Improving staff response to seizures on the epilepsy monitoring unit with online EEG seizure detection algorithms

User safety and the quality of diagnostics on the epilepsy monitoring unit (EMU) depend on reaction to seizures. Online seizure detection might improve this. While good sensitivity and specificity is reported, the added value above staff response is unclear. We ascertained the added value of two ele...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Epilepsy & behavior Ročník 84; s. 99 - 104
Hlavní autori: Rommens, Nicole, Geertsema, Evelien, Jansen Holleboom, Lisanne, Cox, Fieke, Visser, Gerhard
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Elsevier Inc 01.07.2018
Predmet:
ISSN:1525-5050, 1525-5069, 1525-5069
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract User safety and the quality of diagnostics on the epilepsy monitoring unit (EMU) depend on reaction to seizures. Online seizure detection might improve this. While good sensitivity and specificity is reported, the added value above staff response is unclear. We ascertained the added value of two electroencephalograph (EEG) seizure detection algorithms in terms of additional detected seizures or faster detection time. EEG-video seizure recordings of people admitted to an EMU over one year were included, with a maximum of two seizures per subject. All recordings were retrospectively analyzed using Encevis EpiScan and BESA Epilepsy. Detection sensitivity and latency of the algorithms were compared to staff responses. False positive rates were estimated on 30 uninterrupted recordings (roughly 24 h per subject) of consecutive subjects admitted to the EMU. EEG-video recordings used included 188 seizures. The response rate of staff was 67%, of Encevis 67%, and of BESA Epilepsy 65%. Of the 62 seizures missed by staff, 66% were recognized by Encevis and 39% by BESA Epilepsy. The median latency was 31 s (staff), 10 s (Encevis), and 14 s (BESA Epilepsy). After correcting for walking time from the observation room to the subject, both algorithms detected faster than staff in 65% of detected seizures. The full recordings included 617 h of EEG. Encevis had a median false positive rate of 4.9 per 24 h and BESA Epilepsy of 2.1 per 24 h. EEG-video seizure detection algorithms may improve reaction to seizures by improving the total number of seizures detected and the speed of detection. The false positive rate is feasible for use in a clinical situation. Implementation of these algorithms might result in faster diagnostic testing and better observation during seizures. •The added value of EEG seizure detection algorithms was assessed.•Two-thirds of missed seizures were detected by Encevis and 39% by BESA Epilepsy.•Algorithm detection preceded staff in 82% for Encevis and 84% for BESA Epilepsy.•Median false positive rate was 2.1 (BESA Epilepsy) and 4.9 (Encevis) per 24 h.•EEG seizure detection can improve detection time and number of detected seizures.
AbstractList User safety and the quality of diagnostics on the epilepsy monitoring unit (EMU) depend on reaction to seizures. Online seizure detection might improve this. While good sensitivity and specificity is reported, the added value above staff response is unclear. We ascertained the added value of two electroencephalograph (EEG) seizure detection algorithms in terms of additional detected seizures or faster detection time. EEG-video seizure recordings of people admitted to an EMU over one year were included, with a maximum of two seizures per subject. All recordings were retrospectively analyzed using Encevis EpiScan and BESA Epilepsy. Detection sensitivity and latency of the algorithms were compared to staff responses. False positive rates were estimated on 30 uninterrupted recordings (roughly 24 h per subject) of consecutive subjects admitted to the EMU. EEG-video recordings used included 188 seizures. The response rate of staff was 67%, of Encevis 67%, and of BESA Epilepsy 65%. Of the 62 seizures missed by staff, 66% were recognized by Encevis and 39% by BESA Epilepsy. The median latency was 31 s (staff), 10 s (Encevis), and 14 s (BESA Epilepsy). After correcting for walking time from the observation room to the subject, both algorithms detected faster than staff in 65% of detected seizures. The full recordings included 617 h of EEG. Encevis had a median false positive rate of 4.9 per 24 h and BESA Epilepsy of 2.1 per 24 h. EEG-video seizure detection algorithms may improve reaction to seizures by improving the total number of seizures detected and the speed of detection. The false positive rate is feasible for use in a clinical situation. Implementation of these algorithms might result in faster diagnostic testing and better observation during seizures. •The added value of EEG seizure detection algorithms was assessed.•Two-thirds of missed seizures were detected by Encevis and 39% by BESA Epilepsy.•Algorithm detection preceded staff in 82% for Encevis and 84% for BESA Epilepsy.•Median false positive rate was 2.1 (BESA Epilepsy) and 4.9 (Encevis) per 24 h.•EEG seizure detection can improve detection time and number of detected seizures.
User safety and the quality of diagnostics on the epilepsy monitoring unit (EMU) depend on reaction to seizures. Online seizure detection might improve this. While good sensitivity and specificity is reported, the added value above staff response is unclear. We ascertained the added value of two electroencephalograph (EEG) seizure detection algorithms in terms of additional detected seizures or faster detection time. EEG-video seizure recordings of people admitted to an EMU over one year were included, with a maximum of two seizures per subject. All recordings were retrospectively analyzed using Encevis EpiScan and BESA Epilepsy. Detection sensitivity and latency of the algorithms were compared to staff responses. False positive rates were estimated on 30 uninterrupted recordings (roughly 24 h per subject) of consecutive subjects admitted to the EMU. EEG-video recordings used included 188 seizures. The response rate of staff was 67%, of Encevis 67%, and of BESA Epilepsy 65%. Of the 62 seizures missed by staff, 66% were recognized by Encevis and 39% by BESA Epilepsy. The median latency was 31 s (staff), 10 s (Encevis), and 14 s (BESA Epilepsy). After correcting for walking time from the observation room to the subject, both algorithms detected faster than staff in 65% of detected seizures. The full recordings included 617 h of EEG. Encevis had a median false positive rate of 4.9 per 24 h and BESA Epilepsy of 2.1 per 24 h. EEG-video seizure detection algorithms may improve reaction to seizures by improving the total number of seizures detected and the speed of detection. The false positive rate is feasible for use in a clinical situation. Implementation of these algorithms might result in faster diagnostic testing and better observation during seizures.
User safety and the quality of diagnostics on the epilepsy monitoring unit (EMU) depend on reaction to seizures. Online seizure detection might improve this. While good sensitivity and specificity is reported, the added value above staff response is unclear. We ascertained the added value of two electroencephalograph (EEG) seizure detection algorithms in terms of additional detected seizures or faster detection time.OBJECTIVEUser safety and the quality of diagnostics on the epilepsy monitoring unit (EMU) depend on reaction to seizures. Online seizure detection might improve this. While good sensitivity and specificity is reported, the added value above staff response is unclear. We ascertained the added value of two electroencephalograph (EEG) seizure detection algorithms in terms of additional detected seizures or faster detection time.EEG-video seizure recordings of people admitted to an EMU over one year were included, with a maximum of two seizures per subject. All recordings were retrospectively analyzed using Encevis EpiScan and BESA Epilepsy. Detection sensitivity and latency of the algorithms were compared to staff responses. False positive rates were estimated on 30 uninterrupted recordings (roughly 24 h per subject) of consecutive subjects admitted to the EMU.METHODSEEG-video seizure recordings of people admitted to an EMU over one year were included, with a maximum of two seizures per subject. All recordings were retrospectively analyzed using Encevis EpiScan and BESA Epilepsy. Detection sensitivity and latency of the algorithms were compared to staff responses. False positive rates were estimated on 30 uninterrupted recordings (roughly 24 h per subject) of consecutive subjects admitted to the EMU.EEG-video recordings used included 188 seizures. The response rate of staff was 67%, of Encevis 67%, and of BESA Epilepsy 65%. Of the 62 seizures missed by staff, 66% were recognized by Encevis and 39% by BESA Epilepsy. The median latency was 31 s (staff), 10 s (Encevis), and 14 s (BESA Epilepsy). After correcting for walking time from the observation room to the subject, both algorithms detected faster than staff in 65% of detected seizures. The full recordings included 617 h of EEG. Encevis had a median false positive rate of 4.9 per 24 h and BESA Epilepsy of 2.1 per 24 h.RESULTSEEG-video recordings used included 188 seizures. The response rate of staff was 67%, of Encevis 67%, and of BESA Epilepsy 65%. Of the 62 seizures missed by staff, 66% were recognized by Encevis and 39% by BESA Epilepsy. The median latency was 31 s (staff), 10 s (Encevis), and 14 s (BESA Epilepsy). After correcting for walking time from the observation room to the subject, both algorithms detected faster than staff in 65% of detected seizures. The full recordings included 617 h of EEG. Encevis had a median false positive rate of 4.9 per 24 h and BESA Epilepsy of 2.1 per 24 h.EEG-video seizure detection algorithms may improve reaction to seizures by improving the total number of seizures detected and the speed of detection. The false positive rate is feasible for use in a clinical situation. Implementation of these algorithms might result in faster diagnostic testing and better observation during seizures.CONCLUSIONSEEG-video seizure detection algorithms may improve reaction to seizures by improving the total number of seizures detected and the speed of detection. The false positive rate is feasible for use in a clinical situation. Implementation of these algorithms might result in faster diagnostic testing and better observation during seizures.
Author Jansen Holleboom, Lisanne
Geertsema, Evelien
Visser, Gerhard
Rommens, Nicole
Cox, Fieke
Author_xml – sequence: 1
  givenname: Nicole
  surname: Rommens
  fullname: Rommens, Nicole
  organization: Stichting Epilepsie Instellingen Nederland (SEIN), Postbus 540, Hoofddorp 2130 AM, The Netherlands
– sequence: 2
  givenname: Evelien
  orcidid: 0000-0001-6676-2620
  surname: Geertsema
  fullname: Geertsema, Evelien
  email: egeertsema@sein.nl
  organization: Stichting Epilepsie Instellingen Nederland (SEIN), Postbus 540, Hoofddorp 2130 AM, The Netherlands
– sequence: 3
  givenname: Lisanne
  surname: Jansen Holleboom
  fullname: Jansen Holleboom, Lisanne
  organization: Stichting Epilepsie Instellingen Nederland (SEIN), Postbus 540, Hoofddorp 2130 AM, The Netherlands
– sequence: 4
  givenname: Fieke
  surname: Cox
  fullname: Cox, Fieke
  email: fxoc@sein.nl
  organization: Stichting Epilepsie Instellingen Nederland (SEIN), Postbus 540, Hoofddorp 2130 AM, The Netherlands
– sequence: 5
  givenname: Gerhard
  orcidid: 0000-0001-6708-6396
  surname: Visser
  fullname: Visser, Gerhard
  email: gvisser@sein.nl
  organization: Stichting Epilepsie Instellingen Nederland (SEIN), Postbus 540, Hoofddorp 2130 AM, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29758446$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1O3DAUha0KVP76BJWQl2wm-Dq_VtUFQlOKhMQG1pbj3DAeEjvYDtX06evpAAs2s_KV_X2W7jkn5MA6i4R8B5YBg-pynW2wxVXGGTQZKzLGqy_kGEpeLkpWiYOPuWRH5CSENWMAZQ5fyREXddkURXVMXm7HybtXY59oiKrvqccwORuQRkcDmr9zuqDO0rhCipMZcAobOjprovNba04T_WPiKkGDsUiXy5t3kXYYUUeTdDU8JT6uxnBGDns1BPz2dp6Sx1_Lh-vfi7v7m9vrq7uFLgDiAmsFTaPzNgfoclX3LO9LLRR0ZcPrKr10Td2C6GsuVNuKVheCoep1VYimSMopudj9m_Z7mTFEOZqgcRiURTcHyVkuuABeQULP39C5HbGTkzej8hv5HlMC8h2gvQvBY_-BAJPbMuRa_i9DbsuQrJCpjGSJT5Y2UW3jiF6ZYY_7c-diiujVoJdBG7QaO-NTpLJzZo__45OvUztGq-EZN3vtf6oOvFo
CitedBy_id crossref_primary_10_1016_j_seizure_2020_06_002
crossref_primary_10_1016_j_yebeh_2023_109571
crossref_primary_10_3390_a12090176
crossref_primary_10_1017_cjn_2023_58
crossref_primary_10_1109_ACCESS_2019_2944273
crossref_primary_10_1016_j_seizure_2022_01_009
crossref_primary_10_1109_TCDS_2018_2868121
crossref_primary_10_3390_brainsci12091194
crossref_primary_10_1016_j_yebeh_2023_109518
crossref_primary_10_1016_j_heliyon_2024_e35973
crossref_primary_10_1016_j_eplepsyres_2022_106869
crossref_primary_10_1017_cjn_2020_268
crossref_primary_10_1002_epi4_70047
crossref_primary_10_3389_fnhum_2024_1484593
Cites_doi 10.1016/j.yebeh.2012.10.022
10.1016/j.clinph.2007.07.017
10.1016/j.neucli.2012.09.091
10.1046/j.1528-1157.2002.37801.x
10.1016/j.yebeh.2014.06.023
10.1155/2011/874295
10.1046/j.1528-1157.43.s.3.14.x
10.1016/j.seizure.2011.10.004
10.1016/j.yebeh.2015.02.004
10.1016/j.knosys.2013.02.014
10.1111/j.0013-9580.2004.51003.x
10.1016/j.yebeh.2016.06.002
10.1016/0013-4694(82)90038-4
10.1046/j.1528-1157.2003.34702.x
10.1186/1687-6180-2014-183
10.1016/j.clinph.2013.12.104
10.1016/j.yebeh.2012.01.018
10.1016/j.clinph.2014.09.023
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.yebeh.2018.04.026
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1525-5069
EndPage 104
ExternalDocumentID 29758446
10_1016_j_yebeh_2018_04_026
S1525505018302129
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABTEW
ABUFD
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
LG5
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OP~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SCU
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSN
SSZ
T5K
UHS
UNMZH
XPP
Z5R
ZGI
ZMT
ZU3
~G-
~HD
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
RIG
9DU
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c411t-e7a188c3b311d3a7f03f5c9a1d582768c3d87b19f729abb9bc490eafc649841d3
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000436923800016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1525-5050
1525-5069
IngestDate Wed Oct 01 14:45:14 EDT 2025
Thu Apr 03 07:04:42 EDT 2025
Tue Nov 18 22:24:46 EST 2025
Sat Nov 29 06:29:55 EST 2025
Fri Feb 23 02:37:23 EST 2024
Tue Oct 14 19:27:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Real-time performance
EMU
Automated seizure detection
EEG
Epilepsy
Language English
License Copyright © 2018 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c411t-e7a188c3b311d3a7f03f5c9a1d582768c3d87b19f729abb9bc490eafc649841d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6708-6396
0000-0001-6676-2620
PMID 29758446
PQID 2039291261
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_2039291261
pubmed_primary_29758446
crossref_primary_10_1016_j_yebeh_2018_04_026
crossref_citationtrail_10_1016_j_yebeh_2018_04_026
elsevier_sciencedirect_doi_10_1016_j_yebeh_2018_04_026
elsevier_clinicalkey_doi_10_1016_j_yebeh_2018_04_026
PublicationCentury 2000
PublicationDate July 2018
2018-07-00
20180701
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: July 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Epilepsy & behavior
PublicationTitleAlternate Epilepsy Behav
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ghougassian, D'Souza, Cook, O'Brien (bb0010) 2004; 45
Acharya, Vinitha Sree, Swapna, Martis, Suri (bb0040) 2013; 45
Johanson, Valli, Revonsuo (bb0020) 2011; 24
Hopfengärtner, Kasper, Graf, Gollwitzer, Kreiselmeyer, Stefan (bb0070) 2014; 125
Ramgopal, Thome-Souza, Jackson, Kadish, Sánchez Fernández, Klehm (bb0050) 2014; 37
Bauerschmidt, Koshkelashvili, Ezeani, Yoo, Zhang, Manganas (bb0025) 2013; 26
Fürbass, Ossenblok, Hartmann, Perko, Skupch, Lindinger (bb0075) 2015; 126
Leutmezer, Schernthaner, Lurger, Pötzelberger, Baumgartner (bb0095) 2003; 44
Cascino (bb0005) 2002; 43
Hartmann, Furbass, Perko, Skupch, Lackmayer, Baumgartner (bb0055) 2011
Fahoum, Omer, Kipervasser, Bar-Adon, Neufeld (bb0015) 2016; 61
Zijlmans, Flanagan, Gotman (bb0100) 2002; 43
Hopfengärtner, Kerling, Bauer, Stefan (bb0065) 2007; 118
Shin, Pennell, Lee, Doucette, Srinivasan, Dworetzky (bb0090) 2012; 23
Furbass, Hartmann, Perko, Skupch, Dollfuss, Gritsch (bb0060) 2012
Eisermann, Kaminska, Moutard, Soufflet, Plouin (bb0085) 2013; 43
Atkinson, Hari, Schaefer, Shah (bb0030) 2012; 21
Alotaiby, Alshebeili, Alshawi, Ahmad, Abd El-Samie (bb0045) 2014; 2014
Rubboli, Beniczky, Claus, Canevini, Kahane, Stefan (bb0080) 2015; 44
Gotman (bb0035) 1982; 54
Furbass (10.1016/j.yebeh.2018.04.026_bb0060) 2012
Fahoum (10.1016/j.yebeh.2018.04.026_bb0015) 2016; 61
Cascino (10.1016/j.yebeh.2018.04.026_bb0005) 2002; 43
Leutmezer (10.1016/j.yebeh.2018.04.026_bb0095) 2003; 44
Hopfengärtner (10.1016/j.yebeh.2018.04.026_bb0070) 2014; 125
Gotman (10.1016/j.yebeh.2018.04.026_bb0035) 1982; 54
Bauerschmidt (10.1016/j.yebeh.2018.04.026_bb0025) 2013; 26
Shin (10.1016/j.yebeh.2018.04.026_bb0090) 2012; 23
Hartmann (10.1016/j.yebeh.2018.04.026_bb0055) 2011
Ghougassian (10.1016/j.yebeh.2018.04.026_bb0010) 2004; 45
Fürbass (10.1016/j.yebeh.2018.04.026_bb0075) 2015; 126
Eisermann (10.1016/j.yebeh.2018.04.026_bb0085) 2013; 43
Zijlmans (10.1016/j.yebeh.2018.04.026_bb0100) 2002; 43
Ramgopal (10.1016/j.yebeh.2018.04.026_bb0050) 2014; 37
Atkinson (10.1016/j.yebeh.2018.04.026_bb0030) 2012; 21
Rubboli (10.1016/j.yebeh.2018.04.026_bb0080) 2015; 44
Johanson (10.1016/j.yebeh.2018.04.026_bb0020) 2011; 24
Hopfengärtner (10.1016/j.yebeh.2018.04.026_bb0065) 2007; 118
Acharya (10.1016/j.yebeh.2018.04.026_bb0040) 2013; 45
Alotaiby (10.1016/j.yebeh.2018.04.026_bb0045) 2014; 2014
References_xml – volume: 54
  start-page: 530
  year: 1982
  end-page: 540
  ident: bb0035
  article-title: Automatic recognition of epileptic seizures in the EEG
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 45
  start-page: 928
  year: 2004
  end-page: 932
  ident: bb0010
  article-title: Evaluating the utility of inpatient video-EEG monitoring
  publication-title: Epilepsia
– volume: 61
  start-page: 162
  year: 2016
  end-page: 167
  ident: bb0015
  article-title: Safety in the epilepsy monitoring unit: a retrospective study of 524 consecutive admissions
  publication-title: Epilepsy Behav
– volume: 21
  start-page: 124
  year: 2012
  end-page: 127
  ident: bb0030
  article-title: Improving safety outcomes in the epilepsy monitoring unit
  publication-title: Seizure
– volume: 2014
  start-page: 183
  year: 2014
  ident: bb0045
  article-title: EEG seizure detection and prediction algorithms: a survey
  publication-title: EURASIP J Adv Signal Process
– volume: 43
  start-page: 80
  year: 2002
  end-page: 93
  ident: bb0005
  article-title: Video-EEG monitoring in adults
  publication-title: Epilepsia
– volume: 43
  start-page: 35
  year: 2013
  end-page: 65
  ident: bb0085
  article-title: Normal EEG in childhood: from neonates to adolescents
  publication-title: Neurophysiol Clin Neurophysiol
– volume: 44
  start-page: 348
  year: 2003
  end-page: 354
  ident: bb0095
  article-title: Electrocardiographic changes at the onset of epileptic seizures
  publication-title: Epilepsia
– volume: 37
  start-page: 291
  year: 2014
  end-page: 307
  ident: bb0050
  article-title: Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy
  publication-title: Epilepsy Behav
– volume: 23
  start-page: 458
  year: 2012
  end-page: 461
  ident: bb0090
  article-title: Efficacy of safety signals in the epilepsy monitoring unit (EMU): should we worry?
  publication-title: Epilepsy Behav
– volume: 44
  start-page: 179
  year: 2015
  end-page: 184
  ident: bb0080
  article-title: A European survey on current practices in epilepsy monitoring units and implications for patients' safety
  publication-title: Epilepsy Behav
– start-page: 6096
  year: 2011
  end-page: 6099
  ident: bb0055
  article-title: EpiScan: online seizure detection for epilepsy monitoring units
  publication-title: 2011 Annu. Int. Conf. IEEE Eng. Med. Biol. Soc
– start-page: 1020
  year: 2012
  end-page: 1023
  ident: bb0060
  article-title: Combining time series and frequency domain analysis for a automatic seizure detection
  publication-title: 2012 Annu. Int. Conf. IEEE Eng. Med. Biol. Soc
– volume: 24
  start-page: 11
  year: 2011
  end-page: 20
  ident: bb0020
  article-title: How to assess ictal consciousness?
  publication-title: Behav Neurol
– volume: 126
  start-page: 1124
  year: 2015
  end-page: 1131
  ident: bb0075
  article-title: Prospective multi-center study of an automatic online seizure detection system for epilepsy monitoring units
  publication-title: Clin Neurophysiol
– volume: 43
  start-page: 847
  year: 2002
  end-page: 854
  ident: bb0100
  article-title: Heart rate changes and ECG abnormalities during epileptic seizures: prevalence and definition of an objective clinical sign
  publication-title: Epilepsia
– volume: 45
  start-page: 147
  year: 2013
  end-page: 165
  ident: bb0040
  article-title: Automated EEG analysis of epilepsy: a review
  publication-title: Knowl Based Syst
– volume: 125
  start-page: 1346
  year: 2014
  end-page: 1352
  ident: bb0070
  article-title: Automatic seizure detection in long-term scalp EEG using an adaptive thresholding technique: a validation study for clinical routine
  publication-title: Clin Neurophysiol
– volume: 118
  start-page: 2332
  year: 2007
  end-page: 2343
  ident: bb0065
  article-title: An efficient, robust and fast method for the offline detection of epileptic seizures in long-term scalp EEG recordings
  publication-title: Clin Neurophysiol
– volume: 26
  start-page: 25
  year: 2013
  end-page: 28
  ident: bb0025
  article-title: Prospective assessment of ictal behavior using the revised Responsiveness in Epilepsy Scale (RES-II)
  publication-title: Epilepsy Behav
– start-page: 1020
  year: 2012
  ident: 10.1016/j.yebeh.2018.04.026_bb0060
  article-title: Combining time series and frequency domain analysis for a automatic seizure detection
– volume: 26
  start-page: 25
  year: 2013
  ident: 10.1016/j.yebeh.2018.04.026_bb0025
  article-title: Prospective assessment of ictal behavior using the revised Responsiveness in Epilepsy Scale (RES-II)
  publication-title: Epilepsy Behav
  doi: 10.1016/j.yebeh.2012.10.022
– volume: 118
  start-page: 2332
  year: 2007
  ident: 10.1016/j.yebeh.2018.04.026_bb0065
  article-title: An efficient, robust and fast method for the offline detection of epileptic seizures in long-term scalp EEG recordings
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2007.07.017
– volume: 43
  start-page: 35
  year: 2013
  ident: 10.1016/j.yebeh.2018.04.026_bb0085
  article-title: Normal EEG in childhood: from neonates to adolescents
  publication-title: Neurophysiol Clin Neurophysiol
  doi: 10.1016/j.neucli.2012.09.091
– volume: 43
  start-page: 847
  year: 2002
  ident: 10.1016/j.yebeh.2018.04.026_bb0100
  article-title: Heart rate changes and ECG abnormalities during epileptic seizures: prevalence and definition of an objective clinical sign
  publication-title: Epilepsia
  doi: 10.1046/j.1528-1157.2002.37801.x
– volume: 37
  start-page: 291
  year: 2014
  ident: 10.1016/j.yebeh.2018.04.026_bb0050
  article-title: Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy
  publication-title: Epilepsy Behav
  doi: 10.1016/j.yebeh.2014.06.023
– start-page: 6096
  year: 2011
  ident: 10.1016/j.yebeh.2018.04.026_bb0055
  article-title: EpiScan: online seizure detection for epilepsy monitoring units
– volume: 24
  start-page: 11
  year: 2011
  ident: 10.1016/j.yebeh.2018.04.026_bb0020
  article-title: How to assess ictal consciousness?
  publication-title: Behav Neurol
  doi: 10.1155/2011/874295
– volume: 43
  start-page: 80
  year: 2002
  ident: 10.1016/j.yebeh.2018.04.026_bb0005
  article-title: Video-EEG monitoring in adults
  publication-title: Epilepsia
  doi: 10.1046/j.1528-1157.43.s.3.14.x
– volume: 21
  start-page: 124
  year: 2012
  ident: 10.1016/j.yebeh.2018.04.026_bb0030
  article-title: Improving safety outcomes in the epilepsy monitoring unit
  publication-title: Seizure
  doi: 10.1016/j.seizure.2011.10.004
– volume: 44
  start-page: 179
  year: 2015
  ident: 10.1016/j.yebeh.2018.04.026_bb0080
  article-title: A European survey on current practices in epilepsy monitoring units and implications for patients' safety
  publication-title: Epilepsy Behav
  doi: 10.1016/j.yebeh.2015.02.004
– volume: 45
  start-page: 147
  year: 2013
  ident: 10.1016/j.yebeh.2018.04.026_bb0040
  article-title: Automated EEG analysis of epilepsy: a review
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2013.02.014
– volume: 45
  start-page: 928
  year: 2004
  ident: 10.1016/j.yebeh.2018.04.026_bb0010
  article-title: Evaluating the utility of inpatient video-EEG monitoring
  publication-title: Epilepsia
  doi: 10.1111/j.0013-9580.2004.51003.x
– volume: 61
  start-page: 162
  year: 2016
  ident: 10.1016/j.yebeh.2018.04.026_bb0015
  article-title: Safety in the epilepsy monitoring unit: a retrospective study of 524 consecutive admissions
  publication-title: Epilepsy Behav
  doi: 10.1016/j.yebeh.2016.06.002
– volume: 54
  start-page: 530
  year: 1982
  ident: 10.1016/j.yebeh.2018.04.026_bb0035
  article-title: Automatic recognition of epileptic seizures in the EEG
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(82)90038-4
– volume: 44
  start-page: 348
  year: 2003
  ident: 10.1016/j.yebeh.2018.04.026_bb0095
  article-title: Electrocardiographic changes at the onset of epileptic seizures
  publication-title: Epilepsia
  doi: 10.1046/j.1528-1157.2003.34702.x
– volume: 2014
  start-page: 183
  year: 2014
  ident: 10.1016/j.yebeh.2018.04.026_bb0045
  article-title: EEG seizure detection and prediction algorithms: a survey
  publication-title: EURASIP J Adv Signal Process
  doi: 10.1186/1687-6180-2014-183
– volume: 125
  start-page: 1346
  year: 2014
  ident: 10.1016/j.yebeh.2018.04.026_bb0070
  article-title: Automatic seizure detection in long-term scalp EEG using an adaptive thresholding technique: a validation study for clinical routine
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2013.12.104
– volume: 23
  start-page: 458
  year: 2012
  ident: 10.1016/j.yebeh.2018.04.026_bb0090
  article-title: Efficacy of safety signals in the epilepsy monitoring unit (EMU): should we worry?
  publication-title: Epilepsy Behav
  doi: 10.1016/j.yebeh.2012.01.018
– volume: 126
  start-page: 1124
  year: 2015
  ident: 10.1016/j.yebeh.2018.04.026_bb0075
  article-title: Prospective multi-center study of an automatic online seizure detection system for epilepsy monitoring units
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2014.09.023
SSID ssj0011531
Score 2.3007462
Snippet User safety and the quality of diagnostics on the epilepsy monitoring unit (EMU) depend on reaction to seizures. Online seizure detection might improve this....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 99
SubjectTerms Automated seizure detection
EEG
EMU
Epilepsy
Real-time performance
Title Improving staff response to seizures on the epilepsy monitoring unit with online EEG seizure detection algorithms
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1525505018302129
https://dx.doi.org/10.1016/j.yebeh.2018.04.026
https://www.ncbi.nlm.nih.gov/pubmed/29758446
https://www.proquest.com/docview/2039291261
Volume 84
WOSCitedRecordID wos000436923800016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1525-5069
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011531
  issn: 1525-5050
  databaseCode: AIEXJ
  dateStart: 20000201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe6DSEuiG86YDIStxAUJ07iHCfUbUwwcRiotyh2HOho065Jq43_h_-T5_ijhbHCDlyiKPKz4rxfnt-X30PoVcVjwlkc-HEpuU8jIXyeiMSPGCekkIJlXTbh5_fpyQkbDrOPvd4PexZmOU7rml1cZLP_ymp4BsxWR2dvwG43KTyAe2A6XIHtcP0nxv_iJqgqb66zYLsWGY0cfV_MpQ0ReHIGQmHWXHqT7tfucvEWcKfds7qKhjcYHFpCr5StNM3Fx19gfPvVVDu3zn07oUKULQGwCupMJlLr7R0AHaYOpZy3jZx0iuxgKUEvdpg9LpT32ztSDg6wCCbakdAU9SofwPRKPhjJb3Ldi0GYy3h1gjeMfdDGgnXJzOiaaNV9lMwmbXoWX5H_2hVx9uYSsKlCTYR1hWzDP1Tb_m0XdLmJNu3tLO8mydUkeUBzmGQL7YRpnIHw3Nl_Nxgeu3AVbBu6MK9ZhC1v1SUSXnmX61Sg60ycTtU5vYfuGhsF72ts3Uc9WT9Atz-YLIyH6NxBDHcQwxZiuJ1iCzE8rTFADFuI4RXEsIIYVhDDGmIYIGYJsYMYXkHsEfp0MDh9e-Sb1h2-oIS0vkwLwpiIeERIGRVpFURVLLKClDELwcIVUclSTrIKbLuC84wLmgWyqERCM0aB5DHarqe1fIpwFAuwASiLKhhUVSEvSaFqPFVFmEoaBn0U2q-ZC1PXXrVXGecbONlHrx3RTJd12TycWjbl9sQy7LE5wG4zWeLIjEKrFdW_E760WMhB3KsYXlHL6aKBQcqgIWFC-uiJBolbgDokzyhNdm-2uGfozuqPfI622_lCvkC3xLIdNfM9tJUO2Z4B_E-jxt14
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+staff+response+to+seizures+on+the+epilepsy+monitoring+unit+with+online+EEG+seizure+detection+algorithms&rft.jtitle=Epilepsy+%26+behavior&rft.au=Rommens%2C+Nicole&rft.au=Geertsema%2C+Evelien&rft.au=Jansen+Holleboom%2C+Lisanne&rft.au=Cox%2C+Fieke&rft.date=2018-07-01&rft.issn=1525-5050&rft.volume=84&rft.spage=99&rft.epage=104&rft_id=info:doi/10.1016%2Fj.yebeh.2018.04.026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_yebeh_2018_04_026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-5050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-5050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-5050&client=summon