Accurate detection of outliers and subpopulations with Pmetrics, a nonparametric and parametric pharmacometric modeling and simulation package for R

Nonparametric population modeling algorithms have a theoretical superiority over parametric methods to detect pharmacokinetic and pharmacodynamic subgroups and outliers within a study population. The authors created "Pmetrics," a new Windows and Unix R software package that updates the old...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Therapeutic drug monitoring Ročník 34; číslo 4; s. 467
Hlavní autoři: Neely, Michael N, van Guilder, Michael G, Yamada, Walter M, Schumitzky, Alan, Jelliffe, Roger W
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.08.2012
Témata:
ISSN:1536-3694, 1536-3694
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Nonparametric population modeling algorithms have a theoretical superiority over parametric methods to detect pharmacokinetic and pharmacodynamic subgroups and outliers within a study population. The authors created "Pmetrics," a new Windows and Unix R software package that updates the older MM-USCPACK software for nonparametric and parametric population modeling and simulation of pharmacokinetic and pharmacodynamic systems. The parametric iterative 2-stage Bayesian and the nonparametric adaptive grid (NPAG) approaches in Pmetrics were used to fit a simulated population with bimodal elimination (Kel) and unimodal volume of distribution (Vd), plus an extreme outlier, for a 1-compartment model of an intravenous drug. The true means (SD) for Kel and Vd in the population sample were 0.19 (0.17) and 102 (22.3), respectively. Those found by NPAG were 0.19 (0.16) and 104 (22.6). The iterative 2-stage Bayesian estimated them to be 0.18 (0.16) and 104 (24.4). However, given the bimodality of Kel, no subject had a value near the mean for the population. Only NPAG was able to accurately detect the bimodal distribution for Kel and to find the outlier in both the population model and in the Bayesian posterior parameter estimates. Built on over 3 decades of work, Pmetrics adopts a robust, reliable, and mature nonparametric approach to population modeling, which was better than the parametric method at discovering true pharmacokinetic subgroups and an outlier.
AbstractList Nonparametric population modeling algorithms have a theoretical superiority over parametric methods to detect pharmacokinetic and pharmacodynamic subgroups and outliers within a study population. The authors created "Pmetrics," a new Windows and Unix R software package that updates the older MM-USCPACK software for nonparametric and parametric population modeling and simulation of pharmacokinetic and pharmacodynamic systems. The parametric iterative 2-stage Bayesian and the nonparametric adaptive grid (NPAG) approaches in Pmetrics were used to fit a simulated population with bimodal elimination (Kel) and unimodal volume of distribution (Vd), plus an extreme outlier, for a 1-compartment model of an intravenous drug. The true means (SD) for Kel and Vd in the population sample were 0.19 (0.17) and 102 (22.3), respectively. Those found by NPAG were 0.19 (0.16) and 104 (22.6). The iterative 2-stage Bayesian estimated them to be 0.18 (0.16) and 104 (24.4). However, given the bimodality of Kel, no subject had a value near the mean for the population. Only NPAG was able to accurately detect the bimodal distribution for Kel and to find the outlier in both the population model and in the Bayesian posterior parameter estimates. Built on over 3 decades of work, Pmetrics adopts a robust, reliable, and mature nonparametric approach to population modeling, which was better than the parametric method at discovering true pharmacokinetic subgroups and an outlier.
Nonparametric population modeling algorithms have a theoretical superiority over parametric methods to detect pharmacokinetic and pharmacodynamic subgroups and outliers within a study population.INTRODUCTIONNonparametric population modeling algorithms have a theoretical superiority over parametric methods to detect pharmacokinetic and pharmacodynamic subgroups and outliers within a study population.The authors created "Pmetrics," a new Windows and Unix R software package that updates the older MM-USCPACK software for nonparametric and parametric population modeling and simulation of pharmacokinetic and pharmacodynamic systems. The parametric iterative 2-stage Bayesian and the nonparametric adaptive grid (NPAG) approaches in Pmetrics were used to fit a simulated population with bimodal elimination (Kel) and unimodal volume of distribution (Vd), plus an extreme outlier, for a 1-compartment model of an intravenous drug.METHODSThe authors created "Pmetrics," a new Windows and Unix R software package that updates the older MM-USCPACK software for nonparametric and parametric population modeling and simulation of pharmacokinetic and pharmacodynamic systems. The parametric iterative 2-stage Bayesian and the nonparametric adaptive grid (NPAG) approaches in Pmetrics were used to fit a simulated population with bimodal elimination (Kel) and unimodal volume of distribution (Vd), plus an extreme outlier, for a 1-compartment model of an intravenous drug.The true means (SD) for Kel and Vd in the population sample were 0.19 (0.17) and 102 (22.3), respectively. Those found by NPAG were 0.19 (0.16) and 104 (22.6). The iterative 2-stage Bayesian estimated them to be 0.18 (0.16) and 104 (24.4). However, given the bimodality of Kel, no subject had a value near the mean for the population. Only NPAG was able to accurately detect the bimodal distribution for Kel and to find the outlier in both the population model and in the Bayesian posterior parameter estimates.RESULTSThe true means (SD) for Kel and Vd in the population sample were 0.19 (0.17) and 102 (22.3), respectively. Those found by NPAG were 0.19 (0.16) and 104 (22.6). The iterative 2-stage Bayesian estimated them to be 0.18 (0.16) and 104 (24.4). However, given the bimodality of Kel, no subject had a value near the mean for the population. Only NPAG was able to accurately detect the bimodal distribution for Kel and to find the outlier in both the population model and in the Bayesian posterior parameter estimates.Built on over 3 decades of work, Pmetrics adopts a robust, reliable, and mature nonparametric approach to population modeling, which was better than the parametric method at discovering true pharmacokinetic subgroups and an outlier.CONCLUSIONSBuilt on over 3 decades of work, Pmetrics adopts a robust, reliable, and mature nonparametric approach to population modeling, which was better than the parametric method at discovering true pharmacokinetic subgroups and an outlier.
Author Jelliffe, Roger W
Neely, Michael N
Schumitzky, Alan
van Guilder, Michael G
Yamada, Walter M
Author_xml – sequence: 1
  givenname: Michael N
  surname: Neely
  fullname: Neely, Michael N
  email: mneely@usc.edu
  organization: Laboratory of Applied Pharmacokinetics, University of Southern California Keck School of Medicine, Los Angeles, CA, USA. mneely@usc.edu
– sequence: 2
  givenname: Michael G
  surname: van Guilder
  fullname: van Guilder, Michael G
– sequence: 3
  givenname: Walter M
  surname: Yamada
  fullname: Yamada, Walter M
– sequence: 4
  givenname: Alan
  surname: Schumitzky
  fullname: Schumitzky, Alan
– sequence: 5
  givenname: Roger W
  surname: Jelliffe
  fullname: Jelliffe, Roger W
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22722776$$D View this record in MEDLINE/PubMed
BookMark eNpNUNtKw0AQXUSxF_0DkX30wdS9ZtvHUq0KBUXqc5hsJm00ycbdBPE__GCjrVAYmDlnzjkMMyLHtauRkAvOJpzNzM1yfTthKeMSJZ8KbVUK8REZci3jSMYzdXwwD8gohDfGuJoydkoGQpi-TDwk33NrOw8t0gxbtG3haupy6rq2LNAHCnVGQ5c2rulK-N0G-lm0W_pcYesLG64p0P6wBjzsmD_HAWy24Cuwbg8rl2FZ1JtdcFHtU3uHfYcN0tx5-nJGTnIoA57v-5i8Lu_Wi4do9XT_uJivIqs4byNjZTxNZ1wYjWg1grA2E2kM2qCQPWkNszGTRmqWGS3A2BnPcimVShFBizG52uU23n10GNqkKoLFsoQaXRcSzoSKldJT1Usv99IurTBLGl9U4L-S_0-KH6eKfMU
CitedBy_id crossref_primary_10_1128_AAC_02744_14
crossref_primary_10_1128_aac_00563_22
crossref_primary_10_1002_cpt_2114
crossref_primary_10_1111_tri_12194
crossref_primary_10_1111_myc_12899
crossref_primary_10_1128_AAC_02526_17
crossref_primary_10_1073_pnas_1710845114
crossref_primary_10_1128_AAC_01945_20
crossref_primary_10_1016_j_trim_2023_101906
crossref_primary_10_1128_AAC_02664_14
crossref_primary_10_1111_bcp_12394
crossref_primary_10_1093_jac_dkx541
crossref_primary_10_1128_AAC_00539_13
crossref_primary_10_1097_PCC_0000000000001250
crossref_primary_10_1111_jvp_12118
crossref_primary_10_1097_ALN_0000000000002752
crossref_primary_10_1186_s12936_019_2950_4
crossref_primary_10_1002_cpt_2698
crossref_primary_10_1128_AAC_01899_20
crossref_primary_10_1007_s00228_018_02609_6
crossref_primary_10_1097_INF_0000000000003061
crossref_primary_10_1097_FTD_0000000000001065
crossref_primary_10_1007_s00228_019_02716_y
crossref_primary_10_1128_AAC_01682_18
crossref_primary_10_1007_s00228_018_2535_0
crossref_primary_10_1371_journal_pntd_0007955
crossref_primary_10_1016_j_ijid_2021_01_033
crossref_primary_10_1093_jac_dkaf273
crossref_primary_10_1093_jac_dkv342
crossref_primary_10_1016_j_ijantimicag_2019_08_024
crossref_primary_10_1111_bcp_15526
crossref_primary_10_1093_jac_dkv349
crossref_primary_10_1128_aac_00321_22
crossref_primary_10_3389_fphar_2021_682135
crossref_primary_10_1097_FTD_0000000000001293
crossref_primary_10_1128_AAC_01739_18
crossref_primary_10_1128_AAC_01909_17
crossref_primary_10_1128_AAC_00505_18
crossref_primary_10_1186_s13054_024_05126_4
crossref_primary_10_1128_AAC_00745_20
crossref_primary_10_1002_cpt_1023
crossref_primary_10_1016_j_ijantimicag_2017_04_008
crossref_primary_10_3390_antibiotics11070898
crossref_primary_10_3390_antibiotics10040348
crossref_primary_10_1093_jac_dkv451
crossref_primary_10_1128_AAC_00378_19
crossref_primary_10_1097_FTD_0000000000000276
crossref_primary_10_1007_s40262_020_00919_6
crossref_primary_10_1128_AAC_01076_20
crossref_primary_10_1038_clpt_2014_131
crossref_primary_10_1111_bcp_15629
crossref_primary_10_1128_AAC_01566_16
crossref_primary_10_1002_jcph_481
crossref_primary_10_1128_AAC_01554_20
crossref_primary_10_1016_j_phrs_2015_07_012
crossref_primary_10_1093_jac_dkad190
crossref_primary_10_1186_s13613_022_01059_9
crossref_primary_10_1128_AAC_00163_19
crossref_primary_10_1097_FTD_0000000000000381
crossref_primary_10_1007_s40262_018_0638_5
crossref_primary_10_1002_pbc_25287
crossref_primary_10_1016_j_cmi_2018_02_005
crossref_primary_10_1016_j_ebiom_2019_102601
crossref_primary_10_3390_pharmaceutics13122170
crossref_primary_10_1128_aac_02046_21
crossref_primary_10_1016_j_phrs_2018_07_005
crossref_primary_10_1097_FTD_0000000000001268
crossref_primary_10_1097_FTD_0000000000001143
crossref_primary_10_1128_aac_00102_25
crossref_primary_10_1002_psp4_13113
crossref_primary_10_1186_s13054_021_03863_4
crossref_primary_10_1186_s12987_022_00352_w
crossref_primary_10_1128_AAC_00713_20
crossref_primary_10_1128_AAC_00905_20
crossref_primary_10_1016_j_accpm_2024_101376
crossref_primary_10_1093_cid_cix198
crossref_primary_10_1128_AAC_01956_15
crossref_primary_10_1093_infdis_jiu603
crossref_primary_10_1128_aac_01201_23
crossref_primary_10_1007_s00228_020_03001_z
crossref_primary_10_1093_jac_dkaf355
crossref_primary_10_1128_AAC_02629_20
crossref_primary_10_1007_s40262_020_00869_z
crossref_primary_10_1093_ofid_ofaf190
crossref_primary_10_1128_AAC_00885_18
crossref_primary_10_1007_s40268_021_00344_5
crossref_primary_10_1128_aac_00438_22
crossref_primary_10_1016_j_ijantimicag_2016_12_005
crossref_primary_10_1007_s40262_016_0448_6
crossref_primary_10_1007_s00228_018_2526_1
crossref_primary_10_1093_bja_aex026
crossref_primary_10_1111_jvp_12778
crossref_primary_10_1128_AAC_01922_18
crossref_primary_10_1093_jac_dku564
crossref_primary_10_1002_jcph_1993
crossref_primary_10_1128_mSphere_00595_18
crossref_primary_10_1097_FTD_0000000000000595
crossref_primary_10_1097_PCC_0000000000001537
crossref_primary_10_1128_AAC_00124_21
crossref_primary_10_1016_j_accpm_2019_09_009
crossref_primary_10_1093_jac_dkad038
crossref_primary_10_1093_jac_dkae006
crossref_primary_10_1128_AAC_02472_20
crossref_primary_10_1128_AAC_00416_17
crossref_primary_10_1089_sur_2021_218
crossref_primary_10_1093_jac_dkae363
crossref_primary_10_1093_jac_dkad030
crossref_primary_10_1007_s40262_017_0533_5
crossref_primary_10_1128_AAC_00514_16
crossref_primary_10_1128_AAC_01427_16
crossref_primary_10_1016_j_jcrc_2021_04_013
crossref_primary_10_1128_AAC_00474_13
crossref_primary_10_1128_AAC_02300_19
crossref_primary_10_1016_j_ijantimicag_2017_03_029
crossref_primary_10_1097_FTD_0000000000000580
crossref_primary_10_1177_1060028018773771
crossref_primary_10_1038_s41598_022_12627_1
crossref_primary_10_1128_AAC_00828_16
crossref_primary_10_1128_AAC_01438_21
crossref_primary_10_1002_cpt_646
crossref_primary_10_1002_phar_1916
crossref_primary_10_3389_fphar_2022_874176
crossref_primary_10_1128_aac_02181_21
crossref_primary_10_1093_ofid_ofaa538
crossref_primary_10_1002_jcph_1650
crossref_primary_10_1128_AAC_00462_15
crossref_primary_10_1007_s40262_021_01106_x
crossref_primary_10_1128_AAC_00032_15
crossref_primary_10_1093_infdis_jix479
crossref_primary_10_1128_AAC_00566_20
crossref_primary_10_1093_jac_dkae464
crossref_primary_10_3390_pharmaceutics15051336
crossref_primary_10_1002_cpt_2502
crossref_primary_10_1007_s40262_019_00817_6
crossref_primary_10_1186_s13054_018_2019_8
crossref_primary_10_1097_FTD_0000000000001214
crossref_primary_10_1371_journal_pone_0291425
crossref_primary_10_1016_j_ijantimicag_2014_10_014
crossref_primary_10_1016_j_medmal_2019_04_226
crossref_primary_10_1002_psp4_13056
crossref_primary_10_1007_s00228_020_02867_3
crossref_primary_10_1093_jac_dkac038
crossref_primary_10_1128_aac_00966_22
crossref_primary_10_1007_s40262_023_01235_5
crossref_primary_10_1007_s40121_021_00551_2
crossref_primary_10_1007_s40262_020_00859_1
crossref_primary_10_1007_s40262_023_01320_9
crossref_primary_10_1093_infdis_jiz566
crossref_primary_10_1016_j_accpm_2022_101080
crossref_primary_10_1111_cts_12833
crossref_primary_10_1093_jac_dkac389
crossref_primary_10_1007_s40121_019_0251_4
crossref_primary_10_1038_srep23458
crossref_primary_10_1128_AAC_02533_20
crossref_primary_10_1128_AAC_00303_16
crossref_primary_10_1128_AAC_01009_20
crossref_primary_10_1128_AAC_01088_16
crossref_primary_10_1002_phar_1807
crossref_primary_10_1128_AAC_01475_17
crossref_primary_10_3390_pharmaceutics13040539
crossref_primary_10_1016_j_ijantimicag_2017_01_036
crossref_primary_10_1097_FTD_0000000000000661
crossref_primary_10_1016_j_resplu_2020_100007
crossref_primary_10_1111_bcp_13960
crossref_primary_10_1097_INF_0000000000002120
crossref_primary_10_1016_j_ijantimicag_2015_12_003
crossref_primary_10_1093_jac_dkae318
crossref_primary_10_1007_s40262_021_01062_6
crossref_primary_10_1371_journal_pone_0230195
crossref_primary_10_1016_j_ijantimicag_2018_02_015
crossref_primary_10_3390_molecules27154766
crossref_primary_10_1002_psp4_70072
crossref_primary_10_1007_s40262_023_01257_z
crossref_primary_10_1016_j_ijantimicag_2016_08_015
crossref_primary_10_1097_FTD_0000000000000697
crossref_primary_10_1128_AAC_01172_16
crossref_primary_10_1128_aac_02104_21
crossref_primary_10_1186_s12917_020_02728_2
crossref_primary_10_1093_cid_ciu402
crossref_primary_10_1007_s00228_024_03788_1
crossref_primary_10_1093_jac_dkac245
crossref_primary_10_1007_s40262_018_0646_5
crossref_primary_10_1093_jac_dkad211
crossref_primary_10_1007_s40262_020_00902_1
crossref_primary_10_1128_AAC_00546_19
crossref_primary_10_1080_15563650_2019_1606432
crossref_primary_10_1186_s12887_016_0753_0
crossref_primary_10_1128_AAC_02534_17
crossref_primary_10_3390_pharmaceutics11060278
crossref_primary_10_1038_ncomms15159
crossref_primary_10_1371_journal_pone_0243365
crossref_primary_10_1002_cpt_718
crossref_primary_10_1097_FTD_0000000000000323
crossref_primary_10_1002_cpt_1219
crossref_primary_10_1093_jac_dkz069
crossref_primary_10_1128_AAC_00090_17
crossref_primary_10_1128_AAC_00591_16
crossref_primary_10_2133_dmpk_DMPK_13_RV_112
crossref_primary_10_1128_AAC_01276_16
crossref_primary_10_1128_aac_00056_22
crossref_primary_10_1007_s10096_021_04252_z
crossref_primary_10_1128_AAC_01194_12
crossref_primary_10_1128_aac_00695_22
crossref_primary_10_1128_AAC_02475_17
crossref_primary_10_1097_FTD_0000000000000874
crossref_primary_10_1128_AAC_00752_15
crossref_primary_10_1111_jphp_12554
crossref_primary_10_1128_aac_01665_22
crossref_primary_10_1093_jac_dkz065
crossref_primary_10_3390_antibiotics12010123
crossref_primary_10_1097_FTD_0000000000000507
crossref_primary_10_1128_AAC_00993_19
crossref_primary_10_1002_prp2_856
crossref_primary_10_1097_FTD_0000000000000745
crossref_primary_10_1099_jmm_0_001138
crossref_primary_10_1093_jac_dkz167
crossref_primary_10_1016_j_ijantimicag_2018_03_001
crossref_primary_10_1128_AAC_00144_21
crossref_primary_10_1002_phar_2379
crossref_primary_10_1016_j_phrs_2018_02_016
crossref_primary_10_1093_jac_dkab006
crossref_primary_10_1073_pnas_1816585116
crossref_primary_10_1097_FTD_0000000000000896
crossref_primary_10_1016_j_bmc_2018_05_006
crossref_primary_10_1038_s41586_020_03146_y
crossref_primary_10_1007_s00228_018_2465_x
crossref_primary_10_1128_aac_01550_22
crossref_primary_10_1128_AAC_01574_20
crossref_primary_10_1093_jac_dkac323
crossref_primary_10_3389_fphar_2021_781892
crossref_primary_10_1128_AAC_00867_13
crossref_primary_10_1093_jacamr_dlae203
crossref_primary_10_3390_pharmaceutics14112311
crossref_primary_10_1038_s41409_018_0281_7
crossref_primary_10_1038_s41598_017_00322_5
crossref_primary_10_1128_aac_02189_21
crossref_primary_10_1186_s13054_016_1523_y
crossref_primary_10_1093_jac_dkab468
crossref_primary_10_3390_antibiotics12010032
crossref_primary_10_1208_s12249_015_0454_2
crossref_primary_10_1016_j_ijantimicag_2023_107050
crossref_primary_10_1097_TP_0000000000000708
crossref_primary_10_1002_jcph_1799
crossref_primary_10_1097_INF_0000000000002635
crossref_primary_10_1128_aac_00108_25
crossref_primary_10_3389_fphar_2023_1122310
crossref_primary_10_2147_PGPM_S352719
crossref_primary_10_1093_jac_dkz376
crossref_primary_10_1038_s41598_024_60935_5
crossref_primary_10_1002_phar_2186
crossref_primary_10_1128_AAC_04723_14
crossref_primary_10_1089_mdr_2020_0197
crossref_primary_10_1097_FTD_0000000000000826
crossref_primary_10_1128_AAC_00693_21
crossref_primary_10_1128_AAC_03685_14
crossref_primary_10_1016_j_ijantimicag_2022_106603
crossref_primary_10_1093_jac_dkw098
crossref_primary_10_1093_jac_dkz248
crossref_primary_10_3390_pharmaceutics15010075
crossref_primary_10_1111_add_14552
crossref_primary_10_1053_j_jvca_2022_01_029
crossref_primary_10_1128_AAC_03023_15
crossref_primary_10_1093_jac_dkaa232
crossref_primary_10_1128_AAC_01377_21
crossref_primary_10_3390_pharmaceutics15071859
crossref_primary_10_1097_FTD_0000000000000855
crossref_primary_10_1128_AAC_00180_20
crossref_primary_10_1093_jac_dky388
crossref_primary_10_1111_jphp_12498
crossref_primary_10_1016_j_jsps_2024_102207
crossref_primary_10_1111_fcp_12156
crossref_primary_10_1038_s41598_024_67354_6
crossref_primary_10_1128_AAC_00806_19
crossref_primary_10_1080_00498254_2018_1558310
crossref_primary_10_1002_jcph_1323
crossref_primary_10_1128_AAC_00707_17
crossref_primary_10_1007_s13318_015_0315_0
crossref_primary_10_1016_j_ijantimicag_2021_106408
crossref_primary_10_1093_jac_dkx289
crossref_primary_10_1128_AAC_01653_13
crossref_primary_10_3390_jcm11144140
crossref_primary_10_1128_AAC_00879_20
crossref_primary_10_1128_AAC_00636_21
crossref_primary_10_1128_AAC_01610_20
crossref_primary_10_1093_jac_dkab419
crossref_primary_10_1371_journal_pone_0101311
crossref_primary_10_1128_AAC_00634_19
crossref_primary_10_1128_AAC_02352_13
crossref_primary_10_1128_AAC_02490_20
crossref_primary_10_1371_journal_pone_0211096
crossref_primary_10_3390_pharmaceutics15041073
crossref_primary_10_1111_cts_13394
crossref_primary_10_1093_jac_dkw295
crossref_primary_10_1128_AAC_01914_19
crossref_primary_10_1016_j_ijantimicag_2025_107465
crossref_primary_10_1007_s00228_022_03336_9
crossref_primary_10_1016_j_cmi_2017_02_032
crossref_primary_10_1128_AAC_00531_16
crossref_primary_10_1016_j_ijantimicag_2021_106466
crossref_primary_10_1128_AAC_02134_16
crossref_primary_10_1128_AAC_00737_21
crossref_primary_10_3390_pharmaceutics13122099
crossref_primary_10_1097_QAD_0000000000002754
crossref_primary_10_1128_AAC_00101_17
crossref_primary_10_1128_aac_00142_22
crossref_primary_10_1016_j_ijantimicag_2018_09_021
crossref_primary_10_1016_j_jemermed_2017_05_029
crossref_primary_10_1136_archdischild_2018_315345
crossref_primary_10_1007_s40262_020_00873_3
crossref_primary_10_1093_jac_dkv074
crossref_primary_10_1111_cts_13142
crossref_primary_10_1111_petr_12179
crossref_primary_10_1093_jac_dkw043
crossref_primary_10_1186_s13054_018_1940_1
crossref_primary_10_1128_aac_00991_24
crossref_primary_10_1093_jac_dkaa549
crossref_primary_10_1007_s40262_025_01476_6
crossref_primary_10_1093_jac_dkx140
crossref_primary_10_1128_AAC_01376_20
crossref_primary_10_1208_s12248_022_00769_z
crossref_primary_10_1007_s40262_015_0280_4
crossref_primary_10_1097_FTD_0000000000000803
crossref_primary_10_1093_jac_dkv067
crossref_primary_10_1007_s10928_013_9302_8
crossref_primary_10_3390_pharmaceutics12090785
crossref_primary_10_1038_s41397_021_00223_x
crossref_primary_10_1093_jac_dky574
crossref_primary_10_1128_AAC_01657_16
crossref_primary_10_1128_AAC_02478_16
crossref_primary_10_3390_pharmaceutics16030358
crossref_primary_10_1097_QAI_0b013e3182a9b3f1
crossref_primary_10_3390_pharmaceutics13010042
crossref_primary_10_1128_AAC_00727_16
crossref_primary_10_1007_s40262_023_01219_5
crossref_primary_10_1007_s00228_016_2049_6
crossref_primary_10_1093_jac_dkv173
crossref_primary_10_1111_bcp_14261
crossref_primary_10_1093_jac_dkx473
crossref_primary_10_1128_spectrum_03222_23
crossref_primary_10_1002_phar_70013
crossref_primary_10_1093_jac_dkx477
crossref_primary_10_1016_j_ijantimicag_2017_12_015
crossref_primary_10_3389_fphar_2022_1035841
crossref_primary_10_1128_AAC_00794_17
crossref_primary_10_3390_antibiotics10020100
crossref_primary_10_1007_s40121_014_0049_3
crossref_primary_10_1093_jac_dkv289
crossref_primary_10_1093_jac_dkz408
crossref_primary_10_1128_AAC_01611_21
crossref_primary_10_1093_jac_dky310
crossref_primary_10_1093_jac_dky434
crossref_primary_10_1038_s41390_019_0408_6
crossref_primary_10_1128_AAC_02353_18
crossref_primary_10_1097_TXD_0000000000001448
crossref_primary_10_1016_j_jinf_2016_12_011
crossref_primary_10_1097_INF_0000000000001957
crossref_primary_10_1007_s00228_019_02694_1
crossref_primary_10_1128_AAC_02516_17
crossref_primary_10_1093_jac_dkw127
crossref_primary_10_1128_AAC_02307_20
crossref_primary_10_1128_AAC_02038_20
crossref_primary_10_1007_s40262_017_0606_5
crossref_primary_10_1128_AAC_02610_15
crossref_primary_10_1016_j_ijantimicag_2022_106537
crossref_primary_10_1093_jac_dkx330
crossref_primary_10_1002_phar_2129
crossref_primary_10_1093_jac_dky541
crossref_primary_10_1128_AAC_00293_21
crossref_primary_10_1093_jac_dky543
crossref_primary_10_1371_journal_pone_0229873
crossref_primary_10_1007_s40262_016_0495_z
crossref_primary_10_1208_s12248_019_0407_x
crossref_primary_10_1128_AAC_01468_20
crossref_primary_10_1186_s13054_020_2763_4
crossref_primary_10_1093_jac_dkw592
crossref_primary_10_3390_pharmaceutics14010114
crossref_primary_10_1016_j_ijantimicag_2023_106727
crossref_primary_10_1208_s12248_025_01066_1
crossref_primary_10_1002_jcph_2130
crossref_primary_10_1016_j_jiac_2015_10_009
crossref_primary_10_1097_CCE_0000000000000993
crossref_primary_10_1002_jcph_851
crossref_primary_10_1016_j_accpm_2020_07_021
crossref_primary_10_1128_AAC_01364_15
crossref_primary_10_1007_s40262_020_00877_z
crossref_primary_10_1128_aac_00727_23
crossref_primary_10_1128_AAC_01562_20
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1097/FTD.0b013e31825c4ba6
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1536-3694
ExternalDocumentID 22722776
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM068968
– fundername: NIBIB NIH HHS
  grantid: R01 EB005803
– fundername: NICHD NIH HHS
  grantid: R01 HD070886
– fundername: NICHD NIH HHS
  grantid: R01 HD070996
– fundername: NIAID NIH HHS
  grantid: K23 AI076106
GroupedDBID ---
.-D
.GJ
.Z2
0R~
123
1CY
3O-
4Q1
4Q2
4Q3
53G
5RE
5VS
71W
8L-
AAAAV
AAHPQ
AAIQE
AAMTA
AARTV
AASCR
AAYEP
ABASU
ABBUW
ABDIG
ABJNI
ABOCM
ABPXF
ABVCZ
ABXVJ
ABZAD
ABZZY
ACDDN
ACEWG
ACGFO
ACGFS
ACILI
ACWDW
ACWRI
ACXJB
ACXNZ
ADFPA
ADGGA
ADHPY
ADNKB
AE3
AE6
AEETU
AENEX
AFBFQ
AFDTB
AFFNX
AHMBA
AHQNM
AHVBC
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJZMW
AKCTQ
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
BQLVK
BS7
C45
CGR
CS3
CUY
CVF
DIWNM
DU5
DUNZO
E.X
EBS
ECM
EEVPB
EIF
EJD
EX3
F2K
F2L
F5P
FCALG
FL-
GNXGY
GQDEL
H0~
HLJTE
HZ~
IKREB
IN~
IPNFZ
J5H
JK3
JK8
K8S
KD2
KMI
L-C
N9A
NPM
N~M
O9-
OAG
OAH
OCUKA
ODA
OL1
OLG
OLV
OLZ
OPC
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
P2P
PQQKQ
R58
RIG
RLZ
S4R
S4S
TEORI
TSPGW
V2I
VVN
W3M
WOQ
WOW
X3V
X3W
XXN
XYM
YFH
YOC
ZFV
ZGI
ZXP
ZY1
ZZMQN
7X8
ADKSD
ID FETCH-LOGICAL-c411t-7c368b91275eec5ea2ccd2b6a57e2375ec70c6037350d752a7c91df3344beea52
IEDL.DBID 7X8
ISICitedReferencesCount 420
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000306290500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1536-3694
IngestDate Mon Sep 08 06:07:38 EDT 2025
Mon Jul 21 06:07:06 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c411t-7c368b91275eec5ea2ccd2b6a57e2375ec70c6037350d752a7c91df3344beea52
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3394880
PMID 22722776
PQID 1024644584
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1024644584
pubmed_primary_22722776
PublicationCentury 2000
PublicationDate 2012-08-01
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Therapeutic drug monitoring
PublicationTitleAlternate Ther Drug Monit
PublicationYear 2012
References 16284919 - J Pharmacokinet Pharmacodyn. 2006 Jun;33(3):345-67
20154293 - J Clin Pharmacol. 2010 Jul;50(7):842-7
18635757 - J Clin Pharmacol. 2008 Sep;48(9):1081-91
16584284 - Clin Pharmacokinet. 2006;45(4):365-83
21257797 - J Clin Pharmacol. 2012 Jan;52(1):39-54
19380594 - Antimicrob Agents Chemother. 2009 Jul;53(7):2974-81
18440922 - J Clin Pharmacol. 2008 May;48(5):632-49
10850404 - Ther Drug Monit. 2000 Jun;22(3):346-53
References_xml – reference: 19380594 - Antimicrob Agents Chemother. 2009 Jul;53(7):2974-81
– reference: 16284919 - J Pharmacokinet Pharmacodyn. 2006 Jun;33(3):345-67
– reference: 16584284 - Clin Pharmacokinet. 2006;45(4):365-83
– reference: 20154293 - J Clin Pharmacol. 2010 Jul;50(7):842-7
– reference: 18440922 - J Clin Pharmacol. 2008 May;48(5):632-49
– reference: 10850404 - Ther Drug Monit. 2000 Jun;22(3):346-53
– reference: 21257797 - J Clin Pharmacol. 2012 Jan;52(1):39-54
– reference: 18635757 - J Clin Pharmacol. 2008 Sep;48(9):1081-91
SSID ssj0014800
Score 2.5263858
Snippet Nonparametric population modeling algorithms have a theoretical superiority over parametric methods to detect pharmacokinetic and pharmacodynamic subgroups and...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 467
SubjectTerms Algorithms
Bayes Theorem
Drug Monitoring - methods
Models, Biological
Pharmacokinetics
Software
Title Accurate detection of outliers and subpopulations with Pmetrics, a nonparametric and parametric pharmacometric modeling and simulation package for R
URI https://www.ncbi.nlm.nih.gov/pubmed/22722776
https://www.proquest.com/docview/1024644584
Volume 34
WOSCitedRecordID wos000306290500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qevDi-_0ggniy2ObZnkTUxYtLkRX2tqTTBETsrnZX2P_hD3bSdq0XQRBKIYFMA0lmppOZ7yPkzHEVOhvLIJQy9yU5KkCvGoLYOlDC6diEUJFN6F4vHgyStAm4lU1a5VwnVoo6H4GPkePpZgJtN9rLq_Fb4Fmj_O1qQ6GxSDocXRmf0qUH7S2CiKsSFDzUKuAqEfPSuURfdvu3bQyQSRCZUb87mZWx6a79d5rrZLVxM-l1vS82yIItNsl5WuNUzy5ovy27Ki_oOU1bBOvZFvm8Bph6DAma20mVq1XQkaM-ecgzZ1NT5LScZuNv8q-S-nguTV89P5eXaGgxKjyseN1TjfjRHDefa5oVHQ_a0Frw82sjFUfAC-o7io41fdwmT927_s190NA3BCCiaBJo4CrOEo8gby1IaxhAzjJlpLaMYyfoEFTINZdhriUzGpIod5wLkVlrJNshSzhXu0coFzZLYgEQsRx_SMEIoyIPs4OCnBNqn5zOV2OIx8PfeZjCjqblsF2PfbJbL-lwXON4DBnT-Gh18IfRh2QFXSVWp_4dkY5D5WCPyTJ8TJ7L95Nq3-G7lz58AS-n5m0
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+detection+of+outliers+and+subpopulations+with+Pmetrics%2C+a+nonparametric+and+parametric+pharmacometric+modeling+and+simulation+package+for+R&rft.jtitle=Therapeutic+drug+monitoring&rft.au=Neely%2C+Michael+N&rft.au=van+Guilder%2C+Michael+G&rft.au=Yamada%2C+Walter+M&rft.au=Schumitzky%2C+Alan&rft.date=2012-08-01&rft.eissn=1536-3694&rft.volume=34&rft.issue=4&rft.spage=467&rft_id=info:doi/10.1097%2FFTD.0b013e31825c4ba6&rft_id=info%3Apmid%2F22722776&rft_id=info%3Apmid%2F22722776&rft.externalDocID=22722776
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-3694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-3694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-3694&client=summon