Quantum-Classical Autoencoder Architectures for End-to-End Radio Communication
End-to-end radio communication needs to be optimized against noisy channel conditions and other distortion effects. This paper presents a novel concept, a set of hybrid quantum-classical autoencoder architectures with a comprehensive feasibility study using standard encoded radio signals, to evaluat...
Gespeichert in:
| Veröffentlicht in: | IEEE access Jg. 13; S. 82181 - 82192 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | End-to-end radio communication needs to be optimized against noisy channel conditions and other distortion effects. This paper presents a novel concept, a set of hybrid quantum-classical autoencoder architectures with a comprehensive feasibility study using standard encoded radio signals, to evaluate quantum neural network design requirements for the radio context. The hybrid scenarios include single-sided, i.e., quantum encoder (transmitter) or quantum decoder (receiver), as well as fully quantum radio channel autoencoder (transmitter-receiver) systems. We provide detailed formulas for each scenario and validate our model through an extensive set of simulations. Our results demonstrate model robustness and adaptability. Supporting experiments are conducted utilizing 4 and 16 Quadrature Amplitude Modulation schemes and we expect that the model is adaptable to more general encoding schemes. We explore model performance against both additive white Gaussian noise and Rayleigh fading models. Our numerical findings highlight the importance of designing efficient quantum neural network architectures for meeting application performance constraints - including data re-uploading methods, encoding schemes, and core layer structures. |
|---|---|
| AbstractList | End-to-end radio communication needs to be optimized against noisy channel conditions and other distortion effects. This paper presents a novel concept, a set of hybrid quantum-classical autoencoder architectures with a comprehensive feasibility study using standard encoded radio signals, to evaluate quantum neural network design requirements for the radio context. The hybrid scenarios include single-sided, i.e., quantum encoder (transmitter) or quantum decoder (receiver), as well as fully quantum radio channel autoencoder (transmitter-receiver) systems. We provide detailed formulas for each scenario and validate our model through an extensive set of simulations. Our results demonstrate model robustness and adaptability. Supporting experiments are conducted utilizing 4 and 16 Quadrature Amplitude Modulation schemes and we expect that the model is adaptable to more general encoding schemes. We explore model performance against both additive white Gaussian noise and Rayleigh fading models. Our numerical findings highlight the importance of designing efficient quantum neural network architectures for meeting application performance constraints – including data re-uploading methods, encoding schemes, and core layer structures. |
| Author | Tabi, Zsolt I. Haga, Peter Bako, Bence Kallus, Zsofia Vaderna, Peter Zimboras, Zoltan Nagy, Daniel T. R. |
| Author_xml | – sequence: 1 givenname: Zsolt I. orcidid: 0000-0003-2070-7452 surname: Tabi fullname: Tabi, Zsolt I. email: zsolttabi@ik.elte.hu organization: Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary – sequence: 2 givenname: Bence orcidid: 0009-0004-8756-7890 surname: Bako fullname: Bako, Bence organization: Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary – sequence: 3 givenname: Daniel T. R. surname: Nagy fullname: Nagy, Daniel T. R. organization: Quantum Computing and Information Group, HUN-REN Wigner Research Centre for Physics, Budapest, Hungary – sequence: 4 givenname: Peter orcidid: 0000-0003-1813-1562 surname: Vaderna fullname: Vaderna, Peter organization: Ericsson Research, Budapest, Hungary – sequence: 5 givenname: Zsofia orcidid: 0000-0002-5270-1891 surname: Kallus fullname: Kallus, Zsofia organization: Ericsson Research, Budapest, Hungary – sequence: 6 givenname: Peter surname: Haga fullname: Haga, Peter email: peter.haga@ericsson.com organization: Ericsson Research, Budapest, Hungary – sequence: 7 givenname: Zoltan surname: Zimboras fullname: Zimboras, Zoltan email: zimboras.zoltan@wigner.hu organization: Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary |
| BookMark | eNqFkU1P3DAQhi0EEpTyC9pDpJ6z9dj5sI-raFuQUBGFni1nMmm9ysbUdg799_UShFAvncuMR_O8Y837jp3OfibGPgDfAHD9edt1u4eHjeCi3si6aQRvT9iFgEaXspbN6Zv6nF3FuOc5VG7V7QX7dr_YOS2HsptsjA7tVGyX5GlGP1AotgF_uUSYlkCxGH0odvNQJl_mVHy3g_NF5w-HZc5kcn5-z85GO0W6esmX7MeX3WN3Xd7efb3ptrclVgCpVHZEJalt-6YWgEQ0tFz1iLwahaibno-Q31r1kkuFAKg1VG0zaugVKZCX7GbVHbzdm6fgDjb8Md4689zw4aexITmcyGiyYHlFHEWWoErbXqKEipRALiqetT6tWk_B_14oJrP3S5jz940UvGqVVuI4JdcpDD7GQOPrVuDm6INZfTBHH8yLD5nS_1Do0vOlUrBu-g_7cWVdvs-bbVpBWyv5FyvBluE |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3584000 |
| Cites_doi | 10.1109/MCOM.001.2000804 10.1109/ACCESS.2020.3025597 10.1103/physrevresearch.1.033063 10.1007/978-3-030-83098-4 10.1007/s11128-014-0809-8 10.1109/ACCESS.2021.3114543 10.1103/physrevlett.121.040502 10.1109/JSTSP.2017.2784180 10.1109/MCOM.001.2200362 10.1103/physrevlett.124.130502 10.1109/SPAWC48557.2020.9154335 10.1016/j.phycom.2024.102583 10.1007/s42484-022-00075-z 10.1109/TII.2022.3146552 10.1145/3341302.3342072 10.1002/0471200573 10.1038/s43588-021-00084-1 10.1109/comst.2024.3502762 10.1109/OJCOMS.2023.3309268 10.1103/physreva.101.032308 10.1109/ALLERTON.2017.8262721 10.22331/q-2022-03-30-677 10.1109/ICASSP43922.2022.9747369 10.1103/physreva.103.032430 10.1109/TCCN.2019.2919300 10.1109/COMSNETS59351.2024.10427450 10.1109/TAP.2004.835272 10.1017/9781009489843 10.1088/2632-2153/ac4559 10.1109/ISSPIT.2016.7886039 10.22331/q-2020-02-06-226 10.1126/science.1127647 10.1016/j.comcom.2021.09.033 10.36244/ICJ.2021.1.2 10.1109/TCCN.2017.2758370 10.1088/2058-9565/aa8072 10.1103/physreva.102.032412 10.1109/SEC54971.2022.00071 10.1007/s43673-021-00030-3 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2025.3566207 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 82192 |
| ExternalDocumentID | oai_doaj_org_article_9ea1a04e0c2147e49ab3c314e82c0240 10_1109_ACCESS_2025_3566207 10981758 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Quantum Information National Laboratory of Hungary grantid: 2022-2.1.1-NL-2022-00004 – fundername: QuantERA II Project Hybrid Quantum Classical Computation grantid: (HQCC)-101017733 – fundername: Hungarian National Research, Development and Innovation Office (NKFIH) grantid: KDP-2021; KDP-2023; TKP-2021-NVA-04; FK 135220 funderid: 10.13039/501100018818 – fundername: European Union within the Horizon Europe Program HORIZONCL4-2022-QUANTUM-01-Specific Grant Agreement (SGA) Project grantid: 101113946 OpenSuperQPlus100 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c411t-8afc83e77b6521ceeed708bcc04f2256b0f108b98b3038c11c991476f91b8e813 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001489664500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:18:51 EDT 2025 Sat Nov 01 15:53:20 EDT 2025 Sat Nov 29 07:53:55 EST 2025 Tue Nov 18 20:47:28 EST 2025 Wed Aug 27 02:01:58 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c411t-8afc83e77b6521ceeed708bcc04f2256b0f108b98b3038c11c991476f91b8e813 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2070-7452 0000-0003-1813-1562 0009-0004-8756-7890 0000-0002-5270-1891 |
| OpenAccessLink | https://doaj.org/article/9ea1a04e0c2147e49ab3c314e82c0240 |
| PQID | 3204789820 |
| PQPubID | 4845423 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1109_ACCESS_2025_3566207 ieee_primary_10981758 doaj_primary_oai_doaj_org_article_9ea1a04e0c2147e49ab3c314e82c0240 proquest_journals_3204789820 crossref_citationtrail_10_1109_ACCESS_2025_3566207 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | O’Shea (ref43) 2017 ref12 Goodfellow (ref41) 2016 ref15 ref14 ref11 ref10 García (ref24) 2022; 181 ref16 ref19 O’Malley (ref49) 2019 Bergholm (ref46) 2018 (ref17) 2022 Schuld (ref13) 2021 ref42 ref44 ref8 ref7 ref9 Ng (ref39) 2011; 72 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref38 Farhi (ref45) 2014 Kingma (ref48) 2014 ref23 ref26 Abadi (ref47) 2015 ref25 ref20 ref22 ref21 ref28 ref27 ref29 (ref18) 2023 |
| References_xml | – ident: ref23 doi: 10.1109/MCOM.001.2000804 – ident: ref25 doi: 10.1109/ACCESS.2020.3025597 – ident: ref4 doi: 10.1103/physrevresearch.1.033063 – volume-title: Machine Learning With Quantum Computers year: 2021 ident: ref13 doi: 10.1007/978-3-030-83098-4 – ident: ref3 doi: 10.1007/s11128-014-0809-8 – ident: ref30 doi: 10.1109/ACCESS.2021.3114543 – ident: ref8 doi: 10.1103/physrevlett.121.040502 – ident: ref21 doi: 10.1109/JSTSP.2017.2784180 – ident: ref33 doi: 10.1109/MCOM.001.2200362 – ident: ref12 doi: 10.1103/physrevlett.124.130502 – volume-title: 6G-Connecting a Cyber-physical World—A Research Outlook Toward 2030 year: 2022 ident: ref17 – ident: ref26 doi: 10.1109/SPAWC48557.2020.9154335 – ident: ref27 doi: 10.1016/j.phycom.2024.102583 – ident: ref14 doi: 10.1007/s42484-022-00075-z – volume-title: Deep Learning year: 2016 ident: ref41 – ident: ref1 doi: 10.1109/TII.2022.3146552 – ident: ref28 doi: 10.1145/3341302.3342072 – ident: ref16 doi: 10.1002/0471200573 – ident: ref2 doi: 10.1038/s43588-021-00084-1 – volume-title: TensorFlow: Large-scale Machine Learning on Heterogeneous Systems year: 2015 ident: ref47 – ident: ref32 doi: 10.1109/comst.2024.3502762 – ident: ref31 doi: 10.1109/OJCOMS.2023.3309268 – ident: ref38 doi: 10.1103/physreva.101.032308 – ident: ref22 doi: 10.1109/ALLERTON.2017.8262721 – ident: ref5 doi: 10.22331/q-2022-03-30-677 – ident: ref9 doi: 10.1109/ICASSP43922.2022.9747369 – year: 2014 ident: ref48 article-title: Adam: A method for stochastic optimization publication-title: arXiv:1412.6980 – ident: ref37 doi: 10.1103/physreva.103.032430 – ident: ref44 doi: 10.1109/TCCN.2019.2919300 – ident: ref35 doi: 10.1109/COMSNETS59351.2024.10427450 – ident: ref42 doi: 10.1109/TAP.2004.835272 – ident: ref15 doi: 10.1017/9781009489843 – volume-title: Ai-driven Communication & Computation Co-design: Final Solutions year: 2023 ident: ref18 – volume-title: Kerastuner year: 2019 ident: ref49 – year: 2018 ident: ref46 article-title: PennyLane: Automatic differentiation of hybrid quantum-classical computations publication-title: arXiv:1811.04968 – ident: ref6 doi: 10.1088/2632-2153/ac4559 – ident: ref19 doi: 10.1109/ISSPIT.2016.7886039 – year: 2014 ident: ref45 article-title: A quantum approximate optimization algorithm publication-title: arXiv:1411.4028 – ident: ref36 doi: 10.22331/q-2020-02-06-226 – ident: ref40 doi: 10.1126/science.1127647 – volume: 181 start-page: 192 year: 2022 ident: ref24 article-title: Model-free machine learning of wireless SISO/MIMO communications publication-title: Comput. Commun. doi: 10.1016/j.comcom.2021.09.033 – ident: ref29 doi: 10.36244/ICJ.2021.1.2 – volume: 72 start-page: 1 issue: 2011 year: 2011 ident: ref39 article-title: Sparse autoencoder publication-title: CS294A Lect. Notes – ident: ref20 doi: 10.1109/TCCN.2017.2758370 – ident: ref11 doi: 10.1088/2058-9565/aa8072 – ident: ref10 doi: 10.1103/physreva.102.032412 – ident: ref34 doi: 10.1109/SEC54971.2022.00071 – year: 2017 ident: ref43 article-title: Deep learning based MIMO communications publication-title: arXiv:1707.07980 – ident: ref7 doi: 10.1007/s43673-021-00030-3 |
| SSID | ssj0000816957 |
| Score | 2.3474853 |
| Snippet | End-to-end radio communication needs to be optimized against noisy channel conditions and other distortion effects. This paper presents a novel concept, a set... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 82181 |
| SubjectTerms | Adaptation models Autoencoders Coding Computer architecture Encoding Feasibility studies Machine learning Network design Neural networks Quadrature amplitude modulation quantum autoencoder Quantum circuit Quantum machine learning Radio communication Radio communications Radio signals Random noise Receivers Receivers & amplifiers Symbols Transceivers |
| SummonAdditionalLinks | – databaseName: IEEE Xplore dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB2a0ENySL8SuklafMgxSi1La0nH7bJLT0tbEshNWNIYAu267Nr9_R3JyrIhtNCLvxhjWU_yjCTPewBXRmBjao6MtzwwabxkjeC0kaEW3CmFQSaxCbVa6ft78zUnq6dcGERMP5_hTTxMa_mh80OcKqMebjS5O30AB0qpMVlrN6ESFSTMVGVmITL9NJvP6SVoDFhNbwSFLVXUjN3zPomkP6uqPPsUJ_-yfPWfJXsNJzmQLGYj8m_gBa7fwvEeveA7WH0bqN6GnywpX0Y0itnQd5G6MuCmmO2tIWwLCl6LxTqwvmO0K7434aErnqSPnMLdcnE7_8KyfgLzkvOe6ab1WqBSriYnTd4Qgyq1876ULXXj2pUtp3OjHfkx7Tn3FCxKVbeGO42aizM4XHdrfA8FVXcwZOKmQclGBMd1q7E2UktfBiwnUD3Wq_WZXDxqXPywaZBRGjuCYSMYNoMxgevdTb9Gbo1_m3-OgO1MIzF2ukBI2NzPrMGGN6XE0kcBJpSmccJT40Nd-UjnNoHTiN7e80bgJnD5iL_NvXhrRRW5iwwFSed_ue0CjmIRxzmZSzjsNwN-gJf-d_-w3XxMDfQPi6LidA priority: 102 providerName: IEEE |
| Title | Quantum-Classical Autoencoder Architectures for End-to-End Radio Communication |
| URI | https://ieeexplore.ieee.org/document/10981758 https://www.proquest.com/docview/3204789820 https://doaj.org/article/9ea1a04e0c2147e49ab3c314e82c0240 |
| Volume | 13 |
| WOSCitedRecordID | wos001489664500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA0iHvQgfuLqKj14NJo02SY51mXFi4uKgrfQfBQE7cpu69Hf7iTtSkXQi5eUlrRpXiaZSdq8h9CpYr5QGfWYltRhrizHBaOQcJcxaoTwjkexCTGdyqcndduT-gr_hLX0wC1wF8oXtCDcExsUdTxXhWEWnuZlagM_Vxh9IerpTabiGCxppkaioxmiRF3k4zHUCCaE6eicQQyTBgHZniuKjP2dxMqPcTk6m6sttNlFiUnevt02WvHVDtrocQfuouldA6A0rzjKWgaok7ypZ4GX0vl5kvc-ECwSiEyTSeVwPcNwSO4L9zxLvu0N2UOPV5OH8TXuxBGw5ZTWWBallcwLYTLwwODqvBNEGmsJL6GPZoaUFM6VNOCkpKXUQiTIRVYqaqSXlO2j1WpW-QOUCCGcgixm5AQvmDNUltJniktuifNkgNIlTtp2zOFBwOJFxxkEUboFVwdwdQfuAJ193fTWEmf8nv0yNMBX1sB6HS-ALejOFvRftjBAe6H5euUpCeGRHKDhsj1110UXmqWBmEhBBHT4H2UfofVQn3Z1ZohW63njj9Gafa-fF_OTaJ2Q3nxMTuIew0_79uZh |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BQaIc-GzFlgI5cMQljr2xfdyuWhVRVoCK1JsV2xOpUtmg3YTfz9hxV4sQlXrJlyaK42dnxnbmPYD3RmBjao6MtzwwabxkjeC0kaEW3CmFQSaxCbVY6MtL8zUnq6dcGERMP5_hUTxMa_mh80OcKqMebjS5O30fHkylrPiYrrWZUokaEmaqMrcQGX-czef0GjQKrKZHggKXKqrGbvmfRNOfdVX--RgnD3P69I5lewZPcihZzEbsn8M9XL6Ax1sEgy9h8W2gmht-sqR9GfEoZkPfRfLKgKtitrWKsC4ofC1OloH1HaNd8b0JV13xVwLJHvw4PbmYn7GsoMC85Lxnumm9FqiUq8lNkz_EoErtvC9lSx25dmXL6dxoR55Me849hYtS1a3hTqPmYh92lt0SX0GhlAqGTNw0KNmI4LhuNdZGaunLgOUEqpt6tT7Ti0eVi2ubhhmlsSMYNoJhMxgT-LC56dfIrnG7-XEEbGMaqbHTBULC5p5mDTa8KSWWPkowoTSNE56aH-rKR0K3CexF9LaeNwI3gcMb_G3ux2srqsheZChMOvjPbe_g0dnFl3N7_mnx-TXsxuKOMzSHsNOvBnwDD_3v_mq9epsa6x95CeW7 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum-Classical+Autoencoder+Architectures+for+End-to-End+Radio+Communication&rft.jtitle=IEEE+access&rft.au=Tabi%2C+Zsolt+I.&rft.au=Bak%C3%B3%2C+Bence&rft.au=Nagy%2C+D%C3%A1niel+T.+R.&rft.au=Vaderna%2C+P%C3%A9ter&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=82181&rft.epage=82192&rft_id=info:doi/10.1109%2FACCESS.2025.3566207&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3566207 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |