High-efficiency solar thermophotovoltaic system using a nanostructure-based selective emitter
•A high-efficiency STPV system was designed and fabricated.•Used a multilayer metal-dielectric coated selective emitter for spectral control.•Quantified optical and thermal losses at various stages of energy conversion.•Overall power conversion efficiency of 8.4% was recorded at 1676 K. In this work...
Uložené v:
| Vydané v: | Solar energy Ročník 197; číslo C; s. 538 - 545 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Elsevier Ltd
01.02.2020
Pergamon Press Inc Elsevier |
| Predmet: | |
| ISSN: | 0038-092X, 1471-1257 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •A high-efficiency STPV system was designed and fabricated.•Used a multilayer metal-dielectric coated selective emitter for spectral control.•Quantified optical and thermal losses at various stages of energy conversion.•Overall power conversion efficiency of 8.4% was recorded at 1676 K.
In this work, we present the design, fabrication, optimization, and experimental results of a high-efficiency planar solar thermophotovoltaic (STPV) system utilizing a micro-textured absorber and a nanostructure multilayer metal-dielectric coated selective emitter fabricated on a tungsten (W) substrate. Light absorptance of more than 90% was achieved at visible and near-infrared wavelengths using the microtextured absorbing surface. The nanostructure selective emitter consists of two thin-film optical coatings of silicon nitride (Si3N4) and a layer of W in between to increase the surface emissivity in spectral regimes matching the quantum efficiency of the thermophotovoltaic (TPV) cells. Gallium antimonide (GaSb)-based TPV cells are used in our STPV design. The experiment was conducted at different operating temperatures using a high-power continuous wave laser diode stack as a simulated source of concentrated incident radiation. Our experimental setup measured a maximum electrical output power density of 1.71 W/cm2 at 1676 K STPV temperature, and the overall power conversion efficiency of 8.4% after normalizing the output power density to the emitter area. This is the highest STPV system efficiency reported so far for any experimental STPV device. The incident optical laser power on the absorber side was 131 W. This is equivalent to a solar concentration factor of ~2100, which is within the practical limit and readily achievable with Fresnel lens setup. |
|---|---|
| AbstractList | •A high-efficiency STPV system was designed and fabricated.•Used a multilayer metal-dielectric coated selective emitter for spectral control.•Quantified optical and thermal losses at various stages of energy conversion.•Overall power conversion efficiency of 8.4% was recorded at 1676 K.
In this work, we present the design, fabrication, optimization, and experimental results of a high-efficiency planar solar thermophotovoltaic (STPV) system utilizing a micro-textured absorber and a nanostructure multilayer metal-dielectric coated selective emitter fabricated on a tungsten (W) substrate. Light absorptance of more than 90% was achieved at visible and near-infrared wavelengths using the microtextured absorbing surface. The nanostructure selective emitter consists of two thin-film optical coatings of silicon nitride (Si3N4) and a layer of W in between to increase the surface emissivity in spectral regimes matching the quantum efficiency of the thermophotovoltaic (TPV) cells. Gallium antimonide (GaSb)-based TPV cells are used in our STPV design. The experiment was conducted at different operating temperatures using a high-power continuous wave laser diode stack as a simulated source of concentrated incident radiation. Our experimental setup measured a maximum electrical output power density of 1.71 W/cm2 at 1676 K STPV temperature, and the overall power conversion efficiency of 8.4% after normalizing the output power density to the emitter area. This is the highest STPV system efficiency reported so far for any experimental STPV device. The incident optical laser power on the absorber side was 131 W. This is equivalent to a solar concentration factor of ~2100, which is within the practical limit and readily achievable with Fresnel lens setup. Herein, we present the design, fabrication, optimization, and experimental results of a high-efficiency planar solar thermophotovoltaic (STPV) system utilizing a micro-textured absorber and a nanostructure multilayer metal-dielectric coated selective emitter fabricated on a tungsten (W) substrate. Light absorptance of more than 90% was achieved at visible and near-infrared wavelengths using the microtextured absorbing surface. The nanostructure selective emitter consists of two thin-film optical coatings of silicon nitride (Si3N4) and a layer of W in between to increase the surface emissivity in spectral regimes matching the quantum efficiency of the thermophotovoltaic (TPV) cells. Gallium antimonide (GaSb)-based TPV cells are used in our STPV design. The experiment was conducted at different operating temperatures using a high-power continuous wave laser diode stack as a simulated source of concentrated incident radiation. Our experimental setup measured a maximum electrical output power density of 1.71 W/cm2 at 1676 K STPV temperature, and the overall power conversion efficiency of 8.4% after normalizing the output power density to the emitter area. This is the highest STPV system efficiency reported so far for any experimental STPV device. The incident optical laser power on the absorber side was 131 W. This is equivalent to a solar concentration factor of ~2100, which is within the practical limit and readily achievable with Fresnel lens setup. In this work, we present the design, fabrication, optimization, and experimental results of a high-efficiency planar solar thermophotovoltaic (STPV) system utilizing a micro-textured absorber and a nanostructure multilayer metal-dielectric coated selective emitter fabricated on a tungsten (W) substrate. Light absorptance of more than 90% was achieved at visible and near-infrared wavelengths using the microtextured absorbing surface. The nanostructure selective emitter consists of two thin-film optical coatings of silicon nitride (Si3N4) and a layer of W in between to increase the surface emissivity in spectral regimes matching the quantum efficiency of the thermophotovoltaic (TPV) cells. Gallium antimonide (GaSb)-based TPV cells are used in our STPV design. The experiment was conducted at different operating temperatures using a high-power continuous wave laser diode stack as a simulated source of concentrated incident radiation. Our experimental setup measured a maximum electrical output power density of 1.71 W/cm2 at 1676 K STPV temperature, and the overall power conversion efficiency of 8.4% after normalizing the output power density to the emitter area. This is the highest STPV system efficiency reported so far for any experimental STPV device. The incident optical laser power on the absorber side was 131 W. This is equivalent to a solar concentration factor of ~2100, which is within the practical limit and readily achievable with Fresnel lens setup. |
| Author | Bhatt, Rajendra Kravchenko, Ivan Gupta, Mool |
| Author_xml | – sequence: 1 givenname: Rajendra surname: Bhatt fullname: Bhatt, Rajendra organization: University of Virginia, Charlottesville, VA 22901, USA – sequence: 2 givenname: Ivan surname: Kravchenko fullname: Kravchenko, Ivan organization: Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA – sequence: 3 givenname: Mool surname: Gupta fullname: Gupta, Mool email: mgupta@virginia.edu organization: University of Virginia, Charlottesville, VA 22901, USA |
| BackLink | https://www.osti.gov/servlets/purl/1607152$$D View this record in Osti.gov |
| BookMark | eNqFkU9rGzEQxUVxoHbSj1BY2vNuZ7R_tKaHUkyaFAK9JJBLELJ2FMusJVfSGvztK8c59eLTHOa9x5vfLNjMeUeMfUaoELD7tq2iH8lRqDhwqAAr4MsPbI6NwBJ5K2ZsDlD3JSz580e2iHELgAJ7MWcv9_Z1U5IxVlty-ljkKBWKtKGw8_uNT_7gx6SsLuIxJtoVU7TutVCFU87HFCadpkDlWkUaikgj6WQPVNDOpkThhl0ZNUb69D6v2dOv28fVffnw5-736udDqRvEVJoaQWBD2KNYC9OYdUdLLYweuDa9WnemUxxa0LwjZaDtm6broVctb_QA9VBfsy_n3FzJyqhtIr3R3rlcR2KXw1ueRV_Pon3wfyeKSW79FFzuJXktOlE3nENWtWeVDj7GQEbug92pcJQI8oRbbuU7bnnCLQFlxp193__z5RYqWe9SUHa86P5xdlOmdLB5G9_-QYMNpxsGby8k_AMaa6Mt |
| CitedBy_id | crossref_primary_10_1002_admi_202300733 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125783 crossref_primary_10_1016_j_solener_2024_113003 crossref_primary_10_1016_j_solmat_2025_113666 crossref_primary_10_1063_5_0220172 crossref_primary_10_1016_j_enconman_2022_116316 crossref_primary_10_1016_j_enconman_2022_115416 crossref_primary_10_1016_j_est_2024_114498 crossref_primary_10_1016_j_joule_2022_10_002 crossref_primary_10_1051_epjconf_202328709031 crossref_primary_10_1116_6_0003985 crossref_primary_10_3390_en13226157 crossref_primary_10_1016_j_solmat_2021_111554 crossref_primary_10_1016_j_ssc_2021_114645 crossref_primary_10_1016_j_infrared_2025_105827 crossref_primary_10_1016_j_joule_2020_06_021 crossref_primary_10_1073_pnas_2215977119 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122039 crossref_primary_10_1002_adom_202402224 crossref_primary_10_1007_s40097_021_00453_2 crossref_primary_10_1016_j_jqsrt_2020_107163 crossref_primary_10_1016_j_scs_2023_104547 crossref_primary_10_1109_TED_2024_3354219 crossref_primary_10_3390_nano11092443 crossref_primary_10_1016_j_applthermaleng_2023_120844 crossref_primary_10_1109_JPHOTOV_2021_3116918 crossref_primary_10_1016_j_solener_2022_06_040 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122266 crossref_primary_10_1016_j_seta_2022_102031 crossref_primary_10_1016_j_solener_2023_112081 crossref_primary_10_1016_j_solmat_2025_113673 crossref_primary_10_1088_1361_6528_ac3459 crossref_primary_10_1109_TED_2020_3045678 crossref_primary_10_1016_j_solener_2024_112741 crossref_primary_10_1016_j_renene_2025_123102 crossref_primary_10_1016_j_solener_2024_112581 crossref_primary_10_1039_D4EE04604H crossref_primary_10_1109_TED_2023_3290129 crossref_primary_10_1007_s11431_022_2065_2 crossref_primary_10_1016_j_renene_2021_12_026 crossref_primary_10_1016_j_solener_2022_11_003 crossref_primary_10_1088_1361_6463_ad8e73 crossref_primary_10_1007_s11468_020_01317_1 crossref_primary_10_1016_j_solener_2022_07_046 crossref_primary_10_1016_j_renene_2022_06_058 crossref_primary_10_1016_j_applthermaleng_2024_125272 crossref_primary_10_1016_j_renene_2023_119244 crossref_primary_10_1016_j_tsep_2021_100968 crossref_primary_10_1134_S1063782624603029 crossref_primary_10_1016_j_microrel_2021_114325 crossref_primary_10_1002_solr_202400079 crossref_primary_10_3390_nano11071814 crossref_primary_10_1016_j_renene_2022_07_129 crossref_primary_10_1021_acs_nanolett_5c02226 crossref_primary_10_1007_s13369_022_06712_w crossref_primary_10_1021_acsphotonics_5c01339 crossref_primary_10_3390_sym14112402 crossref_primary_10_1080_15567036_2021_1890282 crossref_primary_10_1016_j_joule_2025_102005 crossref_primary_10_1016_j_ijthermalsci_2025_109712 crossref_primary_10_3390_nano12061027 crossref_primary_10_1016_j_solmat_2023_112581 crossref_primary_10_1016_j_energy_2021_121954 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123504 crossref_primary_10_3389_fenrg_2023_1124288 crossref_primary_10_1002_ente_202401480 crossref_primary_10_1103_PhysRevApplied_18_034083 crossref_primary_10_1103_PhysRevApplied_20_064015 crossref_primary_10_1002_adom_202301726 crossref_primary_10_1016_j_applthermaleng_2023_119993 crossref_primary_10_1016_j_solmat_2022_111589 crossref_primary_10_1063_5_0132045 crossref_primary_10_1088_2631_7990_ad1dca crossref_primary_10_3390_en16010416 crossref_primary_10_1016_j_solener_2023_05_018 crossref_primary_10_1016_j_physe_2020_114471 crossref_primary_10_1016_j_solener_2022_11_026 crossref_primary_10_3389_fphy_2021_633971 crossref_primary_10_1016_j_applthermaleng_2024_123276 crossref_primary_10_1117_1_JPE_14_042403 crossref_primary_10_1016_j_apenergy_2024_124657 crossref_primary_10_1016_j_solmat_2021_111562 crossref_primary_10_1007_s00542_023_05483_0 crossref_primary_10_1016_j_enconman_2022_115331 crossref_primary_10_1134_S1063778823090089 crossref_primary_10_3390_en16207085 crossref_primary_10_1364_AO_394326 crossref_primary_10_1002_smll_202208262 crossref_primary_10_1016_j_renene_2022_04_121 crossref_primary_10_1016_j_renene_2024_119960 crossref_primary_10_1109_ACCESS_2020_3017504 |
| Cites_doi | 10.1063/1.1506199 10.1364/OE.18.00A314 10.1002/pip.2202 10.1016/j.solmat.2013.12.012 10.1364/AO.37.005271 10.1017/S0022112069002102 10.1109/16.902740 10.7567/APEX.9.112302 10.1364/JOSA.56.001546 10.1002/pip.2201 10.1088/0268-1242/18/5/303 10.1364/OE.22.0A1604 10.1364/OE.17.015145 10.1016/j.solmat.2014.11.049 10.1016/j.solener.2018.10.006 10.1109/66.661282 10.1063/1.2711750 10.1016/j.solener.2019.09.033 10.1038/nnano.2013.286 10.1016/0927-0248(95)00030-5 10.1364/OE.23.0A1149 10.1016/j.solener.2018.01.010 10.1038/nenergy.2016.68 10.1016/j.solener.2016.02.015 10.1063/1.330070 10.7567/JJAP.57.040312 10.1088/0953-8984/17/41/008 10.1073/pnas.1903001116 10.1063/1.1736034 |
| ContentType | Journal Article |
| Copyright | 2020 International Solar Energy Society Copyright Pergamon Press Inc. Feb 2020 |
| Copyright_xml | – notice: 2020 International Solar Energy Society – notice: Copyright Pergamon Press Inc. Feb 2020 |
| CorporateAuthor | Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS) |
| CorporateAuthor_xml | – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS) |
| DBID | AAYXX CITATION 7SP 7ST 8FD C1K FR3 KR7 L7M SOI OIOZB OTOTI |
| DOI | 10.1016/j.solener.2020.01.029 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1471-1257 |
| EndPage | 545 |
| ExternalDocumentID | 1607152 10_1016_j_solener_2020_01_029 S0038092X20300372 |
| GroupedDBID | --K --M -ET -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABTAH ABXDB ABXRA ABYKQ ACDAQ ACGFS ACGOD ACIWK ACNNM ACRLP ADBBV ADEZE ADHUB ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR AZFZN BELTK BKOJK BKOMP BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ H~9 IHE J1W JARJE KOM LY6 M41 MAGPM MO0 N9A NEJ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SAC SDF SDG SDP SES SEW SPC SPCBC SSM SSR SSZ T5K TAE TN5 UKR VOH WH7 WUQ XOL XPP YNT ZMT ZY4 ~02 ~A~ ~G- ~KM ~S- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SP 7ST 8FD AGCQF C1K FR3 KR7 L7M SOI AALMO ABPIF ABPTK OIOZB OTOTI PQEST TAF |
| ID | FETCH-LOGICAL-c411t-f310714e1817b7f4fb6e9c7fcd2cf8ab6f6a2050c26eaf058446808a524cd03d3 |
| ISICitedReferencesCount | 109 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000514747600048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0038-092X |
| IngestDate | Fri May 19 01:42:03 EDT 2023 Wed Aug 13 04:53:36 EDT 2025 Tue Nov 18 22:29:04 EST 2025 Sat Nov 29 07:26:17 EST 2025 Fri Feb 23 02:48:24 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | C |
| Keywords | STPV Blackbody Nanostructure Spectral control TPV cells |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c411t-f310714e1817b7f4fb6e9c7fcd2cf8ab6f6a2050c26eaf058446808a524cd03d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 National Science Foundation (NSF) AC05-00OR22725 National Aeronautic and Space Administration (NASA) USDOE Office of Science (SC), Basic Energy Sciences (BES) |
| ORCID | 0000000349995822 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1607152 |
| PQID | 2376734220 |
| PQPubID | 9393 |
| PageCount | 8 |
| ParticipantIDs | osti_scitechconnect_1607152 proquest_journals_2376734220 crossref_primary_10_1016_j_solener_2020_01_029 crossref_citationtrail_10_1016_j_solener_2020_01_029 elsevier_sciencedirect_doi_10_1016_j_solener_2020_01_029 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-01 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Solar energy |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Pergamon Press Inc Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Pergamon Press Inc – name: Elsevier |
| References | Datas, Algora (b0040) 2013; 21 Barnes (b0005) 1966; 56 Rühle (b0120) 2016; 130 Yugami, Sai, Nakamura, Nakagawa, Ohtsubo (b0150) 2000 Ravindra, Abedrabbo, Chen, Tong, Nanda, Speranza (b0105) 1998; 11 Nam, Yeng, Lenert, Bermel, Celanovic, Soljačić, Wang (b0080) 2014; 122 Ferguson, Fraas (bib157) 1995; 39 Ungaro, Gray, Gupta (b0135) 2015; 23 Vlasov, Khvostikov, Khvostikova, Gazaryan, Sorokina, Andreev (b0145) 2007 Bermel, Ghebrebrhan, Chan, Yeng, Araghchini, Hamam, Marton, Jensen, Soljačić, Joannopoulos, Johnson, Celanovic (b0015) 2010; 18 Zenker, Heinzel (b0155) 2001; 48 Qian, Shen, Ogawa, Guo (b0095) 2002; 92 Gupta, Ungaro, Foley, Gray (b0045) 2018; 165 Ni, McBurney, Alshehri, Wang (b0085) 2019; 191 Hidnert, Sweeney (b0055) 1925; 20 Vigil, Ruiz, Seuret, Bermúdez, Diéguez (b0140) 2005 Bierman, Lenert, Chan, Bhatia, Celanović, Soljačić, Wang (b0020) 2016; 1 Lenert, Nam, Bierman, Wang (b0075) 2014; 22 Rakić, Djurišić, Elazar, Majewski (b0100) 1998; 37 Shockley, Queisser (b0125) 1961; 32 Datas (b0030) 2015; 134 Datas, Algora (b0035) 2013; 21 Bendelala, Cheknane, Hilal (b0010) 2018; 174 Omair, Scranton, Pazos-Outon, Xiao, Steiner, Ganapati, Peterson, Holzrichter, Atwater, Yablonovitch (b0090) 2019; 116 Saidi, M., Abardeh, R.H., 2010. Air pressure dependence of natural-convection heat transfer. In: WCE 2010 - World Congress on Engineering 2010. pp. 1444–1447. Crystals, J., n.d. Specification sheet for GaSb cells [WWW Document]. Rotem, Claassen (b0115) 1969; 39 Slack, Huseby (b0130) 1982; 53 Harder, Würfel (b0050) 2003; 18 Rephaeli, Fan (b0110) 2009; 17 Lenert, Bierman, Nam, Chan, Celanović, Soljačić, Wang (b0070) 2014; 9 Kohiyama, Shimizu, Yugami (b0065) 2016; 9 Kohiyama, Shimizu, Yugami (b0060) 2018; 57 Rephaeli (10.1016/j.solener.2020.01.029_b0110) 2009; 17 Harder (10.1016/j.solener.2020.01.029_b0050) 2003; 18 Nam (10.1016/j.solener.2020.01.029_b0080) 2014; 122 Bermel (10.1016/j.solener.2020.01.029_b0015) 2010; 18 Datas (10.1016/j.solener.2020.01.029_b0030) 2015; 134 Bierman (10.1016/j.solener.2020.01.029_b0020) 2016; 1 Gupta (10.1016/j.solener.2020.01.029_b0045) 2018; 165 Yugami (10.1016/j.solener.2020.01.029_b0150) 2000 Hidnert (10.1016/j.solener.2020.01.029_b0055) 1925; 20 Datas (10.1016/j.solener.2020.01.029_b0040) 2013; 21 Lenert (10.1016/j.solener.2020.01.029_b0070) 2014; 9 Ni (10.1016/j.solener.2020.01.029_b0085) 2019; 191 10.1016/j.solener.2020.01.029_b0025 Datas (10.1016/j.solener.2020.01.029_b0035) 2013; 21 Ungaro (10.1016/j.solener.2020.01.029_b0135) 2015; 23 Kohiyama (10.1016/j.solener.2020.01.029_b0060) 2018; 57 Omair (10.1016/j.solener.2020.01.029_b0090) 2019; 116 Rotem (10.1016/j.solener.2020.01.029_b0115) 1969; 39 Rühle (10.1016/j.solener.2020.01.029_b0120) 2016; 130 Vigil (10.1016/j.solener.2020.01.029_b0140) 2005 Lenert (10.1016/j.solener.2020.01.029_b0075) 2014; 22 Vlasov (10.1016/j.solener.2020.01.029_b0145) 2007 Barnes (10.1016/j.solener.2020.01.029_b0005) 1966; 56 Kohiyama (10.1016/j.solener.2020.01.029_b0065) 2016; 9 Zenker (10.1016/j.solener.2020.01.029_b0155) 2001; 48 Slack (10.1016/j.solener.2020.01.029_b0130) 1982; 53 Ferguson (10.1016/j.solener.2020.01.029_bib157) 1995; 39 Shockley (10.1016/j.solener.2020.01.029_b0125) 1961; 32 Qian (10.1016/j.solener.2020.01.029_b0095) 2002; 92 Rakić (10.1016/j.solener.2020.01.029_b0100) 1998; 37 10.1016/j.solener.2020.01.029_bib156 Ravindra (10.1016/j.solener.2020.01.029_b0105) 1998; 11 Bendelala (10.1016/j.solener.2020.01.029_b0010) 2018; 174 |
| References_xml | – volume: 174 start-page: 1053 year: 2018 end-page: 1057 ident: b0010 article-title: Enhanced low-gap thermophotovoltaic cell efficiency for a wide temperature range based on a selective meta-material emitter publication-title: Sol. Energy – reference: Saidi, M., Abardeh, R.H., 2010. Air pressure dependence of natural-convection heat transfer. In: WCE 2010 - World Congress on Engineering 2010. pp. 1444–1447. – volume: 20 start-page: S515 year: 1925 ident: b0055 article-title: Thermal expansion of tungsten publication-title: Sci. Pap. BS – volume: 56 start-page: 1546 year: 1966 ident: b0005 article-title: Optical Constants of Incandescent Refractory Metals publication-title: J. Opt. Soc. Am. – volume: 39 start-page: 173 year: 1969 end-page: 192 ident: b0115 article-title: Natural convection above unconfined horizontal surfaces publication-title: J. Fluid Mech. – volume: 134 start-page: 275 year: 2015 end-page: 290 ident: b0030 article-title: Optimum semiconductor bandgaps in single junction and multijunction thermophotovoltaic converters publication-title: Sol. Energy Mater. Sol. Cells – volume: 11 start-page: 30 year: 1998 end-page: 39 ident: b0105 article-title: Temperature-dependent emissivity of silicon-related materials and structures publication-title: IEEE Trans. Semicond. Manuf. – volume: 32 start-page: 510 year: 1961 end-page: 519 ident: b0125 article-title: Detailed balance limit of efficiency of p-n junction solar cells publication-title: J. Appl. Phys. – volume: 122 start-page: 287 year: 2014 end-page: 296 ident: b0080 article-title: Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters publication-title: Sol. Energy Mater. Sol. Cells – volume: 17 start-page: 15145 year: 2009 ident: b0110 article-title: Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit publication-title: Opt. Express – volume: 130 start-page: 139 year: 2016 end-page: 147 ident: b0120 article-title: Tabulated values of the Shockley-Queisser limit for single junction solar cells publication-title: Sol. Energy – volume: 9 start-page: 126 year: 2014 end-page: 130 ident: b0070 article-title: A nanophotonic solar thermophotovoltaic device publication-title: Nat. Nanotechnol. – volume: 23 start-page: A1149 year: 2015 ident: b0135 article-title: Solar thermophotovoltaic system using nanostructures publication-title: Opt. Express – reference: Crystals, J., n.d. Specification sheet for GaSb cells [WWW Document]. – volume: 18 year: 2003 ident: b0050 article-title: Theoretical limits of thermophotovoltaic solar energy conversion publication-title: Semicond. Sci. Technol. – volume: 165 start-page: 100 year: 2018 end-page: 114 ident: b0045 article-title: Optical nanostructures design, fabrication, and applications for solar/thermal energy conversion publication-title: Sol. Energy – volume: 48 start-page: 367 year: 2001 end-page: 376 ident: b0155 article-title: Efficiency and power density potential of combustion-driven thermophotovoltaic systems using GaSb photovoltaic cells publication-title: IEEE Trans. Electron Devices – volume: 22 start-page: A1604 year: 2014 ident: b0075 article-title: Role of spectral non-idealities in the design of solar thermophotovoltaics publication-title: Opt. Express – volume: 21 start-page: 1025 year: 2013 end-page: 1039 ident: b0040 article-title: Development and experimental evaluation of a complete solar thermophotovoltaic system publication-title: Prog. Photovoltaics Res. Appl. – volume: 116 start-page: 15356 year: 2019 end-page: 15361 ident: b0090 article-title: Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering. Proc. of the publication-title: Natl. Acad. Sci. – volume: 37 start-page: 5271 year: 1998 ident: b0100 article-title: Optical properties of metallic films for vertical-cavity optoelectronic devices publication-title: Appl. Opt. – start-page: 1214 year: 2000 end-page: 1217 ident: b0150 article-title: Solar thermophotovoltaic using Al2O3/Er3Al5O12eutectic composite selective emitter publication-title: Conference Record of the IEEE Photovoltaic Specialists Conference – volume: 18 start-page: A314 year: 2010 ident: b0015 article-title: Design and global optimization of high-efficiency thermophotovoltaic systems publication-title: Opt. Express – volume: 57 year: 2018 ident: b0060 article-title: Radiative heat transfer enhancement using geometric and spectral control for achieving high-efficiency solar-thermophotovoltaic systems publication-title: Jpn. J. Appl. Phys. – volume: 21 start-page: 1040 year: 2013 end-page: 1055 ident: b0035 article-title: Global optimization of solar thermophotovoltaic systems publication-title: Prog. Photovoltaics Res. Appl. – volume: 1 start-page: 16068 year: 2016 ident: b0020 article-title: Enhanced photovoltaic energy conversion using thermally based spectral shaping publication-title: Nat. Energy – volume: 191 start-page: 623 year: 2019 end-page: 628 ident: b0085 article-title: Theoretical analysis of solar thermophotovoltaic energy conversion with selective metafilm and cavity reflector publication-title: Sol. Energy – volume: 53 start-page: 6817 year: 1982 ident: b0130 article-title: Thermal Grüneisen parameters of CdAl2O4, β–Si3N4, and other phenacite-type compounds publication-title: J. Appl. Phys. – year: 2005 ident: b0140 article-title: Transparent conducting oxides as selective filters in thermophotovoltaic devices publication-title: J. Phys. Condens. Matter. – volume: 39 start-page: 11 year: 1995 end-page: 18 ident: bib157 article-title: Theoretical study of GaSb PV cells efficiency as a function of temperature publication-title: Sol. Energy Mater. Sol. Cells – volume: 92 start-page: 3683 year: 2002 end-page: 3687 ident: b0095 article-title: Infrared reflection characteristics in InN thin films grown by magnetron sputtering for the application of plasma filters publication-title: J. Appl. Phys. – volume: 9 year: 2016 ident: b0065 article-title: Unidirectional radiative heat transfer with a spectrally selective planar absorber/emitter for high-efficiency solar thermophotovoltaic systems publication-title: Appl. Phys. Express – start-page: 327 year: 2007 end-page: 334 ident: b0145 article-title: TPV systems with solar powered tungsten emitters publication-title: AIP Conf. Proc. – volume: 92 start-page: 3683 year: 2002 ident: 10.1016/j.solener.2020.01.029_b0095 article-title: Infrared reflection characteristics in InN thin films grown by magnetron sputtering for the application of plasma filters publication-title: J. Appl. Phys. doi: 10.1063/1.1506199 – volume: 18 start-page: A314 year: 2010 ident: 10.1016/j.solener.2020.01.029_b0015 article-title: Design and global optimization of high-efficiency thermophotovoltaic systems publication-title: Opt. Express doi: 10.1364/OE.18.00A314 – volume: 21 start-page: 1040 year: 2013 ident: 10.1016/j.solener.2020.01.029_b0035 article-title: Global optimization of solar thermophotovoltaic systems publication-title: Prog. Photovoltaics Res. Appl. doi: 10.1002/pip.2202 – volume: 122 start-page: 287 year: 2014 ident: 10.1016/j.solener.2020.01.029_b0080 article-title: Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2013.12.012 – volume: 37 start-page: 5271 year: 1998 ident: 10.1016/j.solener.2020.01.029_b0100 article-title: Optical properties of metallic films for vertical-cavity optoelectronic devices publication-title: Appl. Opt. doi: 10.1364/AO.37.005271 – volume: 39 start-page: 173 year: 1969 ident: 10.1016/j.solener.2020.01.029_b0115 article-title: Natural convection above unconfined horizontal surfaces publication-title: J. Fluid Mech. doi: 10.1017/S0022112069002102 – volume: 48 start-page: 367 year: 2001 ident: 10.1016/j.solener.2020.01.029_b0155 article-title: Efficiency and power density potential of combustion-driven thermophotovoltaic systems using GaSb photovoltaic cells publication-title: IEEE Trans. Electron Devices doi: 10.1109/16.902740 – volume: 9 year: 2016 ident: 10.1016/j.solener.2020.01.029_b0065 article-title: Unidirectional radiative heat transfer with a spectrally selective planar absorber/emitter for high-efficiency solar thermophotovoltaic systems publication-title: Appl. Phys. Express doi: 10.7567/APEX.9.112302 – volume: 56 start-page: 1546 year: 1966 ident: 10.1016/j.solener.2020.01.029_b0005 article-title: Optical Constants of Incandescent Refractory Metals publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSA.56.001546 – ident: 10.1016/j.solener.2020.01.029_b0025 – volume: 21 start-page: 1025 year: 2013 ident: 10.1016/j.solener.2020.01.029_b0040 article-title: Development and experimental evaluation of a complete solar thermophotovoltaic system publication-title: Prog. Photovoltaics Res. Appl. doi: 10.1002/pip.2201 – volume: 18 year: 2003 ident: 10.1016/j.solener.2020.01.029_b0050 article-title: Theoretical limits of thermophotovoltaic solar energy conversion publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/18/5/303 – volume: 22 start-page: A1604 year: 2014 ident: 10.1016/j.solener.2020.01.029_b0075 article-title: Role of spectral non-idealities in the design of solar thermophotovoltaics publication-title: Opt. Express doi: 10.1364/OE.22.0A1604 – volume: 17 start-page: 15145 year: 2009 ident: 10.1016/j.solener.2020.01.029_b0110 article-title: Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit publication-title: Opt. Express doi: 10.1364/OE.17.015145 – volume: 134 start-page: 275 year: 2015 ident: 10.1016/j.solener.2020.01.029_b0030 article-title: Optimum semiconductor bandgaps in single junction and multijunction thermophotovoltaic converters publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2014.11.049 – volume: 174 start-page: 1053 year: 2018 ident: 10.1016/j.solener.2020.01.029_b0010 article-title: Enhanced low-gap thermophotovoltaic cell efficiency for a wide temperature range based on a selective meta-material emitter publication-title: Sol. Energy doi: 10.1016/j.solener.2018.10.006 – volume: 20 start-page: S515 year: 1925 ident: 10.1016/j.solener.2020.01.029_b0055 article-title: Thermal expansion of tungsten publication-title: Sci. Pap. BS – volume: 11 start-page: 30 year: 1998 ident: 10.1016/j.solener.2020.01.029_b0105 article-title: Temperature-dependent emissivity of silicon-related materials and structures publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/66.661282 – start-page: 327 year: 2007 ident: 10.1016/j.solener.2020.01.029_b0145 article-title: TPV systems with solar powered tungsten emitters publication-title: AIP Conf. Proc. doi: 10.1063/1.2711750 – volume: 191 start-page: 623 year: 2019 ident: 10.1016/j.solener.2020.01.029_b0085 article-title: Theoretical analysis of solar thermophotovoltaic energy conversion with selective metafilm and cavity reflector publication-title: Sol. Energy doi: 10.1016/j.solener.2019.09.033 – volume: 9 start-page: 126 year: 2014 ident: 10.1016/j.solener.2020.01.029_b0070 article-title: A nanophotonic solar thermophotovoltaic device publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.286 – volume: 39 start-page: 11 year: 1995 ident: 10.1016/j.solener.2020.01.029_bib157 article-title: Theoretical study of GaSb PV cells efficiency as a function of temperature publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/0927-0248(95)00030-5 – volume: 23 start-page: A1149 year: 2015 ident: 10.1016/j.solener.2020.01.029_b0135 article-title: Solar thermophotovoltaic system using nanostructures publication-title: Opt. Express doi: 10.1364/OE.23.0A1149 – volume: 165 start-page: 100 year: 2018 ident: 10.1016/j.solener.2020.01.029_b0045 article-title: Optical nanostructures design, fabrication, and applications for solar/thermal energy conversion publication-title: Sol. Energy doi: 10.1016/j.solener.2018.01.010 – volume: 1 start-page: 16068 year: 2016 ident: 10.1016/j.solener.2020.01.029_b0020 article-title: Enhanced photovoltaic energy conversion using thermally based spectral shaping publication-title: Nat. Energy doi: 10.1038/nenergy.2016.68 – volume: 130 start-page: 139 year: 2016 ident: 10.1016/j.solener.2020.01.029_b0120 article-title: Tabulated values of the Shockley-Queisser limit for single junction solar cells publication-title: Sol. Energy doi: 10.1016/j.solener.2016.02.015 – start-page: 1214 year: 2000 ident: 10.1016/j.solener.2020.01.029_b0150 article-title: Solar thermophotovoltaic using Al2O3/Er3Al5O12eutectic composite selective emitter – volume: 53 start-page: 6817 year: 1982 ident: 10.1016/j.solener.2020.01.029_b0130 article-title: Thermal Grüneisen parameters of CdAl2O4, β–Si3N4, and other phenacite-type compounds publication-title: J. Appl. Phys. doi: 10.1063/1.330070 – volume: 57 year: 2018 ident: 10.1016/j.solener.2020.01.029_b0060 article-title: Radiative heat transfer enhancement using geometric and spectral control for achieving high-efficiency solar-thermophotovoltaic systems publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.57.040312 – ident: 10.1016/j.solener.2020.01.029_bib156 – year: 2005 ident: 10.1016/j.solener.2020.01.029_b0140 article-title: Transparent conducting oxides as selective filters in thermophotovoltaic devices publication-title: J. Phys. Condens. Matter. doi: 10.1088/0953-8984/17/41/008 – volume: 116 start-page: 15356 issue: 31 year: 2019 ident: 10.1016/j.solener.2020.01.029_b0090 article-title: Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering. Proc. of the publication-title: Natl. Acad. Sci. doi: 10.1073/pnas.1903001116 – volume: 32 start-page: 510 year: 1961 ident: 10.1016/j.solener.2020.01.029_b0125 article-title: Detailed balance limit of efficiency of p-n junction solar cells publication-title: J. Appl. Phys. doi: 10.1063/1.1736034 |
| SSID | ssj0017187 |
| Score | 2.6062038 |
| Snippet | •A high-efficiency STPV system was designed and fabricated.•Used a multilayer metal-dielectric coated selective emitter for spectral control.•Quantified... In this work, we present the design, fabrication, optimization, and experimental results of a high-efficiency planar solar thermophotovoltaic (STPV) system... Herein, we present the design, fabrication, optimization, and experimental results of a high-efficiency planar solar thermophotovoltaic (STPV) system utilizing... |
| SourceID | osti proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 538 |
| SubjectTerms | Absorbers Absorptance Absorptivity Blackbody Continuous wave lasers Design optimization Efficiency Emissivity Emitters Energy conversion efficiency Fabrication Gallium Gallium antimonide Gallium antimonides Incident radiation Multilayers Nanostructure Near infrared radiation Normalizing Operating temperature Optical coatings Quantum efficiency Radiation measurement Semiconductor lasers Silicon nitride SOLAR ENERGY Spectral control STPV Substrates Thin films TPV cells Tungsten Wavelengths |
| Title | High-efficiency solar thermophotovoltaic system using a nanostructure-based selective emitter |
| URI | https://dx.doi.org/10.1016/j.solener.2020.01.029 https://www.proquest.com/docview/2376734220 https://www.osti.gov/servlets/purl/1607152 |
| Volume | 197 |
| WOSCitedRecordID | wos000514747600048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1471-1257 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017187 issn: 0038-092X databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVWWw5wQOVLlBaUA7dViuM4cXKsqgIFUSEo0l5Q5Di2uss2ifZL_fnM2E62ZYsKSFyiVbROrMzLzNh584aQ11FeJpXSWByjWYgrhLAsOYc3nqnMGJ4ZWtlmE-LsLBuP88-DQdvVwqxnoq6zq6u8_a-mhnNgbCyd_Qtz9xeFE_AbjA5HMDsc_8jwyNwItVWGsGWVC1y8Yn45v2zai2bZgENayonyIs6jld0tkKNa1o1Tk13NdYjRrRotbJccJBfpy8myY_JOu8pevLC2xYP9qv5Cuq9NX-RU19W8d_of53IN-Kh_2K3Z0_UGlO9WrctgPzXN7PomBKw46Q1CR18ds6EiWW8bI7XCtkuHWOMcLATDEJIqccMDO4qu96GJk3vx4ThxapNbnt5tOkwPF0hf0KjsyqgTYM03oa0nHH7FueBUGDg1GgsI2jtMJDn4wZ2j05Pxh_7LE8Rqp7Pq576p-npz681-l88MwWSTrQBvs5bzXfLQLzeCIweTR2Sg68fkwTURyifk-y-ACSxggm3ABA4wgQVMIINbABP0gAk8YJ6Sb29Pzo_fh77pRqh4FC1DA_m-iLiGzE-UwnBTpjpXwqiKKZPJMjWpZDShiqVaGgr5K8fuLTJhXFU0ruJnZFg3tX5OAmG00lUax1GVcSYY_CfVNJZRyspMsXyP8O7RFcor0mNjlFnRUQ-nhX_iBT7xgkYFxWGH_bDWSbLcNSDr7FL4vNLliwWA6a6h-2hHHIaaygrJZzDOqjImbI8cdOYtvAdYFEgzEzFnjL749_vuk_ub1-yADMGY-iW5p9bLyWL-ymP2J9a-t_c |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-efficiency+solar+thermophotovoltaic+system+using+a+nanostructure-based+selective+emitter&rft.jtitle=Solar+energy&rft.au=Bhatt%2C+Rajendra&rft.au=Kravchenko%2C+Ivan&rft.au=Gupta%2C+Mool&rft.date=2020-02-01&rft.pub=Elsevier+Ltd&rft.issn=0038-092X&rft.eissn=1471-1257&rft.volume=197&rft.spage=538&rft.epage=545&rft_id=info:doi/10.1016%2Fj.solener.2020.01.029&rft.externalDocID=S0038092X20300372 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon |