Raman spectroscopy combined with multiple algorithms for analysis and rapid screening of chronic renal failure

•Raman spectroscopy combined with multivariate statistical methods is proposed to screen chronic renal failure (CRF) patients.•The high diagnostic accuracy of PCA-GS-SVM illustrated the potential of using serum Raman spectra for diagnosing CRF patients.•The results demonstrated great potentials for...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Photodiagnosis and photodynamic therapy Ročník 30; s. 101792
Hlavní autoři: Chen, Cheng, Yang, Li, Li, Hongyi, Chen, Fangfang, Chen, Chen, Gao, Rui, Lv, XY, Tang, Jun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Netherlands Elsevier B.V 01.06.2020
Témata:
ISSN:1572-1000, 1873-1597, 1873-1597
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Raman spectroscopy combined with multivariate statistical methods is proposed to screen chronic renal failure (CRF) patients.•The high diagnostic accuracy of PCA-GS-SVM illustrated the potential of using serum Raman spectra for diagnosing CRF patients.•The results demonstrated great potentials for developing serum Raman spectroscopyinto a novel clinical tool for rapid and non-invasive screening of CRF disease. Chronic renal failure (CRF) is a symptom of kidney damage in the terminal stages. If a patient is not treated, then CRF will progress to uremia, which greatly reduces the lifespan of the patient. However, current screening strategies, including routine urine tests and medical imaging investigations, have poor sensitivity. Therefore, exploring new and efficient screening methods for CRF such as serum spectroscopy is of great significance. In this study, we first used Raman spectroscopy to classify sera from CRF patients and control subjects. A total of 47 samples from CRF patients and 54 samples from control subjects were acquired. The spectra revealed differences in the phospholipids and proteins between the CRF patients and control subjects. The differences between the CRF patients and control subjects were evaluated by building machine learning models. Subsequent principal component analysis (PCA) was first used for feature extraction. Then, back propagation (BP) neural network, extreme learning machine (ELM), genetic algorithms based on support vector machine (GA-SVM), particle swarm optimization-support vector machine (PSO-SVM), grid search-support vector machine (GS-SVM) and simulated annealing particle swarm optimization based on support vector machine (SAPSO-SVM) algorithms were employed to establish diagnostic models; the diagnostic accuracy of the six classifiers was 70.4 %, 71 %, 83.5 %, 86.9 %, 89.7 % and 82.8 %, respectively, for control subjects and CRF patients. The results show the potential of Raman spectroscopy in differentiating between the control subjects and CRF patients. Based on the limitations of current routine diagnostic methods, serum Raman spectroscopy may be an adjunct/replaceable method for the clinical diagnosis of CRF with the prospective validation of more samples.
AbstractList •Raman spectroscopy combined with multivariate statistical methods is proposed to screen chronic renal failure (CRF) patients.•The high diagnostic accuracy of PCA-GS-SVM illustrated the potential of using serum Raman spectra for diagnosing CRF patients.•The results demonstrated great potentials for developing serum Raman spectroscopyinto a novel clinical tool for rapid and non-invasive screening of CRF disease. Chronic renal failure (CRF) is a symptom of kidney damage in the terminal stages. If a patient is not treated, then CRF will progress to uremia, which greatly reduces the lifespan of the patient. However, current screening strategies, including routine urine tests and medical imaging investigations, have poor sensitivity. Therefore, exploring new and efficient screening methods for CRF such as serum spectroscopy is of great significance. In this study, we first used Raman spectroscopy to classify sera from CRF patients and control subjects. A total of 47 samples from CRF patients and 54 samples from control subjects were acquired. The spectra revealed differences in the phospholipids and proteins between the CRF patients and control subjects. The differences between the CRF patients and control subjects were evaluated by building machine learning models. Subsequent principal component analysis (PCA) was first used for feature extraction. Then, back propagation (BP) neural network, extreme learning machine (ELM), genetic algorithms based on support vector machine (GA-SVM), particle swarm optimization-support vector machine (PSO-SVM), grid search-support vector machine (GS-SVM) and simulated annealing particle swarm optimization based on support vector machine (SAPSO-SVM) algorithms were employed to establish diagnostic models; the diagnostic accuracy of the six classifiers was 70.4 %, 71 %, 83.5 %, 86.9 %, 89.7 % and 82.8 %, respectively, for control subjects and CRF patients. The results show the potential of Raman spectroscopy in differentiating between the control subjects and CRF patients. Based on the limitations of current routine diagnostic methods, serum Raman spectroscopy may be an adjunct/replaceable method for the clinical diagnosis of CRF with the prospective validation of more samples.
Chronic renal failure (CRF) is a symptom of kidney damage in the terminal stages. If a patient is not treated, then CRF will progress to uremia, which greatly reduces the lifespan of the patient. However, current screening strategies, including routine urine tests and medical imaging investigations, have poor sensitivity. Therefore, exploring new and efficient screening methods for CRF such as serum spectroscopy is of great significance. In this study, we first used Raman spectroscopy to classify sera from CRF patients and control subjects. A total of 47 samples from CRF patients and 54 samples from control subjects were acquired. The spectra revealed differences in the phospholipids and proteins between the CRF patients and control subjects. The differences between the CRF patients and control subjects were evaluated by building machine learning models. Subsequent principal component analysis (PCA) was first used for feature extraction. Then, back propagation (BP) neural network, extreme learning machine (ELM), genetic algorithms based on support vector machine (GA-SVM), particle swarm optimization-support vector machine (PSO-SVM), grid search-support vector machine (GS-SVM) and simulated annealing particle swarm optimization based on support vector machine (SAPSO-SVM) algorithms were employed to establish diagnostic models; the diagnostic accuracy of the six classifiers was 70.4 %, 71 %, 83.5 %, 86.9 %, 89.7 % and 82.8 %, respectively, for control subjects and CRF patients. The results show the potential of Raman spectroscopy in differentiating between the control subjects and CRF patients. Based on the limitations of current routine diagnostic methods, serum Raman spectroscopy may be an adjunct/replaceable method for the clinical diagnosis of CRF with the prospective validation of more samples.Chronic renal failure (CRF) is a symptom of kidney damage in the terminal stages. If a patient is not treated, then CRF will progress to uremia, which greatly reduces the lifespan of the patient. However, current screening strategies, including routine urine tests and medical imaging investigations, have poor sensitivity. Therefore, exploring new and efficient screening methods for CRF such as serum spectroscopy is of great significance. In this study, we first used Raman spectroscopy to classify sera from CRF patients and control subjects. A total of 47 samples from CRF patients and 54 samples from control subjects were acquired. The spectra revealed differences in the phospholipids and proteins between the CRF patients and control subjects. The differences between the CRF patients and control subjects were evaluated by building machine learning models. Subsequent principal component analysis (PCA) was first used for feature extraction. Then, back propagation (BP) neural network, extreme learning machine (ELM), genetic algorithms based on support vector machine (GA-SVM), particle swarm optimization-support vector machine (PSO-SVM), grid search-support vector machine (GS-SVM) and simulated annealing particle swarm optimization based on support vector machine (SAPSO-SVM) algorithms were employed to establish diagnostic models; the diagnostic accuracy of the six classifiers was 70.4 %, 71 %, 83.5 %, 86.9 %, 89.7 % and 82.8 %, respectively, for control subjects and CRF patients. The results show the potential of Raman spectroscopy in differentiating between the control subjects and CRF patients. Based on the limitations of current routine diagnostic methods, serum Raman spectroscopy may be an adjunct/replaceable method for the clinical diagnosis of CRF with the prospective validation of more samples.
Chronic renal failure (CRF) is a symptom of kidney damage in the terminal stages. If a patient is not treated, then CRF will progress to uremia, which greatly reduces the lifespan of the patient. However, current screening strategies, including routine urine tests and medical imaging investigations, have poor sensitivity. Therefore, exploring new and efficient screening methods for CRF such as serum spectroscopy is of great significance. In this study, we first used Raman spectroscopy to classify sera from CRF patients and control subjects. A total of 47 samples from CRF patients and 54 samples from control subjects were acquired. The spectra revealed differences in the phospholipids and proteins between the CRF patients and control subjects. The differences between the CRF patients and control subjects were evaluated by building machine learning models. Subsequent principal component analysis (PCA) was first used for feature extraction. Then, back propagation (BP) neural network, extreme learning machine (ELM), genetic algorithms based on support vector machine (GA-SVM), particle swarm optimization-support vector machine (PSO-SVM), grid search-support vector machine (GS-SVM) and simulated annealing particle swarm optimization based on support vector machine (SAPSO-SVM) algorithms were employed to establish diagnostic models; the diagnostic accuracy of the six classifiers was 70.4 %, 71 %, 83.5 %, 86.9 %, 89.7 % and 82.8 %, respectively, for control subjects and CRF patients. The results show the potential of Raman spectroscopy in differentiating between the control subjects and CRF patients. Based on the limitations of current routine diagnostic methods, serum Raman spectroscopy may be an adjunct/replaceable method for the clinical diagnosis of CRF with the prospective validation of more samples.
ArticleNumber 101792
Author Chen, Chen
Chen, Cheng
Li, Hongyi
Chen, Fangfang
Yang, Li
Gao, Rui
Tang, Jun
Lv, XY
Author_xml – sequence: 1
  givenname: Cheng
  surname: Chen
  fullname: Chen, Cheng
  organization: College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
– sequence: 2
  givenname: Li
  surname: Yang
  fullname: Yang, Li
  organization: The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
– sequence: 3
  givenname: Hongyi
  surname: Li
  fullname: Li, Hongyi
  organization: Quality of Products Supervision and Inspection Institute, Urumqi 830011, Xinjiang, China
– sequence: 4
  givenname: Fangfang
  surname: Chen
  fullname: Chen, Fangfang
  organization: College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
– sequence: 5
  givenname: Chen
  surname: Chen
  fullname: Chen, Chen
  organization: College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
– sequence: 6
  givenname: Rui
  surname: Gao
  fullname: Gao, Rui
  organization: College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
– sequence: 7
  givenname: XY
  surname: Lv
  fullname: Lv, XY
  email: xjuwawj01@163.com
  organization: College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
– sequence: 8
  givenname: Jun
  surname: Tang
  fullname: Tang, Jun
  organization: Physics and Chemistry Detecting Center, Xinjiang University, Urumqi 830046, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32353420$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rFTEUhkOp9Et_gSBZuplrJpmvIC6ktFUoCKLrcCY5aXPNJGMyo9x_37S3uujmrs7h8Dxn8b7n5DjEgIS8rdmmZnX3YbuZzWyWDWf86dJLfkTO6qEXVd3K_rjsbc-rmjF2Ss5z3jImGsmaE3IquGhFw9kZCd9hgkDzjHpJMes476iO0-gCGvrXLfd0Wv3iZo8U_F1M5TJlamOiEMDvsstlMTTB7AzNOiEGF-5otFTfpxicpgkLSC04vyZ8TV5Z8BnfPM8L8vP66sfll-r2283Xy8-3lW7qeqkAho4zjTjYUQJHwxgMfaNHaxh03HZadq2BXo9m6LAVghs-ogaBTWdBorgg7_d_5xR_r5gXNbms0XsIGNesuJB914lWNgV994yu44RGzclNkHbqX0YFEHtAl4ByQvsfqZl6bEJt1VMT6rEJtW-iWPKFpd0Ci4thSSWLA-6nvYsloj8Ok8raYdBoXCo9KRPdAf_jC197V7oA_wt3B-0HyfW8DQ
CitedBy_id crossref_primary_10_1016_j_ijleo_2020_165734
crossref_primary_10_1016_j_pdpdt_2023_103885
crossref_primary_10_1039_D2RA01557A
crossref_primary_10_1039_D4RA00953C
crossref_primary_10_3390_ijms26189095
crossref_primary_10_3389_fchem_2023_1045697
crossref_primary_10_1016_j_saa_2024_124296
crossref_primary_10_3390_cells11030386
crossref_primary_10_3390_s23031605
crossref_primary_10_1016_j_microc_2023_108485
crossref_primary_10_1038_s41598_022_18879_1
crossref_primary_10_1007_s00216_021_03258_y
crossref_primary_10_1016_j_pdpdt_2021_102313
crossref_primary_10_1016_j_pdpdt_2022_103007
crossref_primary_10_1007_s10103_021_03273_6
crossref_primary_10_1016_j_pdpdt_2021_102199
crossref_primary_10_1007_s40620_023_01573_4
crossref_primary_10_1016_j_pdpdt_2022_103023
crossref_primary_10_1016_j_saa_2022_121839
crossref_primary_10_1002_slct_202405043
crossref_primary_10_1016_j_artmed_2024_103053
crossref_primary_10_1002_jrs_6502
crossref_primary_10_1109_JPHOT_2021_3075958
crossref_primary_10_7717_peerj_14879
crossref_primary_10_1080_0886022X_2024_2375741
crossref_primary_10_1007_s00432_023_04609_1
crossref_primary_10_3389_fimmu_2023_1328228
crossref_primary_10_1016_j_saa_2021_119956
crossref_primary_10_1016_j_pdpdt_2020_101932
crossref_primary_10_1016_j_microc_2025_113762
crossref_primary_10_1002_jrs_6510
crossref_primary_10_3390_jcm11164829
crossref_primary_10_1016_j_pdpdt_2022_102883
crossref_primary_10_1016_j_pdpdt_2022_103059
crossref_primary_10_1080_00032719_2025_2481630
crossref_primary_10_1016_j_pdpdt_2022_103057
crossref_primary_10_1371_journal_pone_0268979
crossref_primary_10_1371_journal_pone_0282429
Cites_doi 10.1681/ASN.2014050423
10.1016/j.bios.2018.04.003
10.1007/s10895-010-0600-x
10.1016/j.saa.2019.117173
10.33549/physiolres.932003
10.1016/j.asoc.2019.04.019
10.1292/jvms.16-0188
10.1145/1961189.1961199
10.1002/jbio.201200191
10.1002/jbio.201400060
10.5812/ircmj.14133
10.1056/NEJMra054415
10.1139/tcsme-2019-0053
10.1016/j.ijleo.2017.11.097
10.1080/05704920701551530
10.1016/j.pdpdt.2018.05.010
10.1016/j.vibspec.2013.06.002
10.1039/C8AN00224J
10.1053/j.jrn.2009.01.028
10.1097/MNH.0000000000000380
10.1002/jssc.201700024
10.1364/OE.22.025895
10.1038/ki.2009.289
10.1016/j.clinbiochem.2008.01.022
10.1109/JPHOT.2018.2876686
10.1002/jrs.4924
10.1016/j.saa.2018.04.018
10.1016/j.saa.2018.08.008
10.1021/acs.analchem.8b05907
10.1364/BOE.7.002249
10.1002/jbio.201900099
10.1155/2016/1603609
10.1364/BOE.9.002041
10.1097/MNH.0b013e3282f2905f
10.1681/ASN.2015050542
10.12669/pjms.35.1.96
10.1002/jcla.22713
10.1016/j.ijleo.2019.164043
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.pdpdt.2020.101792
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1873-1597
ExternalDocumentID 32353420
10_1016_j_pdpdt_2020_101792
S1572100020301460
Genre Journal Article
GroupedDBID ---
--K
--M
-RU
.1-
.FO
.~1
0R~
123
1B1
1P~
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OC~
OO-
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
Z5R
~G-
~HD
0SF
AACTN
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
RIG
9DU
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c411t-aa8620cee8fb9a2ed00a874cbfd0a62f6c965da7cbd86e5332d2beca3e46fa9e3
ISICitedReferencesCount 43
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000540895900105&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1572-1000
1873-1597
IngestDate Wed Oct 01 14:09:23 EDT 2025
Wed Feb 19 02:27:48 EST 2025
Tue Nov 18 22:42:44 EST 2025
Sat Nov 29 07:03:24 EST 2025
Fri Feb 23 02:48:46 EST 2024
Tue Oct 14 19:35:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Support vector machine (SVM)
Chronic renal failure (CRF)
Raman spectroscopy
serum
Principal component analysis (PCA)
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c411t-aa8620cee8fb9a2ed00a874cbfd0a62f6c965da7cbd86e5332d2beca3e46fa9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 32353420
PQID 2397663594
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2397663594
pubmed_primary_32353420
crossref_primary_10_1016_j_pdpdt_2020_101792
crossref_citationtrail_10_1016_j_pdpdt_2020_101792
elsevier_sciencedirect_doi_10_1016_j_pdpdt_2020_101792
elsevier_clinicalkey_doi_10_1016_j_pdpdt_2020_101792
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
2020-Jun
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Photodiagnosis and photodynamic therapy
PublicationTitleAlternate Photodiagnosis Photodyn Ther
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sviglerova, Kuncova, Nalos, Tonar, Rajdl, Stengl (bib0010) 2010; 59
Zhu, Dong, Wang, Huang, Jin, Zhou, Shi, Gu, Chen, Xu, Song (bib0050) 2016; 62
Li, Chen, Zhang, Guo, Liu, Xu, Li, Lin (bib0135) 2014; 22
Khan, Ullah, Shahzad, Javaid, Khan (bib0090) 2018; 157
Khan, Ullah, Khan, Wahab, Bilal, Ahmed (bib0070) 2016; 7
Naseer, Amin, Saleem, Qazi (bib0110) 2019; 206
Krishnan, Kamath (bib0160) 2019; 80
Gabbai (bib0180) 2018; 27
Bruck, Stel, Gambaro, Hallan, Volzke, Arnlov, Kastarinen, Guessous, Vinhas, Stengel, Brenner, Chudek, Romundstad, Tomson, Gonzalez, Bello, Ferrieres, Palmieri, Browne, Capuano, Van Biesen, Zoccali, Gansevoort, Navis, Rothenbacher, Ferraro, Nitsch, Wanner, Jager, European (bib0025) 2016; 27
Sohail, Khan, Ullah, Qureshi, Bilal, Khan (bib0120) 2018; 9
Tristao, de Carvalho, Gomes, Miranda, Vequi-Suplicy, Lamy, Schor, Bellini (bib0040) 2010; 20
Demir, Dogantekin, Gurel, Aydin, Celiker (bib0185) 2019; 35
Choi, Moon, Seo, Hyun (bib0055) 2017; 79
Khan, Ullah, Khan, Ashraf, Ali, Bilal, Saleem (bib0085) 2018; 23
Lo, Go, Chertow, McCulloch, Fan, Ordonez, Hsu (bib0005) 2009; 76
Xu, Zhang, Yin (bib0165) 2019; 43
Ditta, Nawaz, Mahmood, Majeed, Tahir, Rashid, Muddassar, Al-Saadi, Byrne (bib0125) 2019; 221
Movasaghi, Rehman, Rehman (bib0190) 2007; 42
Stevens, Coresh, Greene, Levey (bib0030) 2006; 354
Narvaez-Sanchez, Gonzalez, Salamanca, Silva, Rios, Arevalo, Gastelbondo, Sanchez (bib0035) 2008; 41
Sikirzhytskaya, Sikirzhytski, Lednev (bib0060) 2014; 7
Mahmood, Nawaz, Ditta, Majeed, Hanif, Rashid, Bhatti, Nargis, Saleem, Bonnier, Byrne (bib0105) 2018; 200
Patel, Rajora, Kumar, Sahu, Kochar, Krishna, Srivastava (bib0115) 2019; 91
Chang, Lin (bib0150) 2011; 2
Ozkan, Durukan, Kavalci, Duman, Sayhan, Salt, Ipekci (bib0045) 2014; 16
Mehta, Atak, Sahu, Srivastava, C (bib0075) 2018; 143
Kim, Lee, Ahn, Lee, Ryu, Choi, Choi (bib0080) 2018; 111
Schanstra, Zurbig, Alkhalaf, Argiles, Bakker, Beige, Bilo, Chatzikyrkou, Dakna, Dawson, Delles, Haller, Haubitz, Husi, Jankowski, Jerums, Kleefstra, Kuznetsova, Maahs, Menne, Mullen, Ortiz, Persson, Rossing, Ruggenenti, Rychlik, Serra, Siwy, Snell-Bergeon, Spasovski, Staessen, Vlahou, Mischak, Vanholder (bib0020) 2015; 26
Axelsson, Stenvinkel (bib0170) 2008; 17
Rubina, Amita, Kedar, Bharat, Krishna (bib0095) 2013; 68
Wang, Zhang, Lu, Wang (bib0015) 2019; 33
Ramos, Shintani, Himmelfarb, Ikizler (bib0175) 2009; 19
Chen, Yang, Zhao, Yuan, Chen, Tang, Yang, Yan, Wang, Lv (bib0145) 2020; 203
Li, Yang, Li, Wang, Song, Yu (bib0195) 2016; 47
Ryzhikova, Kazakov, Halamkova, Celmins, Malone, Molho, Zimmerman, Lednev (bib0065) 2015; 8
Zheng, Lv, Du, Zhai, Mo, Lv (bib0130) 2018; 10
Liu, Sun, Chen, Jing (bib0140) 2016; 2016
Chen, Du, Tong, Lv, Lv, Si, Tang, Li, Ma, Mo (bib0100) 2020
Hu, Fang, Han, Fu, Tong, Wang (bib0155) 2017; 40
Tristao (10.1016/j.pdpdt.2020.101792_bib0040) 2010; 20
Sohail (10.1016/j.pdpdt.2020.101792_bib0120) 2018; 9
Narvaez-Sanchez (10.1016/j.pdpdt.2020.101792_bib0035) 2008; 41
Mehta (10.1016/j.pdpdt.2020.101792_bib0075) 2018; 143
Xu (10.1016/j.pdpdt.2020.101792_bib0165) 2019; 43
Chen (10.1016/j.pdpdt.2020.101792_bib0100) 2020
Krishnan (10.1016/j.pdpdt.2020.101792_bib0160) 2019; 80
Hu (10.1016/j.pdpdt.2020.101792_bib0155) 2017; 40
Movasaghi (10.1016/j.pdpdt.2020.101792_bib0190) 2007; 42
Wang (10.1016/j.pdpdt.2020.101792_bib0015) 2019; 33
Li (10.1016/j.pdpdt.2020.101792_bib0135) 2014; 22
Axelsson (10.1016/j.pdpdt.2020.101792_bib0170) 2008; 17
Ramos (10.1016/j.pdpdt.2020.101792_bib0175) 2009; 19
Naseer (10.1016/j.pdpdt.2020.101792_bib0110) 2019; 206
Khan (10.1016/j.pdpdt.2020.101792_bib0085) 2018; 23
Gabbai (10.1016/j.pdpdt.2020.101792_bib0180) 2018; 27
Stevens (10.1016/j.pdpdt.2020.101792_bib0030) 2006; 354
Mahmood (10.1016/j.pdpdt.2020.101792_bib0105) 2018; 200
Bruck (10.1016/j.pdpdt.2020.101792_bib0025) 2016; 27
Li (10.1016/j.pdpdt.2020.101792_bib0195) 2016; 47
Choi (10.1016/j.pdpdt.2020.101792_bib0055) 2017; 79
Ditta (10.1016/j.pdpdt.2020.101792_bib0125) 2019; 221
Chang (10.1016/j.pdpdt.2020.101792_bib0150) 2011; 2
Lo (10.1016/j.pdpdt.2020.101792_bib0005) 2009; 76
Schanstra (10.1016/j.pdpdt.2020.101792_bib0020) 2015; 26
Zheng (10.1016/j.pdpdt.2020.101792_bib0130) 2018; 10
Ozkan (10.1016/j.pdpdt.2020.101792_bib0045) 2014; 16
Khan (10.1016/j.pdpdt.2020.101792_bib0070) 2016; 7
Khan (10.1016/j.pdpdt.2020.101792_bib0090) 2018; 157
Liu (10.1016/j.pdpdt.2020.101792_bib0140) 2016; 2016
Kim (10.1016/j.pdpdt.2020.101792_bib0080) 2018; 111
Patel (10.1016/j.pdpdt.2020.101792_bib0115) 2019; 91
Zhu (10.1016/j.pdpdt.2020.101792_bib0050) 2016; 62
Chen (10.1016/j.pdpdt.2020.101792_bib0145) 2020; 203
Sviglerova (10.1016/j.pdpdt.2020.101792_bib0010) 2010; 59
Ryzhikova (10.1016/j.pdpdt.2020.101792_bib0065) 2015; 8
Sikirzhytskaya (10.1016/j.pdpdt.2020.101792_bib0060) 2014; 7
Rubina (10.1016/j.pdpdt.2020.101792_bib0095) 2013; 68
Demir (10.1016/j.pdpdt.2020.101792_bib0185) 2019; 35
References_xml – volume: 68
  start-page: 115
  year: 2013
  end-page: 121
  ident: bib0095
  article-title: Raman spectroscopic study on classification of cervical cell specimens
  publication-title: Vib. Spectrosc.
– volume: 7
  start-page: 2249
  year: 2016
  end-page: 2256
  ident: bib0070
  article-title: Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM)
  publication-title: Biomed. Opt. Express
– volume: 157
  start-page: 565
  year: 2018
  end-page: 570
  ident: bib0090
  article-title: Optical screening of nasopharyngeal cancer using Raman spectroscopy and support vector machine
  publication-title: Optik
– volume: 203
  year: 2020
  ident: bib0145
  article-title: Urine Raman spectroscopy for rapid and inexpensive diagnosis of chronic renal failure (CRF) using multiple classification algorithms
  publication-title: Optik
– volume: 40
  start-page: 2506
  year: 2017
  end-page: 2514
  ident: bib0155
  article-title: Rapid detection of six phosphodiesterase type 5 enzyme inhibitors in healthcare products using thin-layer chromatography and surface enhanced Raman spectroscopy combined with BP neural network
  publication-title: J. Sep. Sci.
– volume: 22
  start-page: 25895
  year: 2014
  end-page: 25908
  ident: bib0135
  article-title: Identification and characterization of colorectal cancer using Raman spectroscopy and feature selection techniques
  publication-title: Opt. Express
– volume: 206
  start-page: 197
  year: 2019
  end-page: 201
  ident: bib0110
  article-title: Raman spectroscopy based differentiation of typhoid and dengue fever in infected human sera
  publication-title: Spectrochim. Acta Part A-Molecular and Biomolecular Spectroscopy
– volume: 76
  start-page: 893
  year: 2009
  end-page: 899
  ident: bib0005
  article-title: Dialysis-requiring acute renal failure increases the risk of progressive chronic kidney disease
  publication-title: Kidney Int.
– volume: 7
  start-page: 59
  year: 2014
  end-page: 67
  ident: bib0060
  article-title: Raman spectroscopy coupled with advanced statistics for differentiating menstrual and peripheral blood
  publication-title: J. Biophotonics
– volume: 200
  start-page: 136
  year: 2018
  end-page: 142
  ident: bib0105
  article-title: Raman spectral analysis for rapid screening of dengue infection
  publication-title: Spectrochim. Acta Part A-Molecular and Biomolecular Spectroscopy
– volume: 35
  start-page: 230
  year: 2019
  end-page: 235
  ident: bib0185
  article-title: Is there a relationship between serum vaspin levels and insulin resistance in chronic renal failure?
  publication-title: Pak. J. Med. Sci.
– volume: 59
  start-page: S81
  year: 2010
  end-page: S88
  ident: bib0010
  article-title: Cardiovascular parameters in rat model of chronic renal failure induced by subtotal nephrectomy
  publication-title: Physiol. Res.
– volume: 33
  year: 2019
  ident: bib0015
  article-title: Efficacy of different hemodialysis methods on dendritic cell marker CD40 and CD80 and platelet activation marker CD62P and P10 in patients with chronic renal failure
  publication-title: J. Clin. Lab. Anal.
– volume: 8
  start-page: 584
  year: 2015
  end-page: 596
  ident: bib0065
  article-title: Raman spectroscopy of blood serum for Alzheimer’s disease diagnostics: specificity relative to other types of dementia
  publication-title: J. Biophotonics
– volume: 17
  start-page: 25
  year: 2008
  end-page: 31
  ident: bib0170
  article-title: Role of fat mass and adipokines in chronic kidney disease
  publication-title: Curr. Opin. Nephrol. Hypertens.
– volume: 62
  start-page: 1265
  year: 2016
  end-page: 1270
  ident: bib0050
  article-title: Serum lipase as clinical laboratory index for chronic renal failure diagnosis
  publication-title: Clin. Lab.
– volume: 19
  start-page: 197
  year: 2009
  end-page: 203
  ident: bib0175
  article-title: Determinants of plasma adiponectin levels in nondiabetic subjects with moderate to severe chronic kidney disease
  publication-title: J. Ren. Nutr.
– volume: 111
  start-page: 59
  year: 2018
  end-page: 65
  ident: bib0080
  article-title: A label-free cellulose SERS biosensor chip with improvement of nanoparticle-enhanced LSPR effects for early diagnosis of subarachnoid hemorrhage-induced complications
  publication-title: Biosens. Bioelectron.
– volume: 23
  start-page: 89
  year: 2018
  end-page: 93
  ident: bib0085
  article-title: Analysis of hepatitis B virus infection in blood sera using Raman spectroscopy and machine learning
  publication-title: Photodiagnosis Photodyn. Ther.
– volume: 20
  start-page: 665
  year: 2010
  end-page: 669
  ident: bib0040
  article-title: Study of blood porphyrin spectral profile for diagnosis of chronic renal failure
  publication-title: J. Fluoresc.
– volume: 16
  year: 2014
  ident: bib0045
  article-title: Importance of neutrophil gelatinase-associated lipocalin in differential diagnosis of acute and chronic renal failure
  publication-title: Iran. Red Crescent Med. J.
– volume: 79
  start-page: 41
  year: 2017
  end-page: 46
  ident: bib0055
  article-title: Evaluation of serum cystatin-C and symmetric dimethylarginine concentrations in dogs with heart failure from chronic mitral valvular insufficiency
  publication-title: J. Vet. Med. Sci.
– volume: 354
  start-page: 2473
  year: 2006
  end-page: 2483
  ident: bib0030
  article-title: Medical progress - assessing kidney function - measured and estimated glomerular filtration rate
  publication-title: N. Engl. J. Med.
– volume: 80
  start-page: 525
  year: 2019
  end-page: 533
  ident: bib0160
  article-title: A novel GA-ELM model for patient-specific mortality prediction over large-scale lab event data
  publication-title: Appl. Soft Comput.
– volume: 143
  start-page: 1916
  year: 2018
  end-page: 1923
  ident: bib0075
  article-title: An early investigative serum Raman spectroscopy study of meningioma
  publication-title: Analyst
– volume: 91
  start-page: 7054
  year: 2019
  end-page: 7062
  ident: bib0115
  article-title: Rapid discrimination of malaria- and dengue-infected patients sera using raman spectroscopy
  publication-title: Anal. Chem.
– year: 2020
  ident: bib0100
  article-title: Exploration research on the fusion of multimodal spectrum technology to improve performance of rapid diagnosis scheme for thyroid dysfunction
  publication-title: J. Biophotonics
– volume: 27
  start-page: 23
  year: 2018
  end-page: 29
  ident: bib0180
  article-title: The role of renal response to amino acid infusion and oral protein load in normal kidneys and kidney with acute and chronic disease
  publication-title: Curr. Opin. Nephrol. Hypertens.
– volume: 9
  start-page: 2041
  year: 2018
  end-page: 2055
  ident: bib0120
  article-title: Analysis of hepatitis C infection using Raman spectroscopy and proximity based classification in the transformed domain
  publication-title: Biomed. Opt. Express
– volume: 2
  start-page: 1
  year: 2011
  end-page: 27
  ident: bib0150
  article-title: Libsvm
  publication-title: ACM Trans. Intell. Syst. Technol.
– volume: 10
  start-page: 1
  year: 2018
  end-page: 12
  ident: bib0130
  article-title: Rapid and low-cost detection of thyroid dysfunction using raman spectroscopy and an improved support vector machine
  publication-title: IEEE Photonics J.
– volume: 41
  start-page: 498
  year: 2008
  end-page: 503
  ident: bib0035
  article-title: Cystatin C could be a replacement to serum creatinine for diagnosing and monitoring kidney function in children
  publication-title: Clin. Biochem.
– volume: 43
  year: 2019
  ident: bib0165
  article-title: RETRACTION: early bearing fault diagnosis based on improved SFLA and ELM network (Retraction Article, vol 42, pg 187, 2018) (Retraction of Vol 42, Pg 187, 2018)
  publication-title: Trans. Can. Soc. Mech. Eng.
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 6
  ident: bib0140
  article-title: Raman spectroscopy in colorectal Cancer diagnostics: comparison of PCA-LDA and PLS-DA models
  publication-title: J. Spectrosc.
– volume: 221
  year: 2019
  ident: bib0125
  article-title: Principal components analysis of Raman spectral data for screening of Hepatitis C infection
  publication-title: Spectrochim. Acta Part A-Molecular and Biomolecular Spectroscopy
– volume: 27
  start-page: 2135
  year: 2016
  end-page: 2147
  ident: bib0025
  article-title: CKD prevalence varies across the european general population
  publication-title: J. Am. Soc. Nephrol.
– volume: 26
  start-page: 1999
  year: 2015
  end-page: 2010
  ident: bib0020
  article-title: Diagnosis and prediction of CKD progression by assessment of urinary peptides
  publication-title: J. Am. Soc. Nephrol.
– volume: 42
  start-page: 493
  year: 2007
  end-page: 541
  ident: bib0190
  article-title: Raman spectroscopy of biological tissues
  publication-title: Appl. Spectrosc. Rev.
– volume: 47
  start-page: 917
  year: 2016
  end-page: 925
  ident: bib0195
  article-title: Different classification algorithms and serum surface enhanced Raman spectroscopy for noninvasive discrimination of gastric diseases
  publication-title: J. Raman Spectrosc.
– volume: 26
  start-page: 1999
  issue: 8
  year: 2015
  ident: 10.1016/j.pdpdt.2020.101792_bib0020
  article-title: Diagnosis and prediction of CKD progression by assessment of urinary peptides
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2014050423
– volume: 111
  start-page: 59
  year: 2018
  ident: 10.1016/j.pdpdt.2020.101792_bib0080
  article-title: A label-free cellulose SERS biosensor chip with improvement of nanoparticle-enhanced LSPR effects for early diagnosis of subarachnoid hemorrhage-induced complications
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.04.003
– volume: 20
  start-page: 665
  issue: 3
  year: 2010
  ident: 10.1016/j.pdpdt.2020.101792_bib0040
  article-title: Study of blood porphyrin spectral profile for diagnosis of chronic renal failure
  publication-title: J. Fluoresc.
  doi: 10.1007/s10895-010-0600-x
– volume: 221
  year: 2019
  ident: 10.1016/j.pdpdt.2020.101792_bib0125
  article-title: Principal components analysis of Raman spectral data for screening of Hepatitis C infection
  publication-title: Spectrochim. Acta Part A-Molecular and Biomolecular Spectroscopy
  doi: 10.1016/j.saa.2019.117173
– volume: 59
  start-page: S81
  year: 2010
  ident: 10.1016/j.pdpdt.2020.101792_bib0010
  article-title: Cardiovascular parameters in rat model of chronic renal failure induced by subtotal nephrectomy
  publication-title: Physiol. Res.
  doi: 10.33549/physiolres.932003
– volume: 80
  start-page: 525
  year: 2019
  ident: 10.1016/j.pdpdt.2020.101792_bib0160
  article-title: A novel GA-ELM model for patient-specific mortality prediction over large-scale lab event data
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.04.019
– volume: 79
  start-page: 41
  issue: 1
  year: 2017
  ident: 10.1016/j.pdpdt.2020.101792_bib0055
  article-title: Evaluation of serum cystatin-C and symmetric dimethylarginine concentrations in dogs with heart failure from chronic mitral valvular insufficiency
  publication-title: J. Vet. Med. Sci.
  doi: 10.1292/jvms.16-0188
– volume: 2
  start-page: 1
  issue: 3
  year: 2011
  ident: 10.1016/j.pdpdt.2020.101792_bib0150
  article-title: Libsvm
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– volume: 7
  start-page: 59
  issue: 1–2
  year: 2014
  ident: 10.1016/j.pdpdt.2020.101792_bib0060
  article-title: Raman spectroscopy coupled with advanced statistics for differentiating menstrual and peripheral blood
  publication-title: J. Biophotonics
  doi: 10.1002/jbio.201200191
– volume: 8
  start-page: 584
  issue: 7
  year: 2015
  ident: 10.1016/j.pdpdt.2020.101792_bib0065
  article-title: Raman spectroscopy of blood serum for Alzheimer’s disease diagnostics: specificity relative to other types of dementia
  publication-title: J. Biophotonics
  doi: 10.1002/jbio.201400060
– volume: 16
  issue: 8
  year: 2014
  ident: 10.1016/j.pdpdt.2020.101792_bib0045
  article-title: Importance of neutrophil gelatinase-associated lipocalin in differential diagnosis of acute and chronic renal failure
  publication-title: Iran. Red Crescent Med. J.
  doi: 10.5812/ircmj.14133
– volume: 354
  start-page: 2473
  issue: 23
  year: 2006
  ident: 10.1016/j.pdpdt.2020.101792_bib0030
  article-title: Medical progress - assessing kidney function - measured and estimated glomerular filtration rate
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra054415
– volume: 62
  start-page: 1265
  issue: 7
  year: 2016
  ident: 10.1016/j.pdpdt.2020.101792_bib0050
  article-title: Serum lipase as clinical laboratory index for chronic renal failure diagnosis
  publication-title: Clin. Lab.
– volume: 43
  issue: 2
  year: 2019
  ident: 10.1016/j.pdpdt.2020.101792_bib0165
  article-title: RETRACTION: early bearing fault diagnosis based on improved SFLA and ELM network (Retraction Article, vol 42, pg 187, 2018) (Retraction of Vol 42, Pg 187, 2018)
  publication-title: Trans. Can. Soc. Mech. Eng.
  doi: 10.1139/tcsme-2019-0053
– volume: 157
  start-page: 565
  year: 2018
  ident: 10.1016/j.pdpdt.2020.101792_bib0090
  article-title: Optical screening of nasopharyngeal cancer using Raman spectroscopy and support vector machine
  publication-title: Optik
  doi: 10.1016/j.ijleo.2017.11.097
– volume: 42
  start-page: 493
  issue: 5
  year: 2007
  ident: 10.1016/j.pdpdt.2020.101792_bib0190
  article-title: Raman spectroscopy of biological tissues
  publication-title: Appl. Spectrosc. Rev.
  doi: 10.1080/05704920701551530
– volume: 23
  start-page: 89
  year: 2018
  ident: 10.1016/j.pdpdt.2020.101792_bib0085
  article-title: Analysis of hepatitis B virus infection in blood sera using Raman spectroscopy and machine learning
  publication-title: Photodiagnosis Photodyn. Ther.
  doi: 10.1016/j.pdpdt.2018.05.010
– volume: 68
  start-page: 115
  year: 2013
  ident: 10.1016/j.pdpdt.2020.101792_bib0095
  article-title: Raman spectroscopic study on classification of cervical cell specimens
  publication-title: Vib. Spectrosc.
  doi: 10.1016/j.vibspec.2013.06.002
– volume: 143
  start-page: 1916
  issue: 8
  year: 2018
  ident: 10.1016/j.pdpdt.2020.101792_bib0075
  article-title: An early investigative serum Raman spectroscopy study of meningioma
  publication-title: Analyst
  doi: 10.1039/C8AN00224J
– volume: 19
  start-page: 197
  issue: 3
  year: 2009
  ident: 10.1016/j.pdpdt.2020.101792_bib0175
  article-title: Determinants of plasma adiponectin levels in nondiabetic subjects with moderate to severe chronic kidney disease
  publication-title: J. Ren. Nutr.
  doi: 10.1053/j.jrn.2009.01.028
– volume: 27
  start-page: 23
  issue: 1
  year: 2018
  ident: 10.1016/j.pdpdt.2020.101792_bib0180
  article-title: The role of renal response to amino acid infusion and oral protein load in normal kidneys and kidney with acute and chronic disease
  publication-title: Curr. Opin. Nephrol. Hypertens.
  doi: 10.1097/MNH.0000000000000380
– volume: 40
  start-page: 2506
  issue: 11
  year: 2017
  ident: 10.1016/j.pdpdt.2020.101792_bib0155
  article-title: Rapid detection of six phosphodiesterase type 5 enzyme inhibitors in healthcare products using thin-layer chromatography and surface enhanced Raman spectroscopy combined with BP neural network
  publication-title: J. Sep. Sci.
  doi: 10.1002/jssc.201700024
– volume: 22
  start-page: 25895
  issue: 21
  year: 2014
  ident: 10.1016/j.pdpdt.2020.101792_bib0135
  article-title: Identification and characterization of colorectal cancer using Raman spectroscopy and feature selection techniques
  publication-title: Opt. Express
  doi: 10.1364/OE.22.025895
– volume: 76
  start-page: 893
  issue: 8
  year: 2009
  ident: 10.1016/j.pdpdt.2020.101792_bib0005
  article-title: Dialysis-requiring acute renal failure increases the risk of progressive chronic kidney disease
  publication-title: Kidney Int.
  doi: 10.1038/ki.2009.289
– volume: 41
  start-page: 498
  issue: 7–8
  year: 2008
  ident: 10.1016/j.pdpdt.2020.101792_bib0035
  article-title: Cystatin C could be a replacement to serum creatinine for diagnosing and monitoring kidney function in children
  publication-title: Clin. Biochem.
  doi: 10.1016/j.clinbiochem.2008.01.022
– volume: 10
  start-page: 1
  issue: 6
  year: 2018
  ident: 10.1016/j.pdpdt.2020.101792_bib0130
  article-title: Rapid and low-cost detection of thyroid dysfunction using raman spectroscopy and an improved support vector machine
  publication-title: IEEE Photonics J.
  doi: 10.1109/JPHOT.2018.2876686
– volume: 47
  start-page: 917
  issue: 8
  year: 2016
  ident: 10.1016/j.pdpdt.2020.101792_bib0195
  article-title: Different classification algorithms and serum surface enhanced Raman spectroscopy for noninvasive discrimination of gastric diseases
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.4924
– volume: 200
  start-page: 136
  year: 2018
  ident: 10.1016/j.pdpdt.2020.101792_bib0105
  article-title: Raman spectral analysis for rapid screening of dengue infection
  publication-title: Spectrochim. Acta Part A-Molecular and Biomolecular Spectroscopy
  doi: 10.1016/j.saa.2018.04.018
– volume: 206
  start-page: 197
  year: 2019
  ident: 10.1016/j.pdpdt.2020.101792_bib0110
  article-title: Raman spectroscopy based differentiation of typhoid and dengue fever in infected human sera
  publication-title: Spectrochim. Acta Part A-Molecular and Biomolecular Spectroscopy
  doi: 10.1016/j.saa.2018.08.008
– volume: 91
  start-page: 7054
  issue: 11
  year: 2019
  ident: 10.1016/j.pdpdt.2020.101792_bib0115
  article-title: Rapid discrimination of malaria- and dengue-infected patients sera using raman spectroscopy
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b05907
– volume: 7
  start-page: 2249
  issue: 6
  year: 2016
  ident: 10.1016/j.pdpdt.2020.101792_bib0070
  article-title: Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM)
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.7.002249
– year: 2020
  ident: 10.1016/j.pdpdt.2020.101792_bib0100
  article-title: Exploration research on the fusion of multimodal spectrum technology to improve performance of rapid diagnosis scheme for thyroid dysfunction
  publication-title: J. Biophotonics
  doi: 10.1002/jbio.201900099
– volume: 2016
  start-page: 1
  year: 2016
  ident: 10.1016/j.pdpdt.2020.101792_bib0140
  article-title: Raman spectroscopy in colorectal Cancer diagnostics: comparison of PCA-LDA and PLS-DA models
  publication-title: J. Spectrosc.
  doi: 10.1155/2016/1603609
– volume: 9
  start-page: 2041
  issue: 5
  year: 2018
  ident: 10.1016/j.pdpdt.2020.101792_bib0120
  article-title: Analysis of hepatitis C infection using Raman spectroscopy and proximity based classification in the transformed domain
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.9.002041
– volume: 17
  start-page: 25
  issue: 1
  year: 2008
  ident: 10.1016/j.pdpdt.2020.101792_bib0170
  article-title: Role of fat mass and adipokines in chronic kidney disease
  publication-title: Curr. Opin. Nephrol. Hypertens.
  doi: 10.1097/MNH.0b013e3282f2905f
– volume: 27
  start-page: 2135
  issue: 7
  year: 2016
  ident: 10.1016/j.pdpdt.2020.101792_bib0025
  article-title: CKD prevalence varies across the european general population
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2015050542
– volume: 35
  start-page: 230
  issue: 1
  year: 2019
  ident: 10.1016/j.pdpdt.2020.101792_bib0185
  article-title: Is there a relationship between serum vaspin levels and insulin resistance in chronic renal failure?
  publication-title: Pak. J. Med. Sci.
  doi: 10.12669/pjms.35.1.96
– volume: 33
  issue: 3
  year: 2019
  ident: 10.1016/j.pdpdt.2020.101792_bib0015
  article-title: Efficacy of different hemodialysis methods on dendritic cell marker CD40 and CD80 and platelet activation marker CD62P and P10 in patients with chronic renal failure
  publication-title: J. Clin. Lab. Anal.
  doi: 10.1002/jcla.22713
– volume: 203
  year: 2020
  ident: 10.1016/j.pdpdt.2020.101792_bib0145
  article-title: Urine Raman spectroscopy for rapid and inexpensive diagnosis of chronic renal failure (CRF) using multiple classification algorithms
  publication-title: Optik
  doi: 10.1016/j.ijleo.2019.164043
SSID ssj0034904
Score 2.4004319
Snippet •Raman spectroscopy combined with multivariate statistical methods is proposed to screen chronic renal failure (CRF) patients.•The high diagnostic accuracy of...
Chronic renal failure (CRF) is a symptom of kidney damage in the terminal stages. If a patient is not treated, then CRF will progress to uremia, which greatly...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 101792
SubjectTerms Algorithms
Chronic renal failure (CRF)
Hematologic Tests - methods
Humans
Kidney Failure, Chronic - diagnosis
Machine Learning
Neural Networks, Computer
Principal Component Analysis
Principal component analysis (PCA)
Raman spectroscopy
Sensitivity and Specificity
serum
Spectrum Analysis, Raman - methods
Support vector machine (SVM)
Title Raman spectroscopy combined with multiple algorithms for analysis and rapid screening of chronic renal failure
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1572100020301460
https://dx.doi.org/10.1016/j.pdpdt.2020.101792
https://www.ncbi.nlm.nih.gov/pubmed/32353420
https://www.proquest.com/docview/2397663594
Volume 30
WOSCitedRecordID wos000540895900105&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-1597
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034904
  issn: 1572-1000
  databaseCode: AIEXJ
  dateStart: 20040501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECUcp4deiu51l4AF2lxcFTJFbccgcNAWhhsEDuAbQYmk48CQVMcJks_oH3e4yXGbpOmhF0kgOJKteRrOkMM3CH2IJcQYUqTBIBEqoJyIgJNQBLQgRZTmMky5MsUm0vE4m07zw07np98Lc7FIqyq7vMyb_6pqaANl662z_6Du9qbQANegdDiC2uF4L8UfcT0tb3ZQaqbKurnSeeMQAPtE8zaHkC9m9RJaLCdDn3t-EpNyzpu56INNgTjXJUaXlke3v5Tag1V8vnBsJN65PTypV7WwuXvuNo1pslXv-6tNBoN9tzFEn2et9XHz16N5mypk62rX1exq_rvoAfRW3Em7uQsSrnOsnLnN0igAh8oOufKGNmej3dqNNbLGipAb7b-dijj93IhG6ExZYomkbO9Ntu3xd3ZwPBqxyXA62W1-BLoQmV6wd1VZttA2SeM866Ltva_D6Tc_vEc0NzUp25_pqaxM0uAfz73N3bktnDFuzeQxeuTiEbxncfQEdWT1FH28zj2NJ1ZteBcfbdC6P0OVwRq-jjXssYY11rDHGl5jDQPWsMcaXAhssIZbrOFaYYc1bLCGHdaeo-OD4WT_S-AKeAQlHQxWAecQL4fghmWqyDmRIgx5ltKyUCLkCVFJmSex4GlZiCyREHgQQcCm8EjSRPFcRi9Qt6or-QphSmOpOLhbZRLRmHAehZnIihTC3UzxQvUQ8e-Zle416CIrC-bTGE-ZUQ7TymFWOT30qRVqLLnL3d2pVyDz-5ZhpGUAvrvFklbMubXWXf274HuPEgZGX6_k8UrW52eM6CgCQoWc9tBLC5_2D0QkiiNKwtf3kH6DHq4_y7eou1qey3foQXmxmp8td9BWOs12HP5_AcEd30o
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Raman+spectroscopy+combined+with+multiple+algorithms+for+analysis+and+rapid+screening+of+chronic+renal+failure&rft.jtitle=Photodiagnosis+and+photodynamic+therapy&rft.au=Chen%2C+Cheng&rft.au=Yang%2C+Li&rft.au=Li%2C+Hongyi&rft.au=Chen%2C+Fangfang&rft.date=2020-06-01&rft.issn=1873-1597&rft.eissn=1873-1597&rft.volume=30&rft.spage=101792&rft_id=info:doi/10.1016%2Fj.pdpdt.2020.101792&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1572-1000&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1572-1000&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1572-1000&client=summon