3N9RHubDBFtAtDKOv_iCsskCp0wDmu1B57S7XJgxj1xzvuvIE8ZJugrs-eezVrJVMyj-dqUU_bOgjRmps_6s37IBa3VhivYrT3oDL-z4LawvSB9QvQa8gx-DSXk9myPveGH-EdUAr0ufAh_u7kNSNMjYeUR4jdHEIRWJQZALswUXFfIOBbT9GRoM0ChCLn0IvIfTzuH3g-OkJmdINMMEJ9YS5YsJ5ztMbR3DqS2IEoJgS3JHqHZKK6WNZqpgmRVEOVIWLjMs9Q2hMSn9AI3xZGw3ARVO49K3UUq4nCnLhBbePBkuS8EpLXEL-MIIUtcnlwcCjQu50sEUMqhPBvXJqD552wK8lLyqTu94gsznaOelgJqeB_Qbz-TP3pE86Ga_230q5EkLdhaOIOvAnwXEHOE-5ae0BXk0-ZNfLA-H3375q63_FfwEr_rtjux-7Z1sw2t_B6mQmTvQmE-v7S681Dfz0Wz6sQ6MR-2hCpY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+genetic+programming-based+detection+of+atrial+fibrillation+using+RR+intervals&rft.jtitle=Expert+systems&rft.au=Yaghouby%2C+Farid&rft.au=Ayatollahi%2C+Ahmad&rft.au=Bahramali%2C+Reihaneh&rft.au=Yaghouby%2C+Maryam&rft.date=2012-05-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0266-4720&rft.eissn=1468-0394&rft.volume=29&rft.issue=2&rft.spage=183&rft.epage=199&rft_id=info:doi/10.1111%2Fj.1468-0394.2010.00571.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_CL5ZDP39_K
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4720&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4720&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4720&client=summon