Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films
The unconventional superconductivity associated with iron pnictide materials has been the subject of intense interest. Using an annealing procedure to control the charge-carrier concentration, the behaviour of an FeSe monolayer deposited on SrTiO 3 is now investigated, and indications of superconduc...
Uložené v:
| Vydané v: | Nature materials Ročník 12; číslo 7; s. 605 - 610 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
01.07.2013
Nature Publishing Group |
| Predmet: | |
| ISSN: | 1476-1122, 1476-4660, 1476-4660 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The unconventional superconductivity associated with iron pnictide materials has been the subject of intense interest. Using an annealing procedure to control the charge-carrier concentration, the behaviour of an FeSe monolayer deposited on SrTiO
3
is now investigated, and indications of superconductivity at temperatures up to 65 K observed.
The recent discovery of possible high-temperature superconductivity in single-layer FeSe films
1
,
2
has generated significant experimental and theoretical interest
3
,
4
. In both the cuprate
5
,
6
and the iron-based
7
,
8
,
9
,
10
,
11
high-temperature superconductors, superconductivity is induced by doping charge carriers into the parent compound to suppress the antiferromagnetic state. It is therefore important to establish whether the superconductivity observed in the single-layer sheets of FeSe—the essential building blocks of the Fe-based superconductors—is realized by undergoing a similar transition. Here we report the phase diagram for an FeSe monolayer grown on a SrTiO
3
substrate, by tuning the charge carrier concentration over a wide range through an extensive annealing procedure. We identify two distinct phases that compete during the annealing process: the electronic structure of the phase at low doping (N phase) bears a clear resemblance to the antiferromagnetic parent compound of the Fe-based superconductors, whereas the superconducting phase (S phase) emerges with the increase in doping and the suppression of the N phase. By optimizing the carrier concentration, we observe strong indications of superconductivity with a transition temperature of 65±5 K. The wide tunability of the system across different phases makes the FeSe monolayer ideal for investigating not only the physics of superconductivity, but also for studying novel quantum phenomena more generally. |
|---|---|
| AbstractList | The recent discovery of possible high-temperature superconductivity in single-layer FeSe films has generated significant experimental and theoretical interest. In both the cuprate and the iron-based high-temperature superconductors, superconductivity is induced by doping charge carriers into the parent compound to suppress the antiferromagnetic state. It is therefore important to establish whether the superconductivity observed in the single-layer sheets of FeSe-the essential building blocks of the Fe-based superconductors-is realized by undergoing a similar transition. Here we report the phase diagram for an FeSe monolayer grown on a SrTiO3 substrate, by tuning the charge carrier concentration over a wide range through an extensive annealing procedure. We identify two distinct phases that compete during the annealing process: the electronic structure of the phase at low doping (N phase) bears a clear resemblance to the antiferromagnetic parent compound of the Fe-based superconductors, whereas the superconducting phase (S phase) emerges with the increase in doping and the suppression of the N phase. By optimizing the carrier concentration, we observe strong indications of superconductivity with a transition temperature of 65±5K. The wide tunability of the system across different phases makes the FeSe monolayer ideal for investigating not only the physics of superconductivity, but also for studying novel quantum phenomena more generally. The recent discovery of possible high-temperature superconductivity in single-layer FeSe films has generated significant experimental and theoretical interest. In both the cuprate and the iron-based high-temperature superconductors, superconductivity is induced by doping charge carriers into the parent compound to suppress the antiferromagnetic state. It is therefore important to establish whether the superconductivity observed in the single-layer sheets of FeSe--the essential building blocks of the Fe-based superconductors--is realized by undergoing a similar transition. Here we report the phase diagram for an FeSe monolayer grown on a SrTiO3 substrate, by tuning the charge carrier concentration over a wide range through an extensive annealing procedure. We identify two distinct phases that compete during the annealing process: the electronic structure of the phase at low doping (N phase) bears a clear resemblance to the antiferromagnetic parent compound of the Fe-based superconductors, whereas the superconducting phase (S phase) emerges with the increase in doping and the suppression of the N phase. By optimizing the carrier concentration, we observe strong indications of superconductivity with a transition temperature of 65±5 K. The wide tunability of the system across different phases makes the FeSe monolayer ideal for investigating not only the physics of superconductivity, but also for studying novel quantum phenomena more generally.The recent discovery of possible high-temperature superconductivity in single-layer FeSe films has generated significant experimental and theoretical interest. In both the cuprate and the iron-based high-temperature superconductors, superconductivity is induced by doping charge carriers into the parent compound to suppress the antiferromagnetic state. It is therefore important to establish whether the superconductivity observed in the single-layer sheets of FeSe--the essential building blocks of the Fe-based superconductors--is realized by undergoing a similar transition. Here we report the phase diagram for an FeSe monolayer grown on a SrTiO3 substrate, by tuning the charge carrier concentration over a wide range through an extensive annealing procedure. We identify two distinct phases that compete during the annealing process: the electronic structure of the phase at low doping (N phase) bears a clear resemblance to the antiferromagnetic parent compound of the Fe-based superconductors, whereas the superconducting phase (S phase) emerges with the increase in doping and the suppression of the N phase. By optimizing the carrier concentration, we observe strong indications of superconductivity with a transition temperature of 65±5 K. The wide tunability of the system across different phases makes the FeSe monolayer ideal for investigating not only the physics of superconductivity, but also for studying novel quantum phenomena more generally. The unconventional superconductivity associated with iron pnictide materials has been the subject of intense interest. Using an annealing procedure to control the charge-carrier concentration, the behaviour of an FeSe monolayer deposited on SrTiO 3 is now investigated, and indications of superconductivity at temperatures up to 65 K observed. The recent discovery of possible high-temperature superconductivity in single-layer FeSe films 1 , 2 has generated significant experimental and theoretical interest 3 , 4 . In both the cuprate 5 , 6 and the iron-based 7 , 8 , 9 , 10 , 11 high-temperature superconductors, superconductivity is induced by doping charge carriers into the parent compound to suppress the antiferromagnetic state. It is therefore important to establish whether the superconductivity observed in the single-layer sheets of FeSe—the essential building blocks of the Fe-based superconductors—is realized by undergoing a similar transition. Here we report the phase diagram for an FeSe monolayer grown on a SrTiO 3 substrate, by tuning the charge carrier concentration over a wide range through an extensive annealing procedure. We identify two distinct phases that compete during the annealing process: the electronic structure of the phase at low doping (N phase) bears a clear resemblance to the antiferromagnetic parent compound of the Fe-based superconductors, whereas the superconducting phase (S phase) emerges with the increase in doping and the suppression of the N phase. By optimizing the carrier concentration, we observe strong indications of superconductivity with a transition temperature of 65±5 K. The wide tunability of the system across different phases makes the FeSe monolayer ideal for investigating not only the physics of superconductivity, but also for studying novel quantum phenomena more generally. The recent discovery of possible high-temperature superconductivity in single-layer FeSe films has generated significant experimental and theoretical interest. In both the cuprate and the iron-based high-temperature superconductors, superconductivity is induced by doping charge carriers into the parent compound to suppress the antiferromagnetic state. It is therefore important to establish whether the superconductivity observed in the single-layer sheets of FeSe--the essential building blocks of the Fe-based superconductors--is realized by undergoing a similar transition. Here we report the phase diagram for an FeSe monolayer grown on a SrTiO3 substrate, by tuning the charge carrier concentration over a wide range through an extensive annealing procedure. We identify two distinct phases that compete during the annealing process: the electronic structure of the phase at low doping (N phase) bears a clear resemblance to the antiferromagnetic parent compound of the Fe-based superconductors, whereas the superconducting phase (S phase) emerges with the increase in doping and the suppression of the N phase. By optimizing the carrier concentration, we observe strong indications of superconductivity with a transition temperature of 65±5 K. The wide tunability of the system across different phases makes the FeSe monolayer ideal for investigating not only the physics of superconductivity, but also for studying novel quantum phenomena more generally. |
| Author | Xue, Qikun Chen, Xi Liu, Xu Peng, Yingying Li, Zhi Yu, Li Liu, Guodong Zhao, Lin Zhou, X. J. He, Junfeng Mou, Daixiang Ou, Yun-Bo He, Shaolong Wang, Qing-Yan Chen, Chaoyu Liu, Yan Chen, Chuangtian Xu, Zuyan Wang, Lili Ma, Xucun Liu, Defa Zhang, Wenhao Zhang, Jun Dong, Xiaoli |
| Author_xml | – sequence: 1 givenname: Shaolong surname: He fullname: He, Shaolong organization: National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences – sequence: 2 givenname: Junfeng surname: He fullname: He, Junfeng organization: National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences – sequence: 3 givenname: Wenhao surname: Zhang fullname: Zhang, Wenhao organization: Department of Physics, State Key Lab of Low-Dimensional Quantum Physics, Tsinghua University, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences – sequence: 4 givenname: Lin surname: Zhao fullname: Zhao, Lin organization: National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences – sequence: 5 givenname: Defa surname: Liu fullname: Liu, Defa organization: National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences – sequence: 6 givenname: Xu surname: Liu fullname: Liu, Xu organization: National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences – sequence: 7 givenname: Daixiang surname: Mou fullname: Mou, Daixiang organization: National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences – sequence: 8 givenname: Yun-Bo surname: Ou fullname: Ou, Yun-Bo organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences – sequence: 9 givenname: Qing-Yan surname: Wang fullname: Wang, Qing-Yan organization: Department of Physics, State Key Lab of Low-Dimensional Quantum Physics, Tsinghua University, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences – sequence: 10 givenname: Zhi surname: Li fullname: Li, Zhi organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences – sequence: 11 givenname: Lili surname: Wang fullname: Wang, Lili organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences – sequence: 12 givenname: Yingying surname: Peng fullname: Peng, Yingying organization: National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences – sequence: 13 givenname: Yan surname: Liu fullname: Liu, Yan organization: National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences – sequence: 14 givenname: Chaoyu surname: Chen fullname: Chen, Chaoyu organization: National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences – sequence: 15 givenname: Li surname: Yu fullname: Yu, Li organization: National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences – sequence: 16 givenname: Guodong surname: Liu fullname: Liu, Guodong organization: National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences – sequence: 17 givenname: Xiaoli surname: Dong fullname: Dong, Xiaoli organization: National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences – sequence: 18 givenname: Jun surname: Zhang fullname: Zhang, Jun organization: National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences – sequence: 19 givenname: Chuangtian surname: Chen fullname: Chen, Chuangtian organization: Technical Institute of Physics and Chemistry, Chinese Academy of Sciences – sequence: 20 givenname: Zuyan surname: Xu fullname: Xu, Zuyan organization: Technical Institute of Physics and Chemistry, Chinese Academy of Sciences – sequence: 21 givenname: Xi surname: Chen fullname: Chen, Xi organization: Department of Physics, State Key Lab of Low-Dimensional Quantum Physics, Tsinghua University – sequence: 22 givenname: Xucun surname: Ma fullname: Ma, Xucun email: xcma@aphy.iphy.ac.cn organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences – sequence: 23 givenname: Qikun surname: Xue fullname: Xue, Qikun email: qkxue@mail.tsinghua.edu.cn organization: Department of Physics, State Key Lab of Low-Dimensional Quantum Physics, Tsinghua University – sequence: 24 givenname: X. J. surname: Zhou fullname: Zhou, X. J. email: XJZhou@aphy.iphy.ac.cn organization: National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23708329$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkU9v1DAQxS1URP-AxCdAlrjAIcVjx05yRBUFRCWQgHM0a092XSX2YjuV9saVr8knIbRbQCtO8w6_N_P05pQdhRiIsacgzkGo9lWYsChTtw_YCdSNqWpjxNFeA0h5zE5zvhZCgtbmETuWqhGtkt0JS582mIk7j-uEE8fgOI1kS4rBW-6D8xaLj4HHgW_8elMVmraUsMyJeJ4XaWNwsy3-xpcdx8KN_vn9x4fFyrMP65GqEXeU-CV9Jj74ccqP2cMBx0xP9vOMfb188-XiXXX18e37i9dXla0BStW1hoYGDbWdMiABV0AKSNTWkNBaSuug067RrazJyhpN16ycbbVTHQKCOmMv7vZuU_w2Uy795LOlccRAcc49LCUYpWujF_T5AXod5xSWdLdUI6Q2ZqGe7al5NZHrt8lPmHb9fZt_L9oUc040_EFA9L8f1d8_akHPD1Dry23TJaEf_2d4eWfIy86wpvRPxEP2F6Vdo8k |
| CitedBy_id | crossref_primary_10_1021_acs_chemmater_7b01561 crossref_primary_10_1088_2053_1591_ab8655 crossref_primary_10_1088_0953_2048_29_5_054009 crossref_primary_10_1209_0295_5075_124_67002 crossref_primary_10_1002_pssa_202300620 crossref_primary_10_1088_1742_6596_1590_1_012012 crossref_primary_10_1088_1674_1056_ac8e9d crossref_primary_10_1088_2399_6528_abffc3 crossref_primary_10_1088_1361_648X_abc942 crossref_primary_10_1088_1361_6668_aab4ea crossref_primary_10_1021_jacs_5b06687 crossref_primary_10_1088_1361_6668_aabddb crossref_primary_10_3367_UFNe_2016_07_037863 crossref_primary_10_1088_1742_6596_871_1_012017 crossref_primary_10_1063_5_0225073 crossref_primary_10_1088_1361_6668_ab8ffe crossref_primary_10_1007_s11433_022_2000_y crossref_primary_10_1063_PT_3_2818 crossref_primary_10_1088_1367_2630_16_3_033034 crossref_primary_10_1063_5_0058895 crossref_primary_10_1038_s41535_020_0242_4 crossref_primary_10_5802_crphys_87 crossref_primary_10_1063_1_4919695 crossref_primary_10_1016_j_jallcom_2017_11_318 crossref_primary_10_1038_s41467_021_23106_y crossref_primary_10_1103_PhysRevMaterials_7_014803 crossref_primary_10_1063_1_4900870 crossref_primary_10_1016_j_ssc_2019_113670 crossref_primary_10_1088_0953_2048_30_1_013002 crossref_primary_10_1016_j_scib_2019_03_017 crossref_primary_10_1093_nsr_nwad213 crossref_primary_10_1063_5_0072979 crossref_primary_10_1021_ja410820u crossref_primary_10_1088_1361_648X_aa5f26 crossref_primary_10_1088_1361_6668_ada115 crossref_primary_10_1088_1361_6668_ac80da crossref_primary_10_1002_adma_202405009 crossref_primary_10_1007_s10948_023_06626_0 crossref_primary_10_1002_smm2_1013 crossref_primary_10_1002_slct_201901207 crossref_primary_10_1038_nmat4686 crossref_primary_10_1140_epjb_e2014_50198_9 crossref_primary_10_1007_s43673_023_00106_2 crossref_primary_10_1103_PhysRevResearch_4_013032 crossref_primary_10_1088_0953_2048_27_10_103002 crossref_primary_10_1038_ncomms11043 crossref_primary_10_1038_srep07273 crossref_primary_10_1038_s41598_019_40644_0 crossref_primary_10_1088_1361_6501_ad1915 crossref_primary_10_1007_s10948_014_2895_3 crossref_primary_10_1088_0256_307X_34_7_077404 crossref_primary_10_1038_nmat4138 crossref_primary_10_1063_1_4903922 crossref_primary_10_1016_j_jallcom_2017_09_202 crossref_primary_10_1038_s41427_021_00336_6 crossref_primary_10_1038_nmat4371 crossref_primary_10_1038_s41598_019_40536_3 crossref_primary_10_1016_j_matchemphys_2017_09_060 crossref_primary_10_1038_ncomms12146 crossref_primary_10_1088_1361_648X_aa5bdd crossref_primary_10_1088_1361_6463_aaac64 crossref_primary_10_1007_s10854_017_6553_y crossref_primary_10_1016_j_aop_2015_02_005 crossref_primary_10_1007_s40042_024_01104_9 crossref_primary_10_1146_annurev_conmatphys_031016_025404 crossref_primary_10_1088_0953_8984_26_47_473202 crossref_primary_10_1038_s41598_018_22291_z crossref_primary_10_1016_j_jssc_2015_12_030 crossref_primary_10_1038_s41467_023_40931_5 crossref_primary_10_1038_srep06040 crossref_primary_10_1016_j_phpro_2015_05_123 crossref_primary_10_1038_nphys4186 crossref_primary_10_1038_s41467_019_08784_z crossref_primary_10_1088_0022_3727_48_32_323001 crossref_primary_10_1088_0953_8984_26_25_253203 crossref_primary_10_1088_1742_6596_487_1_012017 crossref_primary_10_1038_srep32078 crossref_primary_10_1093_nsr_nwy142 crossref_primary_10_1088_2053_1583_ab0d2e crossref_primary_10_1021_acsnano_5c02539 crossref_primary_10_1016_j_mattod_2020_07_005 crossref_primary_10_1088_1361_6668_aae146 crossref_primary_10_1063_1_4963179 crossref_primary_10_1103_PhysRevX_9_041049 crossref_primary_10_1557_mrs_2020_120 crossref_primary_10_3389_fphy_2020_586182 crossref_primary_10_1088_1674_1056_26_7_077402 crossref_primary_10_1088_1361_6668_ac6987 crossref_primary_10_1016_j_jssc_2016_08_026 crossref_primary_10_1557_mrs_2020_125 crossref_primary_10_1002_adfm_202401748 crossref_primary_10_1088_0256_307X_34_8_087401 crossref_primary_10_1063_1_4886995 crossref_primary_10_1038_s41467_024_50694_2 crossref_primary_10_3367_UFNr_2016_07_037863 crossref_primary_10_1016_j_jallcom_2024_175559 crossref_primary_10_1073_pnas_1912836116 crossref_primary_10_1109_JSTQE_2018_2829665 crossref_primary_10_1016_j_cap_2017_04_018 crossref_primary_10_1103_PhysRevB_105_165407 crossref_primary_10_1088_1361_648X_aaca61 crossref_primary_10_1088_1367_2630_aa5a71 crossref_primary_10_1088_2053_1591_1_1_015026 crossref_primary_10_1039_D2NR02599J crossref_primary_10_1073_pnas_1321160111 crossref_primary_10_1088_1742_6596_1975_1_012008 crossref_primary_10_1038_s42005_021_00663_8 crossref_primary_10_1088_0256_307X_36_5_056801 crossref_primary_10_1002_adma_201803732 crossref_primary_10_1088_1674_1056_24_11_117902 crossref_primary_10_1002_adma_202008456 crossref_primary_10_1088_0953_8984_27_29_293203 crossref_primary_10_1088_1742_6596_1975_1_012010 crossref_primary_10_1002_advs_201600098 crossref_primary_10_1103_PhysRevB_106_245112 crossref_primary_10_1103_qv7j_53y7 crossref_primary_10_1016_j_jmmm_2021_168426 crossref_primary_10_1038_nphys3177 crossref_primary_10_1088_0256_307X_40_8_086801 crossref_primary_10_1088_1361_648X_aabeb5 crossref_primary_10_1038_s41535_020_0247_z crossref_primary_10_7566_JPSJ_88_113702 crossref_primary_10_1088_1361_648X_ab85f0 crossref_primary_10_1038_nmat4155 crossref_primary_10_1038_s41598_017_10383_1 crossref_primary_10_1088_1361_6668_ab30c2 crossref_primary_10_1038_nmat4153 crossref_primary_10_1146_annurev_conmatphys_033117_053942 crossref_primary_10_1103_PhysRevX_4_041046 crossref_primary_10_1038_s41467_021_21318_w crossref_primary_10_1038_nmat5017 crossref_primary_10_1016_j_jallcom_2015_08_216 crossref_primary_10_1038_s41467_019_08560_z crossref_primary_10_1016_j_physc_2015_02_028 crossref_primary_10_1016_j_physc_2016_06_006 crossref_primary_10_1103_mkb4_g2b7 crossref_primary_10_1007_s40843_015_0015_8 crossref_primary_10_1038_ncomms4202 crossref_primary_10_1088_0256_307X_35_5_057401 crossref_primary_10_1007_s10948_017_4103_8 crossref_primary_10_1080_00018732_2017_1331615 crossref_primary_10_1088_1361_6668_abd28f crossref_primary_10_1088_1367_2630_18_2_022001 crossref_primary_10_1007_s10948_019_05351_x crossref_primary_10_1088_0953_8984_26_26_265002 crossref_primary_10_1103_PhysRevX_10_031033 crossref_primary_10_1109_TASC_2021_3091036 crossref_primary_10_1038_s42005_019_0219_4 crossref_primary_10_1016_j_physc_2015_02_011 crossref_primary_10_1063_1_4824837 crossref_primary_10_1016_j_physc_2015_02_009 crossref_primary_10_1103_PhysRevResearch_4_023232 crossref_primary_10_1002_adma_202006124 crossref_primary_10_1088_0256_307X_36_1_017401 crossref_primary_10_1007_s44214_024_00058_0 crossref_primary_10_1016_j_physa_2021_125879 crossref_primary_10_1038_s41467_020_16266_w crossref_primary_10_1088_0256_307X_42_7_070714 crossref_primary_10_1186_s40580_023_00405_2 crossref_primary_10_1088_2053_1591_3_7_076002 crossref_primary_10_1103_PhysRevResearch_5_043011 crossref_primary_10_1209_0295_5075_109_28003 crossref_primary_10_1088_1367_2630_17_7_073027 crossref_primary_10_3938_jkps_75_394 crossref_primary_10_1038_srep10011 crossref_primary_10_1088_1674_1056_abc3af crossref_primary_10_3367_UFNr_2016_06_037825 crossref_primary_10_3390_condmat2030025 crossref_primary_10_1088_2053_1583_ab734b crossref_primary_10_1103_PhysRevX_4_031041 crossref_primary_10_1103_RevModPhys_93_025006 crossref_primary_10_1109_TASC_2016_2639738 crossref_primary_10_1103_PhysRevX_14_021043 crossref_primary_10_1016_j_cplett_2016_07_040 crossref_primary_10_1007_s10948_017_4301_4 crossref_primary_10_1088_1361_648X_ac3e1d crossref_primary_10_1088_1361_6668_ab1c00 crossref_primary_10_7566_JPSJ_86_014707 crossref_primary_10_1038_s41467_024_47350_0 crossref_primary_10_1088_0034_4885_77_4_046502 crossref_primary_10_1103_PhysRevLett_126_077001 crossref_primary_10_1088_0034_4885_80_1_014501 crossref_primary_10_3389_fphy_2021_578347 crossref_primary_10_1038_ncomms3783 crossref_primary_10_1103_PhysRevX_4_031053 crossref_primary_10_1038_s41586_021_03643_8 crossref_primary_10_1038_s43246_024_00554_9 crossref_primary_10_1063_1_4950964 crossref_primary_10_1007_s11433_023_2324_0 crossref_primary_10_1038_s42005_020_0351_1 crossref_primary_10_1007_s41061_022_00368_8 crossref_primary_10_1088_1674_1056_22_8_087412 crossref_primary_10_1063_5_0004304 crossref_primary_10_1016_j_cjph_2024_09_042 crossref_primary_10_7566_JPSJ_84_063701 crossref_primary_10_1007_s10854_017_8001_4 crossref_primary_10_1109_TASC_2025_3530910 crossref_primary_10_1038_natrevmats_2016_17 crossref_primary_10_1038_s41467_018_07778_7 crossref_primary_10_1088_0953_8984_28_29_293002 crossref_primary_10_1088_1361_6668_ab6dc4 crossref_primary_10_1038_s41535_021_00388_5 crossref_primary_10_1038_s41535_017_0050_7 crossref_primary_10_1016_j_jmmm_2017_06_092 crossref_primary_10_1002_pssb_201600163 crossref_primary_10_1038_srep04585 crossref_primary_10_1002_adma_201501656 crossref_primary_10_1016_j_cap_2024_01_010 crossref_primary_10_1038_s41598_019_42041_z crossref_primary_10_1093_nsr_nwu040 crossref_primary_10_1088_2053_1591_1_3_036001 crossref_primary_10_1088_0256_307X_36_9_097401 crossref_primary_10_1103_PhysRevB_105_134506 crossref_primary_10_1007_s40843_015_0022_9 crossref_primary_10_1038_ncomms3877 crossref_primary_10_1016_j_cpc_2014_12_009 crossref_primary_10_1038_ncomms10840 crossref_primary_10_1002_wcms_1304 crossref_primary_10_3390_coatings11030276 crossref_primary_10_1088_1742_6596_2323_1_012011 crossref_primary_10_1109_TASC_2014_2345344 crossref_primary_10_1038_ncomms10608 crossref_primary_10_1088_1361_648X_aacd37 crossref_primary_10_1088_2053_1583_3_2_024006 crossref_primary_10_1007_s10853_024_09344_7 crossref_primary_10_1038_nphys3450 crossref_primary_10_1063_1_4963646 crossref_primary_10_1103_PhysRevX_10_041008 crossref_primary_10_7566_JPSJ_82_093705 crossref_primary_10_1140_epjb_s10051_021_00065_3 crossref_primary_10_3390_nano12193340 crossref_primary_10_1021_acs_nanolett_5c01298 crossref_primary_10_1088_2399_6528_aae0dc crossref_primary_10_1038_s41535_020_0227_3 crossref_primary_10_1140_epjd_s10053_022_00404_8 crossref_primary_10_1088_2516_1075_ad5acb crossref_primary_10_1088_2053_1583_3_2_024002 crossref_primary_10_1103_PhysRevMaterials_9_024801 crossref_primary_10_1016_j_jcrysgro_2024_127633 crossref_primary_10_1016_j_matchemphys_2015_08_028 crossref_primary_10_1088_1361_648X_ab1630 crossref_primary_10_1007_s10948_019_05304_4 crossref_primary_10_1073_pnas_1418994112 crossref_primary_10_1007_s10948_018_4917_z crossref_primary_10_1016_j_jpcs_2023_111717 crossref_primary_10_1038_s41467_017_00162_x crossref_primary_10_1088_1361_648X_ac360b crossref_primary_10_3390_mi12101224 crossref_primary_10_1002_adma_201706240 crossref_primary_10_7566_JPSJ_87_113601 crossref_primary_10_7566_JPSJ_91_123704 crossref_primary_10_1093_nsr_nwu007 crossref_primary_10_3390_cryst9110560 crossref_primary_10_1016_j_cplett_2024_141634 crossref_primary_10_1016_j_physc_2020_1353708 crossref_primary_10_1088_0953_8984_27_7_075602 crossref_primary_10_1186_s40580_017_0100_7 crossref_primary_10_1103_qxfc_khzf crossref_primary_10_1002_adma_202110068 crossref_primary_10_1088_0256_307X_33_7_077402 crossref_primary_10_1088_1674_1056_ac5c3e crossref_primary_10_1016_j_commatsci_2024_112888 crossref_primary_10_1039_C7CP00173H crossref_primary_10_3390_ma14216383 crossref_primary_10_1088_0953_2048_28_3_035009 crossref_primary_10_3390_app9030370 crossref_primary_10_1088_0256_307X_31_1_017401 crossref_primary_10_4028_www_scientific_net_MSF_916_38 crossref_primary_10_1038_nphys3530 crossref_primary_10_1038_s41598_018_33121_7 crossref_primary_10_1103_PhysRevB_111_104501 crossref_primary_10_1016_j_commatsci_2017_10_037 crossref_primary_10_1007_s10948_019_05350_y crossref_primary_10_1038_s41598_018_32050_9 crossref_primary_10_3390_ma16072892 crossref_primary_10_1007_s11467_016_0572_7 crossref_primary_10_1038_s41467_017_00281_5 crossref_primary_10_1088_1674_1056_24_11_117404 crossref_primary_10_1088_1674_1056_24_11_117405 crossref_primary_10_7566_JPSJ_86_033706 crossref_primary_10_1088_1674_1056_24_11_117402 crossref_primary_10_1016_j_scib_2018_05_016 crossref_primary_10_1038_s41467_018_08024_w crossref_primary_10_1088_1367_2630_18_11_113054 crossref_primary_10_1007_s44214_024_00053_5 crossref_primary_10_7566_JPSJ_88_035001 crossref_primary_10_1007_s11434_016_1087_x crossref_primary_10_1038_s41563_019_0456_7 crossref_primary_10_1088_0957_4484_26_34_344004 crossref_primary_10_1088_0953_2048_28_9_095005 crossref_primary_10_1007_s12274_022_4718_3 crossref_primary_10_1007_s12598_018_1009_y crossref_primary_10_1002_inf2_12274 crossref_primary_10_1038_s41586_024_08118_0 crossref_primary_10_1073_pnas_1414094112 crossref_primary_10_1007_s10948_016_3483_5 crossref_primary_10_1103_PhysRevLett_134_016501 crossref_primary_10_1007_s10948_021_05924_9 crossref_primary_10_1088_2053_1583_aa8165 crossref_primary_10_1038_natrevmats_2017_60 crossref_primary_10_1038_srep02213 crossref_primary_10_1038_s42005_018_0006_7 crossref_primary_10_1103_PhysRevMaterials_5_034802 crossref_primary_10_1038_natrevmats_2016_94 crossref_primary_10_1021_acs_nanolett_5c02203 crossref_primary_10_1007_s10948_019_05325_z crossref_primary_10_1038_srep25201 crossref_primary_10_1103_PhysRevResearch_2_023156 crossref_primary_10_1088_0953_2048_29_12_123001 crossref_primary_10_1038_ncomms9585 crossref_primary_10_1088_1361_6668_ab9ad2 crossref_primary_10_1073_pnas_2001123117 crossref_primary_10_1103_PhysRevB_108_L100501 crossref_primary_10_1002_adma_202209457 crossref_primary_10_1038_ncomms10565 crossref_primary_10_3390_pr10061184 crossref_primary_10_1007_s11433_024_2596_6 crossref_primary_10_3390_ma15238467 crossref_primary_10_1016_j_jallcom_2019_152683 crossref_primary_10_1134_S0021364019010144 crossref_primary_10_1038_s41699_023_00381_5 crossref_primary_10_1038_nmat3654 crossref_primary_10_1038_s41524_022_00707_9 crossref_primary_10_1088_2053_1583_2_1_015001 crossref_primary_10_1002_smll_201904788 crossref_primary_10_1063_5_0046721 crossref_primary_10_1088_1674_1056_24_11_110702 crossref_primary_10_1103_PhysRevResearch_3_033222 crossref_primary_10_1038_s41467_020_20252_7 crossref_primary_10_1088_0953_2048_27_12_122001 crossref_primary_10_1111_jace_19467 crossref_primary_10_1063_1_4919766 crossref_primary_10_1063_1_5098464 crossref_primary_10_1103_PhysRevB_104_195110 crossref_primary_10_1007_s11434_016_1102_2 crossref_primary_10_1103_PhysRevB_111_075121 crossref_primary_10_1088_1361_6668_ac6d83 crossref_primary_10_1109_TASC_2017_2716844 crossref_primary_10_1088_1361_648X_aaf2d9 crossref_primary_10_1038_s41467_021_22516_2 crossref_primary_10_1103_PhysRevB_106_L060504 crossref_primary_10_1002_apxr_202200058 crossref_primary_10_1140_epjp_s13360_023_04126_7 crossref_primary_10_1016_j_polymer_2023_126063 crossref_primary_10_1088_1367_2630_18_8_082001 crossref_primary_10_1038_nature13894 crossref_primary_10_1088_1674_1056_ad7c2a crossref_primary_10_1146_annurev_conmatphys_031016_025242 crossref_primary_10_1088_1742_6596_969_1_012067 crossref_primary_10_1103_PhysRevB_111_125152 crossref_primary_10_1002_smll_202410691 crossref_primary_10_1007_s10948_018_4571_5 crossref_primary_10_1038_nmat4728 crossref_primary_10_1080_21663831_2022_2054668 crossref_primary_10_3389_fchem_2021_640361 crossref_primary_10_1088_1361_648X_ace410 crossref_primary_10_1016_j_mseb_2021_115379 crossref_primary_10_1039_C9NR04996G crossref_primary_10_1088_1674_1056_27_8_087503 crossref_primary_10_1038_nphys3626 crossref_primary_10_1073_pnas_2108938118 crossref_primary_10_1038_s41467_021_24783_5 crossref_primary_10_7566_JPSJ_86_043703 crossref_primary_10_1016_j_spmi_2020_106573 crossref_primary_10_1038_srep30946 crossref_primary_10_1038_s41535_017_0056_1 crossref_primary_10_1016_j_jssc_2016_04_008 crossref_primary_10_1063_1_4900931 crossref_primary_10_1007_s11434_015_0842_8 crossref_primary_10_1088_0953_2048_29_10_104005 crossref_primary_10_1088_1742_6596_1054_1_012019 crossref_primary_10_1016_j_crhy_2015_10_002 crossref_primary_10_1016_j_physc_2018_10_005 crossref_primary_10_1038_nmat3683 crossref_primary_10_1088_1361_648X_ab14c3 crossref_primary_10_1016_j_jallcom_2022_168045 crossref_primary_10_9714_psac_2014_16_2_007 crossref_primary_10_1002_advs_202003454 crossref_primary_10_1038_s41524_020_00414_3 crossref_primary_10_3390_sym13020155 crossref_primary_10_3390_sym12091402 crossref_primary_10_1088_1361_648X_aa564b crossref_primary_10_1088_1361_6668_aaffa8 crossref_primary_10_1088_2053_1583_3_1_014005 crossref_primary_10_1088_0256_307X_41_6_067401 crossref_primary_10_1007_s11467_024_1423_6 crossref_primary_10_1038_ncomms6044 crossref_primary_10_1016_j_ccr_2023_215591 crossref_primary_10_1038_nmat4302 crossref_primary_10_1038_s41467_021_26201_2 crossref_primary_10_1016_j_scriptamat_2022_114922 crossref_primary_10_1038_ncomms6047 crossref_primary_10_1038_s41427_019_0178_y crossref_primary_10_1088_1361_648X_ac2db9 crossref_primary_10_3390_cryst10090733 crossref_primary_10_1103_PhysRevB_103_144504 crossref_primary_10_1039_C7CC05242A crossref_primary_10_1103_PhysRevB_104_245109 crossref_primary_10_1002_pssb_201600149 crossref_primary_10_1088_0953_8984_29_2_025701 crossref_primary_10_1088_0953_8984_27_18_183201 crossref_primary_10_1002_sstr_202200107 crossref_primary_10_1038_ncomms11116 crossref_primary_10_1088_1361_6668_add427 crossref_primary_10_1038_ncomms14988 crossref_primary_10_1088_1742_6596_871_1_012063 crossref_primary_10_1088_1361_6668_aaa501 crossref_primary_10_1016_j_physc_2014_06_003 crossref_primary_10_1088_0256_307X_39_12_127401 crossref_primary_10_1002_pssr_201700211 crossref_primary_10_1134_S0020168514120085 crossref_primary_10_1016_j_vacuum_2015_06_023 crossref_primary_10_1039_D4TC05033A crossref_primary_10_1007_s11434_015_0853_5 crossref_primary_10_1103_PhysRevX_11_021054 crossref_primary_10_1007_s11467_018_0745_7 crossref_primary_10_1063_1_5099576 crossref_primary_10_1088_2053_1591_ab7c85 crossref_primary_10_1038_s41535_021_00381_y crossref_primary_10_1088_1468_6996_16_3_033503 crossref_primary_10_1088_2053_1583_2_4_044012 |
| Cites_doi | 10.1007/BF01303701 10.1038/nmat2981 10.1038/nature01544 10.1103/PhysRevB.84.020503 10.1103/PhysRevB.80.134519 10.1038/nphys1656 10.1103/PhysRevB.57.R11093 10.1103/PhysRevLett.104.137001 10.1088/0034-4885/62/1/002 10.1103/PhysRevLett.102.107002 10.1103/RevModPhys.66.1 10.1038/nphys1759 10.1088/0256-307X/25/7/015 10.1088/0256-307X/29/3/037402 10.1103/PhysRevB.82.180520 10.1103/PhysRevLett.100.096407 10.1016/j.ssc.2008.09.057 10.1126/science.1200182 10.1038/ncomms1946 10.1126/science.1216466 10.1103/PhysRevLett.106.187001 10.1073/pnas.0807325105 10.1103/PhysRevLett.106.107001 10.1103/PhysRevB.83.140508 10.1126/science.1198415 10.1103/RevModPhys.78.17 10.1038/nmat2491 10.1103/PhysRevLett.104.097002 10.1088/0022-3719/6/7/010 10.1103/PhysRevB.85.235123 10.1103/PhysRevB.86.134508 10.1103/PhysRevLett.101.107006 10.1103/PhysRevB.78.184514 10.1103/RevModPhys.60.1129 10.1021/ja800073m |
| ContentType | Journal Article |
| Copyright | Springer Nature Limited 2013 Copyright Nature Publishing Group Jul 2013 |
| Copyright_xml | – notice: Springer Nature Limited 2013 – notice: Copyright Nature Publishing Group Jul 2013 |
| DBID | AAYXX CITATION NPM 3V. 7SR 7X7 7XB 88E 88I 8AO 8BQ 8FD 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ JG9 K9. KB. L6V M0S M1P M2P M7S PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 |
| DOI | 10.1038/nmat3648 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Engineered Materials Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database (ProQuest) Engineering Database Materials Science Collection (ProQuest) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection (ProQuest) ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Engineered Materials Abstracts ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection Materials Science Database ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) METADEX ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1476-4660 |
| EndPage | 610 |
| ExternalDocumentID | 3002966071 23708329 10_1038_nmat3648 |
| Genre | Letter Correspondence |
| GroupedDBID | --- 0R~ 29M 39C 3V. 4.4 5BI 70F 7X7 88E 88I 8AO 8FE 8FG 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFS ACGOD ACIWK ACUHS ADBBV AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BKKNO BPHCQ BVXVI CCPQU CZ9 D1I DB5 DU5 DWQXO EBS EE. EJD EMOBN ESN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ I-F KB. KC. L6V M1P M2P M7S MK~ NNMJJ O9- ODYON P2P PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RIG RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ACSTC AFANA AFFHD ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB ABFSG AEZWR AFHIU AHWEU AIXLP NFIDA NPM 7SR 7XB 8BQ 8FD 8FK JG9 K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO |
| ID | FETCH-LOGICAL-c411t-986ef7a6e8936121ab1e31e04c6e05522cd195d75824ec24a697bdc85d39a1a13 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 732 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000320720000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1476-1122 1476-4660 |
| IngestDate | Thu Oct 02 17:01:44 EDT 2025 Sun Nov 30 04:46:30 EST 2025 Mon Jul 21 05:55:54 EDT 2025 Tue Nov 18 22:23:14 EST 2025 Sat Nov 29 03:30:23 EST 2025 Fri Feb 21 02:40:24 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c411t-986ef7a6e8936121ab1e31e04c6e05522cd195d75824ec24a697bdc85d39a1a13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Correspondence-3 content type line 23 ObjectType-Correspondence-1 |
| PMID | 23708329 |
| PQID | 1370702566 |
| PQPubID | 27576 |
| PageCount | 6 |
| ParticipantIDs | proquest_miscellaneous_1370635465 proquest_journals_1370702566 pubmed_primary_23708329 crossref_primary_10_1038_nmat3648 crossref_citationtrail_10_1038_nmat3648 springer_journals_10_1038_nmat3648 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-07-01 |
| PublicationDateYYYYMMDD | 2013-07-01 |
| PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature materials |
| PublicationTitleAbbrev | Nature Mater |
| PublicationTitleAlternate | Nat Mater |
| PublicationYear | 2013 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Wang (CR1) 2012; 29 Wang, Lee (CR13) 2011; 332 Zhang (CR16) 2011; 10 He (CR30) 2011; 331 Guo (CR14) 2010; 82 Liu (CR2) 2012; 3 Fu, Kane (CR34) 2008; 100 Kosterlitz, Thouless (CR32) 1973; 6 Rotter (CR9) 2008; 101 Gruener (CR29) 1988; 60 Liu (CR26) 2010; 6 Wang (CR35) 2012; 336 Bednorz, Mueller (CR5) 1986; 64 Tamai (CR25) 2010; 104 Medvedev (CR15) 2009; 8 Yang (CR21) 2009; 102 Gruener (CR28) 1994; 66 Hsu (CR10) 2008; 105 Timusk, Statt (CR31) 1999; 62 Ren (CR8) 2008; 25 Kamihara (CR7) 2008; 130 Xiang (CR4) 2012; 86 Bozovic (CR33) 2003; 422 Wang (CR11) 2008; 148 Liu (CR22) 2008; 78 Paglione, Greene (CR12) 2010; 6 Zhao (CR18) 2011; 83 Mou (CR17) 2011; 106 Richard (CR24) 2010; 104 Liu (CR3) 2012; 85 Norman (CR27) 1998; 57 Qian (CR19) 2011; 106 Song (CR20) 2011; 84 Liu (CR23) 2009; 80 Lee, Nagaosa, Wen (CR6) 2006; 78 J Paglione (BFnmat3648_CR12) 2010; 6 CL Song (BFnmat3648_CR20) 2011; 84 ZA Ren (BFnmat3648_CR8) 2008; 25 L Fu (BFnmat3648_CR34) 2008; 100 MR Norman (BFnmat3648_CR27) 1998; 57 DF Liu (BFnmat3648_CR2) 2012; 3 JM Kosterlitz (BFnmat3648_CR32) 1973; 6 GD Liu (BFnmat3648_CR23) 2009; 80 DX Mou (BFnmat3648_CR17) 2011; 106 A Tamai (BFnmat3648_CR25) 2010; 104 FC Hsu (BFnmat3648_CR10) 2008; 105 XC Wang (BFnmat3648_CR11) 2008; 148 F Wang (BFnmat3648_CR13) 2011; 332 T Qian (BFnmat3648_CR19) 2011; 106 JG Guo (BFnmat3648_CR14) 2010; 82 HY Liu (BFnmat3648_CR22) 2008; 78 L Zhao (BFnmat3648_CR18) 2011; 83 P Richard (BFnmat3648_CR24) 2010; 104 T Timusk (BFnmat3648_CR31) 1999; 62 JG Bednorz (BFnmat3648_CR5) 1986; 64 G Gruener (BFnmat3648_CR28) 1994; 66 I Bozovic (BFnmat3648_CR33) 2003; 422 QY Wang (BFnmat3648_CR1) 2012; 29 M Rotter (BFnmat3648_CR9) 2008; 101 K Liu (BFnmat3648_CR3) 2012; 85 MX Wang (BFnmat3648_CR35) 2012; 336 C Liu (BFnmat3648_CR26) 2010; 6 G Gruener (BFnmat3648_CR29) 1988; 60 LX Yang (BFnmat3648_CR21) 2009; 102 S Medvedev (BFnmat3648_CR15) 2009; 8 PA Lee (BFnmat3648_CR6) 2006; 78 Y Zhang (BFnmat3648_CR16) 2011; 10 RH He (BFnmat3648_CR30) 2011; 331 Y Kamihara (BFnmat3648_CR7) 2008; 130 YY Xiang (BFnmat3648_CR4) 2012; 86 21474751 - Science. 2011 Apr 8;332(6026):200-4 21358648 - Nat Mater. 2011 Apr;10(4):273-7 18851249 - Phys Rev Lett. 2008 Sep 5;101(10):107006 22422860 - Science. 2012 Apr 6;336(6077):52-5 18352737 - Phys Rev Lett. 2008 Mar 7;100(9):096407 23708331 - Nat Mater. 2013 Jul;12(7):600-1 19525948 - Nat Mater. 2009 Aug;8(8):630-3 12712200 - Nature. 2003 Apr 24;422(6934):873-5 22760630 - Nat Commun. 2012 Jul 03;3:931 21436447 - Science. 2011 Mar 25;331(6024):1579-83 18776050 - Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14262-4 18293989 - J Am Chem Soc. 2008 Mar 19;130(11):3296-7 21635119 - Phys Rev Lett. 2011 May 6;106(18):187001 20481905 - Phys Rev Lett. 2010 Apr 2;104(13):137001 19392146 - Phys Rev Lett. 2009 Mar 13;102(10):107002 21469824 - Phys Rev Lett. 2011 Mar 11;106(10):107001 20367005 - Phys Rev Lett. 2010 Mar 5;104(9):097002 |
| References_xml | – volume: 64 start-page: 189 year: 1986 end-page: 193 ident: CR5 article-title: Possible high superconductivity in the Ba–La–Cu–0 System publication-title: Z. Phys. B doi: 10.1007/BF01303701 – volume: 10 start-page: 273 year: 2011 end-page: 277 ident: CR16 article-title: Nodeless superconducting gap in A Fe Se (A = K, Cs) revealed by angle-resolved photoemission spectroscopy publication-title: Nature Mater. doi: 10.1038/nmat2981 – volume: 422 start-page: 873 year: 2003 end-page: 875 ident: CR33 article-title: No mixing of superconductivity and antiferromagnetism in a high temperature superconductor publication-title: Nature doi: 10.1038/nature01544 – volume: 84 start-page: 020503(R) year: 2011 ident: CR20 article-title: Molecular-beam epitaxy and robust superconductivity of stoichiometric FeSe crystalline films on bilayer graphene publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.020503 – volume: 80 start-page: 134519 year: 2009 ident: CR23 article-title: Band-structure reorganization across the magnetic transition in BaFe As seen via high-resolution angle-resolved photoemission publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.134519 – volume: 6 start-page: 419 year: 2010 end-page: 423 ident: CR26 article-title: Evidence for a Lifshitz transition in electron-doped iron arsenic superconductors at the onset of superconductivity publication-title: Nature Phys. doi: 10.1038/nphys1656 – volume: 57 start-page: R11093 year: 1998 ident: CR27 article-title: Phenomenology of the low-energy spectral function in high- superconductors publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.57.R11093 – volume: 104 start-page: 137001 year: 2010 ident: CR24 article-title: Observation of Dirac cone electronic dispersion in BaFe As publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.137001 – volume: 62 start-page: 61 year: 1999 end-page: 122 ident: CR31 article-title: The pseudogap in high-temperature superconductors: An experimental survey publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/62/1/002 – volume: 102 start-page: 107002 year: 2009 ident: CR21 article-title: Electronic structure and unusual exchange splitting in the spin-density-wave state of the BaFe As parent compound of iron-based superconductors publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.107002 – volume: 66 start-page: 1 year: 1994 end-page: 24 ident: CR28 article-title: The dynamics of spin density waves publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.66.1 – volume: 6 start-page: 645 year: 2010 end-page: 658 ident: CR12 article-title: High temperature superconductivity in iron-based materials publication-title: Nature Phys. doi: 10.1038/nphys1759 – volume: 25 start-page: 2215 year: 2008 end-page: 2216 ident: CR8 article-title: Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O F ]FeAs publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/25/7/015 – volume: 29 start-page: 037402 year: 2012 ident: CR1 article-title: Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/29/3/037402 – volume: 82 start-page: 180520(R) year: 2010 ident: CR14 article-title: Superconductivity in the iron selenide K Fe Se (0≤ ≤1.0) publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.180520 – volume: 100 start-page: 096407 year: 2008 ident: CR34 article-title: Superconducting proximity effect and Majorana fermions at the surface of a topological insultaor publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.096407 – volume: 148 start-page: 538 year: 2008 end-page: 540 ident: CR11 article-title: The superconductivity at 18 K in LiFeAs system publication-title: Solid State Commun. doi: 10.1016/j.ssc.2008.09.057 – volume: 332 start-page: 200 year: 2011 end-page: 204 ident: CR13 article-title: The electron pairing mechanism of iron-based superconductors publication-title: Science doi: 10.1126/science.1200182 – volume: 3 start-page: 931 year: 2012 ident: CR2 article-title: Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor publication-title: Nature Commun. doi: 10.1038/ncomms1946 – volume: 336 start-page: 52 year: 2012 end-page: 55 ident: CR35 article-title: The coexistence of superconductivity and topological order in the Bi Se thin films publication-title: Science doi: 10.1126/science.1216466 – volume: 106 start-page: 187001 year: 2011 ident: CR19 article-title: Absence of a holelike Fermi surface for the iron-based K Fe Se superconductor revealed by angle-resolved photoemission spectroscopy publication-title: Phy. Rev. Lett. doi: 10.1103/PhysRevLett.106.187001 – volume: 105 start-page: 14262 year: 2008 end-page: 14264 ident: CR10 article-title: Superconductivity in the PbO-type structure -FeSe publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0807325105 – volume: 106 start-page: 107001 year: 2011 ident: CR17 article-title: Distinct Fermi surface topology and nodeless superconducting gap in a Tl Rb Fe Se superconductor publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.107001 – volume: 83 start-page: 140508(R) year: 2011 ident: CR18 article-title: Common Fermi-surface topology and nodeless superconducting gap of K Fe Se and (Tl K )Fe Se superconductors revealed via angle-resolved photoemission publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.140508 – volume: 331 start-page: 1579 year: 2011 end-page: 1583 ident: CR30 article-title: From a single-band metal to a high-temperature superconductor via two thermal phase transitions publication-title: Science doi: 10.1126/science.1198415 – volume: 78 start-page: 17 year: 2006 end-page: 85 ident: CR6 article-title: Doping a Mott insulator: Physics of high temperature superconductivity publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.78.17 – volume: 8 start-page: 630 year: 2009 end-page: 633 ident: CR15 article-title: Electronic and magnetic phase diagram of -Fe Se with superconductivity at 36.7 K under pressure publication-title: Nature Mater. doi: 10.1038/nmat2491 – volume: 104 start-page: 097002 year: 2010 ident: CR25 article-title: Strong electron correlations in the normal state of the iron-based FeSe Te superconductor observed by angle-resolved photoemission spectroscopy publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.097002 – volume: 6 start-page: 1181 year: 1973 end-page: 1203 ident: CR32 article-title: Ordering, metastability and phase transitions in two-dimensional systems publication-title: J. Phys. C doi: 10.1088/0022-3719/6/7/010 – volume: 85 start-page: 235123 year: 2012 ident: CR3 article-title: Atomic and electronic structures of FeSe monolayer and bilayer thin films on SrTiO (001): First-principles study publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.235123 – volume: 86 start-page: 134508 year: 2012 ident: CR4 article-title: High-temperature superconductivity at the FeSe/SrTiO interface publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.134508 – volume: 101 start-page: 107006 year: 2008 ident: CR9 article-title: Superconductivity at 38 K in the iron arsenide (Ba K )Fe As publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.107006 – volume: 78 start-page: 184514 year: 2008 ident: CR22 article-title: Fermi surface and band renormalization of Sr K Fe As from angle-resolved photoemission spectroscopy publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.184514 – volume: 60 start-page: 1129 year: 1988 end-page: 1181 ident: CR29 article-title: The dynamics of charge density waves publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.60.1129 – volume: 130 start-page: 3296 year: 2008 end-page: 3297 ident: CR7 article-title: Iron-based layered superconductor La[O F ]FeAs ( = 0.05–0.12) with = 26 K publication-title: J. Am. Chem. Soc. doi: 10.1021/ja800073m – volume: 422 start-page: 873 year: 2003 ident: BFnmat3648_CR33 publication-title: Nature doi: 10.1038/nature01544 – volume: 104 start-page: 097002 year: 2010 ident: BFnmat3648_CR25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.097002 – volume: 78 start-page: 17 year: 2006 ident: BFnmat3648_CR6 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.78.17 – volume: 130 start-page: 3296 year: 2008 ident: BFnmat3648_CR7 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja800073m – volume: 101 start-page: 107006 year: 2008 ident: BFnmat3648_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.107006 – volume: 105 start-page: 14262 year: 2008 ident: BFnmat3648_CR10 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0807325105 – volume: 82 start-page: 180520(R) year: 2010 ident: BFnmat3648_CR14 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.180520 – volume: 25 start-page: 2215 year: 2008 ident: BFnmat3648_CR8 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/25/7/015 – volume: 66 start-page: 1 year: 1994 ident: BFnmat3648_CR28 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.66.1 – volume: 336 start-page: 52 year: 2012 ident: BFnmat3648_CR35 publication-title: Science doi: 10.1126/science.1216466 – volume: 85 start-page: 235123 year: 2012 ident: BFnmat3648_CR3 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.235123 – volume: 6 start-page: 419 year: 2010 ident: BFnmat3648_CR26 publication-title: Nature Phys. doi: 10.1038/nphys1656 – volume: 78 start-page: 184514 year: 2008 ident: BFnmat3648_CR22 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.184514 – volume: 29 start-page: 037402 year: 2012 ident: BFnmat3648_CR1 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/29/3/037402 – volume: 332 start-page: 200 year: 2011 ident: BFnmat3648_CR13 publication-title: Science doi: 10.1126/science.1200182 – volume: 84 start-page: 020503(R) year: 2011 ident: BFnmat3648_CR20 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.020503 – volume: 6 start-page: 645 year: 2010 ident: BFnmat3648_CR12 publication-title: Nature Phys. doi: 10.1038/nphys1759 – volume: 3 start-page: 931 year: 2012 ident: BFnmat3648_CR2 publication-title: Nature Commun. doi: 10.1038/ncomms1946 – volume: 57 start-page: R11093 year: 1998 ident: BFnmat3648_CR27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.57.R11093 – volume: 100 start-page: 096407 year: 2008 ident: BFnmat3648_CR34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.096407 – volume: 60 start-page: 1129 year: 1988 ident: BFnmat3648_CR29 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.60.1129 – volume: 10 start-page: 273 year: 2011 ident: BFnmat3648_CR16 publication-title: Nature Mater. doi: 10.1038/nmat2981 – volume: 80 start-page: 134519 year: 2009 ident: BFnmat3648_CR23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.134519 – volume: 104 start-page: 137001 year: 2010 ident: BFnmat3648_CR24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.137001 – volume: 86 start-page: 134508 year: 2012 ident: BFnmat3648_CR4 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.134508 – volume: 106 start-page: 107001 year: 2011 ident: BFnmat3648_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.107001 – volume: 64 start-page: 189 year: 1986 ident: BFnmat3648_CR5 publication-title: Z. Phys. B doi: 10.1007/BF01303701 – volume: 106 start-page: 187001 year: 2011 ident: BFnmat3648_CR19 publication-title: Phy. Rev. Lett. doi: 10.1103/PhysRevLett.106.187001 – volume: 62 start-page: 61 year: 1999 ident: BFnmat3648_CR31 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/62/1/002 – volume: 102 start-page: 107002 year: 2009 ident: BFnmat3648_CR21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.107002 – volume: 83 start-page: 140508(R) year: 2011 ident: BFnmat3648_CR18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.140508 – volume: 6 start-page: 1181 year: 1973 ident: BFnmat3648_CR32 publication-title: J. Phys. C doi: 10.1088/0022-3719/6/7/010 – volume: 148 start-page: 538 year: 2008 ident: BFnmat3648_CR11 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2008.09.057 – volume: 8 start-page: 630 year: 2009 ident: BFnmat3648_CR15 publication-title: Nature Mater. doi: 10.1038/nmat2491 – volume: 331 start-page: 1579 year: 2011 ident: BFnmat3648_CR30 publication-title: Science doi: 10.1126/science.1198415 – reference: 21469824 - Phys Rev Lett. 2011 Mar 11;106(10):107001 – reference: 18352737 - Phys Rev Lett. 2008 Mar 7;100(9):096407 – reference: 22760630 - Nat Commun. 2012 Jul 03;3:931 – reference: 19392146 - Phys Rev Lett. 2009 Mar 13;102(10):107002 – reference: 12712200 - Nature. 2003 Apr 24;422(6934):873-5 – reference: 19525948 - Nat Mater. 2009 Aug;8(8):630-3 – reference: 21358648 - Nat Mater. 2011 Apr;10(4):273-7 – reference: 20367005 - Phys Rev Lett. 2010 Mar 5;104(9):097002 – reference: 22422860 - Science. 2012 Apr 6;336(6077):52-5 – reference: 21635119 - Phys Rev Lett. 2011 May 6;106(18):187001 – reference: 23708331 - Nat Mater. 2013 Jul;12(7):600-1 – reference: 21474751 - Science. 2011 Apr 8;332(6026):200-4 – reference: 18851249 - Phys Rev Lett. 2008 Sep 5;101(10):107006 – reference: 21436447 - Science. 2011 Mar 25;331(6024):1579-83 – reference: 20481905 - Phys Rev Lett. 2010 Apr 2;104(13):137001 – reference: 18776050 - Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14262-4 – reference: 18293989 - J Am Chem Soc. 2008 Mar 19;130(11):3296-7 |
| SSID | ssj0021556 |
| Score | 2.6278138 |
| Snippet | The unconventional superconductivity associated with iron pnictide materials has been the subject of intense interest. Using an annealing procedure to control... The recent discovery of possible high-temperature superconductivity in single-layer FeSe films has generated significant experimental and theoretical interest.... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 605 |
| SubjectTerms | 639/301/119/1003 Biomaterials Condensed Matter Physics Electronics High temperature High temperature physics letter Materials Science Nanotechnology Optical and Electronic Materials Phase transitions Physics Superconductivity Thin films Transition temperatures |
| Title | Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films |
| URI | https://link.springer.com/article/10.1038/nmat3648 https://www.ncbi.nlm.nih.gov/pubmed/23708329 https://www.proquest.com/docview/1370702566 https://www.proquest.com/docview/1370635465 |
| Volume | 12 |
| WOSCitedRecordID | wos000320720000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1476-4660 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0021556 issn: 1476-1122 databaseCode: M7S dateStart: 20020901 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1476-4660 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0021556 issn: 1476-1122 databaseCode: 7X7 dateStart: 20020901 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1476-4660 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0021556 issn: 1476-1122 databaseCode: KB. dateStart: 20020901 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1476-4660 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0021556 issn: 1476-1122 databaseCode: BENPR dateStart: 20020901 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 1476-4660 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0021556 issn: 1476-1122 databaseCode: M2P dateStart: 20020901 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BCxIceJTXQqkMQuJkWjvxIydEUVdIFasVBWlvkWM7otKSXZpdfj8zTrK7oogLFyuRncSSx55vPM73AbyxxldKeMutjZLnlcp4kWOUUkdZKRtioZxNYhNmMrGzWTHtN9za_ljlsCamhTosPO2RH4vMoHWig9bvlz85qUZRdrWX0LgJ-ySbTXZuZtuAC31l93eR0RxxhRzIZzN73CAezDSp_uy6o2sY81p-NLmd8f3_7fADuNcDTvahs5CHcCM2B3B3h4bwAG6nY6C-fQTL6Xf0agxthg5tMdcEttXJYZTe7nb42KJmRHTMidmqp2Vm7RovMbwmBtkkScHcimnFzvFBRlsS88jnDiE-G8eLyOrL-Y_2MXwbn339-In3mgzc50KseGF1rI3TEXEOkY-5SsRMxJPc63iiEMz5IAoVMAqRefQyd7owVfBWhaxwwonsCew1iyY-AyYqMgWjKgyKcl0Hh8iK6PyUtjIYGUfwdhia0veE5aSbMS9T4jyz5TCII3i1abnsSDr-0uZwGKayn6ZtuR0jfMWmGicYZU1cExfrrg2islyrETztrGLzEYl1uCQWI3g9mMnOy__owfN_9-AF3JFJaoOOAh_C3upqHV_CLf9rddleHSXDTqU9gv3Ts8n0C96dn77D8rOcUmkufgNc1gaJ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbxMxEB2VAgIOfBQogQIGgThZrb1rr_eAEAKiVilRpRapt63XnhWVwm7aTVrxp_iNjPcjjSji1gO3SOs4m-R55o09-x7AG5O4XAlnuDEoeZyriKcxVSkFylwZj6mypjGbSMZjc3iY7q3Ar_5ZmNBW2cfEJlD7yoU98k0RJYROStD6w_SEB9eocLraW2i0sBjhz3Mq2er3O5_p_30r5fDLwadt3rkKcBcLMeOp0VgkViNl6iCfZXOBkcCt2GncUkRHnBep8sSjZYxOxlanSe6dUT5KrbAionmvwXWiEVI2rYL7iwKPcnP7NFOiOfEY2YvdRmazJP4Z6eAytJz-LnHaS-exTZob3vvffqD7cLcj1OxjuwIewAqWa3BnSWZxDW42ba6ufgjTve-UtRmtidCUxmzp2YUPEAvH9-0OJqsKFoSceVDu6mSnWT2nl64qg0JuY7nB7IxpxUb0Rha2XCbIJ5ZKGDbEfWTF8eRH_Qi-XcmXfwyrZVXiE2AiD1BPVE5FX6wLb4k5BrlCpY30icQBvOuhkLlOkD34gkyypjEgMlkPmgG8WoyctiIkfxmz0cMi68JQnV1ggqZYXKYAEk6FbInVvB1DrDPWagDrLQoXHyLpGoX8dACve1guTf7HHTz99x28hFvbB193s92d8egZ3JaNrUhoe96A1dnpHJ_DDXc2O65PXzSLisHRVYP0N12xXM4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLVT0wKO8thQwiIqTtbUTP3KoENCuqBatVjyk3oJjO2qlJVmaXVD_Gr-OcR7bFUXceuAWyY7jJJ89M_b4-wBeamUzwaymWntO40xENIkxSsk9z4R2PhFG12ITajzWx8fJZA1-dWdhQlplNyfWE7UrbVgjH7BIITrRQMtB3qZFTA6Gr2ffaVCQCjutnZxGA5GRP_-J4Vu1f3SA_3qX8-Hh53fvaaswQG3M2JwmWvpcGenRagcqLZMxHzG_F1vp9wS6JtaxRDj0qXnsLY-NTFTmrBYuSgwzLMJ2r8G6ijDo6cH628Px5OMy3ENL3ZxtUpKiV8M76ttIDwr0RiMZNIdWjeElD_fS7mxt9Ia3_-fPdQduta42edOMjbuw5ost2FwhYNyCG3UCrK3uwWxygvac4GgJ6WrEFI5cKASRsLHfrG2SMieB4pkGTq-WkJpUC7y0ZRG4c2sxDmLmRAoywhtJWIyZejo1GNyQof_kSX46_Vbdhy9X8vIPoFeUhX8EhGVhECiRYTgYy9wZ9CkDkaGQmjvFfR9edbBIbUvVHhRDpmmdMhDptANQH54va84aepK_1NnpIJK2E1SVXuADm1gW49QS9otM4ctFUwf90ViKPjxsELl8CMcyNAZJH150EF1p_I8ebP-7B89gA7GZfjgajx7DTV7rjYR86B3ozc8W_glctz_mp9XZ03aEEfh61Sj9DYtpZt4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+diagram+and+electronic+indication+of+high-temperature+superconductivity+at+65+K+in+single-layer+FeSe+films&rft.jtitle=Nature+materials&rft.au=He%2C+Shaolong&rft.au=He%2C+Junfeng&rft.au=Zhang%2C+Wenhao&rft.au=Zhao%2C+Lin&rft.date=2013-07-01&rft.issn=1476-4660&rft.eissn=1476-4660&rft.volume=12&rft.issue=7&rft.spage=605&rft_id=info:doi/10.1038%2Fnmat3648&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon |