Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films

The unconventional superconductivity associated with iron pnictide materials has been the subject of intense interest. Using an annealing procedure to control the charge-carrier concentration, the behaviour of an FeSe monolayer deposited on SrTiO 3 is now investigated, and indications of superconduc...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nature materials Ročník 12; číslo 7; s. 605 - 610
Hlavní autori: He, Shaolong, He, Junfeng, Zhang, Wenhao, Zhao, Lin, Liu, Defa, Liu, Xu, Mou, Daixiang, Ou, Yun-Bo, Wang, Qing-Yan, Li, Zhi, Wang, Lili, Peng, Yingying, Liu, Yan, Chen, Chaoyu, Yu, Li, Liu, Guodong, Dong, Xiaoli, Zhang, Jun, Chen, Chuangtian, Xu, Zuyan, Chen, Xi, Ma, Xucun, Xue, Qikun, Zhou, X. J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 01.07.2013
Nature Publishing Group
Predmet:
ISSN:1476-1122, 1476-4660, 1476-4660
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The unconventional superconductivity associated with iron pnictide materials has been the subject of intense interest. Using an annealing procedure to control the charge-carrier concentration, the behaviour of an FeSe monolayer deposited on SrTiO 3 is now investigated, and indications of superconductivity at temperatures up to 65 K observed. The recent discovery of possible high-temperature superconductivity in single-layer FeSe films 1 , 2 has generated significant experimental and theoretical interest 3 , 4 . In both the cuprate 5 , 6 and the iron-based 7 , 8 , 9 , 10 , 11 high-temperature superconductors, superconductivity is induced by doping charge carriers into the parent compound to suppress the antiferromagnetic state. It is therefore important to establish whether the superconductivity observed in the single-layer sheets of FeSe—the essential building blocks of the Fe-based superconductors—is realized by undergoing a similar transition. Here we report the phase diagram for an FeSe monolayer grown on a SrTiO 3 substrate, by tuning the charge carrier concentration over a wide range through an extensive annealing procedure. We identify two distinct phases that compete during the annealing process: the electronic structure of the phase at low doping (N phase) bears a clear resemblance to the antiferromagnetic parent compound of the Fe-based superconductors, whereas the superconducting phase (S phase) emerges with the increase in doping and the suppression of the N phase. By optimizing the carrier concentration, we observe strong indications of superconductivity with a transition temperature of 65±5 K. The wide tunability of the system across different phases makes the FeSe monolayer ideal for investigating not only the physics of superconductivity, but also for studying novel quantum phenomena more generally.
AbstractList The recent discovery of possible high-temperature superconductivity in single-layer FeSe films has generated significant experimental and theoretical interest. In both the cuprate and the iron-based high-temperature superconductors, superconductivity is induced by doping charge carriers into the parent compound to suppress the antiferromagnetic state. It is therefore important to establish whether the superconductivity observed in the single-layer sheets of FeSe-the essential building blocks of the Fe-based superconductors-is realized by undergoing a similar transition. Here we report the phase diagram for an FeSe monolayer grown on a SrTiO3 substrate, by tuning the charge carrier concentration over a wide range through an extensive annealing procedure. We identify two distinct phases that compete during the annealing process: the electronic structure of the phase at low doping (N phase) bears a clear resemblance to the antiferromagnetic parent compound of the Fe-based superconductors, whereas the superconducting phase (S phase) emerges with the increase in doping and the suppression of the N phase. By optimizing the carrier concentration, we observe strong indications of superconductivity with a transition temperature of 65±5K. The wide tunability of the system across different phases makes the FeSe monolayer ideal for investigating not only the physics of superconductivity, but also for studying novel quantum phenomena more generally.
The recent discovery of possible high-temperature superconductivity in single-layer FeSe films has generated significant experimental and theoretical interest. In both the cuprate and the iron-based high-temperature superconductors, superconductivity is induced by doping charge carriers into the parent compound to suppress the antiferromagnetic state. It is therefore important to establish whether the superconductivity observed in the single-layer sheets of FeSe--the essential building blocks of the Fe-based superconductors--is realized by undergoing a similar transition. Here we report the phase diagram for an FeSe monolayer grown on a SrTiO3 substrate, by tuning the charge carrier concentration over a wide range through an extensive annealing procedure. We identify two distinct phases that compete during the annealing process: the electronic structure of the phase at low doping (N phase) bears a clear resemblance to the antiferromagnetic parent compound of the Fe-based superconductors, whereas the superconducting phase (S phase) emerges with the increase in doping and the suppression of the N phase. By optimizing the carrier concentration, we observe strong indications of superconductivity with a transition temperature of 65±5 K. The wide tunability of the system across different phases makes the FeSe monolayer ideal for investigating not only the physics of superconductivity, but also for studying novel quantum phenomena more generally.The recent discovery of possible high-temperature superconductivity in single-layer FeSe films has generated significant experimental and theoretical interest. In both the cuprate and the iron-based high-temperature superconductors, superconductivity is induced by doping charge carriers into the parent compound to suppress the antiferromagnetic state. It is therefore important to establish whether the superconductivity observed in the single-layer sheets of FeSe--the essential building blocks of the Fe-based superconductors--is realized by undergoing a similar transition. Here we report the phase diagram for an FeSe monolayer grown on a SrTiO3 substrate, by tuning the charge carrier concentration over a wide range through an extensive annealing procedure. We identify two distinct phases that compete during the annealing process: the electronic structure of the phase at low doping (N phase) bears a clear resemblance to the antiferromagnetic parent compound of the Fe-based superconductors, whereas the superconducting phase (S phase) emerges with the increase in doping and the suppression of the N phase. By optimizing the carrier concentration, we observe strong indications of superconductivity with a transition temperature of 65±5 K. The wide tunability of the system across different phases makes the FeSe monolayer ideal for investigating not only the physics of superconductivity, but also for studying novel quantum phenomena more generally.
The unconventional superconductivity associated with iron pnictide materials has been the subject of intense interest. Using an annealing procedure to control the charge-carrier concentration, the behaviour of an FeSe monolayer deposited on SrTiO 3 is now investigated, and indications of superconductivity at temperatures up to 65 K observed. The recent discovery of possible high-temperature superconductivity in single-layer FeSe films 1 , 2 has generated significant experimental and theoretical interest 3 , 4 . In both the cuprate 5 , 6 and the iron-based 7 , 8 , 9 , 10 , 11 high-temperature superconductors, superconductivity is induced by doping charge carriers into the parent compound to suppress the antiferromagnetic state. It is therefore important to establish whether the superconductivity observed in the single-layer sheets of FeSe—the essential building blocks of the Fe-based superconductors—is realized by undergoing a similar transition. Here we report the phase diagram for an FeSe monolayer grown on a SrTiO 3 substrate, by tuning the charge carrier concentration over a wide range through an extensive annealing procedure. We identify two distinct phases that compete during the annealing process: the electronic structure of the phase at low doping (N phase) bears a clear resemblance to the antiferromagnetic parent compound of the Fe-based superconductors, whereas the superconducting phase (S phase) emerges with the increase in doping and the suppression of the N phase. By optimizing the carrier concentration, we observe strong indications of superconductivity with a transition temperature of 65±5 K. The wide tunability of the system across different phases makes the FeSe monolayer ideal for investigating not only the physics of superconductivity, but also for studying novel quantum phenomena more generally.
The recent discovery of possible high-temperature superconductivity in single-layer FeSe films has generated significant experimental and theoretical interest. In both the cuprate and the iron-based high-temperature superconductors, superconductivity is induced by doping charge carriers into the parent compound to suppress the antiferromagnetic state. It is therefore important to establish whether the superconductivity observed in the single-layer sheets of FeSe--the essential building blocks of the Fe-based superconductors--is realized by undergoing a similar transition. Here we report the phase diagram for an FeSe monolayer grown on a SrTiO3 substrate, by tuning the charge carrier concentration over a wide range through an extensive annealing procedure. We identify two distinct phases that compete during the annealing process: the electronic structure of the phase at low doping (N phase) bears a clear resemblance to the antiferromagnetic parent compound of the Fe-based superconductors, whereas the superconducting phase (S phase) emerges with the increase in doping and the suppression of the N phase. By optimizing the carrier concentration, we observe strong indications of superconductivity with a transition temperature of 65±5 K. The wide tunability of the system across different phases makes the FeSe monolayer ideal for investigating not only the physics of superconductivity, but also for studying novel quantum phenomena more generally.
Author Xue, Qikun
Chen, Xi
Liu, Xu
Peng, Yingying
Li, Zhi
Yu, Li
Liu, Guodong
Zhao, Lin
Zhou, X. J.
He, Junfeng
Mou, Daixiang
Ou, Yun-Bo
He, Shaolong
Wang, Qing-Yan
Chen, Chaoyu
Liu, Yan
Chen, Chuangtian
Xu, Zuyan
Wang, Lili
Ma, Xucun
Liu, Defa
Zhang, Wenhao
Zhang, Jun
Dong, Xiaoli
Author_xml – sequence: 1
  givenname: Shaolong
  surname: He
  fullname: He, Shaolong
  organization: National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
– sequence: 2
  givenname: Junfeng
  surname: He
  fullname: He, Junfeng
  organization: National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
– sequence: 3
  givenname: Wenhao
  surname: Zhang
  fullname: Zhang, Wenhao
  organization: Department of Physics, State Key Lab of Low-Dimensional Quantum Physics, Tsinghua University, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
– sequence: 4
  givenname: Lin
  surname: Zhao
  fullname: Zhao, Lin
  organization: National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
– sequence: 5
  givenname: Defa
  surname: Liu
  fullname: Liu, Defa
  organization: National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
– sequence: 6
  givenname: Xu
  surname: Liu
  fullname: Liu, Xu
  organization: National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
– sequence: 7
  givenname: Daixiang
  surname: Mou
  fullname: Mou, Daixiang
  organization: National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
– sequence: 8
  givenname: Yun-Bo
  surname: Ou
  fullname: Ou, Yun-Bo
  organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
– sequence: 9
  givenname: Qing-Yan
  surname: Wang
  fullname: Wang, Qing-Yan
  organization: Department of Physics, State Key Lab of Low-Dimensional Quantum Physics, Tsinghua University, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
– sequence: 10
  givenname: Zhi
  surname: Li
  fullname: Li, Zhi
  organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
– sequence: 11
  givenname: Lili
  surname: Wang
  fullname: Wang, Lili
  organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
– sequence: 12
  givenname: Yingying
  surname: Peng
  fullname: Peng, Yingying
  organization: National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
– sequence: 13
  givenname: Yan
  surname: Liu
  fullname: Liu, Yan
  organization: National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
– sequence: 14
  givenname: Chaoyu
  surname: Chen
  fullname: Chen, Chaoyu
  organization: National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
– sequence: 15
  givenname: Li
  surname: Yu
  fullname: Yu, Li
  organization: National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
– sequence: 16
  givenname: Guodong
  surname: Liu
  fullname: Liu, Guodong
  organization: National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
– sequence: 17
  givenname: Xiaoli
  surname: Dong
  fullname: Dong, Xiaoli
  organization: National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
– sequence: 18
  givenname: Jun
  surname: Zhang
  fullname: Zhang, Jun
  organization: National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
– sequence: 19
  givenname: Chuangtian
  surname: Chen
  fullname: Chen, Chuangtian
  organization: Technical Institute of Physics and Chemistry, Chinese Academy of Sciences
– sequence: 20
  givenname: Zuyan
  surname: Xu
  fullname: Xu, Zuyan
  organization: Technical Institute of Physics and Chemistry, Chinese Academy of Sciences
– sequence: 21
  givenname: Xi
  surname: Chen
  fullname: Chen, Xi
  organization: Department of Physics, State Key Lab of Low-Dimensional Quantum Physics, Tsinghua University
– sequence: 22
  givenname: Xucun
  surname: Ma
  fullname: Ma, Xucun
  email: xcma@aphy.iphy.ac.cn
  organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
– sequence: 23
  givenname: Qikun
  surname: Xue
  fullname: Xue, Qikun
  email: qkxue@mail.tsinghua.edu.cn
  organization: Department of Physics, State Key Lab of Low-Dimensional Quantum Physics, Tsinghua University
– sequence: 24
  givenname: X. J.
  surname: Zhou
  fullname: Zhou, X. J.
  email: XJZhou@aphy.iphy.ac.cn
  organization: National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23708329$$D View this record in MEDLINE/PubMed
BookMark eNptkU9v1DAQxS1URP-AxCdAlrjAIcVjx05yRBUFRCWQgHM0a092XSX2YjuV9saVr8knIbRbQCtO8w6_N_P05pQdhRiIsacgzkGo9lWYsChTtw_YCdSNqWpjxNFeA0h5zE5zvhZCgtbmETuWqhGtkt0JS582mIk7j-uEE8fgOI1kS4rBW-6D8xaLj4HHgW_8elMVmraUsMyJeJ4XaWNwsy3-xpcdx8KN_vn9x4fFyrMP65GqEXeU-CV9Jj74ccqP2cMBx0xP9vOMfb188-XiXXX18e37i9dXla0BStW1hoYGDbWdMiABV0AKSNTWkNBaSuug067RrazJyhpN16ycbbVTHQKCOmMv7vZuU_w2Uy795LOlccRAcc49LCUYpWujF_T5AXod5xSWdLdUI6Q2ZqGe7al5NZHrt8lPmHb9fZt_L9oUc040_EFA9L8f1d8_akHPD1Dry23TJaEf_2d4eWfIy86wpvRPxEP2F6Vdo8k
CitedBy_id crossref_primary_10_1021_acs_chemmater_7b01561
crossref_primary_10_1088_2053_1591_ab8655
crossref_primary_10_1088_0953_2048_29_5_054009
crossref_primary_10_1209_0295_5075_124_67002
crossref_primary_10_1002_pssa_202300620
crossref_primary_10_1088_1742_6596_1590_1_012012
crossref_primary_10_1088_1674_1056_ac8e9d
crossref_primary_10_1088_2399_6528_abffc3
crossref_primary_10_1088_1361_648X_abc942
crossref_primary_10_1088_1361_6668_aab4ea
crossref_primary_10_1021_jacs_5b06687
crossref_primary_10_1088_1361_6668_aabddb
crossref_primary_10_3367_UFNe_2016_07_037863
crossref_primary_10_1088_1742_6596_871_1_012017
crossref_primary_10_1063_5_0225073
crossref_primary_10_1088_1361_6668_ab8ffe
crossref_primary_10_1007_s11433_022_2000_y
crossref_primary_10_1063_PT_3_2818
crossref_primary_10_1088_1367_2630_16_3_033034
crossref_primary_10_1063_5_0058895
crossref_primary_10_1038_s41535_020_0242_4
crossref_primary_10_5802_crphys_87
crossref_primary_10_1063_1_4919695
crossref_primary_10_1016_j_jallcom_2017_11_318
crossref_primary_10_1038_s41467_021_23106_y
crossref_primary_10_1103_PhysRevMaterials_7_014803
crossref_primary_10_1063_1_4900870
crossref_primary_10_1016_j_ssc_2019_113670
crossref_primary_10_1088_0953_2048_30_1_013002
crossref_primary_10_1016_j_scib_2019_03_017
crossref_primary_10_1093_nsr_nwad213
crossref_primary_10_1063_5_0072979
crossref_primary_10_1021_ja410820u
crossref_primary_10_1088_1361_648X_aa5f26
crossref_primary_10_1088_1361_6668_ada115
crossref_primary_10_1088_1361_6668_ac80da
crossref_primary_10_1002_adma_202405009
crossref_primary_10_1007_s10948_023_06626_0
crossref_primary_10_1002_smm2_1013
crossref_primary_10_1002_slct_201901207
crossref_primary_10_1038_nmat4686
crossref_primary_10_1140_epjb_e2014_50198_9
crossref_primary_10_1007_s43673_023_00106_2
crossref_primary_10_1103_PhysRevResearch_4_013032
crossref_primary_10_1088_0953_2048_27_10_103002
crossref_primary_10_1038_ncomms11043
crossref_primary_10_1038_srep07273
crossref_primary_10_1038_s41598_019_40644_0
crossref_primary_10_1088_1361_6501_ad1915
crossref_primary_10_1007_s10948_014_2895_3
crossref_primary_10_1088_0256_307X_34_7_077404
crossref_primary_10_1038_nmat4138
crossref_primary_10_1063_1_4903922
crossref_primary_10_1016_j_jallcom_2017_09_202
crossref_primary_10_1038_s41427_021_00336_6
crossref_primary_10_1038_nmat4371
crossref_primary_10_1038_s41598_019_40536_3
crossref_primary_10_1016_j_matchemphys_2017_09_060
crossref_primary_10_1038_ncomms12146
crossref_primary_10_1088_1361_648X_aa5bdd
crossref_primary_10_1088_1361_6463_aaac64
crossref_primary_10_1007_s10854_017_6553_y
crossref_primary_10_1016_j_aop_2015_02_005
crossref_primary_10_1007_s40042_024_01104_9
crossref_primary_10_1146_annurev_conmatphys_031016_025404
crossref_primary_10_1088_0953_8984_26_47_473202
crossref_primary_10_1038_s41598_018_22291_z
crossref_primary_10_1016_j_jssc_2015_12_030
crossref_primary_10_1038_s41467_023_40931_5
crossref_primary_10_1038_srep06040
crossref_primary_10_1016_j_phpro_2015_05_123
crossref_primary_10_1038_nphys4186
crossref_primary_10_1038_s41467_019_08784_z
crossref_primary_10_1088_0022_3727_48_32_323001
crossref_primary_10_1088_0953_8984_26_25_253203
crossref_primary_10_1088_1742_6596_487_1_012017
crossref_primary_10_1038_srep32078
crossref_primary_10_1093_nsr_nwy142
crossref_primary_10_1088_2053_1583_ab0d2e
crossref_primary_10_1021_acsnano_5c02539
crossref_primary_10_1016_j_mattod_2020_07_005
crossref_primary_10_1088_1361_6668_aae146
crossref_primary_10_1063_1_4963179
crossref_primary_10_1103_PhysRevX_9_041049
crossref_primary_10_1557_mrs_2020_120
crossref_primary_10_3389_fphy_2020_586182
crossref_primary_10_1088_1674_1056_26_7_077402
crossref_primary_10_1088_1361_6668_ac6987
crossref_primary_10_1016_j_jssc_2016_08_026
crossref_primary_10_1557_mrs_2020_125
crossref_primary_10_1002_adfm_202401748
crossref_primary_10_1088_0256_307X_34_8_087401
crossref_primary_10_1063_1_4886995
crossref_primary_10_1038_s41467_024_50694_2
crossref_primary_10_3367_UFNr_2016_07_037863
crossref_primary_10_1016_j_jallcom_2024_175559
crossref_primary_10_1073_pnas_1912836116
crossref_primary_10_1109_JSTQE_2018_2829665
crossref_primary_10_1016_j_cap_2017_04_018
crossref_primary_10_1103_PhysRevB_105_165407
crossref_primary_10_1088_1361_648X_aaca61
crossref_primary_10_1088_1367_2630_aa5a71
crossref_primary_10_1088_2053_1591_1_1_015026
crossref_primary_10_1039_D2NR02599J
crossref_primary_10_1073_pnas_1321160111
crossref_primary_10_1088_1742_6596_1975_1_012008
crossref_primary_10_1038_s42005_021_00663_8
crossref_primary_10_1088_0256_307X_36_5_056801
crossref_primary_10_1002_adma_201803732
crossref_primary_10_1088_1674_1056_24_11_117902
crossref_primary_10_1002_adma_202008456
crossref_primary_10_1088_0953_8984_27_29_293203
crossref_primary_10_1088_1742_6596_1975_1_012010
crossref_primary_10_1002_advs_201600098
crossref_primary_10_1103_PhysRevB_106_245112
crossref_primary_10_1103_qv7j_53y7
crossref_primary_10_1016_j_jmmm_2021_168426
crossref_primary_10_1038_nphys3177
crossref_primary_10_1088_0256_307X_40_8_086801
crossref_primary_10_1088_1361_648X_aabeb5
crossref_primary_10_1038_s41535_020_0247_z
crossref_primary_10_7566_JPSJ_88_113702
crossref_primary_10_1088_1361_648X_ab85f0
crossref_primary_10_1038_nmat4155
crossref_primary_10_1038_s41598_017_10383_1
crossref_primary_10_1088_1361_6668_ab30c2
crossref_primary_10_1038_nmat4153
crossref_primary_10_1146_annurev_conmatphys_033117_053942
crossref_primary_10_1103_PhysRevX_4_041046
crossref_primary_10_1038_s41467_021_21318_w
crossref_primary_10_1038_nmat5017
crossref_primary_10_1016_j_jallcom_2015_08_216
crossref_primary_10_1038_s41467_019_08560_z
crossref_primary_10_1016_j_physc_2015_02_028
crossref_primary_10_1016_j_physc_2016_06_006
crossref_primary_10_1103_mkb4_g2b7
crossref_primary_10_1007_s40843_015_0015_8
crossref_primary_10_1038_ncomms4202
crossref_primary_10_1088_0256_307X_35_5_057401
crossref_primary_10_1007_s10948_017_4103_8
crossref_primary_10_1080_00018732_2017_1331615
crossref_primary_10_1088_1361_6668_abd28f
crossref_primary_10_1088_1367_2630_18_2_022001
crossref_primary_10_1007_s10948_019_05351_x
crossref_primary_10_1088_0953_8984_26_26_265002
crossref_primary_10_1103_PhysRevX_10_031033
crossref_primary_10_1109_TASC_2021_3091036
crossref_primary_10_1038_s42005_019_0219_4
crossref_primary_10_1016_j_physc_2015_02_011
crossref_primary_10_1063_1_4824837
crossref_primary_10_1016_j_physc_2015_02_009
crossref_primary_10_1103_PhysRevResearch_4_023232
crossref_primary_10_1002_adma_202006124
crossref_primary_10_1088_0256_307X_36_1_017401
crossref_primary_10_1007_s44214_024_00058_0
crossref_primary_10_1016_j_physa_2021_125879
crossref_primary_10_1038_s41467_020_16266_w
crossref_primary_10_1088_0256_307X_42_7_070714
crossref_primary_10_1186_s40580_023_00405_2
crossref_primary_10_1088_2053_1591_3_7_076002
crossref_primary_10_1103_PhysRevResearch_5_043011
crossref_primary_10_1209_0295_5075_109_28003
crossref_primary_10_1088_1367_2630_17_7_073027
crossref_primary_10_3938_jkps_75_394
crossref_primary_10_1038_srep10011
crossref_primary_10_1088_1674_1056_abc3af
crossref_primary_10_3367_UFNr_2016_06_037825
crossref_primary_10_3390_condmat2030025
crossref_primary_10_1088_2053_1583_ab734b
crossref_primary_10_1103_PhysRevX_4_031041
crossref_primary_10_1103_RevModPhys_93_025006
crossref_primary_10_1109_TASC_2016_2639738
crossref_primary_10_1103_PhysRevX_14_021043
crossref_primary_10_1016_j_cplett_2016_07_040
crossref_primary_10_1007_s10948_017_4301_4
crossref_primary_10_1088_1361_648X_ac3e1d
crossref_primary_10_1088_1361_6668_ab1c00
crossref_primary_10_7566_JPSJ_86_014707
crossref_primary_10_1038_s41467_024_47350_0
crossref_primary_10_1088_0034_4885_77_4_046502
crossref_primary_10_1103_PhysRevLett_126_077001
crossref_primary_10_1088_0034_4885_80_1_014501
crossref_primary_10_3389_fphy_2021_578347
crossref_primary_10_1038_ncomms3783
crossref_primary_10_1103_PhysRevX_4_031053
crossref_primary_10_1038_s41586_021_03643_8
crossref_primary_10_1038_s43246_024_00554_9
crossref_primary_10_1063_1_4950964
crossref_primary_10_1007_s11433_023_2324_0
crossref_primary_10_1038_s42005_020_0351_1
crossref_primary_10_1007_s41061_022_00368_8
crossref_primary_10_1088_1674_1056_22_8_087412
crossref_primary_10_1063_5_0004304
crossref_primary_10_1016_j_cjph_2024_09_042
crossref_primary_10_7566_JPSJ_84_063701
crossref_primary_10_1007_s10854_017_8001_4
crossref_primary_10_1109_TASC_2025_3530910
crossref_primary_10_1038_natrevmats_2016_17
crossref_primary_10_1038_s41467_018_07778_7
crossref_primary_10_1088_0953_8984_28_29_293002
crossref_primary_10_1088_1361_6668_ab6dc4
crossref_primary_10_1038_s41535_021_00388_5
crossref_primary_10_1038_s41535_017_0050_7
crossref_primary_10_1016_j_jmmm_2017_06_092
crossref_primary_10_1002_pssb_201600163
crossref_primary_10_1038_srep04585
crossref_primary_10_1002_adma_201501656
crossref_primary_10_1016_j_cap_2024_01_010
crossref_primary_10_1038_s41598_019_42041_z
crossref_primary_10_1093_nsr_nwu040
crossref_primary_10_1088_2053_1591_1_3_036001
crossref_primary_10_1088_0256_307X_36_9_097401
crossref_primary_10_1103_PhysRevB_105_134506
crossref_primary_10_1007_s40843_015_0022_9
crossref_primary_10_1038_ncomms3877
crossref_primary_10_1016_j_cpc_2014_12_009
crossref_primary_10_1038_ncomms10840
crossref_primary_10_1002_wcms_1304
crossref_primary_10_3390_coatings11030276
crossref_primary_10_1088_1742_6596_2323_1_012011
crossref_primary_10_1109_TASC_2014_2345344
crossref_primary_10_1038_ncomms10608
crossref_primary_10_1088_1361_648X_aacd37
crossref_primary_10_1088_2053_1583_3_2_024006
crossref_primary_10_1007_s10853_024_09344_7
crossref_primary_10_1038_nphys3450
crossref_primary_10_1063_1_4963646
crossref_primary_10_1103_PhysRevX_10_041008
crossref_primary_10_7566_JPSJ_82_093705
crossref_primary_10_1140_epjb_s10051_021_00065_3
crossref_primary_10_3390_nano12193340
crossref_primary_10_1021_acs_nanolett_5c01298
crossref_primary_10_1088_2399_6528_aae0dc
crossref_primary_10_1038_s41535_020_0227_3
crossref_primary_10_1140_epjd_s10053_022_00404_8
crossref_primary_10_1088_2516_1075_ad5acb
crossref_primary_10_1088_2053_1583_3_2_024002
crossref_primary_10_1103_PhysRevMaterials_9_024801
crossref_primary_10_1016_j_jcrysgro_2024_127633
crossref_primary_10_1016_j_matchemphys_2015_08_028
crossref_primary_10_1088_1361_648X_ab1630
crossref_primary_10_1007_s10948_019_05304_4
crossref_primary_10_1073_pnas_1418994112
crossref_primary_10_1007_s10948_018_4917_z
crossref_primary_10_1016_j_jpcs_2023_111717
crossref_primary_10_1038_s41467_017_00162_x
crossref_primary_10_1088_1361_648X_ac360b
crossref_primary_10_3390_mi12101224
crossref_primary_10_1002_adma_201706240
crossref_primary_10_7566_JPSJ_87_113601
crossref_primary_10_7566_JPSJ_91_123704
crossref_primary_10_1093_nsr_nwu007
crossref_primary_10_3390_cryst9110560
crossref_primary_10_1016_j_cplett_2024_141634
crossref_primary_10_1016_j_physc_2020_1353708
crossref_primary_10_1088_0953_8984_27_7_075602
crossref_primary_10_1186_s40580_017_0100_7
crossref_primary_10_1103_qxfc_khzf
crossref_primary_10_1002_adma_202110068
crossref_primary_10_1088_0256_307X_33_7_077402
crossref_primary_10_1088_1674_1056_ac5c3e
crossref_primary_10_1016_j_commatsci_2024_112888
crossref_primary_10_1039_C7CP00173H
crossref_primary_10_3390_ma14216383
crossref_primary_10_1088_0953_2048_28_3_035009
crossref_primary_10_3390_app9030370
crossref_primary_10_1088_0256_307X_31_1_017401
crossref_primary_10_4028_www_scientific_net_MSF_916_38
crossref_primary_10_1038_nphys3530
crossref_primary_10_1038_s41598_018_33121_7
crossref_primary_10_1103_PhysRevB_111_104501
crossref_primary_10_1016_j_commatsci_2017_10_037
crossref_primary_10_1007_s10948_019_05350_y
crossref_primary_10_1038_s41598_018_32050_9
crossref_primary_10_3390_ma16072892
crossref_primary_10_1007_s11467_016_0572_7
crossref_primary_10_1038_s41467_017_00281_5
crossref_primary_10_1088_1674_1056_24_11_117404
crossref_primary_10_1088_1674_1056_24_11_117405
crossref_primary_10_7566_JPSJ_86_033706
crossref_primary_10_1088_1674_1056_24_11_117402
crossref_primary_10_1016_j_scib_2018_05_016
crossref_primary_10_1038_s41467_018_08024_w
crossref_primary_10_1088_1367_2630_18_11_113054
crossref_primary_10_1007_s44214_024_00053_5
crossref_primary_10_7566_JPSJ_88_035001
crossref_primary_10_1007_s11434_016_1087_x
crossref_primary_10_1038_s41563_019_0456_7
crossref_primary_10_1088_0957_4484_26_34_344004
crossref_primary_10_1088_0953_2048_28_9_095005
crossref_primary_10_1007_s12274_022_4718_3
crossref_primary_10_1007_s12598_018_1009_y
crossref_primary_10_1002_inf2_12274
crossref_primary_10_1038_s41586_024_08118_0
crossref_primary_10_1073_pnas_1414094112
crossref_primary_10_1007_s10948_016_3483_5
crossref_primary_10_1103_PhysRevLett_134_016501
crossref_primary_10_1007_s10948_021_05924_9
crossref_primary_10_1088_2053_1583_aa8165
crossref_primary_10_1038_natrevmats_2017_60
crossref_primary_10_1038_srep02213
crossref_primary_10_1038_s42005_018_0006_7
crossref_primary_10_1103_PhysRevMaterials_5_034802
crossref_primary_10_1038_natrevmats_2016_94
crossref_primary_10_1021_acs_nanolett_5c02203
crossref_primary_10_1007_s10948_019_05325_z
crossref_primary_10_1038_srep25201
crossref_primary_10_1103_PhysRevResearch_2_023156
crossref_primary_10_1088_0953_2048_29_12_123001
crossref_primary_10_1038_ncomms9585
crossref_primary_10_1088_1361_6668_ab9ad2
crossref_primary_10_1073_pnas_2001123117
crossref_primary_10_1103_PhysRevB_108_L100501
crossref_primary_10_1002_adma_202209457
crossref_primary_10_1038_ncomms10565
crossref_primary_10_3390_pr10061184
crossref_primary_10_1007_s11433_024_2596_6
crossref_primary_10_3390_ma15238467
crossref_primary_10_1016_j_jallcom_2019_152683
crossref_primary_10_1134_S0021364019010144
crossref_primary_10_1038_s41699_023_00381_5
crossref_primary_10_1038_nmat3654
crossref_primary_10_1038_s41524_022_00707_9
crossref_primary_10_1088_2053_1583_2_1_015001
crossref_primary_10_1002_smll_201904788
crossref_primary_10_1063_5_0046721
crossref_primary_10_1088_1674_1056_24_11_110702
crossref_primary_10_1103_PhysRevResearch_3_033222
crossref_primary_10_1038_s41467_020_20252_7
crossref_primary_10_1088_0953_2048_27_12_122001
crossref_primary_10_1111_jace_19467
crossref_primary_10_1063_1_4919766
crossref_primary_10_1063_1_5098464
crossref_primary_10_1103_PhysRevB_104_195110
crossref_primary_10_1007_s11434_016_1102_2
crossref_primary_10_1103_PhysRevB_111_075121
crossref_primary_10_1088_1361_6668_ac6d83
crossref_primary_10_1109_TASC_2017_2716844
crossref_primary_10_1088_1361_648X_aaf2d9
crossref_primary_10_1038_s41467_021_22516_2
crossref_primary_10_1103_PhysRevB_106_L060504
crossref_primary_10_1002_apxr_202200058
crossref_primary_10_1140_epjp_s13360_023_04126_7
crossref_primary_10_1016_j_polymer_2023_126063
crossref_primary_10_1088_1367_2630_18_8_082001
crossref_primary_10_1038_nature13894
crossref_primary_10_1088_1674_1056_ad7c2a
crossref_primary_10_1146_annurev_conmatphys_031016_025242
crossref_primary_10_1088_1742_6596_969_1_012067
crossref_primary_10_1103_PhysRevB_111_125152
crossref_primary_10_1002_smll_202410691
crossref_primary_10_1007_s10948_018_4571_5
crossref_primary_10_1038_nmat4728
crossref_primary_10_1080_21663831_2022_2054668
crossref_primary_10_3389_fchem_2021_640361
crossref_primary_10_1088_1361_648X_ace410
crossref_primary_10_1016_j_mseb_2021_115379
crossref_primary_10_1039_C9NR04996G
crossref_primary_10_1088_1674_1056_27_8_087503
crossref_primary_10_1038_nphys3626
crossref_primary_10_1073_pnas_2108938118
crossref_primary_10_1038_s41467_021_24783_5
crossref_primary_10_7566_JPSJ_86_043703
crossref_primary_10_1016_j_spmi_2020_106573
crossref_primary_10_1038_srep30946
crossref_primary_10_1038_s41535_017_0056_1
crossref_primary_10_1016_j_jssc_2016_04_008
crossref_primary_10_1063_1_4900931
crossref_primary_10_1007_s11434_015_0842_8
crossref_primary_10_1088_0953_2048_29_10_104005
crossref_primary_10_1088_1742_6596_1054_1_012019
crossref_primary_10_1016_j_crhy_2015_10_002
crossref_primary_10_1016_j_physc_2018_10_005
crossref_primary_10_1038_nmat3683
crossref_primary_10_1088_1361_648X_ab14c3
crossref_primary_10_1016_j_jallcom_2022_168045
crossref_primary_10_9714_psac_2014_16_2_007
crossref_primary_10_1002_advs_202003454
crossref_primary_10_1038_s41524_020_00414_3
crossref_primary_10_3390_sym13020155
crossref_primary_10_3390_sym12091402
crossref_primary_10_1088_1361_648X_aa564b
crossref_primary_10_1088_1361_6668_aaffa8
crossref_primary_10_1088_2053_1583_3_1_014005
crossref_primary_10_1088_0256_307X_41_6_067401
crossref_primary_10_1007_s11467_024_1423_6
crossref_primary_10_1038_ncomms6044
crossref_primary_10_1016_j_ccr_2023_215591
crossref_primary_10_1038_nmat4302
crossref_primary_10_1038_s41467_021_26201_2
crossref_primary_10_1016_j_scriptamat_2022_114922
crossref_primary_10_1038_ncomms6047
crossref_primary_10_1038_s41427_019_0178_y
crossref_primary_10_1088_1361_648X_ac2db9
crossref_primary_10_3390_cryst10090733
crossref_primary_10_1103_PhysRevB_103_144504
crossref_primary_10_1039_C7CC05242A
crossref_primary_10_1103_PhysRevB_104_245109
crossref_primary_10_1002_pssb_201600149
crossref_primary_10_1088_0953_8984_29_2_025701
crossref_primary_10_1088_0953_8984_27_18_183201
crossref_primary_10_1002_sstr_202200107
crossref_primary_10_1038_ncomms11116
crossref_primary_10_1088_1361_6668_add427
crossref_primary_10_1038_ncomms14988
crossref_primary_10_1088_1742_6596_871_1_012063
crossref_primary_10_1088_1361_6668_aaa501
crossref_primary_10_1016_j_physc_2014_06_003
crossref_primary_10_1088_0256_307X_39_12_127401
crossref_primary_10_1002_pssr_201700211
crossref_primary_10_1134_S0020168514120085
crossref_primary_10_1016_j_vacuum_2015_06_023
crossref_primary_10_1039_D4TC05033A
crossref_primary_10_1007_s11434_015_0853_5
crossref_primary_10_1103_PhysRevX_11_021054
crossref_primary_10_1007_s11467_018_0745_7
crossref_primary_10_1063_1_5099576
crossref_primary_10_1088_2053_1591_ab7c85
crossref_primary_10_1038_s41535_021_00381_y
crossref_primary_10_1088_1468_6996_16_3_033503
crossref_primary_10_1088_2053_1583_2_4_044012
Cites_doi 10.1007/BF01303701
10.1038/nmat2981
10.1038/nature01544
10.1103/PhysRevB.84.020503
10.1103/PhysRevB.80.134519
10.1038/nphys1656
10.1103/PhysRevB.57.R11093
10.1103/PhysRevLett.104.137001
10.1088/0034-4885/62/1/002
10.1103/PhysRevLett.102.107002
10.1103/RevModPhys.66.1
10.1038/nphys1759
10.1088/0256-307X/25/7/015
10.1088/0256-307X/29/3/037402
10.1103/PhysRevB.82.180520
10.1103/PhysRevLett.100.096407
10.1016/j.ssc.2008.09.057
10.1126/science.1200182
10.1038/ncomms1946
10.1126/science.1216466
10.1103/PhysRevLett.106.187001
10.1073/pnas.0807325105
10.1103/PhysRevLett.106.107001
10.1103/PhysRevB.83.140508
10.1126/science.1198415
10.1103/RevModPhys.78.17
10.1038/nmat2491
10.1103/PhysRevLett.104.097002
10.1088/0022-3719/6/7/010
10.1103/PhysRevB.85.235123
10.1103/PhysRevB.86.134508
10.1103/PhysRevLett.101.107006
10.1103/PhysRevB.78.184514
10.1103/RevModPhys.60.1129
10.1021/ja800073m
ContentType Journal Article
Copyright Springer Nature Limited 2013
Copyright Nature Publishing Group Jul 2013
Copyright_xml – notice: Springer Nature Limited 2013
– notice: Copyright Nature Publishing Group Jul 2013
DBID AAYXX
CITATION
NPM
3V.
7SR
7X7
7XB
88E
88I
8AO
8BQ
8FD
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JG9
K9.
KB.
L6V
M0S
M1P
M2P
M7S
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
DOI 10.1038/nmat3648
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Engineered Materials Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database (ProQuest)
Engineering Database
Materials Science Collection (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection (ProQuest)
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Engineered Materials Abstracts
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
Materials Science Database
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
METADEX
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1476-4660
EndPage 610
ExternalDocumentID 3002966071
23708329
10_1038_nmat3648
Genre Letter
Correspondence
GroupedDBID ---
0R~
29M
39C
3V.
4.4
5BI
70F
7X7
88E
88I
8AO
8FE
8FG
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFS
ACGOD
ACIWK
ACUHS
ADBBV
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BKKNO
BPHCQ
BVXVI
CCPQU
CZ9
D1I
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
KC.
L6V
M1P
M2P
M7S
MK~
NNMJJ
O9-
ODYON
P2P
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RIG
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ACSTC
AFANA
AFFHD
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
ABFSG
AEZWR
AFHIU
AHWEU
AIXLP
NFIDA
NPM
7SR
7XB
8BQ
8FD
8FK
JG9
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c411t-986ef7a6e8936121ab1e31e04c6e05522cd195d75824ec24a697bdc85d39a1a13
IEDL.DBID 7X7
ISICitedReferencesCount 732
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000320720000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1476-1122
1476-4660
IngestDate Thu Oct 02 17:01:44 EDT 2025
Sun Nov 30 04:46:30 EST 2025
Mon Jul 21 05:55:54 EDT 2025
Tue Nov 18 22:23:14 EST 2025
Sat Nov 29 03:30:23 EST 2025
Fri Feb 21 02:40:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c411t-986ef7a6e8936121ab1e31e04c6e05522cd195d75824ec24a697bdc85d39a1a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Correspondence-3
content type line 23
ObjectType-Correspondence-1
PMID 23708329
PQID 1370702566
PQPubID 27576
PageCount 6
ParticipantIDs proquest_miscellaneous_1370635465
proquest_journals_1370702566
pubmed_primary_23708329
crossref_primary_10_1038_nmat3648
crossref_citationtrail_10_1038_nmat3648
springer_journals_10_1038_nmat3648
PublicationCentury 2000
PublicationDate 2013-07-01
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature materials
PublicationTitleAbbrev Nature Mater
PublicationTitleAlternate Nat Mater
PublicationYear 2013
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Wang (CR1) 2012; 29
Wang, Lee (CR13) 2011; 332
Zhang (CR16) 2011; 10
He (CR30) 2011; 331
Guo (CR14) 2010; 82
Liu (CR2) 2012; 3
Fu, Kane (CR34) 2008; 100
Kosterlitz, Thouless (CR32) 1973; 6
Rotter (CR9) 2008; 101
Gruener (CR29) 1988; 60
Liu (CR26) 2010; 6
Wang (CR35) 2012; 336
Bednorz, Mueller (CR5) 1986; 64
Tamai (CR25) 2010; 104
Medvedev (CR15) 2009; 8
Yang (CR21) 2009; 102
Gruener (CR28) 1994; 66
Hsu (CR10) 2008; 105
Timusk, Statt (CR31) 1999; 62
Ren (CR8) 2008; 25
Kamihara (CR7) 2008; 130
Xiang (CR4) 2012; 86
Bozovic (CR33) 2003; 422
Wang (CR11) 2008; 148
Liu (CR22) 2008; 78
Paglione, Greene (CR12) 2010; 6
Zhao (CR18) 2011; 83
Mou (CR17) 2011; 106
Richard (CR24) 2010; 104
Liu (CR3) 2012; 85
Norman (CR27) 1998; 57
Qian (CR19) 2011; 106
Song (CR20) 2011; 84
Liu (CR23) 2009; 80
Lee, Nagaosa, Wen (CR6) 2006; 78
J Paglione (BFnmat3648_CR12) 2010; 6
CL Song (BFnmat3648_CR20) 2011; 84
ZA Ren (BFnmat3648_CR8) 2008; 25
L Fu (BFnmat3648_CR34) 2008; 100
MR Norman (BFnmat3648_CR27) 1998; 57
DF Liu (BFnmat3648_CR2) 2012; 3
JM Kosterlitz (BFnmat3648_CR32) 1973; 6
GD Liu (BFnmat3648_CR23) 2009; 80
DX Mou (BFnmat3648_CR17) 2011; 106
A Tamai (BFnmat3648_CR25) 2010; 104
FC Hsu (BFnmat3648_CR10) 2008; 105
XC Wang (BFnmat3648_CR11) 2008; 148
F Wang (BFnmat3648_CR13) 2011; 332
T Qian (BFnmat3648_CR19) 2011; 106
JG Guo (BFnmat3648_CR14) 2010; 82
HY Liu (BFnmat3648_CR22) 2008; 78
L Zhao (BFnmat3648_CR18) 2011; 83
P Richard (BFnmat3648_CR24) 2010; 104
T Timusk (BFnmat3648_CR31) 1999; 62
JG Bednorz (BFnmat3648_CR5) 1986; 64
G Gruener (BFnmat3648_CR28) 1994; 66
I Bozovic (BFnmat3648_CR33) 2003; 422
QY Wang (BFnmat3648_CR1) 2012; 29
M Rotter (BFnmat3648_CR9) 2008; 101
K Liu (BFnmat3648_CR3) 2012; 85
MX Wang (BFnmat3648_CR35) 2012; 336
C Liu (BFnmat3648_CR26) 2010; 6
G Gruener (BFnmat3648_CR29) 1988; 60
LX Yang (BFnmat3648_CR21) 2009; 102
S Medvedev (BFnmat3648_CR15) 2009; 8
PA Lee (BFnmat3648_CR6) 2006; 78
Y Zhang (BFnmat3648_CR16) 2011; 10
RH He (BFnmat3648_CR30) 2011; 331
Y Kamihara (BFnmat3648_CR7) 2008; 130
YY Xiang (BFnmat3648_CR4) 2012; 86
21474751 - Science. 2011 Apr 8;332(6026):200-4
21358648 - Nat Mater. 2011 Apr;10(4):273-7
18851249 - Phys Rev Lett. 2008 Sep 5;101(10):107006
22422860 - Science. 2012 Apr 6;336(6077):52-5
18352737 - Phys Rev Lett. 2008 Mar 7;100(9):096407
23708331 - Nat Mater. 2013 Jul;12(7):600-1
19525948 - Nat Mater. 2009 Aug;8(8):630-3
12712200 - Nature. 2003 Apr 24;422(6934):873-5
22760630 - Nat Commun. 2012 Jul 03;3:931
21436447 - Science. 2011 Mar 25;331(6024):1579-83
18776050 - Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14262-4
18293989 - J Am Chem Soc. 2008 Mar 19;130(11):3296-7
21635119 - Phys Rev Lett. 2011 May 6;106(18):187001
20481905 - Phys Rev Lett. 2010 Apr 2;104(13):137001
19392146 - Phys Rev Lett. 2009 Mar 13;102(10):107002
21469824 - Phys Rev Lett. 2011 Mar 11;106(10):107001
20367005 - Phys Rev Lett. 2010 Mar 5;104(9):097002
References_xml – volume: 64
  start-page: 189
  year: 1986
  end-page: 193
  ident: CR5
  article-title: Possible high superconductivity in the Ba–La–Cu–0 System
  publication-title: Z. Phys. B
  doi: 10.1007/BF01303701
– volume: 10
  start-page: 273
  year: 2011
  end-page: 277
  ident: CR16
  article-title: Nodeless superconducting gap in A Fe Se (A = K, Cs) revealed by angle-resolved photoemission spectroscopy
  publication-title: Nature Mater.
  doi: 10.1038/nmat2981
– volume: 422
  start-page: 873
  year: 2003
  end-page: 875
  ident: CR33
  article-title: No mixing of superconductivity and antiferromagnetism in a high temperature superconductor
  publication-title: Nature
  doi: 10.1038/nature01544
– volume: 84
  start-page: 020503(R)
  year: 2011
  ident: CR20
  article-title: Molecular-beam epitaxy and robust superconductivity of stoichiometric FeSe crystalline films on bilayer graphene
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.020503
– volume: 80
  start-page: 134519
  year: 2009
  ident: CR23
  article-title: Band-structure reorganization across the magnetic transition in BaFe As seen via high-resolution angle-resolved photoemission
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.134519
– volume: 6
  start-page: 419
  year: 2010
  end-page: 423
  ident: CR26
  article-title: Evidence for a Lifshitz transition in electron-doped iron arsenic superconductors at the onset of superconductivity
  publication-title: Nature Phys.
  doi: 10.1038/nphys1656
– volume: 57
  start-page: R11093
  year: 1998
  ident: CR27
  article-title: Phenomenology of the low-energy spectral function in high- superconductors
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.57.R11093
– volume: 104
  start-page: 137001
  year: 2010
  ident: CR24
  article-title: Observation of Dirac cone electronic dispersion in BaFe As
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.137001
– volume: 62
  start-page: 61
  year: 1999
  end-page: 122
  ident: CR31
  article-title: The pseudogap in high-temperature superconductors: An experimental survey
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/62/1/002
– volume: 102
  start-page: 107002
  year: 2009
  ident: CR21
  article-title: Electronic structure and unusual exchange splitting in the spin-density-wave state of the BaFe As parent compound of iron-based superconductors
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.107002
– volume: 66
  start-page: 1
  year: 1994
  end-page: 24
  ident: CR28
  article-title: The dynamics of spin density waves
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.66.1
– volume: 6
  start-page: 645
  year: 2010
  end-page: 658
  ident: CR12
  article-title: High temperature superconductivity in iron-based materials
  publication-title: Nature Phys.
  doi: 10.1038/nphys1759
– volume: 25
  start-page: 2215
  year: 2008
  end-page: 2216
  ident: CR8
  article-title: Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O F ]FeAs
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/25/7/015
– volume: 29
  start-page: 037402
  year: 2012
  ident: CR1
  article-title: Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/29/3/037402
– volume: 82
  start-page: 180520(R)
  year: 2010
  ident: CR14
  article-title: Superconductivity in the iron selenide K Fe Se  (0≤ ≤1.0)
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.180520
– volume: 100
  start-page: 096407
  year: 2008
  ident: CR34
  article-title: Superconducting proximity effect and Majorana fermions at the surface of a topological insultaor
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.096407
– volume: 148
  start-page: 538
  year: 2008
  end-page: 540
  ident: CR11
  article-title: The superconductivity at 18 K in LiFeAs system
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2008.09.057
– volume: 332
  start-page: 200
  year: 2011
  end-page: 204
  ident: CR13
  article-title: The electron pairing mechanism of iron-based superconductors
  publication-title: Science
  doi: 10.1126/science.1200182
– volume: 3
  start-page: 931
  year: 2012
  ident: CR2
  article-title: Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor
  publication-title: Nature Commun.
  doi: 10.1038/ncomms1946
– volume: 336
  start-page: 52
  year: 2012
  end-page: 55
  ident: CR35
  article-title: The coexistence of superconductivity and topological order in the Bi Se thin films
  publication-title: Science
  doi: 10.1126/science.1216466
– volume: 106
  start-page: 187001
  year: 2011
  ident: CR19
  article-title: Absence of a holelike Fermi surface for the iron-based K Fe Se superconductor revealed by angle-resolved photoemission spectroscopy
  publication-title: Phy. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.187001
– volume: 105
  start-page: 14262
  year: 2008
  end-page: 14264
  ident: CR10
  article-title: Superconductivity in the PbO-type structure -FeSe
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0807325105
– volume: 106
  start-page: 107001
  year: 2011
  ident: CR17
  article-title: Distinct Fermi surface topology and nodeless superconducting gap in a Tl Rb Fe Se superconductor
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.107001
– volume: 83
  start-page: 140508(R)
  year: 2011
  ident: CR18
  article-title: Common Fermi-surface topology and nodeless superconducting gap of K Fe Se and (Tl K )Fe Se superconductors revealed via angle-resolved photoemission
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.140508
– volume: 331
  start-page: 1579
  year: 2011
  end-page: 1583
  ident: CR30
  article-title: From a single-band metal to a high-temperature superconductor via two thermal phase transitions
  publication-title: Science
  doi: 10.1126/science.1198415
– volume: 78
  start-page: 17
  year: 2006
  end-page: 85
  ident: CR6
  article-title: Doping a Mott insulator: Physics of high temperature superconductivity
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.78.17
– volume: 8
  start-page: 630
  year: 2009
  end-page: 633
  ident: CR15
  article-title: Electronic and magnetic phase diagram of -Fe Se with superconductivity at 36.7 K under pressure
  publication-title: Nature Mater.
  doi: 10.1038/nmat2491
– volume: 104
  start-page: 097002
  year: 2010
  ident: CR25
  article-title: Strong electron correlations in the normal state of the iron-based FeSe Te superconductor observed by angle-resolved photoemission spectroscopy
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.097002
– volume: 6
  start-page: 1181
  year: 1973
  end-page: 1203
  ident: CR32
  article-title: Ordering, metastability and phase transitions in two-dimensional systems
  publication-title: J. Phys. C
  doi: 10.1088/0022-3719/6/7/010
– volume: 85
  start-page: 235123
  year: 2012
  ident: CR3
  article-title: Atomic and electronic structures of FeSe monolayer and bilayer thin films on SrTiO (001): First-principles study
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.235123
– volume: 86
  start-page: 134508
  year: 2012
  ident: CR4
  article-title: High-temperature superconductivity at the FeSe/SrTiO interface
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.134508
– volume: 101
  start-page: 107006
  year: 2008
  ident: CR9
  article-title: Superconductivity at 38 K in the iron arsenide (Ba K )Fe As
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.107006
– volume: 78
  start-page: 184514
  year: 2008
  ident: CR22
  article-title: Fermi surface and band renormalization of Sr K Fe As from angle-resolved photoemission spectroscopy
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.184514
– volume: 60
  start-page: 1129
  year: 1988
  end-page: 1181
  ident: CR29
  article-title: The dynamics of charge density waves
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.60.1129
– volume: 130
  start-page: 3296
  year: 2008
  end-page: 3297
  ident: CR7
  article-title: Iron-based layered superconductor La[O F ]FeAs (  = 0.05–0.12) with  = 26 K
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja800073m
– volume: 422
  start-page: 873
  year: 2003
  ident: BFnmat3648_CR33
  publication-title: Nature
  doi: 10.1038/nature01544
– volume: 104
  start-page: 097002
  year: 2010
  ident: BFnmat3648_CR25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.097002
– volume: 78
  start-page: 17
  year: 2006
  ident: BFnmat3648_CR6
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.78.17
– volume: 130
  start-page: 3296
  year: 2008
  ident: BFnmat3648_CR7
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja800073m
– volume: 101
  start-page: 107006
  year: 2008
  ident: BFnmat3648_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.107006
– volume: 105
  start-page: 14262
  year: 2008
  ident: BFnmat3648_CR10
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0807325105
– volume: 82
  start-page: 180520(R)
  year: 2010
  ident: BFnmat3648_CR14
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.180520
– volume: 25
  start-page: 2215
  year: 2008
  ident: BFnmat3648_CR8
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/25/7/015
– volume: 66
  start-page: 1
  year: 1994
  ident: BFnmat3648_CR28
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.66.1
– volume: 336
  start-page: 52
  year: 2012
  ident: BFnmat3648_CR35
  publication-title: Science
  doi: 10.1126/science.1216466
– volume: 85
  start-page: 235123
  year: 2012
  ident: BFnmat3648_CR3
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.235123
– volume: 6
  start-page: 419
  year: 2010
  ident: BFnmat3648_CR26
  publication-title: Nature Phys.
  doi: 10.1038/nphys1656
– volume: 78
  start-page: 184514
  year: 2008
  ident: BFnmat3648_CR22
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.184514
– volume: 29
  start-page: 037402
  year: 2012
  ident: BFnmat3648_CR1
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/29/3/037402
– volume: 332
  start-page: 200
  year: 2011
  ident: BFnmat3648_CR13
  publication-title: Science
  doi: 10.1126/science.1200182
– volume: 84
  start-page: 020503(R)
  year: 2011
  ident: BFnmat3648_CR20
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.020503
– volume: 6
  start-page: 645
  year: 2010
  ident: BFnmat3648_CR12
  publication-title: Nature Phys.
  doi: 10.1038/nphys1759
– volume: 3
  start-page: 931
  year: 2012
  ident: BFnmat3648_CR2
  publication-title: Nature Commun.
  doi: 10.1038/ncomms1946
– volume: 57
  start-page: R11093
  year: 1998
  ident: BFnmat3648_CR27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.57.R11093
– volume: 100
  start-page: 096407
  year: 2008
  ident: BFnmat3648_CR34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.096407
– volume: 60
  start-page: 1129
  year: 1988
  ident: BFnmat3648_CR29
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.60.1129
– volume: 10
  start-page: 273
  year: 2011
  ident: BFnmat3648_CR16
  publication-title: Nature Mater.
  doi: 10.1038/nmat2981
– volume: 80
  start-page: 134519
  year: 2009
  ident: BFnmat3648_CR23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.134519
– volume: 104
  start-page: 137001
  year: 2010
  ident: BFnmat3648_CR24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.137001
– volume: 86
  start-page: 134508
  year: 2012
  ident: BFnmat3648_CR4
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.134508
– volume: 106
  start-page: 107001
  year: 2011
  ident: BFnmat3648_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.107001
– volume: 64
  start-page: 189
  year: 1986
  ident: BFnmat3648_CR5
  publication-title: Z. Phys. B
  doi: 10.1007/BF01303701
– volume: 106
  start-page: 187001
  year: 2011
  ident: BFnmat3648_CR19
  publication-title: Phy. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.187001
– volume: 62
  start-page: 61
  year: 1999
  ident: BFnmat3648_CR31
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/62/1/002
– volume: 102
  start-page: 107002
  year: 2009
  ident: BFnmat3648_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.107002
– volume: 83
  start-page: 140508(R)
  year: 2011
  ident: BFnmat3648_CR18
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.140508
– volume: 6
  start-page: 1181
  year: 1973
  ident: BFnmat3648_CR32
  publication-title: J. Phys. C
  doi: 10.1088/0022-3719/6/7/010
– volume: 148
  start-page: 538
  year: 2008
  ident: BFnmat3648_CR11
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2008.09.057
– volume: 8
  start-page: 630
  year: 2009
  ident: BFnmat3648_CR15
  publication-title: Nature Mater.
  doi: 10.1038/nmat2491
– volume: 331
  start-page: 1579
  year: 2011
  ident: BFnmat3648_CR30
  publication-title: Science
  doi: 10.1126/science.1198415
– reference: 21469824 - Phys Rev Lett. 2011 Mar 11;106(10):107001
– reference: 18352737 - Phys Rev Lett. 2008 Mar 7;100(9):096407
– reference: 22760630 - Nat Commun. 2012 Jul 03;3:931
– reference: 19392146 - Phys Rev Lett. 2009 Mar 13;102(10):107002
– reference: 12712200 - Nature. 2003 Apr 24;422(6934):873-5
– reference: 19525948 - Nat Mater. 2009 Aug;8(8):630-3
– reference: 21358648 - Nat Mater. 2011 Apr;10(4):273-7
– reference: 20367005 - Phys Rev Lett. 2010 Mar 5;104(9):097002
– reference: 22422860 - Science. 2012 Apr 6;336(6077):52-5
– reference: 21635119 - Phys Rev Lett. 2011 May 6;106(18):187001
– reference: 23708331 - Nat Mater. 2013 Jul;12(7):600-1
– reference: 21474751 - Science. 2011 Apr 8;332(6026):200-4
– reference: 18851249 - Phys Rev Lett. 2008 Sep 5;101(10):107006
– reference: 21436447 - Science. 2011 Mar 25;331(6024):1579-83
– reference: 20481905 - Phys Rev Lett. 2010 Apr 2;104(13):137001
– reference: 18776050 - Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14262-4
– reference: 18293989 - J Am Chem Soc. 2008 Mar 19;130(11):3296-7
SSID ssj0021556
Score 2.6278138
Snippet The unconventional superconductivity associated with iron pnictide materials has been the subject of intense interest. Using an annealing procedure to control...
The recent discovery of possible high-temperature superconductivity in single-layer FeSe films has generated significant experimental and theoretical interest....
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 605
SubjectTerms 639/301/119/1003
Biomaterials
Condensed Matter Physics
Electronics
High temperature
High temperature physics
letter
Materials Science
Nanotechnology
Optical and Electronic Materials
Phase transitions
Physics
Superconductivity
Thin films
Transition temperatures
Title Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films
URI https://link.springer.com/article/10.1038/nmat3648
https://www.ncbi.nlm.nih.gov/pubmed/23708329
https://www.proquest.com/docview/1370702566
https://www.proquest.com/docview/1370635465
Volume 12
WOSCitedRecordID wos000320720000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1476-4660
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0021556
  issn: 1476-1122
  databaseCode: M7S
  dateStart: 20020901
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1476-4660
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0021556
  issn: 1476-1122
  databaseCode: 7X7
  dateStart: 20020901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1476-4660
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0021556
  issn: 1476-1122
  databaseCode: KB.
  dateStart: 20020901
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1476-4660
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0021556
  issn: 1476-1122
  databaseCode: BENPR
  dateStart: 20020901
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 1476-4660
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0021556
  issn: 1476-1122
  databaseCode: M2P
  dateStart: 20020901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BCxIceJTXQqkMQuJkWjvxIydEUVdIFasVBWlvkWM7otKSXZpdfj8zTrK7oogLFyuRncSSx55vPM73AbyxxldKeMutjZLnlcp4kWOUUkdZKRtioZxNYhNmMrGzWTHtN9za_ljlsCamhTosPO2RH4vMoHWig9bvlz85qUZRdrWX0LgJ-ySbTXZuZtuAC31l93eR0RxxhRzIZzN73CAezDSp_uy6o2sY81p-NLmd8f3_7fADuNcDTvahs5CHcCM2B3B3h4bwAG6nY6C-fQTL6Xf0agxthg5tMdcEttXJYZTe7nb42KJmRHTMidmqp2Vm7RovMbwmBtkkScHcimnFzvFBRlsS88jnDiE-G8eLyOrL-Y_2MXwbn339-In3mgzc50KseGF1rI3TEXEOkY-5SsRMxJPc63iiEMz5IAoVMAqRefQyd7owVfBWhaxwwonsCew1iyY-AyYqMgWjKgyKcl0Hh8iK6PyUtjIYGUfwdhia0veE5aSbMS9T4jyz5TCII3i1abnsSDr-0uZwGKayn6ZtuR0jfMWmGicYZU1cExfrrg2islyrETztrGLzEYl1uCQWI3g9mMnOy__owfN_9-AF3JFJaoOOAh_C3upqHV_CLf9rddleHSXDTqU9gv3Ts8n0C96dn77D8rOcUmkufgNc1gaJ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbxMxEB2VAgIOfBQogQIGgThZrb1rr_eAEAKiVilRpRapt63XnhWVwm7aTVrxp_iNjPcjjSji1gO3SOs4m-R55o09-x7AG5O4XAlnuDEoeZyriKcxVSkFylwZj6mypjGbSMZjc3iY7q3Ar_5ZmNBW2cfEJlD7yoU98k0RJYROStD6w_SEB9eocLraW2i0sBjhz3Mq2er3O5_p_30r5fDLwadt3rkKcBcLMeOp0VgkViNl6iCfZXOBkcCt2GncUkRHnBep8sSjZYxOxlanSe6dUT5KrbAionmvwXWiEVI2rYL7iwKPcnP7NFOiOfEY2YvdRmazJP4Z6eAytJz-LnHaS-exTZob3vvffqD7cLcj1OxjuwIewAqWa3BnSWZxDW42ba6ufgjTve-UtRmtidCUxmzp2YUPEAvH9-0OJqsKFoSceVDu6mSnWT2nl64qg0JuY7nB7IxpxUb0Rha2XCbIJ5ZKGDbEfWTF8eRH_Qi-XcmXfwyrZVXiE2AiD1BPVE5FX6wLb4k5BrlCpY30icQBvOuhkLlOkD34gkyypjEgMlkPmgG8WoyctiIkfxmz0cMi68JQnV1ggqZYXKYAEk6FbInVvB1DrDPWagDrLQoXHyLpGoX8dACve1guTf7HHTz99x28hFvbB193s92d8egZ3JaNrUhoe96A1dnpHJ_DDXc2O65PXzSLisHRVYP0N12xXM4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLVT0wKO8thQwiIqTtbUTP3KoENCuqBatVjyk3oJjO2qlJVmaXVD_Gr-OcR7bFUXceuAWyY7jJJ89M_b4-wBeamUzwaymWntO40xENIkxSsk9z4R2PhFG12ITajzWx8fJZA1-dWdhQlplNyfWE7UrbVgjH7BIITrRQMtB3qZFTA6Gr2ffaVCQCjutnZxGA5GRP_-J4Vu1f3SA_3qX8-Hh53fvaaswQG3M2JwmWvpcGenRagcqLZMxHzG_F1vp9wS6JtaxRDj0qXnsLY-NTFTmrBYuSgwzLMJ2r8G6ijDo6cH628Px5OMy3ENL3ZxtUpKiV8M76ttIDwr0RiMZNIdWjeElD_fS7mxt9Ia3_-fPdQduta42edOMjbuw5ost2FwhYNyCG3UCrK3uwWxygvac4GgJ6WrEFI5cKASRsLHfrG2SMieB4pkGTq-WkJpUC7y0ZRG4c2sxDmLmRAoywhtJWIyZejo1GNyQof_kSX46_Vbdhy9X8vIPoFeUhX8EhGVhECiRYTgYy9wZ9CkDkaGQmjvFfR9edbBIbUvVHhRDpmmdMhDptANQH54va84aepK_1NnpIJK2E1SVXuADm1gW49QS9otM4ctFUwf90ViKPjxsELl8CMcyNAZJH150EF1p_I8ebP-7B89gA7GZfjgajx7DTV7rjYR86B3ozc8W_glctz_mp9XZ03aEEfh61Sj9DYtpZt4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+diagram+and+electronic+indication+of+high-temperature+superconductivity+at+65+K+in+single-layer+FeSe+films&rft.jtitle=Nature+materials&rft.au=He%2C+Shaolong&rft.au=He%2C+Junfeng&rft.au=Zhang%2C+Wenhao&rft.au=Zhao%2C+Lin&rft.date=2013-07-01&rft.issn=1476-4660&rft.eissn=1476-4660&rft.volume=12&rft.issue=7&rft.spage=605&rft_id=info:doi/10.1038%2Fnmat3648&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon