What is Machine Learning? A Primer for the Epidemiologist
Machine learning is a branch of computer science that has the potential to transform epidemiologic sciences. Amid a growing focus on "Big Data," it offers epidemiologists new tools to tackle problems for which classical methods are not well-suited. In order to critically evaluate the value...
Uloženo v:
| Vydáno v: | American journal of epidemiology Ročník 188; číslo 12; s. 2222 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
31.12.2019
|
| Témata: | |
| ISSN: | 1476-6256, 1476-6256 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Machine learning is a branch of computer science that has the potential to transform epidemiologic sciences. Amid a growing focus on "Big Data," it offers epidemiologists new tools to tackle problems for which classical methods are not well-suited. In order to critically evaluate the value of integrating machine learning algorithms and existing methods, however, it is essential to address language and technical barriers between the two fields that can make it difficult for epidemiologists to read and assess machine learning studies. Here, we provide an overview of the concepts and terminology used in machine learning literature, which encompasses a diverse set of tools with goals ranging from prediction to classification to clustering. We provide a brief introduction to 5 common machine learning algorithms and 4 ensemble-based approaches. We then summarize epidemiologic applications of machine learning techniques in the published literature. We recommend approaches to incorporate machine learning in epidemiologic research and discuss opportunities and challenges for integrating machine learning and existing epidemiologic research methods. |
|---|---|
| AbstractList | Machine learning is a branch of computer science that has the potential to transform epidemiologic sciences. Amid a growing focus on "Big Data," it offers epidemiologists new tools to tackle problems for which classical methods are not well-suited. In order to critically evaluate the value of integrating machine learning algorithms and existing methods, however, it is essential to address language and technical barriers between the two fields that can make it difficult for epidemiologists to read and assess machine learning studies. Here, we provide an overview of the concepts and terminology used in machine learning literature, which encompasses a diverse set of tools with goals ranging from prediction to classification to clustering. We provide a brief introduction to 5 common machine learning algorithms and 4 ensemble-based approaches. We then summarize epidemiologic applications of machine learning techniques in the published literature. We recommend approaches to incorporate machine learning in epidemiologic research and discuss opportunities and challenges for integrating machine learning and existing epidemiologic research methods.Machine learning is a branch of computer science that has the potential to transform epidemiologic sciences. Amid a growing focus on "Big Data," it offers epidemiologists new tools to tackle problems for which classical methods are not well-suited. In order to critically evaluate the value of integrating machine learning algorithms and existing methods, however, it is essential to address language and technical barriers between the two fields that can make it difficult for epidemiologists to read and assess machine learning studies. Here, we provide an overview of the concepts and terminology used in machine learning literature, which encompasses a diverse set of tools with goals ranging from prediction to classification to clustering. We provide a brief introduction to 5 common machine learning algorithms and 4 ensemble-based approaches. We then summarize epidemiologic applications of machine learning techniques in the published literature. We recommend approaches to incorporate machine learning in epidemiologic research and discuss opportunities and challenges for integrating machine learning and existing epidemiologic research methods. Machine learning is a branch of computer science that has the potential to transform epidemiologic sciences. Amid a growing focus on "Big Data," it offers epidemiologists new tools to tackle problems for which classical methods are not well-suited. In order to critically evaluate the value of integrating machine learning algorithms and existing methods, however, it is essential to address language and technical barriers between the two fields that can make it difficult for epidemiologists to read and assess machine learning studies. Here, we provide an overview of the concepts and terminology used in machine learning literature, which encompasses a diverse set of tools with goals ranging from prediction to classification to clustering. We provide a brief introduction to 5 common machine learning algorithms and 4 ensemble-based approaches. We then summarize epidemiologic applications of machine learning techniques in the published literature. We recommend approaches to incorporate machine learning in epidemiologic research and discuss opportunities and challenges for integrating machine learning and existing epidemiologic research methods. |
| Author | Goodman, Katherine E Lessler, Justin Kaminsky, Joshua Bi, Qifang |
| Author_xml | – sequence: 1 givenname: Qifang surname: Bi fullname: Bi, Qifang – sequence: 2 givenname: Katherine E surname: Goodman fullname: Goodman, Katherine E – sequence: 3 givenname: Joshua surname: Kaminsky fullname: Kaminsky, Joshua – sequence: 4 givenname: Justin surname: Lessler fullname: Lessler, Justin |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31509183$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj01LAzEYhIMo9kMv_gDJ0cvavMkmuzlJKfUDKnpQPC7Z5E2buh91s0X017tgBU8zAw_DzIQcN22DhFwAuwamxcxscfb--Q25PiJjSDOVKC7V8T8_IpMYt4wBaMlOyUiAZBpyMSb6bWN6GiJ9NHYTGqQrNF0TmvUNndPnLtTYUd92tN8gXe6Cwzq0VbsOsT8jJ95UEc8POiWvt8uXxX2yerp7WMxXiU0B-sRlZSnQp04ZMLb0oHhpdMpdCj4rJTjUqRVM-tx6L4XJ0LshO5tZOQCOT8nVb--uaz_2GPuiDtFiVZkG230sOM_zDIRSYkAvD-i-rNEVu2G_6b6Kv7v8B2cOWMA |
| CitedBy_id | crossref_primary_10_3389_fninf_2022_893452 crossref_primary_10_1089_aid_2023_0137 crossref_primary_10_2196_35114 crossref_primary_10_3389_fnagi_2022_897611 crossref_primary_10_3389_fenrg_2023_1142243 crossref_primary_10_3389_fpubh_2024_1328353 crossref_primary_10_2196_35831 crossref_primary_10_1007_s00240_024_01587_y crossref_primary_10_2196_47971 crossref_primary_10_1007_s00345_024_05314_5 crossref_primary_10_3389_fpsyg_2025_1601723 crossref_primary_10_1007_s12144_024_06934_1 crossref_primary_10_1038_s41370_020_0257_8 crossref_primary_10_1007_s13369_022_06654_3 crossref_primary_10_1016_j_semarthrit_2024_152501 crossref_primary_10_3389_fonc_2023_1197447 crossref_primary_10_1136_bjsports_2020_103604 crossref_primary_10_3389_fnins_2023_1113927 crossref_primary_10_1007_s40200_023_01357_4 crossref_primary_10_1038_s41598_025_01651_6 crossref_primary_10_3389_fcvm_2022_839379 crossref_primary_10_1007_s40572_020_00282_5 crossref_primary_10_2478_amns_2024_2948 crossref_primary_10_3389_fpsyt_2023_1274764 crossref_primary_10_1007_s00432_023_04816_w crossref_primary_10_1007_s12145_024_01673_0 crossref_primary_10_3389_fpsyt_2021_738466 crossref_primary_10_3389_fpubh_2021_800549 crossref_primary_10_1007_s13346_023_01510_9 crossref_primary_10_1007_s11934_024_01251_3 crossref_primary_10_3389_fmolb_2022_962743 crossref_primary_10_1007_s11904_020_00490_6 crossref_primary_10_1080_21679169_2025_2497780 crossref_primary_10_1007_s11606_022_07394_8 crossref_primary_10_2196_68225 crossref_primary_10_1080_10503307_2022_2156306 crossref_primary_10_1007_s41939_023_00324_z crossref_primary_10_1186_s12874_021_01469_6 crossref_primary_10_1038_s41598_021_81110_0 crossref_primary_10_1186_s12882_023_03269_0 crossref_primary_10_3389_fped_2023_1148753 crossref_primary_10_1038_s41598_022_14632_w crossref_primary_10_1186_s40001_024_02056_3 crossref_primary_10_1038_s41598_022_08332_8 crossref_primary_10_5306_wjco_v13_i2_125 crossref_primary_10_2196_57641 crossref_primary_10_2196_19446 crossref_primary_10_3389_fmolb_2023_1337373 crossref_primary_10_3389_fpsyt_2023_1055868 crossref_primary_10_1007_s00414_023_03095_x crossref_primary_10_2147_DMSO_S519284 crossref_primary_10_7759_cureus_56472 crossref_primary_10_1016_j_actatropica_2024_107225 crossref_primary_10_3389_fonc_2022_946038 crossref_primary_10_1159_000526737 crossref_primary_10_5093_pi2021a4 crossref_primary_10_3389_fbioe_2022_1082794 crossref_primary_10_1631_jzus_B2200555 crossref_primary_10_1038_s41598_024_75586_9 crossref_primary_10_1117_1_JEI_32_6_062507 crossref_primary_10_1177_0739456X241268464 crossref_primary_10_1007_s00228_021_03213_x crossref_primary_10_2196_42547 crossref_primary_10_7759_cureus_80394 crossref_primary_10_1097_AOG_0000000000003759 crossref_primary_10_3389_fpubh_2025_1526413 crossref_primary_10_7554_eLife_81878 crossref_primary_10_1007_s00125_020_05217_1 crossref_primary_10_2196_36199 crossref_primary_10_2196_37685 crossref_primary_10_1038_s41598_024_72206_4 crossref_primary_10_1186_s43170_024_00273_8 crossref_primary_10_1007_s40261_024_01373_z crossref_primary_10_3389_fpubh_2024_1362392 crossref_primary_10_25130_tjaes_18_60_3_7 crossref_primary_10_1136_bmj_n2281 crossref_primary_10_3390_ijerph20136194 crossref_primary_10_1007_s10072_025_08156_0 crossref_primary_10_1080_10503307_2020_1808729 crossref_primary_10_2196_50890 crossref_primary_10_3389_frai_2024_1443956 crossref_primary_10_3389_frsc_2025_1605594 crossref_primary_10_7717_peerj_cs_1761 crossref_primary_10_7769_gesec_v16i1_4406 crossref_primary_10_1186_s43067_024_00150_4 crossref_primary_10_2196_47645 crossref_primary_10_1080_19942060_2025_2547997 crossref_primary_10_3389_fphys_2022_1050849 crossref_primary_10_1038_s41598_021_90642_4 crossref_primary_10_2196_42832 crossref_primary_10_3389_fmed_2021_759013 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
| Copyright_xml | – notice: The Author(s) 2019. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1093/aje/kwz189 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine Public Health |
| EISSN | 1476-6256 |
| ExternalDocumentID | 31509183 |
| Genre | Journal Article |
| GroupedDBID | --- -DZ -E4 -~X ..I .2P .I3 .XZ .ZR 0R~ 1TH 23M 2WC 4.4 482 48X 5GY 5RE 5VS 5WA 5WD 6J9 70D 85S AABZA AACZT AAJKP AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAWTL ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABKDP ABLJU ABNHQ ABNKS ABOCM ABPTD ABQLI ABSAR ABVGC ABXVV ABZBJ ACGFO ACGFS ACGOD ACPRK ACUFI ACUTJ ACUTO ADBBV ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADJQC ADMHG ADOCK ADQBN ADRIX ADRTK ADVEK ADYVW ADZXQ AEGPL AEJOX AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGSYK AHMBA AHMMS AHXPO AIAGR AIJHB AJEEA ALMA_UNASSIGNED_HOLDINGS ALUQC APIBT APWMN ATGXG AXUDD BAWUL BAYMD BCRHZ BEYMZ BHONS BTRTY BVRKM C45 CDBKE CGR CS3 CUY CVF CZ4 DAKXR DIK DILTD D~K E3Z EBS ECM EE~ EIF EMOBN F5P F9B FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IH2 IOX J21 KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z ML0 N9A NGC NOMLY NOYVH NPM O9- OAWHX OCZFY ODMLO OHH OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P P6G PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RHF ROL ROX ROZ RUSNO RW1 RXO TCURE TEORI TJX TR2 UHB UPT W8F WOQ X7H YAYTL YF5 YKOAZ YOC YROCO YSK YXANX ZKX ~91 7X8 AAILS ADCFL ADGHP ADNBA AEHKS AFYAG AHGBF AJBYB AJNCP ALXQX JXSIZ |
| ID | FETCH-LOGICAL-c411t-d7bb3ef4d6a1acbf162ba942d41f7b51de94c305f8cff53a7efdc30dc7c5f7bd2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 355 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000518547500020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1476-6256 |
| IngestDate | Sat Sep 27 22:51:52 EDT 2025 Wed Feb 19 02:30:35 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | ensemble models Big Data machine learning |
| Language | English |
| License | The Author(s) 2019. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c411t-d7bb3ef4d6a1acbf162ba942d41f7b51de94c305f8cff53a7efdc30dc7c5f7bd2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 31509183 |
| PQID | 2288713663 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2288713663 pubmed_primary_31509183 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-12-31 |
| PublicationDateYYYYMMDD | 2019-12-31 |
| PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-31 day: 31 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | American journal of epidemiology |
| PublicationTitleAlternate | Am J Epidemiol |
| PublicationYear | 2019 |
| SSID | ssj0011950 |
| Score | 2.6926522 |
| Snippet | Machine learning is a branch of computer science that has the potential to transform epidemiologic sciences. Amid a growing focus on "Big Data," it offers... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 2222 |
| SubjectTerms | Epidemiologic Studies Epidemiology Machine Learning Terminology as Topic |
| Title | What is Machine Learning? A Primer for the Epidemiologist |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31509183 https://www.proquest.com/docview/2288713663 |
| Volume | 188 |
| WOSCitedRecordID | wos000518547500020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD6oExHEy7zNGxF8DVuatGmehsiGLxt7UNhbSXORKWxznQr-ek_ajr2J4EuhkEA5_U7ycU7yfQB3WjNvU6Oo9NZRYbyj2gtNjfVaWJUnwuel2YQcDtPxWI3qgltRH6tcrYnlQm1nJtTI21GE6cA4bpDd-TsNrlGhu1pbaGxCgyOVCaiW43UXIViclreLZEKR5ycreVLF2_rVtd--vln6C7Ust5j-wX8_7hD2a3JJ7is0HMGGmzZhZ1C3z5uwVxXpSHX36BhUEO4mk4IMyiOVjtRqqy9dck9GQfh_QZDUEiSJpLe2kkVknMBzv_f08EhrLwVqBGNLamWec-eFTTTTJvcsiXKtRGQF8zKPmXVKGMx9nxrvY66l8xbfrZEmxgE2OoWt6WzqzoEYIyWOcRZzV1j803HHG60lEkFuOiZpwe0qSBliNTQg9NTNPopsHaYWnFWRzuaVqEbGWaAuKb_4w-xL2EXeoiq9xStoeMxUdw3b5nM5KRY3JQjwORwNfgCfar9f |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=What+is+Machine+Learning%3F+A+Primer+for+the+Epidemiologist&rft.jtitle=American+journal+of+epidemiology&rft.au=Bi%2C+Qifang&rft.au=Goodman%2C+Katherine+E&rft.au=Kaminsky%2C+Joshua&rft.au=Lessler%2C+Justin&rft.date=2019-12-31&rft.eissn=1476-6256&rft.volume=188&rft.issue=12&rft.spage=2222&rft_id=info:doi/10.1093%2Faje%2Fkwz189&rft_id=info%3Apmid%2F31509183&rft_id=info%3Apmid%2F31509183&rft.externalDocID=31509183 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-6256&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-6256&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-6256&client=summon |