Quantum-Classical Autoencoder Architectures for End-to-End Radio Communication

End-to-end radio communication needs to be optimized against noisy channel conditions and other distortion effects. This paper presents a novel concept, a set of hybrid quantum-classical autoencoder architectures with a comprehensive feasibility study using standard encoded radio signals, to evaluat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access Jg. 13; S. 82181 - 82192
Hauptverfasser: Tabi, Zsolt I., Bako, Bence, Nagy, Daniel T. R., Vaderna, Peter, Kallus, Zsofia, Haga, Peter, Zimboras, Zoltan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2169-3536, 2169-3536
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract End-to-end radio communication needs to be optimized against noisy channel conditions and other distortion effects. This paper presents a novel concept, a set of hybrid quantum-classical autoencoder architectures with a comprehensive feasibility study using standard encoded radio signals, to evaluate quantum neural network design requirements for the radio context. The hybrid scenarios include single-sided, i.e., quantum encoder (transmitter) or quantum decoder (receiver), as well as fully quantum radio channel autoencoder (transmitter-receiver) systems. We provide detailed formulas for each scenario and validate our model through an extensive set of simulations. Our results demonstrate model robustness and adaptability. Supporting experiments are conducted utilizing 4 and 16 Quadrature Amplitude Modulation schemes and we expect that the model is adaptable to more general encoding schemes. We explore model performance against both additive white Gaussian noise and Rayleigh fading models. Our numerical findings highlight the importance of designing efficient quantum neural network architectures for meeting application performance constraints - including data re-uploading methods, encoding schemes, and core layer structures.
AbstractList End-to-end radio communication needs to be optimized against noisy channel conditions and other distortion effects. This paper presents a novel concept, a set of hybrid quantum-classical autoencoder architectures with a comprehensive feasibility study using standard encoded radio signals, to evaluate quantum neural network design requirements for the radio context. The hybrid scenarios include single-sided, i.e., quantum encoder (transmitter) or quantum decoder (receiver), as well as fully quantum radio channel autoencoder (transmitter-receiver) systems. We provide detailed formulas for each scenario and validate our model through an extensive set of simulations. Our results demonstrate model robustness and adaptability. Supporting experiments are conducted utilizing 4 and 16 Quadrature Amplitude Modulation schemes and we expect that the model is adaptable to more general encoding schemes. We explore model performance against both additive white Gaussian noise and Rayleigh fading models. Our numerical findings highlight the importance of designing efficient quantum neural network architectures for meeting application performance constraints – including data re-uploading methods, encoding schemes, and core layer structures.
Author Tabi, Zsolt I.
Haga, Peter
Bako, Bence
Kallus, Zsofia
Vaderna, Peter
Zimboras, Zoltan
Nagy, Daniel T. R.
Author_xml – sequence: 1
  givenname: Zsolt I.
  orcidid: 0000-0003-2070-7452
  surname: Tabi
  fullname: Tabi, Zsolt I.
  email: zsolttabi@ik.elte.hu
  organization: Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
– sequence: 2
  givenname: Bence
  orcidid: 0009-0004-8756-7890
  surname: Bako
  fullname: Bako, Bence
  organization: Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
– sequence: 3
  givenname: Daniel T. R.
  surname: Nagy
  fullname: Nagy, Daniel T. R.
  organization: Quantum Computing and Information Group, HUN-REN Wigner Research Centre for Physics, Budapest, Hungary
– sequence: 4
  givenname: Peter
  orcidid: 0000-0003-1813-1562
  surname: Vaderna
  fullname: Vaderna, Peter
  organization: Ericsson Research, Budapest, Hungary
– sequence: 5
  givenname: Zsofia
  orcidid: 0000-0002-5270-1891
  surname: Kallus
  fullname: Kallus, Zsofia
  organization: Ericsson Research, Budapest, Hungary
– sequence: 6
  givenname: Peter
  surname: Haga
  fullname: Haga, Peter
  email: peter.haga@ericsson.com
  organization: Ericsson Research, Budapest, Hungary
– sequence: 7
  givenname: Zoltan
  surname: Zimboras
  fullname: Zimboras, Zoltan
  email: zimboras.zoltan@wigner.hu
  organization: Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
BookMark eNqFkU1P3DAQhi0EEpTyC9pDpJ6z9dj5sI-raFuQUBGFni1nMmm9ysbUdg799_UShFAvncuMR_O8Y837jp3OfibGPgDfAHD9edt1u4eHjeCi3si6aQRvT9iFgEaXspbN6Zv6nF3FuOc5VG7V7QX7dr_YOS2HsptsjA7tVGyX5GlGP1AotgF_uUSYlkCxGH0odvNQJl_mVHy3g_NF5w-HZc5kcn5-z85GO0W6esmX7MeX3WN3Xd7efb3ptrclVgCpVHZEJalt-6YWgEQ0tFz1iLwahaibno-Q31r1kkuFAKg1VG0zaugVKZCX7GbVHbzdm6fgDjb8Md4689zw4aexITmcyGiyYHlFHEWWoErbXqKEipRALiqetT6tWk_B_14oJrP3S5jz940UvGqVVuI4JdcpDD7GQOPrVuDm6INZfTBHH8yLD5nS_1Do0vOlUrBu-g_7cWVdvs-bbVpBWyv5FyvBluE
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3584000
Cites_doi 10.1109/MCOM.001.2000804
10.1109/ACCESS.2020.3025597
10.1103/physrevresearch.1.033063
10.1007/978-3-030-83098-4
10.1007/s11128-014-0809-8
10.1109/ACCESS.2021.3114543
10.1103/physrevlett.121.040502
10.1109/JSTSP.2017.2784180
10.1109/MCOM.001.2200362
10.1103/physrevlett.124.130502
10.1109/SPAWC48557.2020.9154335
10.1016/j.phycom.2024.102583
10.1007/s42484-022-00075-z
10.1109/TII.2022.3146552
10.1145/3341302.3342072
10.1002/0471200573
10.1038/s43588-021-00084-1
10.1109/comst.2024.3502762
10.1109/OJCOMS.2023.3309268
10.1103/physreva.101.032308
10.1109/ALLERTON.2017.8262721
10.22331/q-2022-03-30-677
10.1109/ICASSP43922.2022.9747369
10.1103/physreva.103.032430
10.1109/TCCN.2019.2919300
10.1109/COMSNETS59351.2024.10427450
10.1109/TAP.2004.835272
10.1017/9781009489843
10.1088/2632-2153/ac4559
10.1109/ISSPIT.2016.7886039
10.22331/q-2020-02-06-226
10.1126/science.1127647
10.1016/j.comcom.2021.09.033
10.36244/ICJ.2021.1.2
10.1109/TCCN.2017.2758370
10.1088/2058-9565/aa8072
10.1103/physreva.102.032412
10.1109/SEC54971.2022.00071
10.1007/s43673-021-00030-3
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3566207
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 82192
ExternalDocumentID oai_doaj_org_article_9ea1a04e0c2147e49ab3c314e82c0240
10_1109_ACCESS_2025_3566207
10981758
Genre orig-research
GrantInformation_xml – fundername: Quantum Information National Laboratory of Hungary
  grantid: 2022-2.1.1-NL-2022-00004
– fundername: QuantERA II Project Hybrid Quantum Classical Computation
  grantid: (HQCC)-101017733
– fundername: Hungarian National Research, Development and Innovation Office (NKFIH)
  grantid: KDP-2021; KDP-2023; TKP-2021-NVA-04; FK 135220
  funderid: 10.13039/501100018818
– fundername: European Union within the Horizon Europe Program HORIZONCL4-2022-QUANTUM-01-Specific Grant Agreement (SGA) Project
  grantid: 101113946 OpenSuperQPlus100
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c411t-8afc83e77b6521ceeed708bcc04f2256b0f108b98b3038c11c991476f91b8e813
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001489664500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:18:51 EDT 2025
Sat Nov 01 15:53:20 EDT 2025
Sat Nov 29 07:53:55 EST 2025
Tue Nov 18 20:47:28 EST 2025
Wed Aug 27 02:01:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c411t-8afc83e77b6521ceeed708bcc04f2256b0f108b98b3038c11c991476f91b8e813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2070-7452
0000-0003-1813-1562
0009-0004-8756-7890
0000-0002-5270-1891
OpenAccessLink https://doaj.org/article/9ea1a04e0c2147e49ab3c314e82c0240
PQID 3204789820
PQPubID 4845423
PageCount 12
ParticipantIDs crossref_primary_10_1109_ACCESS_2025_3566207
ieee_primary_10981758
doaj_primary_oai_doaj_org_article_9ea1a04e0c2147e49ab3c314e82c0240
proquest_journals_3204789820
crossref_citationtrail_10_1109_ACCESS_2025_3566207
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References O’Shea (ref43) 2017
ref12
Goodfellow (ref41) 2016
ref15
ref14
ref11
ref10
García (ref24) 2022; 181
ref16
ref19
O’Malley (ref49) 2019
Bergholm (ref46) 2018
(ref17) 2022
Schuld (ref13) 2021
ref42
ref44
ref8
ref7
ref9
Ng (ref39) 2011; 72
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref38
Farhi (ref45) 2014
Kingma (ref48) 2014
ref23
ref26
Abadi (ref47) 2015
ref25
ref20
ref22
ref21
ref28
ref27
ref29
(ref18) 2023
References_xml – ident: ref23
  doi: 10.1109/MCOM.001.2000804
– ident: ref25
  doi: 10.1109/ACCESS.2020.3025597
– ident: ref4
  doi: 10.1103/physrevresearch.1.033063
– volume-title: Machine Learning With Quantum Computers
  year: 2021
  ident: ref13
  doi: 10.1007/978-3-030-83098-4
– ident: ref3
  doi: 10.1007/s11128-014-0809-8
– ident: ref30
  doi: 10.1109/ACCESS.2021.3114543
– ident: ref8
  doi: 10.1103/physrevlett.121.040502
– ident: ref21
  doi: 10.1109/JSTSP.2017.2784180
– ident: ref33
  doi: 10.1109/MCOM.001.2200362
– ident: ref12
  doi: 10.1103/physrevlett.124.130502
– volume-title: 6G-Connecting a Cyber-physical World—A Research Outlook Toward 2030
  year: 2022
  ident: ref17
– ident: ref26
  doi: 10.1109/SPAWC48557.2020.9154335
– ident: ref27
  doi: 10.1016/j.phycom.2024.102583
– ident: ref14
  doi: 10.1007/s42484-022-00075-z
– volume-title: Deep Learning
  year: 2016
  ident: ref41
– ident: ref1
  doi: 10.1109/TII.2022.3146552
– ident: ref28
  doi: 10.1145/3341302.3342072
– ident: ref16
  doi: 10.1002/0471200573
– ident: ref2
  doi: 10.1038/s43588-021-00084-1
– volume-title: TensorFlow: Large-scale Machine Learning on Heterogeneous Systems
  year: 2015
  ident: ref47
– ident: ref32
  doi: 10.1109/comst.2024.3502762
– ident: ref31
  doi: 10.1109/OJCOMS.2023.3309268
– ident: ref38
  doi: 10.1103/physreva.101.032308
– ident: ref22
  doi: 10.1109/ALLERTON.2017.8262721
– ident: ref5
  doi: 10.22331/q-2022-03-30-677
– ident: ref9
  doi: 10.1109/ICASSP43922.2022.9747369
– year: 2014
  ident: ref48
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref37
  doi: 10.1103/physreva.103.032430
– ident: ref44
  doi: 10.1109/TCCN.2019.2919300
– ident: ref35
  doi: 10.1109/COMSNETS59351.2024.10427450
– ident: ref42
  doi: 10.1109/TAP.2004.835272
– ident: ref15
  doi: 10.1017/9781009489843
– volume-title: Ai-driven Communication & Computation Co-design: Final Solutions
  year: 2023
  ident: ref18
– volume-title: Kerastuner
  year: 2019
  ident: ref49
– year: 2018
  ident: ref46
  article-title: PennyLane: Automatic differentiation of hybrid quantum-classical computations
  publication-title: arXiv:1811.04968
– ident: ref6
  doi: 10.1088/2632-2153/ac4559
– ident: ref19
  doi: 10.1109/ISSPIT.2016.7886039
– year: 2014
  ident: ref45
  article-title: A quantum approximate optimization algorithm
  publication-title: arXiv:1411.4028
– ident: ref36
  doi: 10.22331/q-2020-02-06-226
– ident: ref40
  doi: 10.1126/science.1127647
– volume: 181
  start-page: 192
  year: 2022
  ident: ref24
  article-title: Model-free machine learning of wireless SISO/MIMO communications
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2021.09.033
– ident: ref29
  doi: 10.36244/ICJ.2021.1.2
– volume: 72
  start-page: 1
  issue: 2011
  year: 2011
  ident: ref39
  article-title: Sparse autoencoder
  publication-title: CS294A Lect. Notes
– ident: ref20
  doi: 10.1109/TCCN.2017.2758370
– ident: ref11
  doi: 10.1088/2058-9565/aa8072
– ident: ref10
  doi: 10.1103/physreva.102.032412
– ident: ref34
  doi: 10.1109/SEC54971.2022.00071
– year: 2017
  ident: ref43
  article-title: Deep learning based MIMO communications
  publication-title: arXiv:1707.07980
– ident: ref7
  doi: 10.1007/s43673-021-00030-3
SSID ssj0000816957
Score 2.3474853
Snippet End-to-end radio communication needs to be optimized against noisy channel conditions and other distortion effects. This paper presents a novel concept, a set...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 82181
SubjectTerms Adaptation models
Autoencoders
Coding
Computer architecture
Encoding
Feasibility studies
Machine learning
Network design
Neural networks
Quadrature amplitude modulation
quantum autoencoder
Quantum circuit
Quantum machine learning
Radio communication
Radio communications
Radio signals
Random noise
Receivers
Receivers & amplifiers
Symbols
Transceivers
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB2a0ENySL8SuklafMgxSi1La0nH7bJLT0tbEshNWNIYAu267Nr9_R3JyrIhtNCLvxhjWU_yjCTPewBXRmBjao6MtzwwabxkjeC0kaEW3CmFQSaxCbVa6ft78zUnq6dcGERMP5_hTTxMa_mh80OcKqMebjS5O30AB0qpMVlrN6ESFSTMVGVmITL9NJvP6SVoDFhNbwSFLVXUjN3zPomkP6uqPPsUJ_-yfPWfJXsNJzmQLGYj8m_gBa7fwvEeveA7WH0bqN6GnywpX0Y0itnQd5G6MuCmmO2tIWwLCl6LxTqwvmO0K7434aErnqSPnMLdcnE7_8KyfgLzkvOe6ab1WqBSriYnTd4Qgyq1876ULXXj2pUtp3OjHfkx7Tn3FCxKVbeGO42aizM4XHdrfA8FVXcwZOKmQclGBMd1q7E2UktfBiwnUD3Wq_WZXDxqXPywaZBRGjuCYSMYNoMxgevdTb9Gbo1_m3-OgO1MIzF2ukBI2NzPrMGGN6XE0kcBJpSmccJT40Nd-UjnNoHTiN7e80bgJnD5iL_NvXhrRRW5iwwFSed_ue0CjmIRxzmZSzjsNwN-gJf-d_-w3XxMDfQPi6LidA
  priority: 102
  providerName: IEEE
Title Quantum-Classical Autoencoder Architectures for End-to-End Radio Communication
URI https://ieeexplore.ieee.org/document/10981758
https://www.proquest.com/docview/3204789820
https://doaj.org/article/9ea1a04e0c2147e49ab3c314e82c0240
Volume 13
WOSCitedRecordID wos001489664500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA0iHvQgfuLqKj14NJo02SY51mXFi4uKgrfQfBQE7cpu69Hf7iTtSkXQi5eUlrRpXiaZSdq8h9CpYr5QGfWYltRhrizHBaOQcJcxaoTwjkexCTGdyqcndduT-gr_hLX0wC1wF8oXtCDcExsUdTxXhWEWnuZlagM_Vxh9IerpTabiGCxppkaioxmiRF3k4zHUCCaE6eicQQyTBgHZniuKjP2dxMqPcTk6m6sttNlFiUnevt02WvHVDtrocQfuouldA6A0rzjKWgaok7ypZ4GX0vl5kvc-ECwSiEyTSeVwPcNwSO4L9zxLvu0N2UOPV5OH8TXuxBGw5ZTWWBallcwLYTLwwODqvBNEGmsJL6GPZoaUFM6VNOCkpKXUQiTIRVYqaqSXlO2j1WpW-QOUCCGcgixm5AQvmDNUltJniktuifNkgNIlTtp2zOFBwOJFxxkEUboFVwdwdQfuAJ193fTWEmf8nv0yNMBX1sB6HS-ALejOFvRftjBAe6H5euUpCeGRHKDhsj1110UXmqWBmEhBBHT4H2UfofVQn3Z1ZohW63njj9Gafa-fF_OTaJ2Q3nxMTuIew0_79uZh
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BQaIc-GzFlgI5cMQljr2xfdyuWhVRVoCK1JsV2xOpUtmg3YTfz9hxV4sQlXrJlyaK42dnxnbmPYD3RmBjao6MtzwwabxkjeC0kaEW3CmFQSaxCbVY6MtL8zUnq6dcGERMP5_hUTxMa_mh80OcKqMebjS5O30fHkylrPiYrrWZUokaEmaqMrcQGX-czef0GjQKrKZHggKXKqrGbvmfRNOfdVX--RgnD3P69I5lewZPcihZzEbsn8M9XL6Ax1sEgy9h8W2gmht-sqR9GfEoZkPfRfLKgKtitrWKsC4ofC1OloH1HaNd8b0JV13xVwLJHvw4PbmYn7GsoMC85Lxnumm9FqiUq8lNkz_EoErtvC9lSx25dmXL6dxoR55Me849hYtS1a3hTqPmYh92lt0SX0GhlAqGTNw0KNmI4LhuNdZGaunLgOUEqpt6tT7Ti0eVi2ubhhmlsSMYNoJhMxgT-LC56dfIrnG7-XEEbGMaqbHTBULC5p5mDTa8KSWWPkowoTSNE56aH-rKR0K3CexF9LaeNwI3gcMb_G3ux2srqsheZChMOvjPbe_g0dnFl3N7_mnx-TXsxuKOMzSHsNOvBnwDD_3v_mq9epsa6x95CeW7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum-Classical+Autoencoder+Architectures+for+End-to-End+Radio+Communication&rft.jtitle=IEEE+access&rft.au=Tabi%2C+Zsolt+I.&rft.au=Bak%C3%B3%2C+Bence&rft.au=Nagy%2C+D%C3%A1niel+T.+R.&rft.au=Vaderna%2C+P%C3%A9ter&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=82181&rft.epage=82192&rft_id=info:doi/10.1109%2FACCESS.2025.3566207&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3566207
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon