NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism
The nicotinamide adenine dinucleotide (NAD )/reduced NAD (NADH) and NADP /reduced NADP (NADPH) redox couples are essential for maintaining cellular redox homeostasis and for modulating numerous biological events, including cellular metabolism. Deficiency or imbalance of these two redox couples has b...
Gespeichert in:
| Veröffentlicht in: | Antioxidants & redox signaling Jg. 28; H. 3; S. 251 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
20.01.2018
|
| Schlagworte: | |
| ISSN: | 1557-7716, 1557-7716 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The nicotinamide adenine dinucleotide (NAD
)/reduced NAD
(NADH) and NADP
/reduced NADP
(NADPH) redox couples are essential for maintaining cellular redox homeostasis and for modulating numerous biological events, including cellular metabolism. Deficiency or imbalance of these two redox couples has been associated with many pathological disorders. Recent Advances: Newly identified biosynthetic enzymes and newly developed genetically encoded biosensors enable us to understand better how cells maintain compartmentalized NAD(H) and NADP(H) pools. The concept of redox stress (oxidative and reductive stress) reflected by changes in NAD(H)/NADP(H) has increasingly gained attention. The emerging roles of NAD
-consuming proteins in regulating cellular redox and metabolic homeostasis are active research topics.
The biosynthesis and distribution of cellular NAD(H) and NADP(H) are highly compartmentalized. It is critical to understand how cells maintain the steady levels of these redox couple pools to ensure their normal functions and simultaneously avoid inducing redox stress. In addition, it is essential to understand how NAD(H)- and NADP(H)-utilizing enzymes interact with other signaling pathways, such as those regulated by hypoxia-inducible factor, to maintain cellular redox homeostasis and energy metabolism.
Additional studies are needed to investigate the inter-relationships among compartmentalized NAD(H)/NADP(H) pools and how these two dinucleotide redox couples collaboratively regulate cellular redox states and cellular metabolism under normal and pathological conditions. Furthermore, recent studies suggest the utility of using pharmacological interventions or nutrient-based bioactive NAD
precursors as therapeutic interventions for metabolic diseases. Thus, a better understanding of the cellular functions of NAD(H) and NADP(H) may facilitate efforts to address a host of pathological disorders effectively. Antioxid. Redox Signal. 28, 251-272. |
|---|---|
| AbstractList | The nicotinamide adenine dinucleotide (NAD
)/reduced NAD
(NADH) and NADP
/reduced NADP
(NADPH) redox couples are essential for maintaining cellular redox homeostasis and for modulating numerous biological events, including cellular metabolism. Deficiency or imbalance of these two redox couples has been associated with many pathological disorders. Recent Advances: Newly identified biosynthetic enzymes and newly developed genetically encoded biosensors enable us to understand better how cells maintain compartmentalized NAD(H) and NADP(H) pools. The concept of redox stress (oxidative and reductive stress) reflected by changes in NAD(H)/NADP(H) has increasingly gained attention. The emerging roles of NAD
-consuming proteins in regulating cellular redox and metabolic homeostasis are active research topics.
The biosynthesis and distribution of cellular NAD(H) and NADP(H) are highly compartmentalized. It is critical to understand how cells maintain the steady levels of these redox couple pools to ensure their normal functions and simultaneously avoid inducing redox stress. In addition, it is essential to understand how NAD(H)- and NADP(H)-utilizing enzymes interact with other signaling pathways, such as those regulated by hypoxia-inducible factor, to maintain cellular redox homeostasis and energy metabolism.
Additional studies are needed to investigate the inter-relationships among compartmentalized NAD(H)/NADP(H) pools and how these two dinucleotide redox couples collaboratively regulate cellular redox states and cellular metabolism under normal and pathological conditions. Furthermore, recent studies suggest the utility of using pharmacological interventions or nutrient-based bioactive NAD
precursors as therapeutic interventions for metabolic diseases. Thus, a better understanding of the cellular functions of NAD(H) and NADP(H) may facilitate efforts to address a host of pathological disorders effectively. Antioxid. Redox Signal. 28, 251-272. The nicotinamide adenine dinucleotide (NAD+)/reduced NAD+ (NADH) and NADP+/reduced NADP+ (NADPH) redox couples are essential for maintaining cellular redox homeostasis and for modulating numerous biological events, including cellular metabolism. Deficiency or imbalance of these two redox couples has been associated with many pathological disorders. Recent Advances: Newly identified biosynthetic enzymes and newly developed genetically encoded biosensors enable us to understand better how cells maintain compartmentalized NAD(H) and NADP(H) pools. The concept of redox stress (oxidative and reductive stress) reflected by changes in NAD(H)/NADP(H) has increasingly gained attention. The emerging roles of NAD+-consuming proteins in regulating cellular redox and metabolic homeostasis are active research topics.SIGNIFICANCEThe nicotinamide adenine dinucleotide (NAD+)/reduced NAD+ (NADH) and NADP+/reduced NADP+ (NADPH) redox couples are essential for maintaining cellular redox homeostasis and for modulating numerous biological events, including cellular metabolism. Deficiency or imbalance of these two redox couples has been associated with many pathological disorders. Recent Advances: Newly identified biosynthetic enzymes and newly developed genetically encoded biosensors enable us to understand better how cells maintain compartmentalized NAD(H) and NADP(H) pools. The concept of redox stress (oxidative and reductive stress) reflected by changes in NAD(H)/NADP(H) has increasingly gained attention. The emerging roles of NAD+-consuming proteins in regulating cellular redox and metabolic homeostasis are active research topics.The biosynthesis and distribution of cellular NAD(H) and NADP(H) are highly compartmentalized. It is critical to understand how cells maintain the steady levels of these redox couple pools to ensure their normal functions and simultaneously avoid inducing redox stress. In addition, it is essential to understand how NAD(H)- and NADP(H)-utilizing enzymes interact with other signaling pathways, such as those regulated by hypoxia-inducible factor, to maintain cellular redox homeostasis and energy metabolism.CRITICAL ISSUESThe biosynthesis and distribution of cellular NAD(H) and NADP(H) are highly compartmentalized. It is critical to understand how cells maintain the steady levels of these redox couple pools to ensure their normal functions and simultaneously avoid inducing redox stress. In addition, it is essential to understand how NAD(H)- and NADP(H)-utilizing enzymes interact with other signaling pathways, such as those regulated by hypoxia-inducible factor, to maintain cellular redox homeostasis and energy metabolism.Additional studies are needed to investigate the inter-relationships among compartmentalized NAD(H)/NADP(H) pools and how these two dinucleotide redox couples collaboratively regulate cellular redox states and cellular metabolism under normal and pathological conditions. Furthermore, recent studies suggest the utility of using pharmacological interventions or nutrient-based bioactive NAD+ precursors as therapeutic interventions for metabolic diseases. Thus, a better understanding of the cellular functions of NAD(H) and NADP(H) may facilitate efforts to address a host of pathological disorders effectively. Antioxid. Redox Signal. 28, 251-272.FUTURE DIRECTIONSAdditional studies are needed to investigate the inter-relationships among compartmentalized NAD(H)/NADP(H) pools and how these two dinucleotide redox couples collaboratively regulate cellular redox states and cellular metabolism under normal and pathological conditions. Furthermore, recent studies suggest the utility of using pharmacological interventions or nutrient-based bioactive NAD+ precursors as therapeutic interventions for metabolic diseases. Thus, a better understanding of the cellular functions of NAD(H) and NADP(H) may facilitate efforts to address a host of pathological disorders effectively. Antioxid. Redox Signal. 28, 251-272. |
| Author | Xiao, Wusheng Handy, Diane E Wang, Rui-Sheng Loscalzo, Joseph |
| Author_xml | – sequence: 1 givenname: Wusheng surname: Xiao fullname: Xiao, Wusheng organization: Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts – sequence: 2 givenname: Rui-Sheng surname: Wang fullname: Wang, Rui-Sheng organization: Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts – sequence: 3 givenname: Diane E surname: Handy fullname: Handy, Diane E organization: Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts – sequence: 4 givenname: Joseph surname: Loscalzo fullname: Loscalzo, Joseph organization: Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28648096$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj8tLw0AYxBep2IcevUqO9ZD4fZtssnuSklYr1AfSe9hNvkgkL7MJ2P_eqBU8zQ9mGGbmbFI3NTF2ieAhSHWjO-txwMiLOIYnbIZCRG4UYTj5x1M2t_YdADginLEpl2EgQYUzdvu0Wi-3146uM2fEl29-paz5dOJmaEuyP05MZTmUunM2NXVvB-eRem2asrDVOTvNdWnp4qgLtr_b7OOtu3u-f4hXOzcNEHs3E1yCnxsEQgxS5AK44MSlknmqM60IctDjqFALYYAMEZIfkVQiUyblC7b8rW275mMg2ydVYdNxla6pGWyCCn3pcyGDMXp1jA6moixpu6LS3SH5-8y_AC_WV18 |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0292124 crossref_primary_10_1093_stmcls_sxac016 crossref_primary_10_1007_s11357_023_00823_4 crossref_primary_10_1088_1752_7163_ab5d88 crossref_primary_10_1007_s11306_023_02022_w crossref_primary_10_1039_D3RA01210G crossref_primary_10_1002_asia_202401047 crossref_primary_10_1002_advs_201903138 crossref_primary_10_3389_fcvm_2023_1232681 crossref_primary_10_1002_efd2_70085 crossref_primary_10_1016_j_tcb_2023_07_003 crossref_primary_10_1126_scitranslmed_ade3341 crossref_primary_10_1080_21501203_2025_2509017 crossref_primary_10_3390_antiox12061236 crossref_primary_10_1016_j_cels_2020_12_001 crossref_primary_10_1016_j_arr_2020_101165 crossref_primary_10_3389_fncel_2022_786926 crossref_primary_10_1016_j_xgen_2025_100951 crossref_primary_10_1080_10409238_2023_2201945 crossref_primary_10_1016_j_cbd_2025_101505 crossref_primary_10_1016_j_ijbiomac_2022_07_056 crossref_primary_10_1093_jambio_lxad091 crossref_primary_10_1371_journal_pone_0303577 crossref_primary_10_1117_1_JBO_27_5_056505 crossref_primary_10_1155_2022_3712500 crossref_primary_10_1093_plphys_kiae112 crossref_primary_10_1016_j_rechem_2022_100401 crossref_primary_10_1038_s41421_022_00409_y crossref_primary_10_3748_wjg_v28_i31_4263 crossref_primary_10_1002_cbdv_202501777 crossref_primary_10_3390_ijms26051910 crossref_primary_10_1016_j_bmc_2025_118241 crossref_primary_10_1089_ars_2023_0375 crossref_primary_10_3389_fnagi_2020_609517 crossref_primary_10_1007_s10557_025_07732_y crossref_primary_10_1016_j_ymben_2024_06_010 crossref_primary_10_1080_00958972_2024_2350045 crossref_primary_10_1089_ars_2017_7485 crossref_primary_10_1002_glia_24624 crossref_primary_10_1093_plphys_kiac161 crossref_primary_10_1016_j_jff_2025_106992 crossref_primary_10_3390_nu15132851 crossref_primary_10_1186_s12967_023_04767_3 crossref_primary_10_1016_j_ccr_2025_216774 crossref_primary_10_1007_s00424_025_03095_3 crossref_primary_10_1007_s10811_023_02922_3 crossref_primary_10_1007_s00277_023_05508_8 crossref_primary_10_1016_j_jhazmat_2021_127948 crossref_primary_10_1038_s41594_021_00692_5 crossref_primary_10_1038_s44318_024_00065_w crossref_primary_10_1016_j_bmcl_2021_128048 crossref_primary_10_1039_D0FO02112A crossref_primary_10_2183_pjab_97_024 crossref_primary_10_1007_s10753_024_02099_y crossref_primary_10_1186_s13395_025_00390_6 crossref_primary_10_3892_or_2024_8810 crossref_primary_10_1007_s12033_024_01226_2 crossref_primary_10_1016_j_heliyon_2024_e31031 crossref_primary_10_1007_s10522_024_10172_0 crossref_primary_10_1089_ars_2023_0241 crossref_primary_10_1177_1535370220919076 crossref_primary_10_1016_j_cellimm_2023_104677 crossref_primary_10_1007_s00253_024_13012_w crossref_primary_10_3390_ijms22189794 crossref_primary_10_3389_fphys_2021_724506 crossref_primary_10_1016_j_ecoenv_2023_115558 crossref_primary_10_1091_mbc_E23_03_0116 crossref_primary_10_3389_fphys_2022_1038421 crossref_primary_10_1016_j_phymed_2024_156312 crossref_primary_10_1016_j_canlet_2020_12_020 crossref_primary_10_1155_2022_2339584 crossref_primary_10_1016_j_jhazmat_2025_138771 crossref_primary_10_1039_D2FO00525E crossref_primary_10_3389_fimmu_2021_704779 crossref_primary_10_3390_fermentation9050479 crossref_primary_10_1016_j_mad_2021_111567 crossref_primary_10_1126_scitranslmed_ado7225 crossref_primary_10_1080_17425255_2022_2049234 crossref_primary_10_1089_ars_2023_0476 crossref_primary_10_1002_cbic_202200597 crossref_primary_10_1016_j_scitotenv_2021_147130 crossref_primary_10_1002_jimd_12711 crossref_primary_10_2147_DDDT_S534706 crossref_primary_10_1186_s40643_021_00489_w crossref_primary_10_1016_j_mad_2021_111569 crossref_primary_10_1016_j_biopha_2023_114987 crossref_primary_10_3390_ijms24031934 crossref_primary_10_3389_fncel_2021_696889 crossref_primary_10_1016_j_freeradbiomed_2025_07_048 crossref_primary_10_1038_s41589_020_0601_2 crossref_primary_10_3389_fimmu_2021_749504 crossref_primary_10_1016_j_abb_2024_109927 crossref_primary_10_1016_j_archger_2025_105803 crossref_primary_10_3390_md21120635 crossref_primary_10_1038_s42003_021_01899_4 crossref_primary_10_1186_s40246_019_0251_1 crossref_primary_10_1016_j_gene_2023_147215 crossref_primary_10_1016_j_scitotenv_2024_170840 crossref_primary_10_1038_s41598_024_81393_z crossref_primary_10_3390_jcm14134529 crossref_primary_10_3390_ijms22020967 crossref_primary_10_3390_ijms23126706 crossref_primary_10_1016_j_biortech_2021_126116 crossref_primary_10_1016_j_ibiod_2024_105944 crossref_primary_10_1002_celc_202300117 crossref_primary_10_1088_1748_605X_abfd11 crossref_primary_10_1186_s12964_024_01903_4 crossref_primary_10_1016_j_heares_2023_108740 crossref_primary_10_1002_ange_202301518 crossref_primary_10_14814_phy2_15137 crossref_primary_10_3390_antiox11091789 crossref_primary_10_3390_metabo15090580 crossref_primary_10_3390_molecules27154923 crossref_primary_10_1016_j_molp_2025_05_004 crossref_primary_10_1016_j_bios_2022_114087 crossref_primary_10_1111_1541_4337_70260 crossref_primary_10_1080_10715762_2024_2433988 crossref_primary_10_1007_s12035_025_04827_3 crossref_primary_10_1016_j_micinf_2024_105438 crossref_primary_10_1016_j_bbabio_2021_148377 crossref_primary_10_1093_protein_gzad009 crossref_primary_10_1016_j_neulet_2021_136428 crossref_primary_10_3389_fbioe_2019_00148 crossref_primary_10_1002_mnfr_70162 crossref_primary_10_1016_j_tibs_2020_05_010 crossref_primary_10_1101_gr_280014_124 crossref_primary_10_1016_j_jcis_2024_08_195 crossref_primary_10_1016_j_molmet_2021_101195 crossref_primary_10_1016_j_enzmictec_2025_110606 crossref_primary_10_1016_j_molstruc_2024_140149 crossref_primary_10_1016_j_ecoenv_2022_114476 crossref_primary_10_1016_j_canlet_2021_06_015 crossref_primary_10_1038_s44318_024_00335_7 crossref_primary_10_4239_wjd_v15_i8_1753 crossref_primary_10_1021_jacs_4c18328 crossref_primary_10_3390_arm91050028 crossref_primary_10_1016_j_jnutbio_2021_108911 crossref_primary_10_1016_j_phymed_2025_156817 crossref_primary_10_1038_s41467_024_50157_8 crossref_primary_10_3390_ph17080998 crossref_primary_10_1016_j_jia_2024_05_021 crossref_primary_10_1016_j_tem_2024_08_007 crossref_primary_10_1016_j_phrs_2020_104680 crossref_primary_10_1080_07388551_2023_2286428 crossref_primary_10_1096_fj_202401188R crossref_primary_10_1016_j_semradonc_2018_10_009 crossref_primary_10_1038_s42255_021_00374_y crossref_primary_10_1038_s42255_025_01272_3 crossref_primary_10_1016_j_freeradbiomed_2020_12_007 crossref_primary_10_1117_1_JBO_25_1_014508 crossref_primary_10_3390_ijms241512530 crossref_primary_10_3390_ijms241411640 crossref_primary_10_1016_j_molmet_2022_101537 crossref_primary_10_1007_s10616_023_00587_x crossref_primary_10_1002_anie_202301518 crossref_primary_10_1007_s10753_022_01660_x crossref_primary_10_1016_j_abb_2025_110554 crossref_primary_10_1038_s42004_024_01211_5 crossref_primary_10_1007_s12640_025_00738_2 crossref_primary_10_3390_microorganisms12030631 crossref_primary_10_1016_j_toxicon_2023_107153 crossref_primary_10_3390_antiox10122021 crossref_primary_10_1080_14728222_2019_1615438 crossref_primary_10_1002_ange_202417112 crossref_primary_10_3390_biomedicines13010244 crossref_primary_10_1111_ppl_70113 crossref_primary_10_1016_j_jhazmat_2023_131719 crossref_primary_10_1111_jpn_13515 crossref_primary_10_1016_j_tips_2024_02_003 crossref_primary_10_1089_ars_2017_7439 crossref_primary_10_1134_S1062359024702121 crossref_primary_10_3724_abbs_2025173 crossref_primary_10_1038_s42003_024_05921_3 crossref_primary_10_1161_HYPERTENSIONAHA_120_14686 crossref_primary_10_1002_bit_28712 crossref_primary_10_2174_1381612827666210705162610 crossref_primary_10_1038_s41581_022_00631_7 crossref_primary_10_1016_j_semcancer_2022_11_007 crossref_primary_10_3389_fvets_2025_1546248 crossref_primary_10_1016_j_freeradbiomed_2025_07_014 crossref_primary_10_1016_j_arr_2024_102646 crossref_primary_10_1128_aem_01451_23 crossref_primary_10_3390_antiox10020218 crossref_primary_10_1016_j_tetlet_2021_153073 crossref_primary_10_3389_fonc_2020_00358 crossref_primary_10_4014_jmb_2409_09025 crossref_primary_10_3390_cells11071071 crossref_primary_10_3390_metabo12111142 crossref_primary_10_3390_antiox9060516 crossref_primary_10_1002_ange_202300083 crossref_primary_10_1134_S1062359024610103 crossref_primary_10_1007_s10930_021_10037_2 crossref_primary_10_1016_j_arr_2020_101107 crossref_primary_10_1016_j_bioorg_2023_106974 crossref_primary_10_3390_nu14081680 crossref_primary_10_3390_ijms22136705 crossref_primary_10_1016_j_atmosenv_2022_119263 crossref_primary_10_1016_j_jhazmat_2024_134047 crossref_primary_10_1016_j_abb_2025_110452 crossref_primary_10_1016_j_cej_2025_161214 crossref_primary_10_1210_endrev_bnad019 crossref_primary_10_1038_s41419_023_06334_6 crossref_primary_10_1038_s41598_023_38843_x crossref_primary_10_1002_ame2_12436 crossref_primary_10_1038_s41598_021_03832_5 crossref_primary_10_1016_j_foodres_2022_112276 crossref_primary_10_1186_s13046_025_03372_0 crossref_primary_10_1002_iub_2550 crossref_primary_10_1016_j_bonr_2022_101594 crossref_primary_10_1007_s12192_020_01100_5 crossref_primary_10_1038_s41589_023_01460_w crossref_primary_10_1016_j_biortech_2021_126535 crossref_primary_10_1038_s43587_025_00947_6 crossref_primary_10_1016_j_molmet_2022_101562 crossref_primary_10_1007_s10439_025_03784_1 crossref_primary_10_1016_j_lfs_2023_122040 crossref_primary_10_1007_s11064_022_03831_6 crossref_primary_10_1038_s41467_025_62911_7 crossref_primary_10_3390_ijms21030919 crossref_primary_10_1186_s12864_021_07962_y crossref_primary_10_1016_j_ijbiomac_2025_144791 crossref_primary_10_1042_BCJ20200240 crossref_primary_10_1016_j_bcp_2023_115929 crossref_primary_10_1016_j_neulet_2021_136003 crossref_primary_10_3390_cryst15020140 crossref_primary_10_1007_s11427_024_2750_0 crossref_primary_10_1038_s41522_021_00217_4 crossref_primary_10_1016_j_gene_2024_148539 crossref_primary_10_1096_fj_202001826R crossref_primary_10_1016_j_scitotenv_2021_145476 crossref_primary_10_3390_biology14091167 crossref_primary_10_1007_s11357_025_01608_7 crossref_primary_10_3390_cancers13081873 crossref_primary_10_1016_j_tranon_2020_100842 crossref_primary_10_3390_cells10102595 crossref_primary_10_15252_emmm_202113943 crossref_primary_10_5572_ajae_2020_123 crossref_primary_10_1073_pnas_2112852119 crossref_primary_10_1210_endocr_bqaf120 crossref_primary_10_1016_j_bpj_2024_09_012 crossref_primary_10_1111_ens_12479 crossref_primary_10_1155_2023_6237960 crossref_primary_10_3390_ijms26136180 crossref_primary_10_1016_j_watres_2025_123473 crossref_primary_10_1111_obr_13022 crossref_primary_10_1016_j_ecoenv_2022_114098 crossref_primary_10_1371_journal_pone_0242174 crossref_primary_10_1002_chem_202301350 crossref_primary_10_1007_s13311_023_01376_2 crossref_primary_10_1038_s41598_023_29607_8 crossref_primary_10_1093_plphys_kiaf083 crossref_primary_10_1089_ars_2019_7901 crossref_primary_10_3390_chemosensors12110223 crossref_primary_10_1186_s13068_021_02048_z crossref_primary_10_1016_j_freeradbiomed_2023_11_019 crossref_primary_10_1177_19476035251377532 crossref_primary_10_3390_ph18050607 crossref_primary_10_1016_j_semcancer_2022_10_005 crossref_primary_10_3390_diabetology6060047 crossref_primary_10_1038_s44319_025_00573_8 crossref_primary_10_1016_j_jcis_2023_03_057 crossref_primary_10_1016_j_jechem_2022_12_021 crossref_primary_10_1016_j_pharmthera_2019_06_003 crossref_primary_10_1016_j_chembiol_2020_03_014 crossref_primary_10_3724_abbs_2025163 crossref_primary_10_4103_jpbs_jpbs_256_25 crossref_primary_10_1016_j_micres_2024_127692 crossref_primary_10_1016_j_biortech_2020_123299 crossref_primary_10_1016_j_freeradbiomed_2021_01_009 crossref_primary_10_1016_j_scitotenv_2023_165104 crossref_primary_10_1039_D3EN00351E crossref_primary_10_1016_j_aqrep_2024_102248 crossref_primary_10_4049_jimmunol_2300693 crossref_primary_10_1016_j_molcel_2021_04_007 crossref_primary_10_1016_j_fgb_2023_103810 crossref_primary_10_1016_j_fm_2024_104624 crossref_primary_10_1016_j_jphotobiol_2025_113225 crossref_primary_10_1016_j_lfs_2020_118171 crossref_primary_10_1021_acssynbio_5c00015 crossref_primary_10_1089_ars_2019_7803 crossref_primary_10_1002_iub_2367 crossref_primary_10_1002_bdr2_2089 crossref_primary_10_3390_biom10040580 crossref_primary_10_1038_s41577_020_00478_8 crossref_primary_10_3390_genes15060781 crossref_primary_10_3390_ijms21051880 crossref_primary_10_1161_CIRCULATIONAHA_121_053960 crossref_primary_10_1016_j_lfs_2021_119440 crossref_primary_10_3390_ijms232213679 crossref_primary_10_3390_cancers15174419 crossref_primary_10_3390_molecules26185478 crossref_primary_10_1002_advs_202501968 crossref_primary_10_1016_j_mehy_2020_110474 crossref_primary_10_3389_fonc_2022_920017 crossref_primary_10_3390_cells11233812 crossref_primary_10_3390_ijms22094558 crossref_primary_10_1167_iovs_66_4_51 crossref_primary_10_3390_biom11071044 crossref_primary_10_1038_s41598_023_46589_9 crossref_primary_10_3390_cells13231971 crossref_primary_10_1093_molbev_msaf094 crossref_primary_10_3389_fimmu_2025_1608675 crossref_primary_10_1016_j_aquaculture_2025_742150 crossref_primary_10_1016_j_jbc_2025_110636 crossref_primary_10_1016_j_biopha_2022_112918 crossref_primary_10_1007_s00018_020_03476_0 crossref_primary_10_1016_j_archoralbio_2020_104765 crossref_primary_10_1038_s41589_023_01283_9 crossref_primary_10_1093_cvr_cvad146 crossref_primary_10_1155_2019_4568964 crossref_primary_10_5582_bst_2024_01020 crossref_primary_10_1016_j_biortech_2021_125973 crossref_primary_10_1016_j_cmet_2020_02_001 crossref_primary_10_1080_07347324_2025_2500355 crossref_primary_10_1089_bio_2023_0062 crossref_primary_10_7717_peerj_19270 crossref_primary_10_1016_j_cellin_2022_100075 crossref_primary_10_1089_ars_2020_8121 crossref_primary_10_3389_fimmu_2021_765477 crossref_primary_10_1016_j_biotechadv_2024_108401 crossref_primary_10_1016_j_gendis_2024_101510 crossref_primary_10_1016_j_bbrc_2024_149590 crossref_primary_10_3389_fendo_2023_1164788 crossref_primary_10_1161_CIRCRESAHA_120_318805 crossref_primary_10_1007_s00204_019_02415_8 crossref_primary_10_1016_j_surfin_2023_103083 crossref_primary_10_1038_d41586_018_07457_z crossref_primary_10_1016_j_semcancer_2023_03_001 crossref_primary_10_1007_s00253_020_10763_0 crossref_primary_10_3390_biology14091231 crossref_primary_10_3390_antiox10010019 crossref_primary_10_3390_cancers16173085 crossref_primary_10_1089_ars_2021_0111 crossref_primary_10_1182_bloodadvances_2021005776 crossref_primary_10_57634_RCR5073 crossref_primary_10_1038_s42003_020_01514_y crossref_primary_10_3390_ijms221910598 crossref_primary_10_1039_D5TA03036F crossref_primary_10_1007_s12649_023_02290_6 crossref_primary_10_1016_j_freeradbiomed_2025_09_001 crossref_primary_10_1016_j_snb_2025_138043 crossref_primary_10_3390_nu17132206 crossref_primary_10_1016_j_labinv_2024_100329 crossref_primary_10_31083_FBL24072 crossref_primary_10_1016_j_cbpc_2021_109227 crossref_primary_10_1016_j_poly_2022_115872 crossref_primary_10_1016_j_etap_2024_104570 crossref_primary_10_1002_smtd_202400563 crossref_primary_10_1016_j_freeradbiomed_2023_06_023 crossref_primary_10_3389_fendo_2022_829658 crossref_primary_10_1016_j_jfca_2024_106998 crossref_primary_10_1186_s13046_018_0837_9 crossref_primary_10_1016_j_metabol_2023_155559 crossref_primary_10_3390_molecules26175123 crossref_primary_10_1007_s00418_023_02253_x crossref_primary_10_1093_ijnp_pyaa008 crossref_primary_10_1172_JCI184069 crossref_primary_10_3389_fcvm_2023_1212174 crossref_primary_10_1016_j_freeradbiomed_2022_12_010 crossref_primary_10_3390_ijms231911975 crossref_primary_10_1016_j_freeradbiomed_2024_01_043 crossref_primary_10_1093_lifemeta_loaf008 crossref_primary_10_1016_j_freeradbiomed_2024_07_024 crossref_primary_10_1371_journal_pcbi_1010555 crossref_primary_10_1016_j_cjche_2020_12_006 crossref_primary_10_1038_s41420_024_01876_w crossref_primary_10_3390_antiox9020140 crossref_primary_10_3390_nu13103435 crossref_primary_10_3390_ijms242316727 crossref_primary_10_1089_ars_2020_8227 crossref_primary_10_1038_s41392_020_00326_0 crossref_primary_10_1002_adfm_202213856 crossref_primary_10_1016_j_snb_2024_135850 crossref_primary_10_3390_antiox13050546 crossref_primary_10_3390_biom11020267 crossref_primary_10_1016_j_isci_2024_111196 crossref_primary_10_1007_s12567_024_00555_x crossref_primary_10_1089_ars_2024_0694 crossref_primary_10_1038_s41380_021_01122_0 crossref_primary_10_1089_ars_2021_0207 crossref_primary_10_1158_0008_5472_CAN_21_3868 crossref_primary_10_1016_j_devcel_2020_11_009 crossref_primary_10_1117_1_BIOS_2_2_025001 crossref_primary_10_1016_j_cbi_2022_110294 crossref_primary_10_1161_CIRCHEARTFAILURE_121_009521 crossref_primary_10_1038_s41401_025_01555_1 crossref_primary_10_1016_j_phrs_2025_107841 crossref_primary_10_1038_s41392_024_02088_5 crossref_primary_10_1007_s00204_022_03262_w crossref_primary_10_1021_jacs_3c09735 crossref_primary_10_1002_jcb_28140 crossref_primary_10_1016_j_biopha_2024_116643 crossref_primary_10_1007_s13402_022_00740_2 crossref_primary_10_3390_antiox13050594 crossref_primary_10_1016_j_biochi_2024_03_016 crossref_primary_10_1038_s44319_025_00406_8 crossref_primary_10_1016_j_foodres_2023_113421 crossref_primary_10_1039_D2RA01890J crossref_primary_10_3390_cancers13061229 crossref_primary_10_1002_mc_23656 crossref_primary_10_1093_biolre_ioaf140 crossref_primary_10_1038_s41416_025_03163_6 crossref_primary_10_1007_s11426_022_1496_0 crossref_primary_10_3390_ijms25084559 crossref_primary_10_3390_ijms222312863 crossref_primary_10_3892_ijmm_2025_5575 crossref_primary_10_1146_annurev_bioeng_071516_044730 crossref_primary_10_1177_0271678X21992625 crossref_primary_10_1016_j_apsb_2024_06_027 crossref_primary_10_3389_fphys_2019_00078 crossref_primary_10_1016_j_brainresbull_2024_111114 crossref_primary_10_1089_ars_2021_0271 crossref_primary_10_3390_nu14030647 crossref_primary_10_1016_j_bbrc_2023_08_032 crossref_primary_10_1371_journal_pgen_1010477 crossref_primary_10_1016_j_bbagen_2025_130803 crossref_primary_10_1007_s11033_021_06935_4 crossref_primary_10_1016_j_fbio_2025_107630 crossref_primary_10_1073_pnas_2117882119 crossref_primary_10_3390_antiox10091351 crossref_primary_10_1016_j_aqrep_2023_101800 crossref_primary_10_3389_fimmu_2021_621744 crossref_primary_10_3389_fonc_2020_617190 crossref_primary_10_7554_eLife_97649_3 crossref_primary_10_1002_btpr_3507 crossref_primary_10_1016_j_expneurol_2020_113218 crossref_primary_10_3390_biom9020079 crossref_primary_10_3390_cancers13143548 crossref_primary_10_1016_j_freeradbiomed_2024_09_036 crossref_primary_10_1016_j_jhazmat_2024_136944 crossref_primary_10_1016_j_chemosphere_2022_134510 crossref_primary_10_1089_ars_2021_0017 crossref_primary_10_1016_j_placenta_2021_12_006 crossref_primary_10_1038_s41598_022_21139_x crossref_primary_10_1016_j_jbc_2022_102037 crossref_primary_10_1590_0001_3765201920181330 crossref_primary_10_1016_j_biomaterials_2024_122583 crossref_primary_10_1016_j_biopha_2023_115363 crossref_primary_10_3390_ijms22136860 crossref_primary_10_3390_genes11070780 crossref_primary_10_1007_s11033_023_08692_y crossref_primary_10_1007_s11357_019_00052_8 crossref_primary_10_1016_j_algal_2025_104122 crossref_primary_10_3390_antiox11061131 crossref_primary_10_3390_biomedicines12071620 crossref_primary_10_1002_biot_202300110 crossref_primary_10_3389_fonc_2020_00013 crossref_primary_10_12998_wjcc_v9_i30_8953 crossref_primary_10_1371_journal_pone_0303742 crossref_primary_10_1016_j_ecoenv_2024_117048 crossref_primary_10_1038_s41401_021_00705_5 crossref_primary_10_1007_s10555_025_10252_8 crossref_primary_10_1002_adhm_202401629 crossref_primary_10_3389_fcell_2024_1475603 crossref_primary_10_1016_j_neo_2025_101143 crossref_primary_10_1089_ars_2019_7799 crossref_primary_10_1016_j_cotox_2018_10_001 crossref_primary_10_1111_febs_16897 crossref_primary_10_1210_clinem_dgab790 crossref_primary_10_3390_cells13201731 crossref_primary_10_1016_j_plantsci_2022_111276 crossref_primary_10_1016_j_jes_2021_12_001 crossref_primary_10_1097_MCO_0000000000000786 crossref_primary_10_3390_ma17061420 crossref_primary_10_1002_1873_3468_14698 crossref_primary_10_1111_andr_13027 crossref_primary_10_1016_j_aca_2022_340722 crossref_primary_10_1007_s12272_024_01519_9 crossref_primary_10_1016_j_pharmr_2025_100043 crossref_primary_10_3389_fphar_2019_01277 crossref_primary_10_1002_1873_3468_14457 crossref_primary_10_1021_acsabm_5c00015 crossref_primary_10_1093_biolre_ioac124 crossref_primary_10_3390_ijms25042152 crossref_primary_10_1038_s41467_020_15636_8 crossref_primary_10_1515_hsz_2019_0268 crossref_primary_10_3390_ijms231710108 crossref_primary_10_15252_emmm_202012005 crossref_primary_10_3390_antiox13111406 crossref_primary_10_3390_nu17172860 crossref_primary_10_1021_acschembio_5c00174 crossref_primary_10_31482_mmsl_2022_030 crossref_primary_10_1038_s41401_021_00838_7 crossref_primary_10_1016_j_freeradbiomed_2023_07_012 crossref_primary_10_1038_s42003_022_04239_2 crossref_primary_10_1073_pnas_2217826120 crossref_primary_10_3390_biom13020256 crossref_primary_10_1016_j_rbc_2023_100016 crossref_primary_10_3390_metabo10110450 crossref_primary_10_1002_biof_1988 crossref_primary_10_1016_j_tcb_2023_02_004 crossref_primary_10_1158_1541_7786_MCR_20_0879 crossref_primary_10_3390_metabo12050461 crossref_primary_10_1074_jbc_RA120_012618 crossref_primary_10_1002_bit_29014 crossref_primary_10_1093_pcp_pcaa044 crossref_primary_10_7554_eLife_49178 crossref_primary_10_7554_eLife_82597 crossref_primary_10_1007_s11357_023_01059_y crossref_primary_10_3233_JAD_230706 crossref_primary_10_3389_fpubh_2024_1425023 crossref_primary_10_1155_2022_9196232 crossref_primary_10_1186_s43556_020_00004_1 crossref_primary_10_1016_j_biosystems_2023_105088 crossref_primary_10_1177_1535370220929287 crossref_primary_10_1007_s00018_024_05388_9 crossref_primary_10_1002_path_6430 crossref_primary_10_1186_s12885_025_13988_2 crossref_primary_10_1016_j_bbalip_2023_159319 crossref_primary_10_1016_j_freeradbiomed_2025_04_016 crossref_primary_10_1016_j_abb_2021_108934 crossref_primary_10_3390_cells12212511 crossref_primary_10_1002_anie_202300083 crossref_primary_10_1016_j_jbc_2023_105470 crossref_primary_10_1111_acel_70004 crossref_primary_10_1038_s41540_024_00390_0 crossref_primary_10_3390_ijms25021314 crossref_primary_10_1002_jimd_12402 crossref_primary_10_1016_j_ecoenv_2025_117895 crossref_primary_10_3390_nu16010100 crossref_primary_10_3390_cancers12123776 crossref_primary_10_3390_ijms22052366 crossref_primary_10_1016_j_cophys_2018_10_003 crossref_primary_10_3390_metabo14060341 crossref_primary_10_1016_j_jhazmat_2023_132470 crossref_primary_10_1016_j_yjmcc_2024_07_008 crossref_primary_10_1016_j_tice_2025_102736 crossref_primary_10_1021_acs_accounts_5c00455 crossref_primary_10_3390_ph15101271 crossref_primary_10_1371_journal_pone_0321998 crossref_primary_10_1002_1873_3468_14485 crossref_primary_10_1089_ars_2021_0048 crossref_primary_10_1016_j_freeradbiomed_2025_04_004 crossref_primary_10_1186_s12931_023_02331_7 crossref_primary_10_1016_j_ijfoodmicro_2024_110966 crossref_primary_10_1016_j_bone_2025_117411 crossref_primary_10_29254_2077_4214_2024_4_175_63_74 crossref_primary_10_1038_s41392_020_00311_7 crossref_primary_10_3390_ijms24076689 crossref_primary_10_1016_j_micpath_2025_107903 crossref_primary_10_1016_j_jenvman_2024_122547 crossref_primary_10_3389_fphys_2021_689747 crossref_primary_10_1016_j_peptides_2022_170902 crossref_primary_10_1039_D0FO03220D crossref_primary_10_3390_metabo14120660 crossref_primary_10_3389_fmolb_2021_697359 crossref_primary_10_1186_s13020_025_01163_5 crossref_primary_10_1073_pnas_2306525120 crossref_primary_10_1016_j_ymeth_2025_04_002 crossref_primary_10_3390_ijms25010410 crossref_primary_10_1089_ars_2020_8161 crossref_primary_10_1016_j_postharvbio_2025_113585 crossref_primary_10_3390_ijms242015395 crossref_primary_10_1038_s41598_021_82388_w crossref_primary_10_1161_CIRCRESAHA_122_321050 crossref_primary_10_1038_s41467_023_38739_4 crossref_primary_10_3390_metabo14110607 crossref_primary_10_1002_advs_202502163 crossref_primary_10_1039_D1EW00198A crossref_primary_10_3390_ijms25063110 crossref_primary_10_1016_j_freeradbiomed_2025_03_029 crossref_primary_10_1016_j_molcel_2025_06_007 crossref_primary_10_1042_EBC20230088 crossref_primary_10_3390_microorganisms9050970 crossref_primary_10_1016_j_xfnr_2021_12_001 crossref_primary_10_1089_ars_2020_8051 crossref_primary_10_1089_ars_2023_0293 crossref_primary_10_3390_antiox12010081 crossref_primary_10_1016_j_cej_2025_165480 crossref_primary_10_1002_advs_202308632 crossref_primary_10_1016_j_jchromb_2024_124342 crossref_primary_10_1111_jam_15669 crossref_primary_10_1016_j_neubiorev_2024_105767 crossref_primary_10_1016_j_semcdb_2019_05_027 crossref_primary_10_3390_ijms24076429 crossref_primary_10_1016_j_phymed_2024_155712 crossref_primary_10_1007_s00018_023_05070_6 crossref_primary_10_1016_j_bej_2022_108603 crossref_primary_10_1186_s12866_024_03314_4 crossref_primary_10_3390_ijms24010659 crossref_primary_10_1016_j_toxlet_2020_01_024 crossref_primary_10_3390_ijms22126311 crossref_primary_10_1186_s40001_025_02699_w crossref_primary_10_15407_biotech17_04_041 crossref_primary_10_1007_s10974_025_09689_9 crossref_primary_10_3389_fphys_2021_634816 crossref_primary_10_1016_j_talanta_2023_124393 crossref_primary_10_31083_j_jin2306113 crossref_primary_10_1016_j_redox_2025_103694 crossref_primary_10_1007_s11307_023_01887_6 crossref_primary_10_3390_ijms23031578 crossref_primary_10_1016_j_phymed_2023_154795 crossref_primary_10_1080_19768354_2023_2234986 crossref_primary_10_1007_s12678_025_00968_0 crossref_primary_10_1038_s41467_025_62410_9 crossref_primary_10_1182_blood_2024024123 crossref_primary_10_1016_j_jhazmat_2025_137123 crossref_primary_10_1039_D0EN01221A crossref_primary_10_1016_j_aquaculture_2022_739169 crossref_primary_10_7554_eLife_97649 crossref_primary_10_3389_fcimb_2022_1061444 crossref_primary_10_1038_s41598_023_35310_5 crossref_primary_10_1186_s12864_024_11021_7 crossref_primary_10_1186_s13020_024_00982_2 crossref_primary_10_3390_microorganisms12050933 crossref_primary_10_3390_medicina57090868 crossref_primary_10_1002_anie_202417112 crossref_primary_10_1016_j_cmet_2025_01_002 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1089/ars.2017.7216 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine Chemistry |
| EISSN | 1557-7716 |
| ExternalDocumentID | 28648096 |
| Genre | Journal Article Review |
| GroupedDBID | --- 0R~ 23M 4.4 5GY 5RE ABBKN ABJNI ACGFS ACPRK ADBBV AENEX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BNQNF CGR CS3 CUY CVF EBS ECM EIF EJD F5P IER IHR IM4 MV1 NPM NQHIM O9- P2P RML UE5 7X8 IAO J8X SAUOL SCNPE SFC |
| ID | FETCH-LOGICAL-c411t-d52803fb10e114c1250252e2898fcada9e0f0a6486a55b0ebee1e37e895d9bc2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 737 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000418408800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1557-7716 |
| IngestDate | Sun Nov 09 13:01:44 EST 2025 Thu Jan 02 23:01:47 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | redox state NAD(H) reductive stress NADP(H) oxidative stress cellular metabolism |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c411t-d52803fb10e114c1250252e2898fcada9e0f0a6486a55b0ebee1e37e895d9bc2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| PMID | 28648096 |
| PQID | 1913832584 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1913832584 pubmed_primary_28648096 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-01-20 |
| PublicationDateYYYYMMDD | 2018-01-20 |
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-20 day: 20 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Antioxidants & redox signaling |
| PublicationTitleAlternate | Antioxid Redox Signal |
| PublicationYear | 2018 |
| SSID | ssj0002110 |
| Score | 2.6903806 |
| SecondaryResourceType | review_article |
| Snippet | The nicotinamide adenine dinucleotide (NAD
)/reduced NAD
(NADH) and NADP
/reduced NADP
(NADPH) redox couples are essential for maintaining cellular redox... The nicotinamide adenine dinucleotide (NAD+)/reduced NAD+ (NADH) and NADP+/reduced NADP+ (NADPH) redox couples are essential for maintaining cellular redox... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 251 |
| SubjectTerms | Animals Energy Metabolism Extracellular Space Gene Expression Regulation, Enzymologic Homeostasis Humans Intracellular Space Metabolic Networks and Pathways NAD - metabolism NADP - metabolism Oxidation-Reduction Oxidative Stress Signal Transduction |
| Title | NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28648096 https://www.proquest.com/docview/1913832584 |
| Volume | 28 |
| WOSCitedRecordID | wos000418408800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA_qRH3xY37NLyr4oA91bdc26ZOMurEHV4YM2VtJkwsMajvtJv75XrKOPQmCLyXQlja5XO5-ucvvCLmLPI52JQNbCeXbPmXSjtBq2ZKFEMiIicDQNb290CRhk0k0qjfcqjqtcrUmmoValkLvkbcRVyCY8tBePs0-bF01SkdX6xIam6TRQVdGKyadrNnCNbgxfKkBRS_SDWuOTYdFbUSNOq-LPmrymt-9S2Nl-gf__b9Dsl_7l1Z3OSGOyAYUTbIbr8q6NcnOsI6mH5OnpPt8P3iweCEtbI50-xVk-W3F5WKWQ2XuxJDnOlfV6pljgtYQ5jhx8mn1fkLG_d44Hth1QQVb-K47t2Wga1GpzHUAYZBA3wY9Hg8QczEluOQROMrhoc9CHgSZg_IFFzoUWIRiy4R3SraKsoBzYoGi5tArlUzg4x6XhsdFQYcJGgZ-i9yuRinF_ukgBC-gXFTpepxa5Gw51OlsSayRegy_jZjq4g9vX5I9lJ9OxENFvyINhdoK12RbfM2n1eeNmQh4TUbDHwsruaA |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NAD%28H%29+and+NADP%28H%29+Redox+Couples+and+Cellular+Energy+Metabolism&rft.jtitle=Antioxidants+%26+redox+signaling&rft.au=Xiao%2C+Wusheng&rft.au=Wang%2C+Rui-Sheng&rft.au=Handy%2C+Diane+E&rft.au=Loscalzo%2C+Joseph&rft.date=2018-01-20&rft.issn=1557-7716&rft.eissn=1557-7716&rft.volume=28&rft.issue=3&rft.spage=251&rft_id=info:doi/10.1089%2Fars.2017.7216&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-7716&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-7716&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-7716&client=summon |