What is Machine Learning? A Primer for the Epidemiologist

Machine learning is a branch of computer science that has the potential to transform epidemiologic sciences. Amid a growing focus on "Big Data," it offers epidemiologists new tools to tackle problems for which classical methods are not well-suited. In order to critically evaluate the value...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:American journal of epidemiology Ročník 188; číslo 12; s. 2222
Hlavní autoři: Bi, Qifang, Goodman, Katherine E, Kaminsky, Joshua, Lessler, Justin
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 31.12.2019
Témata:
ISSN:1476-6256, 1476-6256
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Machine learning is a branch of computer science that has the potential to transform epidemiologic sciences. Amid a growing focus on "Big Data," it offers epidemiologists new tools to tackle problems for which classical methods are not well-suited. In order to critically evaluate the value of integrating machine learning algorithms and existing methods, however, it is essential to address language and technical barriers between the two fields that can make it difficult for epidemiologists to read and assess machine learning studies. Here, we provide an overview of the concepts and terminology used in machine learning literature, which encompasses a diverse set of tools with goals ranging from prediction to classification to clustering. We provide a brief introduction to 5 common machine learning algorithms and 4 ensemble-based approaches. We then summarize epidemiologic applications of machine learning techniques in the published literature. We recommend approaches to incorporate machine learning in epidemiologic research and discuss opportunities and challenges for integrating machine learning and existing epidemiologic research methods.
AbstractList Machine learning is a branch of computer science that has the potential to transform epidemiologic sciences. Amid a growing focus on "Big Data," it offers epidemiologists new tools to tackle problems for which classical methods are not well-suited. In order to critically evaluate the value of integrating machine learning algorithms and existing methods, however, it is essential to address language and technical barriers between the two fields that can make it difficult for epidemiologists to read and assess machine learning studies. Here, we provide an overview of the concepts and terminology used in machine learning literature, which encompasses a diverse set of tools with goals ranging from prediction to classification to clustering. We provide a brief introduction to 5 common machine learning algorithms and 4 ensemble-based approaches. We then summarize epidemiologic applications of machine learning techniques in the published literature. We recommend approaches to incorporate machine learning in epidemiologic research and discuss opportunities and challenges for integrating machine learning and existing epidemiologic research methods.Machine learning is a branch of computer science that has the potential to transform epidemiologic sciences. Amid a growing focus on "Big Data," it offers epidemiologists new tools to tackle problems for which classical methods are not well-suited. In order to critically evaluate the value of integrating machine learning algorithms and existing methods, however, it is essential to address language and technical barriers between the two fields that can make it difficult for epidemiologists to read and assess machine learning studies. Here, we provide an overview of the concepts and terminology used in machine learning literature, which encompasses a diverse set of tools with goals ranging from prediction to classification to clustering. We provide a brief introduction to 5 common machine learning algorithms and 4 ensemble-based approaches. We then summarize epidemiologic applications of machine learning techniques in the published literature. We recommend approaches to incorporate machine learning in epidemiologic research and discuss opportunities and challenges for integrating machine learning and existing epidemiologic research methods.
Machine learning is a branch of computer science that has the potential to transform epidemiologic sciences. Amid a growing focus on "Big Data," it offers epidemiologists new tools to tackle problems for which classical methods are not well-suited. In order to critically evaluate the value of integrating machine learning algorithms and existing methods, however, it is essential to address language and technical barriers between the two fields that can make it difficult for epidemiologists to read and assess machine learning studies. Here, we provide an overview of the concepts and terminology used in machine learning literature, which encompasses a diverse set of tools with goals ranging from prediction to classification to clustering. We provide a brief introduction to 5 common machine learning algorithms and 4 ensemble-based approaches. We then summarize epidemiologic applications of machine learning techniques in the published literature. We recommend approaches to incorporate machine learning in epidemiologic research and discuss opportunities and challenges for integrating machine learning and existing epidemiologic research methods.
Author Goodman, Katherine E
Lessler, Justin
Kaminsky, Joshua
Bi, Qifang
Author_xml – sequence: 1
  givenname: Qifang
  surname: Bi
  fullname: Bi, Qifang
– sequence: 2
  givenname: Katherine E
  surname: Goodman
  fullname: Goodman, Katherine E
– sequence: 3
  givenname: Joshua
  surname: Kaminsky
  fullname: Kaminsky, Joshua
– sequence: 4
  givenname: Justin
  surname: Lessler
  fullname: Lessler, Justin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31509183$$D View this record in MEDLINE/PubMed
BookMark eNpNj01LAzEYhIMo9kMv_gDJ0cvavMkmuzlJKfUDKnpQPC7Z5E2buh91s0X017tgBU8zAw_DzIQcN22DhFwAuwamxcxscfb--Q25PiJjSDOVKC7V8T8_IpMYt4wBaMlOyUiAZBpyMSb6bWN6GiJ9NHYTGqQrNF0TmvUNndPnLtTYUd92tN8gXe6Cwzq0VbsOsT8jJ95UEc8POiWvt8uXxX2yerp7WMxXiU0B-sRlZSnQp04ZMLb0oHhpdMpdCj4rJTjUqRVM-tx6L4XJ0LshO5tZOQCOT8nVb--uaz_2GPuiDtFiVZkG230sOM_zDIRSYkAvD-i-rNEVu2G_6b6Kv7v8B2cOWMA
CitedBy_id crossref_primary_10_3389_fninf_2022_893452
crossref_primary_10_1089_aid_2023_0137
crossref_primary_10_2196_35114
crossref_primary_10_3389_fnagi_2022_897611
crossref_primary_10_3389_fenrg_2023_1142243
crossref_primary_10_3389_fpubh_2024_1328353
crossref_primary_10_2196_35831
crossref_primary_10_1007_s00240_024_01587_y
crossref_primary_10_2196_47971
crossref_primary_10_1007_s00345_024_05314_5
crossref_primary_10_3389_fpsyg_2025_1601723
crossref_primary_10_1007_s12144_024_06934_1
crossref_primary_10_1038_s41370_020_0257_8
crossref_primary_10_1007_s13369_022_06654_3
crossref_primary_10_1016_j_semarthrit_2024_152501
crossref_primary_10_3389_fonc_2023_1197447
crossref_primary_10_1136_bjsports_2020_103604
crossref_primary_10_3389_fnins_2023_1113927
crossref_primary_10_1007_s40200_023_01357_4
crossref_primary_10_1038_s41598_025_01651_6
crossref_primary_10_3389_fcvm_2022_839379
crossref_primary_10_1007_s40572_020_00282_5
crossref_primary_10_2478_amns_2024_2948
crossref_primary_10_3389_fpsyt_2023_1274764
crossref_primary_10_1007_s00432_023_04816_w
crossref_primary_10_1007_s12145_024_01673_0
crossref_primary_10_3389_fpsyt_2021_738466
crossref_primary_10_3389_fpubh_2021_800549
crossref_primary_10_1007_s13346_023_01510_9
crossref_primary_10_1007_s11934_024_01251_3
crossref_primary_10_3389_fmolb_2022_962743
crossref_primary_10_1007_s11904_020_00490_6
crossref_primary_10_1080_21679169_2025_2497780
crossref_primary_10_1007_s11606_022_07394_8
crossref_primary_10_2196_68225
crossref_primary_10_1080_10503307_2022_2156306
crossref_primary_10_1007_s41939_023_00324_z
crossref_primary_10_1186_s12874_021_01469_6
crossref_primary_10_1038_s41598_021_81110_0
crossref_primary_10_1186_s12882_023_03269_0
crossref_primary_10_3389_fped_2023_1148753
crossref_primary_10_1038_s41598_022_14632_w
crossref_primary_10_1186_s40001_024_02056_3
crossref_primary_10_1038_s41598_022_08332_8
crossref_primary_10_5306_wjco_v13_i2_125
crossref_primary_10_2196_57641
crossref_primary_10_2196_19446
crossref_primary_10_3389_fmolb_2023_1337373
crossref_primary_10_3389_fpsyt_2023_1055868
crossref_primary_10_1007_s00414_023_03095_x
crossref_primary_10_2147_DMSO_S519284
crossref_primary_10_7759_cureus_56472
crossref_primary_10_1016_j_actatropica_2024_107225
crossref_primary_10_3389_fonc_2022_946038
crossref_primary_10_1159_000526737
crossref_primary_10_5093_pi2021a4
crossref_primary_10_3389_fbioe_2022_1082794
crossref_primary_10_1631_jzus_B2200555
crossref_primary_10_1038_s41598_024_75586_9
crossref_primary_10_1117_1_JEI_32_6_062507
crossref_primary_10_1177_0739456X241268464
crossref_primary_10_1007_s00228_021_03213_x
crossref_primary_10_2196_42547
crossref_primary_10_7759_cureus_80394
crossref_primary_10_1097_AOG_0000000000003759
crossref_primary_10_3389_fpubh_2025_1526413
crossref_primary_10_7554_eLife_81878
crossref_primary_10_1007_s00125_020_05217_1
crossref_primary_10_2196_36199
crossref_primary_10_2196_37685
crossref_primary_10_1038_s41598_024_72206_4
crossref_primary_10_1186_s43170_024_00273_8
crossref_primary_10_1007_s40261_024_01373_z
crossref_primary_10_3389_fpubh_2024_1362392
crossref_primary_10_25130_tjaes_18_60_3_7
crossref_primary_10_1136_bmj_n2281
crossref_primary_10_3390_ijerph20136194
crossref_primary_10_1007_s10072_025_08156_0
crossref_primary_10_1080_10503307_2020_1808729
crossref_primary_10_2196_50890
crossref_primary_10_3389_frai_2024_1443956
crossref_primary_10_3389_frsc_2025_1605594
crossref_primary_10_7717_peerj_cs_1761
crossref_primary_10_7769_gesec_v16i1_4406
crossref_primary_10_1186_s43067_024_00150_4
crossref_primary_10_2196_47645
crossref_primary_10_1080_19942060_2025_2547997
crossref_primary_10_3389_fphys_2022_1050849
crossref_primary_10_1038_s41598_021_90642_4
crossref_primary_10_2196_42832
crossref_primary_10_3389_fmed_2021_759013
ContentType Journal Article
Copyright The Author(s) 2019. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2019. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/aje/kwz189
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1476-6256
ExternalDocumentID 31509183
Genre Journal Article
GroupedDBID ---
-DZ
-E4
-~X
..I
.2P
.I3
.XZ
.ZR
0R~
1TH
23M
2WC
4.4
482
48X
5GY
5RE
5VS
5WA
5WD
6J9
70D
85S
AABZA
AACZT
AAJKP
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWTL
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABKDP
ABLJU
ABNHQ
ABNKS
ABOCM
ABPTD
ABQLI
ABSAR
ABVGC
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACPRK
ACUFI
ACUTJ
ACUTO
ADBBV
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADMHG
ADOCK
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEJOX
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGSYK
AHMBA
AHMMS
AHXPO
AIAGR
AIJHB
AJEEA
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
APWMN
ATGXG
AXUDD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BTRTY
BVRKM
C45
CDBKE
CGR
CS3
CUY
CVF
CZ4
DAKXR
DIK
DILTD
D~K
E3Z
EBS
ECM
EE~
EIF
EMOBN
F5P
F9B
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IH2
IOX
J21
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
ML0
N9A
NGC
NOMLY
NOYVH
NPM
O9-
OAWHX
OCZFY
ODMLO
OHH
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
P6G
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RHF
ROL
ROX
ROZ
RUSNO
RW1
RXO
TCURE
TEORI
TJX
TR2
UHB
UPT
W8F
WOQ
X7H
YAYTL
YF5
YKOAZ
YOC
YROCO
YSK
YXANX
ZKX
~91
7X8
AAILS
ADCFL
ADGHP
ADNBA
AEHKS
AFYAG
AHGBF
AJBYB
AJNCP
ALXQX
JXSIZ
ID FETCH-LOGICAL-c411t-d7bb3ef4d6a1acbf162ba942d41f7b51de94c305f8cff53a7efdc30dc7c5f7bd2
IEDL.DBID 7X8
ISICitedReferencesCount 355
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000518547500020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1476-6256
IngestDate Sat Sep 27 22:51:52 EDT 2025
Wed Feb 19 02:30:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords ensemble models
Big Data
machine learning
Language English
License The Author(s) 2019. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c411t-d7bb3ef4d6a1acbf162ba942d41f7b51de94c305f8cff53a7efdc30dc7c5f7bd2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31509183
PQID 2288713663
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2288713663
pubmed_primary_31509183
PublicationCentury 2000
PublicationDate 2019-12-31
PublicationDateYYYYMMDD 2019-12-31
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-31
  day: 31
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle American journal of epidemiology
PublicationTitleAlternate Am J Epidemiol
PublicationYear 2019
SSID ssj0011950
Score 2.6926522
Snippet Machine learning is a branch of computer science that has the potential to transform epidemiologic sciences. Amid a growing focus on "Big Data," it offers...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 2222
SubjectTerms Epidemiologic Studies
Epidemiology
Machine Learning
Terminology as Topic
Title What is Machine Learning? A Primer for the Epidemiologist
URI https://www.ncbi.nlm.nih.gov/pubmed/31509183
https://www.proquest.com/docview/2288713663
Volume 188
WOSCitedRecordID wos000518547500020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD6oExHEy7zNGxF8DVuatGmehsiGLxt7UNhbSXORKWxznQr-ek_ajr2J4EuhkEA5_U7ycU7yfQB3WjNvU6Oo9NZRYbyj2gtNjfVaWJUnwuel2YQcDtPxWI3qgltRH6tcrYnlQm1nJtTI21GE6cA4bpDd-TsNrlGhu1pbaGxCgyOVCaiW43UXIViclreLZEKR5ycreVLF2_rVtd--vln6C7Ust5j-wX8_7hD2a3JJ7is0HMGGmzZhZ1C3z5uwVxXpSHX36BhUEO4mk4IMyiOVjtRqqy9dck9GQfh_QZDUEiSJpLe2kkVknMBzv_f08EhrLwVqBGNLamWec-eFTTTTJvcsiXKtRGQF8zKPmXVKGMx9nxrvY66l8xbfrZEmxgE2OoWt6WzqzoEYIyWOcRZzV1j803HHG60lEkFuOiZpwe0qSBliNTQg9NTNPopsHaYWnFWRzuaVqEbGWaAuKb_4w-xL2EXeoiq9xStoeMxUdw3b5nM5KRY3JQjwORwNfgCfar9f
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=What+is+Machine+Learning%3F+A+Primer+for+the+Epidemiologist&rft.jtitle=American+journal+of+epidemiology&rft.au=Bi%2C+Qifang&rft.au=Goodman%2C+Katherine+E&rft.au=Kaminsky%2C+Joshua&rft.au=Lessler%2C+Justin&rft.date=2019-12-31&rft.eissn=1476-6256&rft.volume=188&rft.issue=12&rft.spage=2222&rft_id=info:doi/10.1093%2Faje%2Fkwz189&rft_id=info%3Apmid%2F31509183&rft_id=info%3Apmid%2F31509183&rft.externalDocID=31509183
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-6256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-6256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-6256&client=summon