Annual maps of global artificial impervious area (GAIA) between 1985 and 2018

Artificial impervious areas are predominant indicators of human settlements. Timely, accurate, and frequent information on artificial impervious areas is critical to understanding the process of urbanization and land use/cover change, as well as of their impacts on the environment and biodiversity....

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing of environment Vol. 236; p. 111510
Main Authors: Gong, Peng, Li, Xuecao, Wang, Jie, Bai, Yuqi, Chen, Bin, Hu, Tengyun, Liu, Xiaoping, Xu, Bing, Yang, Jun, Zhang, Wei, Zhou, Yuyu
Format: Journal Article
Language:English
Published: New York Elsevier Inc 01.01.2020
Elsevier BV
Subjects:
ISSN:0034-4257, 1879-0704
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Artificial impervious areas are predominant indicators of human settlements. Timely, accurate, and frequent information on artificial impervious areas is critical to understanding the process of urbanization and land use/cover change, as well as of their impacts on the environment and biodiversity. Despite their importance, there still lack annual maps of high-resolution Global Artificial Impervious Areas (GAIA) with longer than 30-year records, due to the high demand of high performance computation and the lack of effective mapping algorithms. In this paper, we mapped annual GAIA from 1985 to 2018 using the full archive of 30-m resolution Landsat images on the Google Earth Engine platform. With ancillary datasets, including the nighttime light data and the Sentinel-1 Synthetic Aperture Radar data, we improved the performance of our previously developed algorithm in arid areas. We evaluated the GAIA data for 1985, 1990, 1995, 2000, 2005, 2010, and 2015, and the mean overall accuracy is higher than 90%. A cross-product comparison indicates the GAIA data are the only dataset spanning over 30 years. The temporal trend in GAIA agrees well with other datasets at the local, regional, and global scales. Our results indicate that the GAIA reached 797,076 km2 in 2018, which is 1.5 times more than that in 1990. China and the United States (US) rank among the top two in artificial impervious area, accounting for approximately 50% of the world's total in 2018. The artificial impervious area of China surpassed that of the US in 2015. By 2018, the remaining eight among the top ten countries are India, Russia, Brazil, France, Italy, Germany, Japan, and Canada. The GAIA dataset can be freely downloaded from http://data.ess.tsinghua.edu.cn. •We improved the performance of “Exclusion/Inclusion” approach in arid regions.•We mapped global artificial impervious areas (GAIA) with Google Earth Engine.•The mean overall accuracy over multiple years is higher than 90%.•GAIA reached 797,076 km2 by 2018, more than 2.5 times that of 1990.•The top five countries are China, US, India, Russia, and Brazil.
AbstractList Artificial impervious areas are predominant indicators of human settlements. Timely, accurate, and frequent information on artificial impervious areas is critical to understanding the process of urbanization and land use/cover change, as well as of their impacts on the environment and biodiversity. Despite their importance, there still lack annual maps of high-resolution Global Artificial Impervious Areas (GAIA) with longer than 30-year records, due to the high demand of high performance computation and the lack of effective mapping algorithms. In this paper, we mapped annual GAIA from 1985 to 2018 using the full archive of 30-m resolution Landsat images on the Google Earth Engine platform. With ancillary datasets, including the nighttime light data and the Sentinel-1 Synthetic Aperture Radar data, we improved the performance of our previously developed algorithm in arid areas. We evaluated the GAIA data for 1985, 1990, 1995, 2000, 2005, 2010, and 2015, and the mean overall accuracy is higher than 90%. A cross-product comparison indicates the GAIA data are the only dataset spanning over 30 years. The temporal trend in GAIA agrees well with other datasets at the local, regional, and global scales. Our results indicate that the GAIA reached 797,076 km2 in 2018, which is 1.5 times more than that in 1990. China and the United States (US) rank among the top two in artificial impervious area, accounting for approximately 50% of the world's total in 2018. The artificial impervious area of China surpassed that of the US in 2015. By 2018, the remaining eight among the top ten countries are India, Russia, Brazil, France, Italy, Germany, Japan, and Canada. The GAIA dataset can be freely downloaded from http://data.ess.tsinghua.edu.cn. •We improved the performance of “Exclusion/Inclusion” approach in arid regions.•We mapped global artificial impervious areas (GAIA) with Google Earth Engine.•The mean overall accuracy over multiple years is higher than 90%.•GAIA reached 797,076 km2 by 2018, more than 2.5 times that of 1990.•The top five countries are China, US, India, Russia, and Brazil.
Artificial impervious areas are predominant indicators of human settlements. Timely, accurate, and frequent information on artificial impervious areas is critical to understanding the process of urbanization and land use/cover change, as well as of their impacts on the environment and biodiversity. Despite their importance, there still lack annual maps of high-resolution Global Artificial Impervious Areas (GAIA) with longer than 30-year records, due to the high demand of high performance computation and the lack of effective mapping algorithms. In this paper, we mapped annual GAIA from 1985 to 2018 using the full archive of 30-m resolution Landsat images on the Google Earth Engine platform. With ancillary datasets, including the nighttime light data and the Sentinel-1 Synthetic Aperture Radar data, we improved the performance of our previously developed algorithm in arid areas. We evaluated the GAIA data for 1985, 1990, 1995, 2000, 2005, 2010, and 2015, and the mean overall accuracy is higher than 90%. A cross-product comparison indicates the GAIA data are the only dataset spanning over 30 years. The temporal trend in GAIA agrees well with other datasets at the local, regional, and global scales. Our results indicate that the GAIA reached 797,076 km2 in 2018, which is 1.5 times more than that in 1990. China and the United States (US) rank among the top two in artificial impervious area, accounting for approximately 50% of the world's total in 2018. The artificial impervious area of China surpassed that of the US in 2015. By 2018, the remaining eight among the top ten countries are India, Russia, Brazil, France, Italy, Germany, Japan, and Canada. The GAIA dataset can be freely downloaded from http://data.ess.tsinghua.edu.cn.
Artificial impervious areas are predominant indicators of human settlements. Timely, accurate, and frequent information on artificial impervious areas is critical to understanding the process of urbanization and land use/cover change, as well as of their impacts on the environment and biodiversity. Despite their importance, there still lack annual maps of high-resolution Global Artificial Impervious Areas (GAIA) with longer than 30-year records, due to the high demand of high performance computation and the lack of effective mapping algorithms. In this paper, we mapped annual GAIA from 1985 to 2018 using the full archive of 30-m resolution Landsat images on the Google Earth Engine platform. With ancillary datasets, including the nighttime light data and the Sentinel-1 Synthetic Aperture Radar data, we improved the performance of our previously developed algorithm in arid areas. We evaluated the GAIA data for 1985, 1990, 1995, 2000, 2005, 2010, and 2015, and the mean overall accuracy is higher than 90%. A cross-product comparison indicates the GAIA data are the only dataset spanning over 30 years. The temporal trend in GAIA agrees well with other datasets at the local, regional, and global scales. Our results indicate that the GAIA reached 797,076 km² in 2018, which is 1.5 times more than that in 1990. China and the United States (US) rank among the top two in artificial impervious area, accounting for approximately 50% of the world's total in 2018. The artificial impervious area of China surpassed that of the US in 2015. By 2018, the remaining eight among the top ten countries are India, Russia, Brazil, France, Italy, Germany, Japan, and Canada. The GAIA dataset can be freely downloaded from http://data.ess.tsinghua.edu.cn.
ArticleNumber 111510
Author Bai, Yuqi
Yang, Jun
Zhang, Wei
Gong, Peng
Hu, Tengyun
Xu, Bing
Chen, Bin
Zhou, Yuyu
Li, Xuecao
Wang, Jie
Liu, Xiaoping
Author_xml – sequence: 1
  givenname: Peng
  surname: Gong
  fullname: Gong, Peng
  email: penggong@tsinghua.edu.cn
  organization: Ministry of Education Key Laboratory of Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
– sequence: 2
  givenname: Xuecao
  surname: Li
  fullname: Li, Xuecao
  organization: Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA, 50011, USA
– sequence: 3
  givenname: Jie
  surname: Wang
  fullname: Wang, Jie
  email: sohuwangjie@163.com
  organization: State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, 100101, China
– sequence: 4
  givenname: Yuqi
  surname: Bai
  fullname: Bai, Yuqi
  organization: Ministry of Education Key Laboratory of Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
– sequence: 5
  givenname: Bin
  surname: Chen
  fullname: Chen, Bin
  organization: Department of Land, Air and Water Resources, University of California, Davis, CA, 95616-8627, USA
– sequence: 6
  givenname: Tengyun
  surname: Hu
  fullname: Hu, Tengyun
  organization: Beijing Municipal Institute of City Planning and Design, Beijing, 100045, China
– sequence: 7
  givenname: Xiaoping
  surname: Liu
  fullname: Liu, Xiaoping
  organization: Guangdong Key Laboratory for Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-Sen University, Guangzhou, 510275, China
– sequence: 8
  givenname: Bing
  surname: Xu
  fullname: Xu, Bing
  organization: Ministry of Education Key Laboratory of Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
– sequence: 9
  givenname: Jun
  surname: Yang
  fullname: Yang, Jun
  organization: Ministry of Education Key Laboratory of Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
– sequence: 10
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
  organization: Ministry of Education Key Laboratory of Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
– sequence: 11
  givenname: Yuyu
  surname: Zhou
  fullname: Zhou, Yuyu
  organization: Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA, 50011, USA
BookMark eNp9kMFOAyEQhonRxLb6AN428VIPWxlguxBPTaPVRONFz4RlZw3NFipsa3x7aerJgycY8n8zwzcmpz54JOQK6AwozG_Xs5hwxiioGQBUQE_ICGStSlpTcUpGlHJRClbV52Sc0ppSqGQNI_Ky8H5n-mJjtqkIXfHRhyaXJg6uc9blq9tsMe5d2KX8iqaYrhZPi5uiweEL0RegZFUY3xZ5trwgZ53pE17-nhPy_nD_tnwsn19XT8vFc2kFwFBabintjOItMCtYByik4ZYrJZUF2cCcWd4IZippUXRzEKppczWXLatrxfiETI99tzF87jANeuOSxb43HvOimvGKCS4h_3pCrv9E12EXfd4upzilDBQ9NIRjysaQUsROb6PbmPitgeqDYL3WWbA-CNZHwZmp_zDWDWZwwQ_RuP5f8u5IYna0dxh1sg69xdZFtINug_uH_gHJrJLK
CitedBy_id crossref_primary_10_1016_j_scitotenv_2023_166490
crossref_primary_10_1016_j_ecolind_2023_111287
crossref_primary_10_1016_j_jag_2024_104218
crossref_primary_10_1371_journal_pone_0304315
crossref_primary_10_3390_land10080771
crossref_primary_10_1080_17538947_2025_2467985
crossref_primary_10_3390_rs16040711
crossref_primary_10_3390_rs12030426
crossref_primary_10_1016_j_rse_2023_113625
crossref_primary_10_3390_atmos15020185
crossref_primary_10_3390_land12051032
crossref_primary_10_5194_essd_15_555_2023
crossref_primary_10_3390_rs15071805
crossref_primary_10_1109_JSTARS_2021_3094559
crossref_primary_10_3390_land12030576
crossref_primary_10_3390_rs16050873
crossref_primary_10_3390_su15118511
crossref_primary_10_1016_j_scs_2024_105382
crossref_primary_10_1016_j_jag_2022_102709
crossref_primary_10_1016_j_scs_2024_105381
crossref_primary_10_1016_j_scs_2024_105385
crossref_primary_10_1016_j_scs_2024_106117
crossref_primary_10_1080_17538947_2024_2391031
crossref_primary_10_1016_j_ecolind_2024_112536
crossref_primary_10_1016_j_geomorph_2024_109233
crossref_primary_10_1016_j_landurbplan_2022_104640
crossref_primary_10_1016_j_ecolind_2024_112777
crossref_primary_10_1016_j_ufug_2024_128624
crossref_primary_10_1007_s10113_023_02084_5
crossref_primary_10_1016_j_habitatint_2025_103397
crossref_primary_10_1016_j_rse_2023_113616
crossref_primary_10_3390_ijerph192013555
crossref_primary_10_1371_journal_pone_0328656
crossref_primary_10_1016_j_rse_2022_113117
crossref_primary_10_3390_buildings14113571
crossref_primary_10_1080_10106049_2022_2142957
crossref_primary_10_1111_gcb_15602
crossref_primary_10_1016_j_resconrec_2024_107624
crossref_primary_10_3390_rs14092087
crossref_primary_10_1016_j_jclepro_2025_145984
crossref_primary_10_1038_s41597_023_02240_w
crossref_primary_10_3390_land13010010
crossref_primary_10_3390_rs15071816
crossref_primary_10_3390_urbansci7010029
crossref_primary_10_3390_rs14040881
crossref_primary_10_1038_s41597_025_04730_5
crossref_primary_10_1016_j_jenvman_2021_114304
crossref_primary_10_3390_land12101845
crossref_primary_10_1080_17538947_2025_2510573
crossref_primary_10_1016_j_rse_2020_111859
crossref_primary_10_1007_s11629_024_9034_9
crossref_primary_10_1007_s11869_023_01488_w
crossref_primary_10_1016_j_landurbplan_2025_105466
crossref_primary_10_1080_27669645_2022_2104990
crossref_primary_10_1080_15481603_2024_2388921
crossref_primary_10_3390_rs16173125
crossref_primary_10_1016_j_ecolind_2023_110298
crossref_primary_10_1029_2021EF002062
crossref_primary_10_3390_rs17091619
crossref_primary_10_5194_essd_14_3835_2022
crossref_primary_10_1109_JSTARS_2021_3129842
crossref_primary_10_1016_j_ecolind_2024_112510
crossref_primary_10_5194_essd_14_3649_2022
crossref_primary_10_3390_land11081179
crossref_primary_10_3390_rs13152850
crossref_primary_10_1080_01431161_2020_1841322
crossref_primary_10_1016_j_isprsjprs_2021_06_010
crossref_primary_10_1038_s43247_024_01580_8
crossref_primary_10_3390_land11081174
crossref_primary_10_1016_j_habitatint_2023_102869
crossref_primary_10_3390_rs14225730
crossref_primary_10_1007_s11442_021_1895_z
crossref_primary_10_3390_rs15184632
crossref_primary_10_3390_atmos16080912
crossref_primary_10_1016_j_isprsjprs_2022_01_022
crossref_primary_10_3390_land12020426
crossref_primary_10_1016_j_habitatint_2025_103477
crossref_primary_10_1016_j_jclepro_2023_138971
crossref_primary_10_3390_land10030244
crossref_primary_10_1002_ieam_4833
crossref_primary_10_1111_jors_12760
crossref_primary_10_3390_rs14153786
crossref_primary_10_1016_j_landurbplan_2022_104615
crossref_primary_10_1029_2023EF004412
crossref_primary_10_1016_j_jag_2021_102525
crossref_primary_10_1016_j_agrformet_2021_108476
crossref_primary_10_1038_s41598_024_62001_6
crossref_primary_10_1016_j_jag_2024_104125
crossref_primary_10_1016_j_chemosphere_2021_132918
crossref_primary_10_5194_essd_17_2147_2025
crossref_primary_10_3390_buildings15111803
crossref_primary_10_1016_j_enbuild_2024_114552
crossref_primary_10_1016_j_scs_2025_106660
crossref_primary_10_1111_gcb_70263
crossref_primary_10_1016_j_agsy_2024_104138
crossref_primary_10_1038_s41597_022_01192_x
crossref_primary_10_5194_essd_16_2007_2024
crossref_primary_10_1038_s41467_023_41620_z
crossref_primary_10_3390_su15010063
crossref_primary_10_1016_j_landurbplan_2025_105482
crossref_primary_10_1016_j_scitotenv_2023_163074
crossref_primary_10_1051_e3sconf_202561103008
crossref_primary_10_3390_rs13122398
crossref_primary_10_1029_2024GL112711
crossref_primary_10_1038_s41598_025_92620_6
crossref_primary_10_1016_j_scs_2021_103564
crossref_primary_10_1080_13658816_2024_2401914
crossref_primary_10_3390_land10121369
crossref_primary_10_1080_10106049_2021_2017017
crossref_primary_10_1016_j_isprsjprs_2024_12_023
crossref_primary_10_1016_j_jag_2021_102513
crossref_primary_10_3390_su16073091
crossref_primary_10_1016_j_isprsjprs_2023_10_015
crossref_primary_10_2166_wcc_2022_041
crossref_primary_10_1016_j_cities_2024_105117
crossref_primary_10_1007_s11769_022_1300_6
crossref_primary_10_1111_1365_2664_70119
crossref_primary_10_1038_s41597_023_02518_z
crossref_primary_10_3390_rs16214089
crossref_primary_10_1016_j_eja_2024_127273
crossref_primary_10_1016_j_indic_2025_100643
crossref_primary_10_3390_su15107947
crossref_primary_10_3390_su14159214
crossref_primary_10_1038_s44284_025_00316_9
crossref_primary_10_1016_j_isci_2024_109110
crossref_primary_10_1016_j_ecolind_2024_112339
crossref_primary_10_1109_ACCESS_2021_3054169
crossref_primary_10_1016_j_jag_2025_104404
crossref_primary_10_1016_j_geomorph_2025_109708
crossref_primary_10_1016_j_jag_2025_104524
crossref_primary_10_1038_s41597_022_01775_8
crossref_primary_10_1080_10095020_2024_2336599
crossref_primary_10_1016_j_habitatint_2025_103350
crossref_primary_10_1016_j_clwas_2025_100324
crossref_primary_10_1016_j_jag_2022_102800
crossref_primary_10_1016_j_isprsjprs_2023_10_007
crossref_primary_10_1029_2020JD034066
crossref_primary_10_1016_j_ecolind_2022_108800
crossref_primary_10_1109_JSTARS_2023_3241620
crossref_primary_10_1109_TGRS_2022_3160617
crossref_primary_10_1016_j_scitotenv_2024_175293
crossref_primary_10_1111_gcb_70166
crossref_primary_10_1016_j_scs_2025_106680
crossref_primary_10_5194_essd_14_1377_2022
crossref_primary_10_3389_fevo_2023_1163308
crossref_primary_10_1016_j_geosus_2024_07_001
crossref_primary_10_1016_j_heliyon_2023_e18849
crossref_primary_10_1016_j_scs_2025_106328
crossref_primary_10_1111_1365_2664_70102
crossref_primary_10_1016_j_scitotenv_2021_152723
crossref_primary_10_1016_j_geosus_2024_07_008
crossref_primary_10_1016_j_compenvurbsys_2022_101867
crossref_primary_10_1016_j_rse_2023_113650
crossref_primary_10_3390_land13020168
crossref_primary_10_3390_urbansci9040097
crossref_primary_10_1016_j_scitotenv_2021_149576
crossref_primary_10_1016_j_jclepro_2024_143331
crossref_primary_10_5194_essd_14_3743_2022
crossref_primary_10_1007_s10708_022_10776_4
crossref_primary_10_1016_j_ecolind_2021_108414
crossref_primary_10_3390_rs13204187
crossref_primary_10_3390_rs16050851
crossref_primary_10_1016_j_cities_2025_105782
crossref_primary_10_1016_j_rse_2020_111705
crossref_primary_10_1080_00330124_2022_2125882
crossref_primary_10_1098_rsos_210838
crossref_primary_10_3390_rs16091495
crossref_primary_10_1016_j_rse_2022_113361
crossref_primary_10_3390_land14030653
crossref_primary_10_1109_TGRS_2023_3334030
crossref_primary_10_3390_su151713143
crossref_primary_10_1016_j_eiar_2025_108147
crossref_primary_10_1016_j_oneear_2025_101234
crossref_primary_10_1088_1748_9326_aca920
crossref_primary_10_1029_2023JD039737
crossref_primary_10_1109_JSTARS_2024_3435543
crossref_primary_10_3390_rs13204073
crossref_primary_10_3390_su142316092
crossref_primary_10_1016_j_uclim_2021_100987
crossref_primary_10_1016_j_jag_2025_104740
crossref_primary_10_3390_rs14225785
crossref_primary_10_1080_17538947_2024_2302579
crossref_primary_10_1080_10106049_2022_2076908
crossref_primary_10_3390_su12114355
crossref_primary_10_1016_j_apgeog_2023_102995
crossref_primary_10_1111_jiec_13191
crossref_primary_10_3390_rs13183778
crossref_primary_10_1016_j_rse_2023_113793
crossref_primary_10_1080_17538947_2024_2347448
crossref_primary_10_1016_j_ecolind_2025_113746
crossref_primary_10_1016_j_jclepro_2020_125569
crossref_primary_10_1093_wber_lhae025
crossref_primary_10_1016_j_eiar_2025_107984
crossref_primary_10_1016_j_ufug_2025_128739
crossref_primary_10_1080_17538947_2024_2390454
crossref_primary_10_1007_s11430_020_9797_9
crossref_primary_10_1016_j_ecolind_2024_112372
crossref_primary_10_1038_s41467_022_32258_4
crossref_primary_10_1016_j_jag_2022_102798
crossref_primary_10_1016_j_jhydrol_2024_131535
crossref_primary_10_1016_j_scitotenv_2022_160705
crossref_primary_10_1029_2021GL093721
crossref_primary_10_1029_2021GL093603
crossref_primary_10_1038_s41598_024_62880_9
crossref_primary_10_11922_11_6035_noda_2023_0004_zh
crossref_primary_10_1016_j_earscirev_2024_104729
crossref_primary_10_1016_j_jhydrol_2022_127719
crossref_primary_10_3390_ijgi10120830
crossref_primary_10_1109_JSTARS_2024_3487623
crossref_primary_10_1016_j_jag_2021_102383
crossref_primary_10_1016_j_ecolind_2025_113614
crossref_primary_10_1080_13658816_2025_2506528
crossref_primary_10_1117_1_JRS_16_034526
crossref_primary_10_3390_atmos11121349
crossref_primary_10_1016_j_ecolind_2022_109651
crossref_primary_10_1016_j_scitotenv_2021_146015
crossref_primary_10_1016_j_uclim_2025_102379
crossref_primary_10_1109_JSTARS_2025_3561499
crossref_primary_10_1016_j_indic_2025_100611
crossref_primary_10_3390_rs12122022
crossref_primary_10_1007_s12145_023_01035_2
crossref_primary_10_1016_j_rse_2022_113195
crossref_primary_10_1016_j_scib_2023_06_032
crossref_primary_10_1016_j_scs_2023_105033
crossref_primary_10_1016_j_rse_2022_113192
crossref_primary_10_1038_s41597_024_03230_2
crossref_primary_10_1016_j_rse_2023_113578
crossref_primary_10_3390_rs15133438
crossref_primary_10_1016_j_catena_2021_105489
crossref_primary_10_1016_j_uclim_2025_102383
crossref_primary_10_1038_s43247_025_02283_4
crossref_primary_10_1111_nph_20212
crossref_primary_10_5194_essd_16_2297_2024
crossref_primary_10_1038_s41597_020_00736_3
crossref_primary_10_1016_j_apgeog_2023_103124
crossref_primary_10_5194_hess_29_1001_2025
crossref_primary_10_1016_j_ecolind_2022_109782
crossref_primary_10_1016_j_scitotenv_2022_153395
crossref_primary_10_1016_j_scitotenv_2024_175981
crossref_primary_10_3390_su14052479
crossref_primary_10_1038_s41612_024_00708_z
crossref_primary_10_3390_rs13020212
crossref_primary_10_1109_JSTARS_2022_3221625
crossref_primary_10_1007_s11269_025_04242_2
crossref_primary_10_1016_j_ecolind_2022_109307
crossref_primary_10_3390_rs17173040
crossref_primary_10_1016_j_rse_2023_113481
crossref_primary_10_1016_j_scitotenv_2020_139457
crossref_primary_10_1029_2022JD038184
crossref_primary_10_3390_rs13030341
crossref_primary_10_1016_j_ecofro_2025_05_020
crossref_primary_10_1016_j_scitotenv_2022_159502
crossref_primary_10_1038_s41597_020_00605_z
crossref_primary_10_1061_JUPDDM_UPENG_5800
crossref_primary_10_1007_s10344_025_01975_8
crossref_primary_10_1016_j_rse_2025_114776
crossref_primary_10_1016_j_ufug_2025_128961
crossref_primary_10_1016_j_resconrec_2023_107394
crossref_primary_10_1109_MGRS_2024_3398434
crossref_primary_10_1038_s41597_022_01540_x
crossref_primary_10_1007_s41064_024_00305_y
crossref_primary_10_3390_ijerph18042168
crossref_primary_10_1016_j_ecolind_2024_112000
crossref_primary_10_1016_j_jag_2021_102480
crossref_primary_10_1016_j_scitotenv_2024_175631
crossref_primary_10_3390_land11020298
crossref_primary_10_1016_j_scitotenv_2024_172481
crossref_primary_10_1016_j_jag_2022_102787
crossref_primary_10_1016_j_atmosres_2021_105786
crossref_primary_10_34133_remotesensing_0748
crossref_primary_10_1016_j_scitotenv_2023_165777
crossref_primary_10_1016_j_ufug_2024_128491
crossref_primary_10_3390_rs14194724
crossref_primary_10_3390_su17062756
crossref_primary_10_1016_j_landurbplan_2023_104755
crossref_primary_10_5194_essd_15_3547_2023
crossref_primary_10_5194_essd_15_4713_2023
crossref_primary_10_1016_j_scs_2025_106701
crossref_primary_10_1007_s11442_022_2017_2
crossref_primary_10_3390_land14030562
crossref_primary_10_3390_rs13030477
crossref_primary_10_1016_j_ufug_2025_128950
crossref_primary_10_1016_j_resconrec_2024_107561
crossref_primary_10_1016_j_rse_2022_113058
crossref_primary_10_3390_rs13214241
crossref_primary_10_3390_land11060935
crossref_primary_10_1016_j_scitotenv_2019_136060
crossref_primary_10_3390_land12081607
crossref_primary_10_1038_s41467_024_52241_5
crossref_primary_10_1038_s41597_023_02623_z
crossref_primary_10_7717_peerj_11877
crossref_primary_10_1016_j_jenvman_2025_124326
crossref_primary_10_3390_rs15082063
crossref_primary_10_3390_rs12071058
crossref_primary_10_1016_j_rsase_2025_101472
crossref_primary_10_1016_j_compenvurbsys_2022_101917
crossref_primary_10_1016_j_agrformet_2023_109343
crossref_primary_10_1016_j_ufug_2023_128020
crossref_primary_10_5194_essd_15_3623_2023
crossref_primary_10_3390_rs12172832
crossref_primary_10_1016_j_agrformet_2023_109341
crossref_primary_10_1016_j_scitotenv_2023_162092
crossref_primary_10_3390_land12020321
crossref_primary_10_1007_s10980_020_01137_y
crossref_primary_10_3390_rs13051008
crossref_primary_10_3390_rs14051236
crossref_primary_10_1029_2022JD036905
crossref_primary_10_1080_15387216_2023_2267064
crossref_primary_10_1016_j_rsase_2021_100669
crossref_primary_10_1016_j_jclepro_2024_143626
crossref_primary_10_1016_j_ecolind_2023_109954
crossref_primary_10_1016_j_uclim_2024_102159
crossref_primary_10_1177_23998083241282092
crossref_primary_10_1029_2023JD039914
crossref_primary_10_1038_s43247_025_02315_z
crossref_primary_10_3390_rs15051426
crossref_primary_10_1016_j_jag_2024_104268
crossref_primary_10_1016_j_jag_2025_104368
crossref_primary_10_1016_j_jclepro_2024_141443
crossref_primary_10_5194_essd_13_63_2021
crossref_primary_10_1016_j_jclepro_2022_134889
crossref_primary_10_1016_j_ufug_2025_128770
crossref_primary_10_1016_j_envpol_2021_118285
crossref_primary_10_1016_j_scs_2025_106841
crossref_primary_10_1109_JSTARS_2023_3245826
crossref_primary_10_3390_rs15051431
crossref_primary_10_1016_j_apenergy_2025_125865
crossref_primary_10_3390_rs17030401
crossref_primary_10_1016_j_scs_2022_103716
crossref_primary_10_1016_j_ecolind_2023_110703
crossref_primary_10_3390_ijerph18137180
crossref_primary_10_3390_land12020452
crossref_primary_10_5194_essd_15_133_2023
crossref_primary_10_1016_j_scs_2025_106725
crossref_primary_10_5194_essd_17_2535_2025
crossref_primary_10_1038_s41598_021_02565_9
crossref_primary_10_3390_rs15020515
crossref_primary_10_1016_j_uclim_2024_102062
crossref_primary_10_1016_j_habitatint_2025_103286
crossref_primary_10_1007_s00521_020_05449_7
crossref_primary_10_1016_j_envint_2022_107348
crossref_primary_10_1016_j_scitotenv_2021_149735
crossref_primary_10_1016_j_jag_2020_102255
crossref_primary_10_1080_13658816_2023_2298296
crossref_primary_10_1002_hyp_14489
crossref_primary_10_5194_essd_17_4039_2025
crossref_primary_10_1016_j_scs_2024_105483
crossref_primary_10_3390_su16083365
crossref_primary_10_1016_j_buildenv_2024_111545
crossref_primary_10_1061_JUPDDM_UPENG_4753
crossref_primary_10_1016_j_rse_2022_113088
crossref_primary_10_1111_gcb_16761
crossref_primary_10_3390_rs14143391
crossref_primary_10_3390_land13070908
crossref_primary_10_1007_s11252_022_01322_8
crossref_primary_10_3390_rs17173087
crossref_primary_10_1007_s00376_024_3269_9
crossref_primary_10_1029_2024GL112887
crossref_primary_10_1016_j_uclim_2025_102350
crossref_primary_10_1038_s41467_024_48533_5
crossref_primary_10_1016_j_cstp_2025_101555
crossref_primary_10_1016_j_rse_2024_114549
crossref_primary_10_1016_j_isci_2023_108124
crossref_primary_10_1016_j_jclepro_2024_143605
crossref_primary_10_1038_s41893_022_00930_8
crossref_primary_10_3390_su16041651
crossref_primary_10_3390_su17083480
crossref_primary_10_1016_j_uclim_2025_102476
crossref_primary_10_1007_s11356_021_16579_3
crossref_primary_10_3390_rs12172817
crossref_primary_10_1002_eap_70008
crossref_primary_10_1016_j_scs_2024_105591
crossref_primary_10_3390_rs15030774
crossref_primary_10_1007_s11356_023_31201_4
crossref_primary_10_1016_j_envpol_2021_118383
crossref_primary_10_1080_15481603_2025_2547122
crossref_primary_10_1016_j_eiar_2021_106646
crossref_primary_10_1016_j_jclepro_2022_132129
crossref_primary_10_1016_j_jclepro_2025_146060
crossref_primary_10_1080_20964129_2022_2040385
crossref_primary_10_1007_s11442_025_2360_1
crossref_primary_10_1038_s41598_025_86880_5
crossref_primary_10_1002_ecs2_4403
crossref_primary_10_1016_j_compenvurbsys_2021_101704
crossref_primary_10_1038_s41597_024_03179_2
crossref_primary_10_1016_j_jag_2022_103001
crossref_primary_10_1007_s10109_022_00374_w
crossref_primary_10_1016_j_scs_2023_104458
crossref_primary_10_1016_j_scitotenv_2024_173623
crossref_primary_10_1016_j_ecolind_2022_109123
crossref_primary_10_1016_j_jhydrol_2024_131498
crossref_primary_10_1016_j_eiar_2023_107227
crossref_primary_10_3390_rs16061091
crossref_primary_10_3390_ijgi11080420
crossref_primary_10_1016_j_heliyon_2024_e29647
crossref_primary_10_1016_j_scs_2022_104051
crossref_primary_10_3390_land12081490
crossref_primary_10_3390_rs14102307
crossref_primary_10_1057_s41599_025_04920_x
crossref_primary_10_1016_j_jhydrol_2024_131493
crossref_primary_10_1016_j_jenvman_2022_116337
crossref_primary_10_1029_2024GL113479
crossref_primary_10_1029_2025GL115032
crossref_primary_10_1109_JSTARS_2021_3130063
crossref_primary_10_3390_rs14215580
crossref_primary_10_1080_15481603_2025_2548082
crossref_primary_10_3390_ijgi11020128
crossref_primary_10_11922_11_6035_csd_2024_0109_zh
crossref_primary_10_1289_EHP15010
crossref_primary_10_1016_j_apgeog_2023_103079
crossref_primary_10_3390_rs14020376
crossref_primary_10_1029_2024EF004936
crossref_primary_10_1080_15230430_2025_2483474
crossref_primary_10_3390_ijgi12120504
crossref_primary_10_1016_j_rse_2021_112409
crossref_primary_10_1080_13658816_2025_2451306
crossref_primary_10_1038_s41597_024_04195_y
crossref_primary_10_1021_acs_est_4c00424
crossref_primary_10_1038_s44284_025_00258_2
crossref_primary_10_1038_s43247_022_00598_0
crossref_primary_10_3390_rs15061549
crossref_primary_10_1029_2022JD038210
crossref_primary_10_1016_j_apgeog_2021_102533
crossref_primary_10_1080_01431161_2023_2232541
crossref_primary_10_1016_j_uclim_2022_101391
crossref_primary_10_5194_essd_15_2347_2023
crossref_primary_10_3390_rs16132495
crossref_primary_10_1080_22797254_2021_1948356
crossref_primary_10_1080_15481603_2022_2161199
crossref_primary_10_1016_j_rse_2020_112039
crossref_primary_10_3390_rs12233929
crossref_primary_10_3390_rs14163958
crossref_primary_10_1175_JTECH_D_20_0012_1
crossref_primary_10_3390_rs14102327
crossref_primary_10_5194_essd_12_1217_2020
crossref_primary_10_3390_land11122209
crossref_primary_10_1038_s41467_023_39728_3
crossref_primary_10_1016_j_jhydrol_2024_132449
crossref_primary_10_1016_j_uclim_2023_101535
crossref_primary_10_1016_j_uclim_2023_101536
crossref_primary_10_3390_rs13091801
crossref_primary_10_3390_rs13101900
crossref_primary_10_5194_essd_13_2857_2021
crossref_primary_10_1016_j_apgeog_2022_102826
crossref_primary_10_1016_j_ecolind_2021_107927
crossref_primary_10_1016_j_uclim_2022_101120
crossref_primary_10_1016_j_cities_2025_106030
crossref_primary_10_1016_j_inffus_2024_102689
crossref_primary_10_1016_j_scs_2024_105601
crossref_primary_10_5194_essd_13_3907_2021
crossref_primary_10_1038_s43247_021_00273_w
crossref_primary_10_1016_j_scs_2021_102981
crossref_primary_10_1038_s41467_024_50840_w
crossref_primary_10_5194_essd_15_359_2023
crossref_primary_10_1016_j_eiar_2025_107810
crossref_primary_10_1007_s40333_024_0078_z
crossref_primary_10_1016_j_jclepro_2023_137080
crossref_primary_10_1016_j_apgeog_2023_103094
crossref_primary_10_1080_13658816_2023_2168006
crossref_primary_10_1016_j_jhydrol_2025_133969
crossref_primary_10_1016_j_buildenv_2025_112746
crossref_primary_10_1016_j_ijdrr_2025_105332
crossref_primary_10_1016_j_scitotenv_2023_163626
crossref_primary_10_1016_j_scitotenv_2023_163989
crossref_primary_10_1007_s11069_023_06337_8
crossref_primary_10_1515_geo_2025_0869
crossref_primary_10_1016_j_scitotenv_2023_164603
crossref_primary_10_1016_j_buildenv_2025_112618
crossref_primary_10_3390_e25081126
crossref_primary_10_3390_rs16132278
crossref_primary_10_1007_s10980_025_02150_9
crossref_primary_10_1016_j_buildenv_2022_109876
crossref_primary_10_1016_j_buildenv_2024_112047
crossref_primary_10_1109_JSTARS_2020_3036345
crossref_primary_10_3390_land11091426
crossref_primary_10_1088_1748_9326_ac68f8
crossref_primary_10_1109_JSTARS_2020_3004654
crossref_primary_10_1016_j_scitotenv_2022_158825
crossref_primary_10_1016_j_ecolind_2025_114204
crossref_primary_10_3390_land10050523
crossref_primary_10_3390_rs14010230
crossref_primary_10_1016_j_scs_2024_105629
crossref_primary_10_1038_s43247_024_01776_y
crossref_primary_10_1002_joc_8012
crossref_primary_10_1016_j_catena_2021_105949
crossref_primary_10_1038_s41598_025_97544_9
crossref_primary_10_1016_j_scitotenv_2022_153012
crossref_primary_10_1038_s41598_022_26406_5
crossref_primary_10_54691_fsd_v3i9_5596
crossref_primary_10_3390_f15030398
crossref_primary_10_1029_2025GL117535
crossref_primary_10_3390_su142113845
crossref_primary_10_1111_tgis_13224
crossref_primary_10_1080_10106049_2023_2250331
crossref_primary_10_3390_land11122275
crossref_primary_10_1109_MGRS_2021_3063465
crossref_primary_10_1016_j_eiar_2025_107827
crossref_primary_10_1016_j_isprsjprs_2021_09_003
crossref_primary_10_1109_LGRS_2021_3135869
crossref_primary_10_1016_j_gloenvcha_2021_102441
crossref_primary_10_1016_j_eiar_2023_107396
crossref_primary_10_1016_j_scitotenv_2024_175856
crossref_primary_10_3390_rs12223810
crossref_primary_10_3390_rs13193909
crossref_primary_10_1002_joc_8148
crossref_primary_10_1029_2022EF003384
crossref_primary_10_1109_JSTARS_2022_3197760
crossref_primary_10_11922_11_6035_csd_2024_0097_zh
crossref_primary_10_1016_j_ecolind_2022_109453
crossref_primary_10_3390_rs17081426
crossref_primary_10_3390_rs13122409
crossref_primary_10_1016_j_jenvman_2025_124975
crossref_primary_10_3390_rs15143675
crossref_primary_10_1016_j_uclim_2023_101645
crossref_primary_10_1016_j_uclim_2024_101902
crossref_primary_10_1016_j_pt_2021_03_003
crossref_primary_10_1016_j_rse_2024_114242
crossref_primary_10_1016_j_scitotenv_2023_166966
crossref_primary_10_1080_10106049_2021_2002429
crossref_primary_10_3390_land12010142
crossref_primary_10_1016_j_jhydrol_2020_125905
crossref_primary_10_1016_j_uclim_2023_101529
crossref_primary_10_1038_s41597_023_02005_5
crossref_primary_10_1016_j_uclim_2022_101231
crossref_primary_10_3390_ijerph18179389
crossref_primary_10_1016_j_scs_2021_102926
crossref_primary_10_1038_s41598_025_96045_z
crossref_primary_10_1016_j_rse_2021_112682
crossref_primary_10_1016_j_rse_2024_114485
crossref_primary_10_1016_j_eiar_2023_107363
crossref_primary_10_1016_j_agrformet_2023_109718
crossref_primary_10_1016_j_apgeog_2024_103247
crossref_primary_10_3390_rs15092366
crossref_primary_10_1080_17538947_2024_2330690
crossref_primary_10_1016_j_infgeo_2025_100004
crossref_primary_10_1016_j_scib_2023_08_006
crossref_primary_10_1109_TGRS_2021_3121816
crossref_primary_10_1016_j_srs_2025_100215
crossref_primary_10_1038_s41893_020_0521_x
crossref_primary_10_1080_10095020_2022_2083527
crossref_primary_10_3389_fenvs_2021_637455
crossref_primary_10_1016_j_atmosres_2025_108063
crossref_primary_10_1016_j_scib_2022_06_001
crossref_primary_10_1016_j_eiar_2025_107848
crossref_primary_10_1016_j_rse_2024_114017
crossref_primary_10_1016_j_scs_2024_105521
crossref_primary_10_1016_j_rse_2021_112670
crossref_primary_10_3390_land13040443
crossref_primary_10_3390_su17156828
crossref_primary_10_3390_tropicalmed7090212
crossref_primary_10_1080_17538947_2023_2301675
crossref_primary_10_1111_gcb_17573
crossref_primary_10_3390_rs13091849
crossref_primary_10_3390_rs15092255
crossref_primary_10_1016_j_scib_2020_10_022
crossref_primary_10_1029_2021JD034787
crossref_primary_10_1038_s41597_024_04237_5
crossref_primary_10_1016_j_oneear_2024_05_005
crossref_primary_10_1016_j_scitotenv_2024_174625
crossref_primary_10_1038_s41597_025_05723_0
crossref_primary_10_3390_ijgi11070406
crossref_primary_10_3390_land11081308
crossref_primary_10_1016_j_inffus_2025_103651
crossref_primary_10_1109_JSTARS_2021_3106038
crossref_primary_10_1038_s41598_020_74524_9
crossref_primary_10_3390_rs15040972
crossref_primary_10_1016_j_isprsjprs_2024_01_024
crossref_primary_10_1088_1748_9326_abdaed
crossref_primary_10_3390_rs13132438
crossref_primary_10_1016_j_landusepol_2025_107542
crossref_primary_10_1029_2023WR036126
crossref_primary_10_1016_j_isprsjprs_2023_08_012
crossref_primary_10_3390_rs13163264
crossref_primary_10_1016_j_jag_2023_103608
crossref_primary_10_1016_j_rsase_2024_101324
crossref_primary_10_1016_j_apenergy_2022_119473
crossref_primary_10_1016_j_ecolind_2023_111200
crossref_primary_10_5194_essd_16_5449_2024
crossref_primary_10_1016_j_ecolind_2023_110113
crossref_primary_10_3390_rs14071673
crossref_primary_10_1016_j_atmosres_2025_107956
crossref_primary_10_5194_acp_22_13341_2022
crossref_primary_10_3390_rs16050914
crossref_primary_10_1088_1748_9326_ab9be3
crossref_primary_10_3390_biology11020169
crossref_primary_10_5194_essd_13_2753_2021
crossref_primary_10_1080_17538947_2024_2430680
crossref_primary_10_1109_MGRS_2022_3204590
crossref_primary_10_1016_j_atmosenv_2021_118591
crossref_primary_10_1016_j_rse_2024_114274
crossref_primary_10_1007_s00382_021_06054_7
crossref_primary_10_1029_2023JD039315
crossref_primary_10_3390_rs13091744
crossref_primary_10_1016_j_landusepol_2021_105919
crossref_primary_10_1016_j_scitotenv_2025_178402
crossref_primary_10_3390_w13020150
crossref_primary_10_1016_j_rse_2020_112095
crossref_primary_10_1029_2024JD043300
crossref_primary_10_3390_rs14102382
crossref_primary_10_3390_atmos14020240
crossref_primary_10_1016_j_scitotenv_2021_150079
crossref_primary_10_3390_land13111904
crossref_primary_10_1038_s41598_020_69716_2
crossref_primary_10_1029_2023EF004355
crossref_primary_10_1080_17538947_2024_2310092
crossref_primary_10_11922_11_6035_noda_2021_0014_zh
crossref_primary_10_3390_app13053006
crossref_primary_10_1016_j_scitotenv_2022_159290
crossref_primary_10_3390_su142114510
crossref_primary_10_1007_s12145_020_00562_6
crossref_primary_10_3389_fevo_2022_984692
crossref_primary_10_5194_essd_13_5689_2021
crossref_primary_10_1016_j_rineng_2025_104022
crossref_primary_10_3390_land14071450
crossref_primary_10_1029_2021JD036131
crossref_primary_10_5194_essd_15_4599_2023
crossref_primary_10_3390_rs12152451
crossref_primary_10_1016_j_rse_2021_112364
crossref_primary_10_1016_j_scib_2019_12_007
crossref_primary_10_1038_s41586_022_05355_z
crossref_primary_10_1109_JSTARS_2022_3201380
crossref_primary_10_3390_land13111814
crossref_primary_10_1016_j_buildenv_2025_112592
crossref_primary_10_5194_hess_29_903_2025
crossref_primary_10_3390_land14010053
crossref_primary_10_3390_rs15071741
crossref_primary_10_1016_j_rse_2023_113801
crossref_primary_10_1109_JSTARS_2021_3109638
crossref_primary_10_1016_j_rse_2023_113802
crossref_primary_10_1109_JSTARS_2021_3133703
crossref_primary_10_3390_rs17060956
crossref_primary_10_5194_hess_25_4403_2021
crossref_primary_10_3390_s23104975
crossref_primary_10_1016_j_eiar_2025_108178
crossref_primary_10_1016_j_scitotenv_2021_145607
crossref_primary_10_1109_JSTARS_2023_3341390
crossref_primary_10_1007_s43762_022_00048_9
crossref_primary_10_1016_j_jhydrol_2025_133333
crossref_primary_10_1007_s10661_024_13095_y
crossref_primary_10_1016_j_jag_2023_103380
crossref_primary_10_3390_rs16020378
crossref_primary_10_1016_j_rse_2021_112590
crossref_primary_10_1002_ldr_5171
crossref_primary_10_1016_j_rse_2022_112993
crossref_primary_10_1016_j_landusepol_2020_104569
crossref_primary_10_5194_essd_12_357_2020
crossref_primary_10_1109_JSTARS_2022_3149028
crossref_primary_10_1038_s44284_025_00270_6
crossref_primary_10_3390_rs14010070
crossref_primary_10_3390_rs15123186
crossref_primary_10_5194_essd_14_1831_2022
crossref_primary_10_1007_s12403_022_00529_6
crossref_primary_10_1109_JSTARS_2025_3584188
crossref_primary_10_1177_23998083241272705
crossref_primary_10_1016_j_eiar_2025_108068
crossref_primary_10_1016_j_scs_2025_106141
crossref_primary_10_1016_j_scs_2024_106089
crossref_primary_10_1016_j_resconrec_2022_106834
crossref_primary_10_5194_essd_14_143_2022
crossref_primary_10_3390_ijgi10070464
crossref_primary_10_1007_s12145_025_01892_z
crossref_primary_10_1016_j_landurbplan_2024_105220
crossref_primary_10_1080_10095020_2024_2336604
crossref_primary_10_1002_ldr_70134
crossref_primary_10_1016_j_rse_2021_112585
crossref_primary_10_1016_j_scs_2022_104307
crossref_primary_10_1038_s41598_021_92256_2
crossref_primary_10_1016_j_jenvman_2024_123756
crossref_primary_10_1029_2023GL104661
crossref_primary_10_1016_j_rse_2023_113700
crossref_primary_10_3390_rs15092427
crossref_primary_10_3390_rs15174326
crossref_primary_10_1016_j_resenv_2025_100240
crossref_primary_10_1016_j_jenvman_2024_123632
crossref_primary_10_1016_j_isprsjprs_2024_02_011
crossref_primary_10_1016_j_buildenv_2025_113389
crossref_primary_10_1016_j_cities_2022_104146
crossref_primary_10_5194_essd_14_517_2022
crossref_primary_10_1038_s41598_022_11487_z
crossref_primary_10_1016_j_jag_2022_103048
crossref_primary_10_1073_pnas_2214813119
crossref_primary_10_1016_j_uclim_2024_101999
crossref_primary_10_3389_fevo_2022_907691
crossref_primary_10_1016_j_ecolind_2025_114078
crossref_primary_10_3390_rs16010019
crossref_primary_10_1016_j_scs_2025_106399
crossref_primary_10_1016_j_ecolind_2023_111009
crossref_primary_10_1016_j_ecoenv_2021_113042
crossref_primary_10_1016_j_landusepol_2020_104747
crossref_primary_10_1016_j_ecolind_2023_111249
crossref_primary_10_1016_j_jag_2024_103974
crossref_primary_10_1016_j_atmosres_2024_107640
crossref_primary_10_1038_s43247_025_02585_7
crossref_primary_10_1016_j_jclepro_2025_146518
crossref_primary_10_1038_s41597_025_04759_6
crossref_primary_10_1080_17538947_2024_2383454
crossref_primary_10_3390_land11050688
crossref_primary_10_1016_j_apenergy_2022_120049
crossref_primary_10_1016_j_scs_2023_104662
crossref_primary_10_1038_s41558_025_02435_6
crossref_primary_10_1109_JSTARS_2022_3188650
crossref_primary_10_3390_rs14020291
crossref_primary_10_1016_j_cities_2022_104156
crossref_primary_10_1109_JSTARS_2025_3602036
crossref_primary_10_1016_j_jag_2022_103058
crossref_primary_10_1016_j_buildenv_2023_110820
crossref_primary_10_1016_j_rse_2024_114081
crossref_primary_10_1088_1748_9326_ad5a28
crossref_primary_10_1109_TGRS_2025_3560092
crossref_primary_10_3390_app13159039
crossref_primary_10_1111_tgis_13054
crossref_primary_10_1016_j_scs_2022_104359
crossref_primary_10_1109_ACCESS_2020_3038995
crossref_primary_10_1016_j_ecolind_2023_111103
crossref_primary_10_1038_s41597_022_01284_8
crossref_primary_10_1016_j_jag_2023_103469
crossref_primary_10_1038_s41597_024_03610_8
crossref_primary_10_3390_rs14153752
crossref_primary_10_1016_j_eiar_2024_107721
crossref_primary_10_1016_j_scs_2023_104995
crossref_primary_10_3390_rs12244103
crossref_primary_10_1088_1748_9326_ac4c1c
crossref_primary_10_1088_1748_9326_ad5b0a
crossref_primary_10_3390_f14122347
crossref_primary_10_1088_1748_9326_ad0efc
crossref_primary_10_1016_j_uclim_2022_101285
crossref_primary_10_1016_j_geosus_2025_100268
crossref_primary_10_3390_ijgi10110778
crossref_primary_10_1016_j_eng_2024_01_025
crossref_primary_10_1038_s41467_025_61053_0
crossref_primary_10_3390_ijerph19169982
crossref_primary_10_1109_TGRS_2023_3305457
crossref_primary_10_1016_j_isprsjprs_2020_11_009
crossref_primary_10_1080_15481603_2023_2249748
crossref_primary_10_1029_2021JD035598
crossref_primary_10_3390_f16040679
crossref_primary_10_3390_rs17183211
crossref_primary_10_1016_j_scitotenv_2023_161649
crossref_primary_10_3390_rs15010268
crossref_primary_10_1080_01490419_2021_1897716
crossref_primary_10_1016_j_scitotenv_2022_161109
crossref_primary_10_1016_j_heliyon_2022_e10408
crossref_primary_10_3390_land14081599
crossref_primary_10_1016_j_resconrec_2024_108054
crossref_primary_10_1029_2021EF002401
crossref_primary_10_3390_ijgi11110536
Cites_doi 10.1016/j.rse.2012.04.018
10.1007/s11434-012-5235-7
10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
10.1111/j.1467-8306.1977.tb01137.x
10.1080/01431161.2016.1274451
10.5194/bg-9-2145-2012
10.1016/j.rse.2017.06.031
10.1007/s11434-016-1111-1
10.1016/j.rse.2016.08.029
10.1016/S0065-308X(05)62004-0
10.1016/j.isprsjprs.2014.09.002
10.1016/j.progress.2011.04.001
10.1080/01431160903121134
10.1080/01431169508954549
10.1016/j.scib.2019.04.024
10.1016/S0140-6736(18)30486-0
10.1080/01431161.2018.1455238
10.1016/j.rse.2018.10.015
10.1007/s10980-014-0034-y
10.1016/j.rse.2005.02.002
10.1016/0034-4257(92)90011-8
10.1016/0034-4257(89)90045-X
10.1016/j.rse.2008.05.009
10.1016/j.rse.2012.10.025
10.1088/1748-9326/aad2e3
10.1073/pnas.1117622109
10.1046/j.1365-2486.1997.00115.x
10.1016/j.scitotenv.2019.02.178
10.1111/j.0033-0124.1979.00400.x
10.3390/s7091962
10.1080/00139157.2013.748387
10.1109/MGRS.2019.2927260
10.1016/S0034-4257(02)00136-0
10.1016/j.rse.2015.12.024
10.1016/j.scib.2019.03.002
10.1016/j.rse.2009.02.004
10.1126/science.1159607
10.1016/j.rse.2013.03.008
10.1016/j.apgeog.2017.12.002
10.1016/j.gloenvcha.2015.03.008
10.3390/rs9040366
10.1029/2019EF001152
10.1080/01431160110114998
10.1016/j.rse.2010.03.003
10.1016/S0140-6736(15)60901-1
10.1016/j.scib.2017.03.011
10.1016/j.rse.2015.06.007
10.3390/rs10050768
10.1016/j.rse.2011.02.030
10.1080/01431161.2012.748992
10.1080/01431161.2014.930202
10.1109/JSTARS.2013.2271445
10.1016/j.rse.2018.02.055
10.1080/01431168508948430
10.1016/j.rse.2019.04.020
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright Elsevier BV Jan 2020
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright Elsevier BV Jan 2020
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
DOI 10.1016/j.rse.2019.111510
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Meteorological & Geoastrophysical Abstracts
Biotechnology Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Materials Research Database
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
ExternalDocumentID 10_1016_j_rse_2019_111510
S0034425719305292
GeographicLocations United States--US
China
Canada
United States
Japan
Brazil
Italy
France
Germany
India
Russia
GeographicLocations_xml – name: China
– name: United States--US
– name: Canada
– name: Germany
– name: India
– name: Italy
– name: Japan
– name: Russia
– name: United States
– name: France
– name: Brazil
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
41~
457
4G.
53G
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
VOH
WH7
WUQ
XOL
ZCA
ZMT
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
AGCQF
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
ID FETCH-LOGICAL-c411t-c3c00fa93d12c42f1e48a3c39989c18b162c3b42a58ce4f6149bd2a568d277923
ISICitedReferencesCount 846
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000502894400025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0034-4257
IngestDate Thu Oct 02 10:22:37 EDT 2025
Wed Aug 13 11:02:39 EDT 2025
Tue Nov 18 20:43:08 EST 2025
Sat Nov 29 07:28:28 EST 2025
Fri Feb 23 02:49:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Urbanization
Landsat data
Rural development
Google Earth
Human settlements
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c411t-c3c00fa93d12c42f1e48a3c39989c18b162c3b42a58ce4f6149bd2a568d277923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2330021902
PQPubID 2045405
ParticipantIDs proquest_miscellaneous_2352438100
proquest_journals_2330021902
crossref_primary_10_1016_j_rse_2019_111510
crossref_citationtrail_10_1016_j_rse_2019_111510
elsevier_sciencedirect_doi_10_1016_j_rse_2019_111510
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Remote sensing of environment
PublicationYear 2020
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Melchiorri, Florczyk, Freire, Schiavina, Pesaresi, Kemper (bib37) 2018; 10
Chen, Gong, He, Luo, Tamura, Shi (bib7) 2002; 68
Schneider, Friedl, Potere (bib48) 2010; 114
Gong (bib18) 2019; 64
Chen (bib6) 2015; 103
Pesaresi, Ehrilch, Florczyk, Freire, Julea, Kemper, Soille, Syrris (bib40) 2015
Mahendra, Seto (bib36) 2019
Bontemps, Herold, Kooistra, Groenestijn, Hartley, Arino, Moreau, Defourny (bib4) 2012; 9
Jensen (bib23) 1979; 31
Elvidge, Baugh, Hobson, Kihn, Kroehl, Davis, Cocero (bib10) 1997; 3
Fu, Li, Weng, Zheng, Li, Dai, Guo (bib14) 2019; 666
Weng (bib56) 2012; 117
Elvidge, Tuttle, Sutton, Baugh, Howard, Milesi, Bhaduri, Nemani (bib11) 2007; 7
Li, Zhou, Eom, Yu, Asrar (bib30) 2019
Defourny, Van Bogaert (bib9) 2015; 15
Andrade-Núñez, Aide (bib1) 2018; 13
Potere, Schneider, Angel, Civco (bib43) 2009; 30
Zhu, Zhou, Seto, Stokes, Deng, Pickett, Taubenböck (bib64) 2019; 228
Roy, Kovalskyy, Zhang, Vermote, Yan, Kumar, Egorov (bib46) 2016; 185
Qureshi (bib44) 2010; 3
Gong, Li, Zhang (bib17) 2019; 64
Jiang, O'Neill (bib24) 2017; 42
Clinton, Gong (bib8) 2013; 134
Gorelick, Hancher, Dixon, Ilyushchenko, Thau, Moore (bib21) 2017; 202
Phinn, Stanford, Scarth, Murray, Shyy (bib42) 2002; 23
Li, Gong, Liang (bib28) 2015; 166
Zhao (bib62) 2014; 35
Li, Gong (bib27) 2016; 61
Bounoua, Nigro, Zhang, Thome, Lachir (bib5) 2018; 90
Li, Zhou (bib29) 2017; 38
Liu, Hu, Chen, Li, Xu, Li, Pei, Wang (bib31) 2018; 209
Li, Gong (bib26) 2016; 186
Lu, Tian, Zhou, Ge (bib34) 2008; 112
Ma, Zhou, Pei, Haynie, Fan (bib35) 2012; 124
Wang (bib53) 2012; 57
Forster (bib12) 1985; 6
Sexton, Song, Huang, Channan, Baker, Townshend (bib50) 2013; 129
Gong, Howarth (bib15) 1989; 30
Balk, Deichmann, Yetman, Pozzi, Hay, Nelson (bib3) 2006; 62
Solecki, Seto, Marcotullio (bib52) 2013; 55
Gong (bib20) 2013; 34
Wang, Huang, Brown de Colstoun (bib54) 2017; 9
Wang, Li (bib55) 2019; 7
Zhou, Li, Asrar, Smith, Imhoff (bib63) 2018; 219
Whitmee (bib57) 2015; 386
Small, Pozzi, Elvidge (bib51) 2005; 96
Fry, Xian, Jin, Dewitz, Homer, Limin, Barnes, Herold, Wickham (bib13) 2011; 77
Pandey, Joshi, Seto (bib39) 2013; 23
Yu, Liu, Zhao, Yu, Gong (bib61) 2018; 39
He, Liu, Gou, Zhang, Zhang, Xu (bib22) 2018
Lo, Welch (bib33) 1977; 67
Xian, Homer, Fry (bib59) 2009; 113
Angel, Parent, Civco, Blei, Potere (bib2) 2011; 75
Li (bib25) 2017; 62
Gong, Marceau, Howarth (bib19) 1992; 40
Yang (bib60) 2018; 391
Wu, Murray (bib58) 2003; 84
Ridd (bib45) 1995; 16
Olson (bib38) 2001; 51
Running (bib47) 2008; 321
Seto (bib49) 2012; 109
Liu, He, Zhou, Wu (bib32) 2014; 29
Gong, Howarth (bib16) 1992; 58
Pesaresi (bib41) 2013; 6
Chen (10.1016/j.rse.2019.111510_bib7) 2002; 68
Elvidge (10.1016/j.rse.2019.111510_bib11) 2007; 7
Angel (10.1016/j.rse.2019.111510_bib2) 2011; 75
Gong (10.1016/j.rse.2019.111510_bib16) 1992; 58
Li (10.1016/j.rse.2019.111510_bib25) 2017; 62
Xian (10.1016/j.rse.2019.111510_bib59) 2009; 113
Liu (10.1016/j.rse.2019.111510_bib31) 2018; 209
Li (10.1016/j.rse.2019.111510_bib28) 2015; 166
Potere (10.1016/j.rse.2019.111510_bib43) 2009; 30
Zhu (10.1016/j.rse.2019.111510_bib64) 2019; 228
Pesaresi (10.1016/j.rse.2019.111510_bib41) 2013; 6
Li (10.1016/j.rse.2019.111510_bib30) 2019
Gong (10.1016/j.rse.2019.111510_bib15) 1989; 30
Gong (10.1016/j.rse.2019.111510_bib17) 2019; 64
Yang (10.1016/j.rse.2019.111510_bib60) 2018; 391
Sexton (10.1016/j.rse.2019.111510_bib50) 2013; 129
Yu (10.1016/j.rse.2019.111510_bib61) 2018; 39
Zhou (10.1016/j.rse.2019.111510_bib63) 2018; 219
Lu (10.1016/j.rse.2019.111510_bib34) 2008; 112
Weng (10.1016/j.rse.2019.111510_bib56) 2012; 117
Melchiorri (10.1016/j.rse.2019.111510_bib37) 2018; 10
Mahendra (10.1016/j.rse.2019.111510_bib36) 2019
Balk (10.1016/j.rse.2019.111510_bib3) 2006; 62
Elvidge (10.1016/j.rse.2019.111510_bib10) 1997; 3
Gong (10.1016/j.rse.2019.111510_bib18) 2019; 64
Ridd (10.1016/j.rse.2019.111510_bib45) 1995; 16
Roy (10.1016/j.rse.2019.111510_bib46) 2016; 185
Wang (10.1016/j.rse.2019.111510_bib53) 2012; 57
Clinton (10.1016/j.rse.2019.111510_bib8) 2013; 134
Wang (10.1016/j.rse.2019.111510_bib55) 2019; 7
Liu (10.1016/j.rse.2019.111510_bib32) 2014; 29
Li (10.1016/j.rse.2019.111510_bib27) 2016; 61
Chen (10.1016/j.rse.2019.111510_bib6) 2015; 103
Fry (10.1016/j.rse.2019.111510_bib13) 2011; 77
Pandey (10.1016/j.rse.2019.111510_bib39) 2013; 23
Seto (10.1016/j.rse.2019.111510_bib49) 2012; 109
Whitmee (10.1016/j.rse.2019.111510_bib57) 2015; 386
Small (10.1016/j.rse.2019.111510_bib51) 2005; 96
Running (10.1016/j.rse.2019.111510_bib47) 2008; 321
Olson (10.1016/j.rse.2019.111510_bib38) 2001; 51
Lo (10.1016/j.rse.2019.111510_bib33) 1977; 67
Schneider (10.1016/j.rse.2019.111510_bib48) 2010; 114
Wang (10.1016/j.rse.2019.111510_bib54) 2017; 9
Forster (10.1016/j.rse.2019.111510_bib12) 1985; 6
Qureshi (10.1016/j.rse.2019.111510_bib44) 2010; 3
Li (10.1016/j.rse.2019.111510_bib26) 2016; 186
Gorelick (10.1016/j.rse.2019.111510_bib21) 2017; 202
Li (10.1016/j.rse.2019.111510_bib29) 2017; 38
Bounoua (10.1016/j.rse.2019.111510_bib5) 2018; 90
Gong (10.1016/j.rse.2019.111510_bib20) 2013; 34
Jiang (10.1016/j.rse.2019.111510_bib24) 2017; 42
Jensen (10.1016/j.rse.2019.111510_bib23) 1979; 31
Andrade-Núñez (10.1016/j.rse.2019.111510_bib1) 2018; 13
Zhao (10.1016/j.rse.2019.111510_bib62) 2014; 35
He (10.1016/j.rse.2019.111510_bib22) 2018
Bontemps (10.1016/j.rse.2019.111510_bib4) 2012; 9
Pesaresi (10.1016/j.rse.2019.111510_bib40) 2015
Phinn (10.1016/j.rse.2019.111510_bib42) 2002; 23
Solecki (10.1016/j.rse.2019.111510_bib52) 2013; 55
Ma (10.1016/j.rse.2019.111510_bib35) 2012; 124
Fu (10.1016/j.rse.2019.111510_bib14) 2019; 666
Gong (10.1016/j.rse.2019.111510_bib19) 1992; 40
Wu (10.1016/j.rse.2019.111510_bib58) 2003; 84
Defourny (10.1016/j.rse.2019.111510_bib9) 2015; 15
References_xml – volume: 6
  start-page: 139
  year: 1985
  end-page: 151
  ident: bib12
  article-title: An examination of some problems and solutions in monitoring urban areas from satellite platforms
  publication-title: Int. J. Remote Sens.
– volume: 77
  start-page: 858
  year: 2011
  end-page: 864
  ident: bib13
  article-title: Completion of the 2006 national land cover database for the conterminous United States
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 391
  start-page: 2140
  year: 2018
  end-page: 2184
  ident: bib60
  article-title: The Tsinghua–Lancet commission on healthy cities in China: unlocking the power of cities for a healthy China
  publication-title: The Lancet
– volume: 39
  start-page: 4077
  year: 2018
  end-page: 4087
  ident: bib61
  article-title: Difficult to map regions in 30 m global land cover mapping determined with a common validation dataset
  publication-title: Int. J. Remote Sens.
– volume: 114
  start-page: 1733
  year: 2010
  end-page: 1746
  ident: bib48
  article-title: Mapping global urban areas using MODIS 500-m data: new methods and datasets based on 'urban ecoregions
  publication-title: Remote Sens. Environ.
– volume: 7
  start-page: 64
  year: 2019
  end-page: 93
  ident: bib55
  article-title: Urban impervious surface detection from remote sensing images: a review of the methods and challenges
  publication-title: IEEE Geosci. Remote Sens. Mag.
– volume: 38
  start-page: 1
  year: 2017
  end-page: 17
  ident: bib29
  article-title: Urban mapping using DMSP/OLS stable night-time light: a review
  publication-title: Int. J. Remote Sens.
– volume: 35
  start-page: 4795
  year: 2014
  end-page: 4814
  ident: bib62
  article-title: Towards a common validation sample set for global land cover mapping
  publication-title: Int. J. Remote Sens.
– volume: 96
  start-page: 277
  year: 2005
  end-page: 291
  ident: bib51
  article-title: Spatial analysis of global urban extent from DMSP-OLS night lights
  publication-title: Remote Sens. Environ.
– volume: 7
  start-page: 1962
  year: 2007
  end-page: 1979
  ident: bib11
  article-title: Global distribution and density of constructed impervious surfaces
  publication-title: Sensors
– volume: 129
  start-page: 42
  year: 2013
  end-page: 53
  ident: bib50
  article-title: Urban growth of the Washington, D.C.–Baltimore, MD metropolitan region from 1984 to 2010 by annual, Landsat-based estimates of impervious cover
  publication-title: Remote Sens. Environ.
– volume: 124
  start-page: 99
  year: 2012
  end-page: 107
  ident: bib35
  article-title: Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: a comparative case study from China's cities
  publication-title: Remote Sens. Environ.
– volume: 42
  start-page: 193
  year: 2017
  end-page: 199
  ident: bib24
  article-title: Global urbanization projections for the shared socioeconomic pathways
  publication-title: Glob. Environ. Chang.
– volume: 185
  start-page: 57
  year: 2016
  end-page: 70
  ident: bib46
  article-title: Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity
  publication-title: Remote Sens. Environ.
– volume: 58
  start-page: 423
  year: 1992
  end-page: 437
  ident: bib16
  article-title: Frequency-based contextual classification and gray-level vector reduction for land-use identification
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 13
  year: 2018
  ident: bib1
  article-title: Built-up expansion between 2001 and 2011 in South America continues well beyond the cities
  publication-title: Environ. Res. Lett.
– volume: 31
  start-page: 400
  year: 1979
  end-page: 409
  ident: bib23
  article-title: Spectral and textural features to classify elusive land cover at the urban fringe
  publication-title: Prof. Geogr.
– volume: 666
  start-page: 274
  year: 2019
  end-page: 284
  ident: bib14
  article-title: Characterizing the spatial pattern of annual urban growth by using time series Landsat imagery
  publication-title: Sci. Total Environ.
– volume: 30
  start-page: 33
  year: 1989
  end-page: 42
  ident: bib15
  article-title: Performance analyses of probabilistic relaxation methods for land-cover classification
  publication-title: Remote Sens. Environ.
– year: 2019
  ident: bib30
  article-title: Projecting global urban area growth through 2100 based on historical time‐series data and future Shared Socioeconomic Pathways
  publication-title: Earths Future
– volume: 55
  start-page: 12
  year: 2013
  end-page: 17
  ident: bib52
  article-title: It's time for an urbanization science
  publication-title: Environment
– volume: 202
  start-page: 18
  year: 2017
  end-page: 27
  ident: bib21
  article-title: Google Earth Engine: planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
– volume: 3
  start-page: 387
  year: 1997
  end-page: 395
  ident: bib10
  article-title: Satellite inventory of human settlements using nocturnal radiation emissions: a contribution for the global tool chest
  publication-title: Glob. Chang. Biol.
– volume: 29
  start-page: 763
  year: 2014
  end-page: 771
  ident: bib32
  article-title: How much of the world's land has been urbanized, really? A hierarchical framework for avoiding confusion
  publication-title: Landsc. Ecol.
– volume: 64
  start-page: 756
  year: 2019
  end-page: 763
  ident: bib17
  article-title: 40-year (1978-2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing
  publication-title: Sci. Bull.
– volume: 75
  start-page: 53
  year: 2011
  end-page: 107
  ident: bib2
  article-title: The dimensions of global urban expansion: estimates and projections for all countries, 2000–2050
  publication-title: Prog. Plan.
– volume: 6
  start-page: 2102
  year: 2013
  end-page: 2131
  ident: bib41
  article-title: A global human settlement layer from optical HR/VHR RS data: concept and first results
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 23
  start-page: 4131
  year: 2002
  end-page: 4153
  ident: bib42
  article-title: Monitoring the composition of urban environments based on the vegetation-impervious surface-soil (VIS) model by subpixel analysis techniques
  publication-title: Int. J. Remote Sens.
– volume: 9
  start-page: 366
  year: 2017
  ident: bib54
  article-title: Mapping 2000–2010 impervious surface change in India using global land survey landsat data
  publication-title: Remote Sens.
– volume: 113
  start-page: 1133
  year: 2009
  end-page: 1147
  ident: bib59
  article-title: Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods
  publication-title: Remote Sens. Environ.
– volume: 166
  start-page: 78
  year: 2015
  end-page: 90
  ident: bib28
  article-title: A 30-year (1984–2013) record of annual urban dynamics of Beijing City derived from Landsat data
  publication-title: Remote Sens. Environ.
– volume: 209
  start-page: 227
  year: 2018
  end-page: 239
  ident: bib31
  article-title: High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform
  publication-title: Remote Sens. Environ.
– volume: 90
  start-page: 123
  year: 2018
  end-page: 133
  ident: bib5
  article-title: Mapping urbanization in the United States from 2001 to 2011
  publication-title: Appl. Geogr.
– volume: 84
  start-page: 493
  year: 2003
  end-page: 505
  ident: bib58
  article-title: Estimating impervious surface distribution by spectral mixture analysis
  publication-title: Remote Sens. Environ.
– volume: 68
  start-page: 1063
  year: 2002
  end-page: 1072
  ident: bib7
  article-title: Assessment of the urban development plan of Beijing by using a CA-based urban growth model
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 134
  start-page: 294
  year: 2013
  end-page: 304
  ident: bib8
  article-title: MODIS detected surface urban heat islands and sinks: global locations and controls
  publication-title: Remote Sens. Environ.
– volume: 67
  start-page: 246
  year: 1977
  end-page: 253
  ident: bib33
  article-title: Chinese urban population estimates
  publication-title: Ann. Assoc. Am. Geogr.
– volume: 64
  start-page: 370
  year: 2019
  end-page: 373
  ident: bib18
  article-title: Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017
  publication-title: Sci. Bull.
– volume: 9
  start-page: 2145
  year: 2012
  end-page: 2157
  ident: bib4
  article-title: Revisiting land cover observation to address the needs of the climate modeling community
  publication-title: Biogeosciences
– volume: 219
  start-page: 206
  year: 2018
  end-page: 220
  ident: bib63
  article-title: A global record of annual urban dynamics (1992-2013) from nighttime lights
  publication-title: Remote Sens. Environ.
– volume: 109
  start-page: 7687
  year: 2012
  end-page: 7692
  ident: bib49
  article-title: Urban land teleconnections and sustainability
  publication-title: Proc. Natl. Acad. Sci.
– volume: 10
  start-page: 768
  year: 2018
  ident: bib37
  article-title: Unveiling 25 years of planetary urbanization with remote sensing: perspectives from the global human settlement layer
  publication-title: Remote Sens.
– year: 2015
  ident: bib40
  article-title: GHS built-up grid, derived from Landsat, multitemporal (1975, 1990, 2000, 2014)
  publication-title: Eur. Comm. Joint Res. Cent. JRC Data Catalogue
– volume: 30
  start-page: 6531
  year: 2009
  end-page: 6558
  ident: bib43
  article-title: Mapping urban areas on a global scale: which of the eight maps now available is more accurate?
  publication-title: Int. J. Remote Sens.
– volume: 103
  start-page: 7
  year: 2015
  end-page: 27
  ident: bib6
  article-title: Global land cover mapping at 30 m resolution: a POK-based operational approach
  publication-title: ISPRS J. Photogrammetry Remote Sens.
– start-page: 1
  year: 2018
  end-page: 16
  ident: bib22
  article-title: Detecting global urban expansion over the last three decades using a fully convolutional network
  publication-title: Environ. Res. Lett.
– volume: 117
  start-page: 34
  year: 2012
  end-page: 49
  ident: bib56
  article-title: Remote sensing of impervious surfaces in the urban areas: requirements, methods, and trends
  publication-title: Remote Sens. Environ.
– volume: 15
  year: 2015
  ident: bib9
  article-title: Land cover ESACCI-LC-L4-LCCS-Map-300m-P5Y-2010-v1. 4. Disponible en< Disponible en
  publication-title: Visitado
– volume: 112
  start-page: 3668
  year: 2008
  end-page: 3679
  ident: bib34
  article-title: Regional mapping of human settlements in southeastern China with multisensor remotely sensed data
  publication-title: Remote Sens. Environ.
– volume: 386
  start-page: 1973
  year: 2015
  end-page: 2028
  ident: bib57
  article-title: Safeguarding human health in the Anthropocene epoch: report of the Rockefeller Foundation–Lancet Commission on planetary health
  publication-title: The Lancet
– volume: 62
  start-page: 119
  year: 2006
  end-page: 156
  ident: bib3
  article-title: Determining global population distribution: methods, applications and data
  publication-title: Adv. Parasitol.
– volume: 16
  start-page: 2165
  year: 1995
  end-page: 2185
  ident: bib45
  article-title: Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: comparative anatomy for cities†
  publication-title: Int. J. Remote Sens.
– volume: 321
  start-page: 652
  year: 2008
  end-page: 653
  ident: bib47
  article-title: Ecosystem disturbance, carbon, and climate
  publication-title: Science
– volume: 57
  start-page: 2802
  year: 2012
  end-page: 2812
  ident: bib53
  article-title: China's urban expansion from 1990 to 2010 determined with satellite remote sensing
  publication-title: Chin. Sci. Bull.
– volume: 186
  start-page: 286
  year: 2016
  end-page: 296
  ident: bib26
  article-title: An “exclusion-inclusion” framework for extracting human settlements in rapidly developing regions of China from Landsat images
  publication-title: Remote Sens. Environ.
– volume: 3
  start-page: 306
  year: 2010
  end-page: 321
  ident: bib44
  article-title: The fast growing megacity Karachi as a frontier of environmental challenges: urbanization and contemporary urbanism issues
  publication-title: J. Geogr. Reg. Plan.
– volume: 40
  start-page: 137
  year: 1992
  end-page: 151
  ident: bib19
  article-title: A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data
  publication-title: Remote Sens. Environ.
– volume: 62
  start-page: 508
  year: 2017
  end-page: 515
  ident: bib25
  article-title: The first all-season sample set for mapping global land cover with Landsat-8 data
  publication-title: Sci. Bull.
– year: 2019
  ident: bib36
  article-title: Upward and outward growth: managing urban expansion for more equitable cities in the global South
– volume: 51
  start-page: 933
  year: 2001
  end-page: 938
  ident: bib38
  article-title: Terrestrial Ecoregions of the World: a New Map of Life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity
  publication-title: Bioscience
– volume: 61
  start-page: 1637
  year: 2016
  end-page: 1650
  ident: bib27
  article-title: Urban growth models: progress and perspective
  publication-title: Sci. Bull.
– volume: 34
  start-page: 2607
  year: 2013
  end-page: 2654
  ident: bib20
  article-title: Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data
  publication-title: Int. J. Remote Sens.
– volume: 23
  start-page: 49
  year: 2013
  end-page: 61
  ident: bib39
  article-title: Monitoring urbanization dynamics in India using DMSP/OLS night time lights and SPOT-VGT data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 228
  start-page: 164
  year: 2019
  end-page: 182
  ident: bib64
  article-title: Understanding an urbanizing planet: strategic directions for remote sensing
  publication-title: Remote Sens. Environ.
– volume: 124
  start-page: 99
  year: 2012
  ident: 10.1016/j.rse.2019.111510_bib35
  article-title: Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: a comparative case study from China's cities
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.04.018
– volume: 57
  start-page: 2802
  year: 2012
  ident: 10.1016/j.rse.2019.111510_bib53
  article-title: China's urban expansion from 1990 to 2010 determined with satellite remote sensing
  publication-title: Chin. Sci. Bull.
  doi: 10.1007/s11434-012-5235-7
– volume: 51
  start-page: 933
  year: 2001
  ident: 10.1016/j.rse.2019.111510_bib38
  article-title: Terrestrial Ecoregions of the World: a New Map of Life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity
  publication-title: Bioscience
  doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
– volume: 77
  start-page: 858
  year: 2011
  ident: 10.1016/j.rse.2019.111510_bib13
  article-title: Completion of the 2006 national land cover database for the conterminous United States
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 67
  start-page: 246
  year: 1977
  ident: 10.1016/j.rse.2019.111510_bib33
  article-title: Chinese urban population estimates
  publication-title: Ann. Assoc. Am. Geogr.
  doi: 10.1111/j.1467-8306.1977.tb01137.x
– volume: 38
  start-page: 1
  year: 2017
  ident: 10.1016/j.rse.2019.111510_bib29
  article-title: Urban mapping using DMSP/OLS stable night-time light: a review
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1274451
– volume: 9
  start-page: 2145
  year: 2012
  ident: 10.1016/j.rse.2019.111510_bib4
  article-title: Revisiting land cover observation to address the needs of the climate modeling community
  publication-title: Biogeosciences
  doi: 10.5194/bg-9-2145-2012
– volume: 15
  year: 2015
  ident: 10.1016/j.rse.2019.111510_bib9
  article-title: Land cover ESACCI-LC-L4-LCCS-Map-300m-P5Y-2010-v1. 4. Disponible en< Disponible en
  publication-title: Visitado
– volume: 202
  start-page: 18
  year: 2017
  ident: 10.1016/j.rse.2019.111510_bib21
  article-title: Google Earth Engine: planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.031
– volume: 61
  start-page: 1637
  year: 2016
  ident: 10.1016/j.rse.2019.111510_bib27
  article-title: Urban growth models: progress and perspective
  publication-title: Sci. Bull.
  doi: 10.1007/s11434-016-1111-1
– volume: 186
  start-page: 286
  year: 2016
  ident: 10.1016/j.rse.2019.111510_bib26
  article-title: An “exclusion-inclusion” framework for extracting human settlements in rapidly developing regions of China from Landsat images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.08.029
– volume: 62
  start-page: 119
  year: 2006
  ident: 10.1016/j.rse.2019.111510_bib3
  article-title: Determining global population distribution: methods, applications and data
  publication-title: Adv. Parasitol.
  doi: 10.1016/S0065-308X(05)62004-0
– volume: 103
  start-page: 7
  year: 2015
  ident: 10.1016/j.rse.2019.111510_bib6
  article-title: Global land cover mapping at 30 m resolution: a POK-based operational approach
  publication-title: ISPRS J. Photogrammetry Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.09.002
– volume: 75
  start-page: 53
  year: 2011
  ident: 10.1016/j.rse.2019.111510_bib2
  article-title: The dimensions of global urban expansion: estimates and projections for all countries, 2000–2050
  publication-title: Prog. Plan.
  doi: 10.1016/j.progress.2011.04.001
– volume: 30
  start-page: 6531
  year: 2009
  ident: 10.1016/j.rse.2019.111510_bib43
  article-title: Mapping urban areas on a global scale: which of the eight maps now available is more accurate?
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160903121134
– volume: 16
  start-page: 2165
  year: 1995
  ident: 10.1016/j.rse.2019.111510_bib45
  article-title: Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: comparative anatomy for cities†
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169508954549
– volume: 64
  start-page: 756
  year: 2019
  ident: 10.1016/j.rse.2019.111510_bib17
  article-title: 40-year (1978-2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2019.04.024
– volume: 391
  start-page: 2140
  year: 2018
  ident: 10.1016/j.rse.2019.111510_bib60
  article-title: The Tsinghua–Lancet commission on healthy cities in China: unlocking the power of cities for a healthy China
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(18)30486-0
– year: 2015
  ident: 10.1016/j.rse.2019.111510_bib40
  article-title: GHS built-up grid, derived from Landsat, multitemporal (1975, 1990, 2000, 2014)
  publication-title: Eur. Comm. Joint Res. Cent. JRC Data Catalogue
– volume: 39
  start-page: 4077
  year: 2018
  ident: 10.1016/j.rse.2019.111510_bib61
  article-title: Difficult to map regions in 30 m global land cover mapping determined with a common validation dataset
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2018.1455238
– volume: 219
  start-page: 206
  year: 2018
  ident: 10.1016/j.rse.2019.111510_bib63
  article-title: A global record of annual urban dynamics (1992-2013) from nighttime lights
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.10.015
– volume: 29
  start-page: 763
  year: 2014
  ident: 10.1016/j.rse.2019.111510_bib32
  article-title: How much of the world's land has been urbanized, really? A hierarchical framework for avoiding confusion
  publication-title: Landsc. Ecol.
  doi: 10.1007/s10980-014-0034-y
– volume: 23
  start-page: 49
  year: 2013
  ident: 10.1016/j.rse.2019.111510_bib39
  article-title: Monitoring urbanization dynamics in India using DMSP/OLS night time lights and SPOT-VGT data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 96
  start-page: 277
  year: 2005
  ident: 10.1016/j.rse.2019.111510_bib51
  article-title: Spatial analysis of global urban extent from DMSP-OLS night lights
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.02.002
– volume: 40
  start-page: 137
  year: 1992
  ident: 10.1016/j.rse.2019.111510_bib19
  article-title: A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(92)90011-8
– volume: 30
  start-page: 33
  year: 1989
  ident: 10.1016/j.rse.2019.111510_bib15
  article-title: Performance analyses of probabilistic relaxation methods for land-cover classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(89)90045-X
– volume: 68
  start-page: 1063
  year: 2002
  ident: 10.1016/j.rse.2019.111510_bib7
  article-title: Assessment of the urban development plan of Beijing by using a CA-based urban growth model
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 112
  start-page: 3668
  year: 2008
  ident: 10.1016/j.rse.2019.111510_bib34
  article-title: Regional mapping of human settlements in southeastern China with multisensor remotely sensed data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.05.009
– volume: 129
  start-page: 42
  year: 2013
  ident: 10.1016/j.rse.2019.111510_bib50
  article-title: Urban growth of the Washington, D.C.–Baltimore, MD metropolitan region from 1984 to 2010 by annual, Landsat-based estimates of impervious cover
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.10.025
– volume: 13
  year: 2018
  ident: 10.1016/j.rse.2019.111510_bib1
  article-title: Built-up expansion between 2001 and 2011 in South America continues well beyond the cities
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aad2e3
– volume: 109
  start-page: 7687
  year: 2012
  ident: 10.1016/j.rse.2019.111510_bib49
  article-title: Urban land teleconnections and sustainability
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1117622109
– volume: 3
  start-page: 387
  year: 1997
  ident: 10.1016/j.rse.2019.111510_bib10
  article-title: Satellite inventory of human settlements using nocturnal radiation emissions: a contribution for the global tool chest
  publication-title: Glob. Chang. Biol.
  doi: 10.1046/j.1365-2486.1997.00115.x
– volume: 666
  start-page: 274
  year: 2019
  ident: 10.1016/j.rse.2019.111510_bib14
  article-title: Characterizing the spatial pattern of annual urban growth by using time series Landsat imagery
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.02.178
– volume: 31
  start-page: 400
  year: 1979
  ident: 10.1016/j.rse.2019.111510_bib23
  article-title: Spectral and textural features to classify elusive land cover at the urban fringe
  publication-title: Prof. Geogr.
  doi: 10.1111/j.0033-0124.1979.00400.x
– volume: 7
  start-page: 1962
  year: 2007
  ident: 10.1016/j.rse.2019.111510_bib11
  article-title: Global distribution and density of constructed impervious surfaces
  publication-title: Sensors
  doi: 10.3390/s7091962
– volume: 55
  start-page: 12
  year: 2013
  ident: 10.1016/j.rse.2019.111510_bib52
  article-title: It's time for an urbanization science
  publication-title: Environment
  doi: 10.1080/00139157.2013.748387
– volume: 7
  start-page: 64
  year: 2019
  ident: 10.1016/j.rse.2019.111510_bib55
  article-title: Urban impervious surface detection from remote sensing images: a review of the methods and challenges
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2019.2927260
– volume: 84
  start-page: 493
  year: 2003
  ident: 10.1016/j.rse.2019.111510_bib58
  article-title: Estimating impervious surface distribution by spectral mixture analysis
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00136-0
– volume: 185
  start-page: 57
  year: 2016
  ident: 10.1016/j.rse.2019.111510_bib46
  article-title: Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.12.024
– volume: 64
  start-page: 370
  year: 2019
  ident: 10.1016/j.rse.2019.111510_bib18
  article-title: Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2019.03.002
– year: 2019
  ident: 10.1016/j.rse.2019.111510_bib36
– volume: 113
  start-page: 1133
  year: 2009
  ident: 10.1016/j.rse.2019.111510_bib59
  article-title: Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.02.004
– volume: 321
  start-page: 652
  year: 2008
  ident: 10.1016/j.rse.2019.111510_bib47
  article-title: Ecosystem disturbance, carbon, and climate
  publication-title: Science
  doi: 10.1126/science.1159607
– volume: 134
  start-page: 294
  year: 2013
  ident: 10.1016/j.rse.2019.111510_bib8
  article-title: MODIS detected surface urban heat islands and sinks: global locations and controls
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.03.008
– volume: 58
  start-page: 423
  year: 1992
  ident: 10.1016/j.rse.2019.111510_bib16
  article-title: Frequency-based contextual classification and gray-level vector reduction for land-use identification
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 90
  start-page: 123
  year: 2018
  ident: 10.1016/j.rse.2019.111510_bib5
  article-title: Mapping urbanization in the United States from 2001 to 2011
  publication-title: Appl. Geogr.
  doi: 10.1016/j.apgeog.2017.12.002
– volume: 42
  start-page: 193
  year: 2017
  ident: 10.1016/j.rse.2019.111510_bib24
  article-title: Global urbanization projections for the shared socioeconomic pathways
  publication-title: Glob. Environ. Chang.
  doi: 10.1016/j.gloenvcha.2015.03.008
– volume: 9
  start-page: 366
  year: 2017
  ident: 10.1016/j.rse.2019.111510_bib54
  article-title: Mapping 2000–2010 impervious surface change in India using global land survey landsat data
  publication-title: Remote Sens.
  doi: 10.3390/rs9040366
– start-page: 1
  year: 2018
  ident: 10.1016/j.rse.2019.111510_bib22
  article-title: Detecting global urban expansion over the last three decades using a fully convolutional network
  publication-title: Environ. Res. Lett.
– year: 2019
  ident: 10.1016/j.rse.2019.111510_bib30
  article-title: Projecting global urban area growth through 2100 based on historical time‐series data and future Shared Socioeconomic Pathways
  publication-title: Earths Future
  doi: 10.1029/2019EF001152
– volume: 23
  start-page: 4131
  year: 2002
  ident: 10.1016/j.rse.2019.111510_bib42
  article-title: Monitoring the composition of urban environments based on the vegetation-impervious surface-soil (VIS) model by subpixel analysis techniques
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160110114998
– volume: 114
  start-page: 1733
  year: 2010
  ident: 10.1016/j.rse.2019.111510_bib48
  article-title: Mapping global urban areas using MODIS 500-m data: new methods and datasets based on 'urban ecoregions
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.03.003
– volume: 386
  start-page: 1973
  year: 2015
  ident: 10.1016/j.rse.2019.111510_bib57
  article-title: Safeguarding human health in the Anthropocene epoch: report of the Rockefeller Foundation–Lancet Commission on planetary health
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(15)60901-1
– volume: 62
  start-page: 508
  year: 2017
  ident: 10.1016/j.rse.2019.111510_bib25
  article-title: The first all-season sample set for mapping global land cover with Landsat-8 data
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2017.03.011
– volume: 166
  start-page: 78
  year: 2015
  ident: 10.1016/j.rse.2019.111510_bib28
  article-title: A 30-year (1984–2013) record of annual urban dynamics of Beijing City derived from Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.06.007
– volume: 10
  start-page: 768
  year: 2018
  ident: 10.1016/j.rse.2019.111510_bib37
  article-title: Unveiling 25 years of planetary urbanization with remote sensing: perspectives from the global human settlement layer
  publication-title: Remote Sens.
  doi: 10.3390/rs10050768
– volume: 117
  start-page: 34
  year: 2012
  ident: 10.1016/j.rse.2019.111510_bib56
  article-title: Remote sensing of impervious surfaces in the urban areas: requirements, methods, and trends
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.02.030
– volume: 34
  start-page: 2607
  year: 2013
  ident: 10.1016/j.rse.2019.111510_bib20
  article-title: Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2012.748992
– volume: 35
  start-page: 4795
  year: 2014
  ident: 10.1016/j.rse.2019.111510_bib62
  article-title: Towards a common validation sample set for global land cover mapping
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2014.930202
– volume: 6
  start-page: 2102
  year: 2013
  ident: 10.1016/j.rse.2019.111510_bib41
  article-title: A global human settlement layer from optical HR/VHR RS data: concept and first results
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2013.2271445
– volume: 209
  start-page: 227
  year: 2018
  ident: 10.1016/j.rse.2019.111510_bib31
  article-title: High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.02.055
– volume: 6
  start-page: 139
  year: 1985
  ident: 10.1016/j.rse.2019.111510_bib12
  article-title: An examination of some problems and solutions in monitoring urban areas from satellite platforms
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431168508948430
– volume: 3
  start-page: 306
  year: 2010
  ident: 10.1016/j.rse.2019.111510_bib44
  article-title: The fast growing megacity Karachi as a frontier of environmental challenges: urbanization and contemporary urbanism issues
  publication-title: J. Geogr. Reg. Plan.
– volume: 228
  start-page: 164
  year: 2019
  ident: 10.1016/j.rse.2019.111510_bib64
  article-title: Understanding an urbanizing planet: strategic directions for remote sensing
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.04.020
SSID ssj0015871
Score 2.7227113
Snippet Artificial impervious areas are predominant indicators of human settlements. Timely, accurate, and frequent information on artificial impervious areas is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111510
SubjectTerms Algorithms
Archives & records
Arid regions
Biodiversity
Brazil
Canada
China
Datasets
Environmental impact
France
Germany
Google Earth
Human settlements
India
Internet
Italy
Japan
Land use
Landsat
Landsat data
Landsat satellites
Mapping
Radar data
Remote sensing
Rural development
Russia
Satellite imagery
Stormwater
Synthetic aperture radar
United States
Urbanization
Title Annual maps of global artificial impervious area (GAIA) between 1985 and 2018
URI https://dx.doi.org/10.1016/j.rse.2019.111510
https://www.proquest.com/docview/2330021902
https://www.proquest.com/docview/2352438100
Volume 236
WOSCitedRecordID wos000502894400025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKBoIXBIWJwkBGQgiYghI7H_ZjhTooKmVCHSpPluM4otNIs35M23_PXeI01QTTeOAlahMnrXw_313ufr4j5BWPuU10HnhpLqUXpnHgaZ0hBYrFYA2t9quM6fdRMh6L6VQedTrDZi_M-WlSFOLiQpb_VdRwDoSNW2f_Qdybh8IJ-AxChyOIHY43EryrmP9LlxVLw1X8wIGuWMQMPGVQEMh91eAyVoGC_rCP8YGGtRVIEVVpBTDcYtt__WZBtPZgibT3mi69tVNuw-VxNN8j68wiEn4q1sB0bY2et0F8Rweetan9ujv2j_XZbDsewfyteITTsTz0UBNs61jG44MS1TOoAO-PmrsOIpy8XyyxeGkg3eDWTDWp-fFXdXg8GqnJYDp5XZ552EAME-2um8otssuSSIKC2-0PB9PPm5RSJJK6faL7e02KuyL7XfnVvzkpV8x15YNMHpD77uWB9muhPyQdW3TJ3qCVAFx0ynrZJXddg_ufl11y52PVwfnyEflS44MiPug8pzU-aIsP2uKDIj7oG0THW-qwQREbFLBBERuPyfHhYPLhk-d6angmDIKVZ7jx_VxLngXMhCwPbCg0N-CmCmkCkQYxMzwNmY6EsWEOzptMM_gWi4wlWGtyj-wU88I-IRTfTnNtZJZGecjCJI1EnDEbZ7DMOY9Mj_jNJCrjCs5j35NT1TALTxTMu8J5V_W898i7zS1lXW3lusFhIxnl3MXaDVSAqetu22-kqNyyXSrGOXq70mc98nJzGTQtps90YWHKYUzEqoJ4_tMbjHlG7rWrY5_srBZr-5zcNuer2XLxwoHzN0BIl0Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Annual+maps+of+global+artificial+impervious+area+%28GAIA%29+between+1985+and+2018&rft.jtitle=Remote+sensing+of+environment&rft.au=Gong%2C+Peng&rft.au=Li%2C+Xuecao&rft.au=Wang%2C+Jie&rft.au=Bai%2C+Yuqi&rft.date=2020-01-01&rft.issn=0034-4257&rft.volume=236+p.111510-&rft_id=info:doi/10.1016%2Fj.rse.2019.111510&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon