High-efficiency solar thermophotovoltaic system using a nanostructure-based selective emitter

•A high-efficiency STPV system was designed and fabricated.•Used a multilayer metal-dielectric coated selective emitter for spectral control.•Quantified optical and thermal losses at various stages of energy conversion.•Overall power conversion efficiency of 8.4% was recorded at 1676 K. In this work...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy Jg. 197; H. C; S. 538 - 545
Hauptverfasser: Bhatt, Rajendra, Kravchenko, Ivan, Gupta, Mool
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Elsevier Ltd 01.02.2020
Pergamon Press Inc
Elsevier
Schlagworte:
ISSN:0038-092X, 1471-1257
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A high-efficiency STPV system was designed and fabricated.•Used a multilayer metal-dielectric coated selective emitter for spectral control.•Quantified optical and thermal losses at various stages of energy conversion.•Overall power conversion efficiency of 8.4% was recorded at 1676 K. In this work, we present the design, fabrication, optimization, and experimental results of a high-efficiency planar solar thermophotovoltaic (STPV) system utilizing a micro-textured absorber and a nanostructure multilayer metal-dielectric coated selective emitter fabricated on a tungsten (W) substrate. Light absorptance of more than 90% was achieved at visible and near-infrared wavelengths using the microtextured absorbing surface. The nanostructure selective emitter consists of two thin-film optical coatings of silicon nitride (Si3N4) and a layer of W in between to increase the surface emissivity in spectral regimes matching the quantum efficiency of the thermophotovoltaic (TPV) cells. Gallium antimonide (GaSb)-based TPV cells are used in our STPV design. The experiment was conducted at different operating temperatures using a high-power continuous wave laser diode stack as a simulated source of concentrated incident radiation. Our experimental setup measured a maximum electrical output power density of 1.71 W/cm2 at 1676 K STPV temperature, and the overall power conversion efficiency of 8.4% after normalizing the output power density to the emitter area. This is the highest STPV system efficiency reported so far for any experimental STPV device. The incident optical laser power on the absorber side was 131 W. This is equivalent to a solar concentration factor of ~2100, which is within the practical limit and readily achievable with Fresnel lens setup.
AbstractList •A high-efficiency STPV system was designed and fabricated.•Used a multilayer metal-dielectric coated selective emitter for spectral control.•Quantified optical and thermal losses at various stages of energy conversion.•Overall power conversion efficiency of 8.4% was recorded at 1676 K. In this work, we present the design, fabrication, optimization, and experimental results of a high-efficiency planar solar thermophotovoltaic (STPV) system utilizing a micro-textured absorber and a nanostructure multilayer metal-dielectric coated selective emitter fabricated on a tungsten (W) substrate. Light absorptance of more than 90% was achieved at visible and near-infrared wavelengths using the microtextured absorbing surface. The nanostructure selective emitter consists of two thin-film optical coatings of silicon nitride (Si3N4) and a layer of W in between to increase the surface emissivity in spectral regimes matching the quantum efficiency of the thermophotovoltaic (TPV) cells. Gallium antimonide (GaSb)-based TPV cells are used in our STPV design. The experiment was conducted at different operating temperatures using a high-power continuous wave laser diode stack as a simulated source of concentrated incident radiation. Our experimental setup measured a maximum electrical output power density of 1.71 W/cm2 at 1676 K STPV temperature, and the overall power conversion efficiency of 8.4% after normalizing the output power density to the emitter area. This is the highest STPV system efficiency reported so far for any experimental STPV device. The incident optical laser power on the absorber side was 131 W. This is equivalent to a solar concentration factor of ~2100, which is within the practical limit and readily achievable with Fresnel lens setup.
Herein, we present the design, fabrication, optimization, and experimental results of a high-efficiency planar solar thermophotovoltaic (STPV) system utilizing a micro-textured absorber and a nanostructure multilayer metal-dielectric coated selective emitter fabricated on a tungsten (W) substrate. Light absorptance of more than 90% was achieved at visible and near-infrared wavelengths using the microtextured absorbing surface. The nanostructure selective emitter consists of two thin-film optical coatings of silicon nitride (Si3N4) and a layer of W in between to increase the surface emissivity in spectral regimes matching the quantum efficiency of the thermophotovoltaic (TPV) cells. Gallium antimonide (GaSb)-based TPV cells are used in our STPV design. The experiment was conducted at different operating temperatures using a high-power continuous wave laser diode stack as a simulated source of concentrated incident radiation. Our experimental setup measured a maximum electrical output power density of 1.71 W/cm2 at 1676 K STPV temperature, and the overall power conversion efficiency of 8.4% after normalizing the output power density to the emitter area. This is the highest STPV system efficiency reported so far for any experimental STPV device. The incident optical laser power on the absorber side was 131 W. This is equivalent to a solar concentration factor of ~2100, which is within the practical limit and readily achievable with Fresnel lens setup.
In this work, we present the design, fabrication, optimization, and experimental results of a high-efficiency planar solar thermophotovoltaic (STPV) system utilizing a micro-textured absorber and a nanostructure multilayer metal-dielectric coated selective emitter fabricated on a tungsten (W) substrate. Light absorptance of more than 90% was achieved at visible and near-infrared wavelengths using the microtextured absorbing surface. The nanostructure selective emitter consists of two thin-film optical coatings of silicon nitride (Si3N4) and a layer of W in between to increase the surface emissivity in spectral regimes matching the quantum efficiency of the thermophotovoltaic (TPV) cells. Gallium antimonide (GaSb)-based TPV cells are used in our STPV design. The experiment was conducted at different operating temperatures using a high-power continuous wave laser diode stack as a simulated source of concentrated incident radiation. Our experimental setup measured a maximum electrical output power density of 1.71 W/cm2 at 1676 K STPV temperature, and the overall power conversion efficiency of 8.4% after normalizing the output power density to the emitter area. This is the highest STPV system efficiency reported so far for any experimental STPV device. The incident optical laser power on the absorber side was 131 W. This is equivalent to a solar concentration factor of ~2100, which is within the practical limit and readily achievable with Fresnel lens setup.
Author Bhatt, Rajendra
Kravchenko, Ivan
Gupta, Mool
Author_xml – sequence: 1
  givenname: Rajendra
  surname: Bhatt
  fullname: Bhatt, Rajendra
  organization: University of Virginia, Charlottesville, VA 22901, USA
– sequence: 2
  givenname: Ivan
  surname: Kravchenko
  fullname: Kravchenko, Ivan
  organization: Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
– sequence: 3
  givenname: Mool
  surname: Gupta
  fullname: Gupta, Mool
  email: mgupta@virginia.edu
  organization: University of Virginia, Charlottesville, VA 22901, USA
BackLink https://www.osti.gov/servlets/purl/1607152$$D View this record in Osti.gov
BookMark eNqFkU9rGzEQxUVxoHbSj1BY2vNuZ7R_tKaHUkyaFAK9JJBLELJ2FMusJVfSGvztK8c59eLTHOa9x5vfLNjMeUeMfUaoELD7tq2iH8lRqDhwqAAr4MsPbI6NwBJ5K2ZsDlD3JSz580e2iHELgAJ7MWcv9_Z1U5IxVlty-ljkKBWKtKGw8_uNT_7gx6SsLuIxJtoVU7TutVCFU87HFCadpkDlWkUaikgj6WQPVNDOpkThhl0ZNUb69D6v2dOv28fVffnw5-736udDqRvEVJoaQWBD2KNYC9OYdUdLLYweuDa9WnemUxxa0LwjZaDtm6broVctb_QA9VBfsy_n3FzJyqhtIr3R3rlcR2KXw1ueRV_Pon3wfyeKSW79FFzuJXktOlE3nENWtWeVDj7GQEbug92pcJQI8oRbbuU7bnnCLQFlxp193__z5RYqWe9SUHa86P5xdlOmdLB5G9_-QYMNpxsGby8k_AMaa6Mt
CitedBy_id crossref_primary_10_1002_admi_202300733
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125783
crossref_primary_10_1016_j_solener_2024_113003
crossref_primary_10_1016_j_solmat_2025_113666
crossref_primary_10_1063_5_0220172
crossref_primary_10_1016_j_enconman_2022_116316
crossref_primary_10_1016_j_enconman_2022_115416
crossref_primary_10_1016_j_est_2024_114498
crossref_primary_10_1016_j_joule_2022_10_002
crossref_primary_10_1051_epjconf_202328709031
crossref_primary_10_1116_6_0003985
crossref_primary_10_3390_en13226157
crossref_primary_10_1016_j_solmat_2021_111554
crossref_primary_10_1016_j_ssc_2021_114645
crossref_primary_10_1016_j_infrared_2025_105827
crossref_primary_10_1016_j_joule_2020_06_021
crossref_primary_10_1073_pnas_2215977119
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122039
crossref_primary_10_1002_adom_202402224
crossref_primary_10_1007_s40097_021_00453_2
crossref_primary_10_1016_j_jqsrt_2020_107163
crossref_primary_10_1016_j_scs_2023_104547
crossref_primary_10_1109_TED_2024_3354219
crossref_primary_10_3390_nano11092443
crossref_primary_10_1016_j_applthermaleng_2023_120844
crossref_primary_10_1109_JPHOTOV_2021_3116918
crossref_primary_10_1016_j_solener_2022_06_040
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122266
crossref_primary_10_1016_j_seta_2022_102031
crossref_primary_10_1016_j_solener_2023_112081
crossref_primary_10_1016_j_solmat_2025_113673
crossref_primary_10_1088_1361_6528_ac3459
crossref_primary_10_1109_TED_2020_3045678
crossref_primary_10_1016_j_solener_2024_112741
crossref_primary_10_1016_j_renene_2025_123102
crossref_primary_10_1016_j_solener_2024_112581
crossref_primary_10_1039_D4EE04604H
crossref_primary_10_1109_TED_2023_3290129
crossref_primary_10_1007_s11431_022_2065_2
crossref_primary_10_1016_j_renene_2021_12_026
crossref_primary_10_1016_j_solener_2022_11_003
crossref_primary_10_1088_1361_6463_ad8e73
crossref_primary_10_1007_s11468_020_01317_1
crossref_primary_10_1016_j_solener_2022_07_046
crossref_primary_10_1016_j_renene_2022_06_058
crossref_primary_10_1016_j_applthermaleng_2024_125272
crossref_primary_10_1016_j_renene_2023_119244
crossref_primary_10_1016_j_tsep_2021_100968
crossref_primary_10_1134_S1063782624603029
crossref_primary_10_1016_j_microrel_2021_114325
crossref_primary_10_1002_solr_202400079
crossref_primary_10_3390_nano11071814
crossref_primary_10_1016_j_renene_2022_07_129
crossref_primary_10_1021_acs_nanolett_5c02226
crossref_primary_10_1007_s13369_022_06712_w
crossref_primary_10_1021_acsphotonics_5c01339
crossref_primary_10_3390_sym14112402
crossref_primary_10_1080_15567036_2021_1890282
crossref_primary_10_1016_j_joule_2025_102005
crossref_primary_10_1016_j_ijthermalsci_2025_109712
crossref_primary_10_3390_nano12061027
crossref_primary_10_1016_j_solmat_2023_112581
crossref_primary_10_1016_j_energy_2021_121954
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123504
crossref_primary_10_3389_fenrg_2023_1124288
crossref_primary_10_1002_ente_202401480
crossref_primary_10_1103_PhysRevApplied_18_034083
crossref_primary_10_1103_PhysRevApplied_20_064015
crossref_primary_10_1002_adom_202301726
crossref_primary_10_1016_j_applthermaleng_2023_119993
crossref_primary_10_1016_j_solmat_2022_111589
crossref_primary_10_1063_5_0132045
crossref_primary_10_1088_2631_7990_ad1dca
crossref_primary_10_3390_en16010416
crossref_primary_10_1016_j_solener_2023_05_018
crossref_primary_10_1016_j_physe_2020_114471
crossref_primary_10_1016_j_solener_2022_11_026
crossref_primary_10_3389_fphy_2021_633971
crossref_primary_10_1016_j_applthermaleng_2024_123276
crossref_primary_10_1117_1_JPE_14_042403
crossref_primary_10_1016_j_apenergy_2024_124657
crossref_primary_10_1016_j_solmat_2021_111562
crossref_primary_10_1007_s00542_023_05483_0
crossref_primary_10_1016_j_enconman_2022_115331
crossref_primary_10_1134_S1063778823090089
crossref_primary_10_3390_en16207085
crossref_primary_10_1364_AO_394326
crossref_primary_10_1002_smll_202208262
crossref_primary_10_1016_j_renene_2022_04_121
crossref_primary_10_1016_j_renene_2024_119960
crossref_primary_10_1109_ACCESS_2020_3017504
Cites_doi 10.1063/1.1506199
10.1364/OE.18.00A314
10.1002/pip.2202
10.1016/j.solmat.2013.12.012
10.1364/AO.37.005271
10.1017/S0022112069002102
10.1109/16.902740
10.7567/APEX.9.112302
10.1364/JOSA.56.001546
10.1002/pip.2201
10.1088/0268-1242/18/5/303
10.1364/OE.22.0A1604
10.1364/OE.17.015145
10.1016/j.solmat.2014.11.049
10.1016/j.solener.2018.10.006
10.1109/66.661282
10.1063/1.2711750
10.1016/j.solener.2019.09.033
10.1038/nnano.2013.286
10.1016/0927-0248(95)00030-5
10.1364/OE.23.0A1149
10.1016/j.solener.2018.01.010
10.1038/nenergy.2016.68
10.1016/j.solener.2016.02.015
10.1063/1.330070
10.7567/JJAP.57.040312
10.1088/0953-8984/17/41/008
10.1073/pnas.1903001116
10.1063/1.1736034
ContentType Journal Article
Copyright 2020 International Solar Energy Society
Copyright Pergamon Press Inc. Feb 2020
Copyright_xml – notice: 2020 International Solar Energy Society
– notice: Copyright Pergamon Press Inc. Feb 2020
CorporateAuthor Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
CorporateAuthor_xml – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
DBID AAYXX
CITATION
7SP
7ST
8FD
C1K
FR3
KR7
L7M
SOI
OIOZB
OTOTI
DOI 10.1016/j.solener.2020.01.029
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1471-1257
EndPage 545
ExternalDocumentID 1607152
10_1016_j_solener_2020_01_029
S0038092X20300372
GroupedDBID --K
--M
-ET
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACGOD
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
AZFZN
BELTK
BKOJK
BKOMP
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JARJE
KOM
LY6
M41
MAGPM
MO0
N9A
NEJ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SAC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSM
SSR
SSZ
T5K
TAE
TN5
UKR
VOH
WH7
WUQ
XOL
XPP
YNT
ZMT
ZY4
~02
~A~
~G-
~KM
~S-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SP
7ST
8FD
AGCQF
C1K
FR3
KR7
L7M
SOI
AALMO
ABPIF
ABPTK
OIOZB
OTOTI
PQEST
TAF
ID FETCH-LOGICAL-c411t-f310714e1817b7f4fb6e9c7fcd2cf8ab6f6a2050c26eaf058446808a524cd03d3
ISICitedReferencesCount 109
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000514747600048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0038-092X
IngestDate Fri May 19 01:42:03 EDT 2023
Wed Aug 13 04:53:36 EDT 2025
Tue Nov 18 22:29:04 EST 2025
Sat Nov 29 07:26:17 EST 2025
Fri Feb 23 02:48:24 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords STPV
Blackbody
Nanostructure
Spectral control
TPV cells
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c411t-f310714e1817b7f4fb6e9c7fcd2cf8ab6f6a2050c26eaf058446808a524cd03d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
National Science Foundation (NSF)
AC05-00OR22725
National Aeronautic and Space Administration (NASA)
USDOE Office of Science (SC), Basic Energy Sciences (BES)
ORCID 0000000349995822
OpenAccessLink https://www.osti.gov/servlets/purl/1607152
PQID 2376734220
PQPubID 9393
PageCount 8
ParticipantIDs osti_scitechconnect_1607152
proquest_journals_2376734220
crossref_primary_10_1016_j_solener_2020_01_029
crossref_citationtrail_10_1016_j_solener_2020_01_029
elsevier_sciencedirect_doi_10_1016_j_solener_2020_01_029
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Solar energy
PublicationYear 2020
Publisher Elsevier Ltd
Pergamon Press Inc
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Pergamon Press Inc
– name: Elsevier
References Datas, Algora (b0040) 2013; 21
Barnes (b0005) 1966; 56
Rühle (b0120) 2016; 130
Yugami, Sai, Nakamura, Nakagawa, Ohtsubo (b0150) 2000
Ravindra, Abedrabbo, Chen, Tong, Nanda, Speranza (b0105) 1998; 11
Nam, Yeng, Lenert, Bermel, Celanovic, Soljačić, Wang (b0080) 2014; 122
Ferguson, Fraas (bib157) 1995; 39
Ungaro, Gray, Gupta (b0135) 2015; 23
Vlasov, Khvostikov, Khvostikova, Gazaryan, Sorokina, Andreev (b0145) 2007
Bermel, Ghebrebrhan, Chan, Yeng, Araghchini, Hamam, Marton, Jensen, Soljačić, Joannopoulos, Johnson, Celanovic (b0015) 2010; 18
Zenker, Heinzel (b0155) 2001; 48
Qian, Shen, Ogawa, Guo (b0095) 2002; 92
Gupta, Ungaro, Foley, Gray (b0045) 2018; 165
Ni, McBurney, Alshehri, Wang (b0085) 2019; 191
Hidnert, Sweeney (b0055) 1925; 20
Vigil, Ruiz, Seuret, Bermúdez, Diéguez (b0140) 2005
Bierman, Lenert, Chan, Bhatia, Celanović, Soljačić, Wang (b0020) 2016; 1
Lenert, Nam, Bierman, Wang (b0075) 2014; 22
Rakić, Djurišić, Elazar, Majewski (b0100) 1998; 37
Shockley, Queisser (b0125) 1961; 32
Datas (b0030) 2015; 134
Datas, Algora (b0035) 2013; 21
Bendelala, Cheknane, Hilal (b0010) 2018; 174
Omair, Scranton, Pazos-Outon, Xiao, Steiner, Ganapati, Peterson, Holzrichter, Atwater, Yablonovitch (b0090) 2019; 116
Saidi, M., Abardeh, R.H., 2010. Air pressure dependence of natural-convection heat transfer. In: WCE 2010 - World Congress on Engineering 2010. pp. 1444–1447.
Crystals, J., n.d. Specification sheet for GaSb cells [WWW Document].
Rotem, Claassen (b0115) 1969; 39
Slack, Huseby (b0130) 1982; 53
Harder, Würfel (b0050) 2003; 18
Rephaeli, Fan (b0110) 2009; 17
Lenert, Bierman, Nam, Chan, Celanović, Soljačić, Wang (b0070) 2014; 9
Kohiyama, Shimizu, Yugami (b0065) 2016; 9
Kohiyama, Shimizu, Yugami (b0060) 2018; 57
Rephaeli (10.1016/j.solener.2020.01.029_b0110) 2009; 17
Harder (10.1016/j.solener.2020.01.029_b0050) 2003; 18
Nam (10.1016/j.solener.2020.01.029_b0080) 2014; 122
Bermel (10.1016/j.solener.2020.01.029_b0015) 2010; 18
Datas (10.1016/j.solener.2020.01.029_b0030) 2015; 134
Bierman (10.1016/j.solener.2020.01.029_b0020) 2016; 1
Gupta (10.1016/j.solener.2020.01.029_b0045) 2018; 165
Yugami (10.1016/j.solener.2020.01.029_b0150) 2000
Hidnert (10.1016/j.solener.2020.01.029_b0055) 1925; 20
Datas (10.1016/j.solener.2020.01.029_b0040) 2013; 21
Lenert (10.1016/j.solener.2020.01.029_b0070) 2014; 9
Ni (10.1016/j.solener.2020.01.029_b0085) 2019; 191
10.1016/j.solener.2020.01.029_b0025
Datas (10.1016/j.solener.2020.01.029_b0035) 2013; 21
Ungaro (10.1016/j.solener.2020.01.029_b0135) 2015; 23
Kohiyama (10.1016/j.solener.2020.01.029_b0060) 2018; 57
Omair (10.1016/j.solener.2020.01.029_b0090) 2019; 116
Rotem (10.1016/j.solener.2020.01.029_b0115) 1969; 39
Rühle (10.1016/j.solener.2020.01.029_b0120) 2016; 130
Vigil (10.1016/j.solener.2020.01.029_b0140) 2005
Lenert (10.1016/j.solener.2020.01.029_b0075) 2014; 22
Vlasov (10.1016/j.solener.2020.01.029_b0145) 2007
Barnes (10.1016/j.solener.2020.01.029_b0005) 1966; 56
Kohiyama (10.1016/j.solener.2020.01.029_b0065) 2016; 9
Zenker (10.1016/j.solener.2020.01.029_b0155) 2001; 48
Slack (10.1016/j.solener.2020.01.029_b0130) 1982; 53
Ferguson (10.1016/j.solener.2020.01.029_bib157) 1995; 39
Shockley (10.1016/j.solener.2020.01.029_b0125) 1961; 32
Qian (10.1016/j.solener.2020.01.029_b0095) 2002; 92
Rakić (10.1016/j.solener.2020.01.029_b0100) 1998; 37
10.1016/j.solener.2020.01.029_bib156
Ravindra (10.1016/j.solener.2020.01.029_b0105) 1998; 11
Bendelala (10.1016/j.solener.2020.01.029_b0010) 2018; 174
References_xml – volume: 174
  start-page: 1053
  year: 2018
  end-page: 1057
  ident: b0010
  article-title: Enhanced low-gap thermophotovoltaic cell efficiency for a wide temperature range based on a selective meta-material emitter
  publication-title: Sol. Energy
– reference: Saidi, M., Abardeh, R.H., 2010. Air pressure dependence of natural-convection heat transfer. In: WCE 2010 - World Congress on Engineering 2010. pp. 1444–1447.
– volume: 20
  start-page: S515
  year: 1925
  ident: b0055
  article-title: Thermal expansion of tungsten
  publication-title: Sci. Pap. BS
– volume: 56
  start-page: 1546
  year: 1966
  ident: b0005
  article-title: Optical Constants of Incandescent Refractory Metals
  publication-title: J. Opt. Soc. Am.
– volume: 39
  start-page: 173
  year: 1969
  end-page: 192
  ident: b0115
  article-title: Natural convection above unconfined horizontal surfaces
  publication-title: J. Fluid Mech.
– volume: 134
  start-page: 275
  year: 2015
  end-page: 290
  ident: b0030
  article-title: Optimum semiconductor bandgaps in single junction and multijunction thermophotovoltaic converters
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 11
  start-page: 30
  year: 1998
  end-page: 39
  ident: b0105
  article-title: Temperature-dependent emissivity of silicon-related materials and structures
  publication-title: IEEE Trans. Semicond. Manuf.
– volume: 32
  start-page: 510
  year: 1961
  end-page: 519
  ident: b0125
  article-title: Detailed balance limit of efficiency of p-n junction solar cells
  publication-title: J. Appl. Phys.
– volume: 122
  start-page: 287
  year: 2014
  end-page: 296
  ident: b0080
  article-title: Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 17
  start-page: 15145
  year: 2009
  ident: b0110
  article-title: Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit
  publication-title: Opt. Express
– volume: 130
  start-page: 139
  year: 2016
  end-page: 147
  ident: b0120
  article-title: Tabulated values of the Shockley-Queisser limit for single junction solar cells
  publication-title: Sol. Energy
– volume: 9
  start-page: 126
  year: 2014
  end-page: 130
  ident: b0070
  article-title: A nanophotonic solar thermophotovoltaic device
  publication-title: Nat. Nanotechnol.
– volume: 23
  start-page: A1149
  year: 2015
  ident: b0135
  article-title: Solar thermophotovoltaic system using nanostructures
  publication-title: Opt. Express
– reference: Crystals, J., n.d. Specification sheet for GaSb cells [WWW Document].
– volume: 18
  year: 2003
  ident: b0050
  article-title: Theoretical limits of thermophotovoltaic solar energy conversion
  publication-title: Semicond. Sci. Technol.
– volume: 165
  start-page: 100
  year: 2018
  end-page: 114
  ident: b0045
  article-title: Optical nanostructures design, fabrication, and applications for solar/thermal energy conversion
  publication-title: Sol. Energy
– volume: 48
  start-page: 367
  year: 2001
  end-page: 376
  ident: b0155
  article-title: Efficiency and power density potential of combustion-driven thermophotovoltaic systems using GaSb photovoltaic cells
  publication-title: IEEE Trans. Electron Devices
– volume: 22
  start-page: A1604
  year: 2014
  ident: b0075
  article-title: Role of spectral non-idealities in the design of solar thermophotovoltaics
  publication-title: Opt. Express
– volume: 21
  start-page: 1025
  year: 2013
  end-page: 1039
  ident: b0040
  article-title: Development and experimental evaluation of a complete solar thermophotovoltaic system
  publication-title: Prog. Photovoltaics Res. Appl.
– volume: 116
  start-page: 15356
  year: 2019
  end-page: 15361
  ident: b0090
  article-title: Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering. Proc. of the
  publication-title: Natl. Acad. Sci.
– volume: 37
  start-page: 5271
  year: 1998
  ident: b0100
  article-title: Optical properties of metallic films for vertical-cavity optoelectronic devices
  publication-title: Appl. Opt.
– start-page: 1214
  year: 2000
  end-page: 1217
  ident: b0150
  article-title: Solar thermophotovoltaic using Al2O3/Er3Al5O12eutectic composite selective emitter
  publication-title: Conference Record of the IEEE Photovoltaic Specialists Conference
– volume: 18
  start-page: A314
  year: 2010
  ident: b0015
  article-title: Design and global optimization of high-efficiency thermophotovoltaic systems
  publication-title: Opt. Express
– volume: 57
  year: 2018
  ident: b0060
  article-title: Radiative heat transfer enhancement using geometric and spectral control for achieving high-efficiency solar-thermophotovoltaic systems
  publication-title: Jpn. J. Appl. Phys.
– volume: 21
  start-page: 1040
  year: 2013
  end-page: 1055
  ident: b0035
  article-title: Global optimization of solar thermophotovoltaic systems
  publication-title: Prog. Photovoltaics Res. Appl.
– volume: 1
  start-page: 16068
  year: 2016
  ident: b0020
  article-title: Enhanced photovoltaic energy conversion using thermally based spectral shaping
  publication-title: Nat. Energy
– volume: 191
  start-page: 623
  year: 2019
  end-page: 628
  ident: b0085
  article-title: Theoretical analysis of solar thermophotovoltaic energy conversion with selective metafilm and cavity reflector
  publication-title: Sol. Energy
– volume: 53
  start-page: 6817
  year: 1982
  ident: b0130
  article-title: Thermal Grüneisen parameters of CdAl2O4, β–Si3N4, and other phenacite-type compounds
  publication-title: J. Appl. Phys.
– year: 2005
  ident: b0140
  article-title: Transparent conducting oxides as selective filters in thermophotovoltaic devices
  publication-title: J. Phys. Condens. Matter.
– volume: 39
  start-page: 11
  year: 1995
  end-page: 18
  ident: bib157
  article-title: Theoretical study of GaSb PV cells efficiency as a function of temperature
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 92
  start-page: 3683
  year: 2002
  end-page: 3687
  ident: b0095
  article-title: Infrared reflection characteristics in InN thin films grown by magnetron sputtering for the application of plasma filters
  publication-title: J. Appl. Phys.
– volume: 9
  year: 2016
  ident: b0065
  article-title: Unidirectional radiative heat transfer with a spectrally selective planar absorber/emitter for high-efficiency solar thermophotovoltaic systems
  publication-title: Appl. Phys. Express
– start-page: 327
  year: 2007
  end-page: 334
  ident: b0145
  article-title: TPV systems with solar powered tungsten emitters
  publication-title: AIP Conf. Proc.
– volume: 92
  start-page: 3683
  year: 2002
  ident: 10.1016/j.solener.2020.01.029_b0095
  article-title: Infrared reflection characteristics in InN thin films grown by magnetron sputtering for the application of plasma filters
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1506199
– volume: 18
  start-page: A314
  year: 2010
  ident: 10.1016/j.solener.2020.01.029_b0015
  article-title: Design and global optimization of high-efficiency thermophotovoltaic systems
  publication-title: Opt. Express
  doi: 10.1364/OE.18.00A314
– volume: 21
  start-page: 1040
  year: 2013
  ident: 10.1016/j.solener.2020.01.029_b0035
  article-title: Global optimization of solar thermophotovoltaic systems
  publication-title: Prog. Photovoltaics Res. Appl.
  doi: 10.1002/pip.2202
– volume: 122
  start-page: 287
  year: 2014
  ident: 10.1016/j.solener.2020.01.029_b0080
  article-title: Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2013.12.012
– volume: 37
  start-page: 5271
  year: 1998
  ident: 10.1016/j.solener.2020.01.029_b0100
  article-title: Optical properties of metallic films for vertical-cavity optoelectronic devices
  publication-title: Appl. Opt.
  doi: 10.1364/AO.37.005271
– volume: 39
  start-page: 173
  year: 1969
  ident: 10.1016/j.solener.2020.01.029_b0115
  article-title: Natural convection above unconfined horizontal surfaces
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112069002102
– volume: 48
  start-page: 367
  year: 2001
  ident: 10.1016/j.solener.2020.01.029_b0155
  article-title: Efficiency and power density potential of combustion-driven thermophotovoltaic systems using GaSb photovoltaic cells
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/16.902740
– volume: 9
  year: 2016
  ident: 10.1016/j.solener.2020.01.029_b0065
  article-title: Unidirectional radiative heat transfer with a spectrally selective planar absorber/emitter for high-efficiency solar thermophotovoltaic systems
  publication-title: Appl. Phys. Express
  doi: 10.7567/APEX.9.112302
– volume: 56
  start-page: 1546
  year: 1966
  ident: 10.1016/j.solener.2020.01.029_b0005
  article-title: Optical Constants of Incandescent Refractory Metals
  publication-title: J. Opt. Soc. Am.
  doi: 10.1364/JOSA.56.001546
– ident: 10.1016/j.solener.2020.01.029_b0025
– volume: 21
  start-page: 1025
  year: 2013
  ident: 10.1016/j.solener.2020.01.029_b0040
  article-title: Development and experimental evaluation of a complete solar thermophotovoltaic system
  publication-title: Prog. Photovoltaics Res. Appl.
  doi: 10.1002/pip.2201
– volume: 18
  year: 2003
  ident: 10.1016/j.solener.2020.01.029_b0050
  article-title: Theoretical limits of thermophotovoltaic solar energy conversion
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/18/5/303
– volume: 22
  start-page: A1604
  year: 2014
  ident: 10.1016/j.solener.2020.01.029_b0075
  article-title: Role of spectral non-idealities in the design of solar thermophotovoltaics
  publication-title: Opt. Express
  doi: 10.1364/OE.22.0A1604
– volume: 17
  start-page: 15145
  year: 2009
  ident: 10.1016/j.solener.2020.01.029_b0110
  article-title: Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit
  publication-title: Opt. Express
  doi: 10.1364/OE.17.015145
– volume: 134
  start-page: 275
  year: 2015
  ident: 10.1016/j.solener.2020.01.029_b0030
  article-title: Optimum semiconductor bandgaps in single junction and multijunction thermophotovoltaic converters
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2014.11.049
– volume: 174
  start-page: 1053
  year: 2018
  ident: 10.1016/j.solener.2020.01.029_b0010
  article-title: Enhanced low-gap thermophotovoltaic cell efficiency for a wide temperature range based on a selective meta-material emitter
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.10.006
– volume: 20
  start-page: S515
  year: 1925
  ident: 10.1016/j.solener.2020.01.029_b0055
  article-title: Thermal expansion of tungsten
  publication-title: Sci. Pap. BS
– volume: 11
  start-page: 30
  year: 1998
  ident: 10.1016/j.solener.2020.01.029_b0105
  article-title: Temperature-dependent emissivity of silicon-related materials and structures
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/66.661282
– start-page: 327
  year: 2007
  ident: 10.1016/j.solener.2020.01.029_b0145
  article-title: TPV systems with solar powered tungsten emitters
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.2711750
– volume: 191
  start-page: 623
  year: 2019
  ident: 10.1016/j.solener.2020.01.029_b0085
  article-title: Theoretical analysis of solar thermophotovoltaic energy conversion with selective metafilm and cavity reflector
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.09.033
– volume: 9
  start-page: 126
  year: 2014
  ident: 10.1016/j.solener.2020.01.029_b0070
  article-title: A nanophotonic solar thermophotovoltaic device
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.286
– volume: 39
  start-page: 11
  year: 1995
  ident: 10.1016/j.solener.2020.01.029_bib157
  article-title: Theoretical study of GaSb PV cells efficiency as a function of temperature
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/0927-0248(95)00030-5
– volume: 23
  start-page: A1149
  year: 2015
  ident: 10.1016/j.solener.2020.01.029_b0135
  article-title: Solar thermophotovoltaic system using nanostructures
  publication-title: Opt. Express
  doi: 10.1364/OE.23.0A1149
– volume: 165
  start-page: 100
  year: 2018
  ident: 10.1016/j.solener.2020.01.029_b0045
  article-title: Optical nanostructures design, fabrication, and applications for solar/thermal energy conversion
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.01.010
– volume: 1
  start-page: 16068
  year: 2016
  ident: 10.1016/j.solener.2020.01.029_b0020
  article-title: Enhanced photovoltaic energy conversion using thermally based spectral shaping
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.68
– volume: 130
  start-page: 139
  year: 2016
  ident: 10.1016/j.solener.2020.01.029_b0120
  article-title: Tabulated values of the Shockley-Queisser limit for single junction solar cells
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.02.015
– start-page: 1214
  year: 2000
  ident: 10.1016/j.solener.2020.01.029_b0150
  article-title: Solar thermophotovoltaic using Al2O3/Er3Al5O12eutectic composite selective emitter
– volume: 53
  start-page: 6817
  year: 1982
  ident: 10.1016/j.solener.2020.01.029_b0130
  article-title: Thermal Grüneisen parameters of CdAl2O4, β–Si3N4, and other phenacite-type compounds
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.330070
– volume: 57
  year: 2018
  ident: 10.1016/j.solener.2020.01.029_b0060
  article-title: Radiative heat transfer enhancement using geometric and spectral control for achieving high-efficiency solar-thermophotovoltaic systems
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.57.040312
– ident: 10.1016/j.solener.2020.01.029_bib156
– year: 2005
  ident: 10.1016/j.solener.2020.01.029_b0140
  article-title: Transparent conducting oxides as selective filters in thermophotovoltaic devices
  publication-title: J. Phys. Condens. Matter.
  doi: 10.1088/0953-8984/17/41/008
– volume: 116
  start-page: 15356
  issue: 31
  year: 2019
  ident: 10.1016/j.solener.2020.01.029_b0090
  article-title: Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering. Proc. of the
  publication-title: Natl. Acad. Sci.
  doi: 10.1073/pnas.1903001116
– volume: 32
  start-page: 510
  year: 1961
  ident: 10.1016/j.solener.2020.01.029_b0125
  article-title: Detailed balance limit of efficiency of p-n junction solar cells
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1736034
SSID ssj0017187
Score 2.6062038
Snippet •A high-efficiency STPV system was designed and fabricated.•Used a multilayer metal-dielectric coated selective emitter for spectral control.•Quantified...
In this work, we present the design, fabrication, optimization, and experimental results of a high-efficiency planar solar thermophotovoltaic (STPV) system...
Herein, we present the design, fabrication, optimization, and experimental results of a high-efficiency planar solar thermophotovoltaic (STPV) system utilizing...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 538
SubjectTerms Absorbers
Absorptance
Absorptivity
Blackbody
Continuous wave lasers
Design optimization
Efficiency
Emissivity
Emitters
Energy conversion efficiency
Fabrication
Gallium
Gallium antimonide
Gallium antimonides
Incident radiation
Multilayers
Nanostructure
Near infrared radiation
Normalizing
Operating temperature
Optical coatings
Quantum efficiency
Radiation measurement
Semiconductor lasers
Silicon nitride
SOLAR ENERGY
Spectral control
STPV
Substrates
Thin films
TPV cells
Tungsten
Wavelengths
Title High-efficiency solar thermophotovoltaic system using a nanostructure-based selective emitter
URI https://dx.doi.org/10.1016/j.solener.2020.01.029
https://www.proquest.com/docview/2376734220
https://www.osti.gov/servlets/purl/1607152
Volume 197
WOSCitedRecordID wos000514747600048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1471-1257
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017187
  issn: 0038-092X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgywEOiKdYWlAO3FYpjuPE8bFCBcqjQqhIe0GR49jqLm2ySrKr_nzGjyRVt1B64BKtItnKZr7MjO1vvkHoTclSWsiiCI1WTEiZ4CHnRIRYxwVhJdVC20LhL-z4OJvP-TdPCWptOwFWVdnFBV_9V1PDPTC2KZ29hbmHSeEG_AajwxXMDtd_MrxhboTKKkPYssrWLF5Nftmc16vTuqvBIXViIb2I82xtdwvErBJV7dRk140KTXQrZ63tkmPIRep80fVM3mVf2WsmVrZ4cFjVnwp32vRdLFVVNoPT_9yIDeCj-mW3Zo82Iyg_rFcug_1a12eXNyFgxYkHQod3rLFhUdjO6KNjdcxb7xoTp-Lio2ziRCS3HLjbS1jut4aVoIxgK8FOV5WPEas_pb8SyAZ6Yc9cW-Z-mtxMk-Moh2nuoh3CEg4ecOfg6HD-aThzgijtFFb9Xxnrvd5e-zx_ymQmYKzFVmi3-crJI_TQLzSCAweQx-iOqp6gB5fkJ5-in1egElioBNtQCRxUAguVQATXQCUYoBJ4qDxDP94fnrz7GPp2G6GkUdSFGjJ9FlEFOR8rmKa6SBWXTMuSSJ2JItWpIDjBkqRKaAyZKzV9W0RCqCxxXMbP0aSqK_UCBYJjbRoHcJoJGvEyw4onSaJxRhOiyniKaP_qcum16E1LlLP8r6abov1h2MqJsdw0IOvtkvuM0mWKOeDtpqG7xo5mmFFTloZ2BuOsHmNCpmivN2_uv_02NwQzFlNC8MvbPuguuj9-VntoAiZUr9A9uekWbfPaI_U3mvqzEQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-efficiency+solar+thermophotovoltaic+system+using+a+nanostructure-based+selective+emitter&rft.jtitle=Solar+energy&rft.au=Bhatt%2C+Rajendra&rft.au=Kravchenko%2C+Ivan&rft.au=Gupta%2C+Mool&rft.date=2020-02-01&rft.issn=0038-092X&rft.volume=197&rft.spage=538&rft.epage=545&rft_id=info:doi/10.1016%2Fj.solener.2020.01.029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_solener_2020_01_029
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon