A hybrid topology scale-free Gaussian-dynamic particle swarm optimization algorithm applied to real power loss minimization

This paper proposes a hybrid topology scale-free Gaussian-dynamic particle swarm (HTSFGDPS) optimization algorithm for real power loss minimization problem of power system. The swarm population is divided into two parts: hybrid topology population and scale-free topology population. The novel hybrid...

Full description

Saved in:
Bibliographic Details
Published in:Engineering applications of artificial intelligence Vol. 32; pp. 63 - 75
Main Authors: Wang, Chuan, Liu, Yancheng, Zhao, Youtao, Chen, Yang
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.06.2014
Subjects:
ISSN:0952-1976, 1873-6769
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper proposes a hybrid topology scale-free Gaussian-dynamic particle swarm (HTSFGDPS) optimization algorithm for real power loss minimization problem of power system. The swarm population is divided into two parts: hybrid topology population and scale-free topology population. The novel hybrid topology is mixed with fully connected topology and ring topology. Then, it enables the particles to have stronger exploration ability and fast convergence rate at the same time. In the scale-free part, the topology will be gradually generated as the construction process and the optimization process progress synchronously. As a result, the topology exhibits disassortative mixing property, which can improve the swarm population diversity. This work focuses on a new combination of swarm intelligence optimization theory and complex network theory, as well as its application to electric power system. The presented method is tested on IEEE 14-Bus and 30-Bus power system. The numerical results, compared with other stochastic search algorithms, show that HTSFGDPS could find high-quality solutions with higher convergence speed and probability.
AbstractList This paper proposes a hybrid topology scale-free Gaussian-dynamic particle swarm (HTSFGDPS) optimization algorithm for real power loss minimization problem of power system. The swarm population is divided into two parts: hybrid topology population and scale-free topology population. The novel hybrid topology is mixed with fully connected topology and ring topology. Then, it enables the particles to have stronger exploration ability and fast convergence rate at the same time. In the scale-free part, the topology will be gradually generated as the construction process and the optimization process progress synchronously. As a result, the topology exhibits disassortative mixing property, which can improve the swarm population diversity. This work focuses on a new combination of swarm intelligence optimization theory and complex network theory, as well as its application to electric power system. The presented method is tested on IEEE 14-Bus and 30-Bus power system. The numerical results, compared with other stochastic search algorithms, show that HTSFGDPS could find high-quality solutions with higher convergence speed and probability.
Author Chen, Yang
Zhao, Youtao
Liu, Yancheng
Wang, Chuan
Author_xml – sequence: 1
  givenname: Chuan
  surname: Wang
  fullname: Wang, Chuan
  email: chuanwang0101@163.com
– sequence: 2
  givenname: Yancheng
  surname: Liu
  fullname: Liu, Yancheng
– sequence: 3
  givenname: Youtao
  surname: Zhao
  fullname: Zhao, Youtao
– sequence: 4
  givenname: Yang
  surname: Chen
  fullname: Chen, Yang
BookMark eNqFkEFP3DAQha2KSl1o_0LlYy9JbSfrZKUeQIgCEhKX9mwNzniZlWMH2wta-ueb7VIOXDjNHN739PQds6MQAzL2VYpaCqm_b2oMa5gmoFoJ2dZC1UL2H9hC9l1T6U6vjthCrJaqkqtOf2LHOW-EEE3f6gX7c8bvd3eJBl7iFH1c73i24LFyCZFfwjZnglANuwAjWT5BKmQ98vwEaeRxKjTSMxSKgYNfx0TlfuTzGE-4r-QJwfMpPmHiPubMRwqvxGf20YHP-OXlnrDfPy9-nV9VN7eX1-dnN5VtpSyVtg2swCloFPYghO4bh7bvBtUq12pr9TAIJxrU6NqlAnB418jBWoGd7uf_hH079E4pPmwxFzNStug9BIzbbKTu5FJr2eg5-uMQtWlem9AZS-Xf2JKAvJHC7J2bjfnv3OydG6HM7HzG9Rt8SjRC2r0Pnh5AnD08EiaTLWGwOFBCW8wQ6b2KvzuBpsQ
CitedBy_id crossref_primary_10_1109_TEVC_2023_3277501
crossref_primary_10_1007_s11708_022_0847_3
crossref_primary_10_1016_j_engappai_2016_10_009
crossref_primary_10_1016_j_swevo_2018_01_011
crossref_primary_10_1016_j_physa_2022_127764
crossref_primary_10_1016_j_asoc_2017_04_025
crossref_primary_10_1016_j_engappai_2014_12_003
crossref_primary_10_1007_s00500_015_1784_4
crossref_primary_10_1007_s00500_022_07417_w
crossref_primary_10_1016_j_ins_2018_09_034
crossref_primary_10_1007_s10489_021_03003_z
crossref_primary_10_1016_j_eswa_2021_116049
crossref_primary_10_1007_s10489_022_03438_y
crossref_primary_10_1109_JSYST_2016_2573799
crossref_primary_10_1007_s00170_014_6181_0
crossref_primary_10_1007_s00500_016_2111_4
crossref_primary_10_1016_j_asoc_2018_04_051
crossref_primary_10_1007_s00500_016_2413_6
crossref_primary_10_1016_j_swevo_2022_101142
crossref_primary_10_1007_s11356_021_16072_x
crossref_primary_10_3390_s22051999
crossref_primary_10_3233_JIFS_201667
Cites_doi 10.1109/TPWRS.2005.846049
10.1038/35075138
10.1109/CEC.1999.785509
10.1109/TEVC.2009.2026270
10.1016/j.ins.2011.02.026
10.1126/science.286.5439.509
10.1109/59.744492
10.1145/1068009.1068040
10.1109/ROBOT.2007.364137
10.1109/APPEEC.2009.4918302
10.1007/s100510050359
10.1016/j.epsr.2007.06.005
10.1016/j.ijepes.2008.04.005
10.1109/TPWRS.2005.846064
10.1109/59.898095
10.1016/S0378-4371(00)00018-2
10.1109/ICNN.1995.488968
10.1016/S0142-0615(98)00016-7
10.1103/PhysRevLett.89.208701
10.1007/BFb0040810
10.1109/59.744495
10.1109/4235.985692
10.1109/TEVC.2009.2019825
10.1103/PhysRevE.65.066130
10.1103/PhysRevLett.94.018102
10.1007/s00521-010-0356-x
10.1038/nature01624
10.3724/SP.J.1001.2009.00339
10.1016/j.ijepes.2008.03.003
10.1109/ICEC.1997.592326
10.1007/BFb0040811
10.1016/j.ins.2010.10.015
10.1007/978-3-540-70928-2_10
10.1103/RevModPhys.74.47
10.1109/TEVC.2004.826074
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
7SC
7TB
8FD
F28
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.engappai.2014.02.018
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
EndPage 75
ExternalDocumentID 10_1016_j_engappai_2014_02_018
S0952197614000542
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7TB
8FD
F28
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c411t-6c3a9af2a32e8a00683fec87d242f46cc6dd0f03e6ef452aafeb31dcc0e768eb3
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000336953900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Sat Sep 27 20:28:07 EDT 2025
Tue Nov 18 21:51:49 EST 2025
Sat Nov 29 07:59:02 EST 2025
Fri Feb 23 02:28:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Power system
Scale free network
Real power loss minimization
Gaussian dynamic particle swarm optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c411t-6c3a9af2a32e8a00683fec87d242f46cc6dd0f03e6ef452aafeb31dcc0e768eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1671566136
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_1671566136
crossref_citationtrail_10_1016_j_engappai_2014_02_018
crossref_primary_10_1016_j_engappai_2014_02_018
elsevier_sciencedirect_doi_10_1016_j_engappai_2014_02_018
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2014
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Barabási, Albert (bib3) 1999; 286
Momoh, El-Hawary, Adapa (bib26) 1999; 14
Shi, Y., Eberhart, R., 1998. Parameter selection in particle swarm optimization. In Proceedings of the 7th Annual Conference on Evolutionary Programming, pp. 591–600.
Kennedy, J., 2003. Bare bones particle swarms. In: Proceedings of the IEEE Swarm Intelligence Symposium, pp. 80–87.
Gabaix, Gopikrishnan, Plerou, Stanley (bib9) 2003; 423
Yoshida, Fukuyama, Kawata, Takayama, Nakanishi (bib38) 2000; 15
Zhao, Guo, Cao (bib42) 2005; 20
Barabási, Albert, Jeong (bib4) 2000; 281
Momoh, Adapa, El-Hawary (bib25) 1999; 14
Kennedy, J., 1997. The particle swarm: social adaptation of knowledge. In: Proceedings of the IEEE International Conference on Evolutionary Computation. Indianapolis, IN, pp. 303–308.
Angeline, P., 1998. Evolutionary optimization versus particle swarm optimization philosophy and performance differences. In Proceedings of the 7th Annual Conference on Evolutionary Programming, pp. 601–610.
Eguiluz, Chialvo, Cecchi, Baliki, Apkarian (bib7) 2005; 94
Zhang, X.X., Chen, W.R., Cai, W.Z., Dai, C.H.,2009. Dynamic multigroups self-adaptive differential evolution algorithm with local search for reactive power optimization. In: Proceedings of the. Asia-Pacific Power and Energy Engineering Conference, vol. 3, Wuhan, 28–31 March, pp. 2911–2914.
Giacobini, Preuss, Tomassini (bib13) 2006; 2006
Kennedy, J.,1999. Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1931–1938.
Payne, Eppstein (bib29) 2009; 13
Redner (bib30) 1998; 4
Esmin, Lambert-Torres, Zambroni (bib8) 2005; 20
Ghosh, Das, Kundu, Suresh, Abraham (bib11) 2012; 182
Vázquez, Pastor-Satottas, Vespignani (bib36) 2000; 65
Ni, Zhang, Wang, Xing (bib28) 2009; 20
Zhang, Yi (bib39) 2011; 181
Varadarajan, Swarup (bib34) 2008; 78
Jeong, Mason, Barabási, Oltvai (bib15) 2001; 411
Mendes, Kennedy, Neves (bib24) 2004; 8
Ghosh, Das, Kundu, Suresh, Panigrahi, Cui (bib12) 2012; 21
Clerc, Kennedy (bib5) 2002; 6
Newman (bib27) 2002; 89
Zhang, Liu (bib40) 2008; 30
Albert, Barabási (bib1) 2002; 74
Deb, Goyal (bib6) 1996; 26
Li (bib23) 2010; 14
Goldberg (bib14) 1989
Varadarajan, Swarup (bib35) 2008; 30
Gasparri, A., Panzieri, S., Pascucci, F., Ulivi, G., 2007. A spatially structured genetic algorithm over complex networks for mobile robot localisation. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 4277–4282.
Kennedy, J., 2005. Dynamic-probabilistic particle swarms. In: Proc.eedings of the Genetic and Evolutionary Computation Conference. New York, NY, United States, pp. 201–207.
Kennedy, J., Eberhart, R.C., 1995. Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948.
Wu, Cao, Wen (bib37) 1998; 20
Kirley, M., Stewart, R., 2007. Multiobjective Evolutionary Algorithms on Complex Networks. In: Proceedings of the 4th International Conference on Evolutionary Multicriterion Optimization (LNCS), pp. 81–95.
10.1016/j.engappai.2014.02.018_bib18
Clerc (10.1016/j.engappai.2014.02.018_bib5) 2002; 6
Barabási (10.1016/j.engappai.2014.02.018_bib4) 2000; 281
10.1016/j.engappai.2014.02.018_bib10
Zhao (10.1016/j.engappai.2014.02.018_bib42) 2005; 20
Li (10.1016/j.engappai.2014.02.018_bib23) 2010; 14
10.1016/j.engappai.2014.02.018_bib16
Varadarajan (10.1016/j.engappai.2014.02.018_bib34) 2008; 78
10.1016/j.engappai.2014.02.018_bib17
Giacobini (10.1016/j.engappai.2014.02.018_bib13) 2006; 2006
Jeong (10.1016/j.engappai.2014.02.018_bib15) 2001; 411
Albert (10.1016/j.engappai.2014.02.018_bib1) 2002; 74
10.1016/j.engappai.2014.02.018_bib31
Vázquez (10.1016/j.engappai.2014.02.018_bib36) 2000; 65
Eguiluz (10.1016/j.engappai.2014.02.018_bib7) 2005; 94
Ghosh (10.1016/j.engappai.2014.02.018_bib12) 2012; 21
Momoh (10.1016/j.engappai.2014.02.018_bib25) 1999; 14
Redner (10.1016/j.engappai.2014.02.018_bib30) 1998; 4
Yoshida (10.1016/j.engappai.2014.02.018_bib38) 2000; 15
Gabaix (10.1016/j.engappai.2014.02.018_bib9) 2003; 423
Ghosh (10.1016/j.engappai.2014.02.018_bib11) 2012; 182
Goldberg (10.1016/j.engappai.2014.02.018_bib14) 1989
10.1016/j.engappai.2014.02.018_bib21
Mendes (10.1016/j.engappai.2014.02.018_bib24) 2004; 8
10.1016/j.engappai.2014.02.018_bib22
Ni (10.1016/j.engappai.2014.02.018_bib28) 2009; 20
Varadarajan (10.1016/j.engappai.2014.02.018_bib35) 2008; 30
Barabási (10.1016/j.engappai.2014.02.018_bib3) 1999; 286
Wu (10.1016/j.engappai.2014.02.018_bib37) 1998; 20
Newman (10.1016/j.engappai.2014.02.018_bib27) 2002; 89
Payne (10.1016/j.engappai.2014.02.018_bib29) 2009; 13
Deb (10.1016/j.engappai.2014.02.018_bib6) 1996; 26
Momoh (10.1016/j.engappai.2014.02.018_bib26) 1999; 14
10.1016/j.engappai.2014.02.018_bib41
Esmin (10.1016/j.engappai.2014.02.018_bib8) 2005; 20
10.1016/j.engappai.2014.02.018_bib20
Zhang (10.1016/j.engappai.2014.02.018_bib39) 2011; 181
Zhang (10.1016/j.engappai.2014.02.018_bib40) 2008; 30
10.1016/j.engappai.2014.02.018_bib2
References_xml – volume: 14
  start-page: 150
  year: 2010
  end-page: 169
  ident: bib23
  article-title: Niching without niching parameters: particle swarm optimization using a ring topology
  publication-title: IEEE Trans. Evol. Comput.
– volume: 181
  start-page: 4550
  year: 2011
  end-page: 4568
  ident: bib39
  article-title: Scale-free fully informed particle swarm optimization algorithm
  publication-title: Inf. Sci.
– volume: 8
  start-page: 204
  year: 2004
  end-page: 210
  ident: bib24
  article-title: The fully informed particle swarm: simpler, maybe better
  publication-title: IEEE Trans. Evol. Comput.
– reference: Angeline, P., 1998. Evolutionary optimization versus particle swarm optimization philosophy and performance differences. In Proceedings of the 7th Annual Conference on Evolutionary Programming, pp. 601–610.
– volume: 94
  start-page: 018102
  year: 2005
  ident: bib7
  article-title: Scale-free brain functional networks
  publication-title: Phys. Rev. Lett.
– volume: 65
  start-page: 066130
  year: 2000
  ident: bib36
  article-title: Large-scale topological and dynamical properties of the internet
  publication-title: Phys. Rev. E
– volume: 281
  start-page: 69
  year: 2000
  end-page: 77
  ident: bib4
  article-title: Scale-free characteristics of random networks: the topology of the world wide web
  publication-title: Physica A
– volume: 2006
  start-page: 86
  year: 2006
  end-page: 98
  ident: bib13
  article-title: Effects of scale-free and small-world topologies on binary coded self-adaptive CEA
  publication-title: Proc. Evol. Comput. Combinatorial Optim.
– volume: 411
  start-page: 41
  year: 2001
  end-page: 42
  ident: bib15
  article-title: Lethality and centrality in protein networks
  publication-title: Nature
– reference: Kirley, M., Stewart, R., 2007. Multiobjective Evolutionary Algorithms on Complex Networks. In: Proceedings of the 4th International Conference on Evolutionary Multicriterion Optimization (LNCS), pp. 81–95.
– year: 1989
  ident: bib14
  article-title: Genetic algorithms in search, optimization and machine learning
– volume: 20
  start-page: 1070
  year: 2005
  end-page: 1078
  ident: bib42
  article-title: A multi-agent based particle swarm optimization approach for reactive power dispatch
  publication-title: IEEE Trans. Power Syst.
– volume: 21
  start-page: 237
  year: 2012
  end-page: 250
  ident: bib12
  article-title: An inertia- adaptive particle swarm system with particle mobility factor for improved global optimization
  publication-title: Neural Comput. Appl.
– reference: Gasparri, A., Panzieri, S., Pascucci, F., Ulivi, G., 2007. A spatially structured genetic algorithm over complex networks for mobile robot localisation. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 4277–4282.
– volume: 30
  start-page: 525
  year: 2008
  end-page: 532
  ident: bib40
  article-title: Multi-objective reactive power and voltage control based on fuzzy optimization strategy and fuzzy adaptive particle swarm
  publication-title: Int. J. Electr. Power Energy Syst.
– reference: Kennedy, J., 1997. The particle swarm: social adaptation of knowledge. In: Proceedings of the IEEE International Conference on Evolutionary Computation. Indianapolis, IN, pp. 303–308.
– volume: 14
  start-page: 105
  year: 1999
  end-page: 111
  ident: bib26
  article-title: A review of selected optimal power flow literature to 1993. II. Newton, linear programming and interior point methods
  publication-title: IEEE Trans. Power Syst.
– volume: 26
  start-page: 30
  year: 1996
  end-page: 45
  ident: bib6
  article-title: A combined genetic adaptive search (GeneAS) for engineering design
  publication-title: Comput. Sci. Inf.
– reference: Kennedy, J., Eberhart, R.C., 1995. Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948.
– reference: Shi, Y., Eberhart, R., 1998. Parameter selection in particle swarm optimization. In Proceedings of the 7th Annual Conference on Evolutionary Programming, pp. 591–600.
– volume: 20
  start-page: 563
  year: 1998
  end-page: 569
  ident: bib37
  article-title: Optimal reactive power dispatch using an adaptive genetic algorithm
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 15
  start-page: 1232
  year: 2000
  end-page: 1239
  ident: bib38
  article-title: A particle swarm optimization for reactive power and voltage control considering voltage security assessment
  publication-title: IEEE Trans. Power Syst.
– volume: 20
  start-page: 339
  year: 2009
  end-page: 349
  ident: bib28
  article-title: Dynamic probabilistic particle swarm optimization based on varying multi-cluster structure
  publication-title: J. Softw.
– volume: 4
  start-page: 131
  year: 1998
  end-page: 134
  ident: bib30
  article-title: How popular is your paper? an empirical study of the citation distribution
  publication-title: Eur. Phys. J. B
– volume: 286
  start-page: 509
  year: 1999
  end-page: 512
  ident: bib3
  article-title: Emergence of scaling in random networks
  publication-title: Science
– volume: 14
  start-page: 96
  year: 1999
  end-page: 104
  ident: bib25
  article-title: A review of selected optimal power flow literature to 1993. I. Nonlinear and quadratic programming approaches
  publication-title: IEEE Trans. Power Syst.
– volume: 423
  start-page: 267
  year: 2003
  end-page: 270
  ident: bib9
  article-title: A theory of power-law distributions in financial market fluctuations
  publication-title: Nature
– volume: 6
  start-page: 58
  year: 2002
  end-page: 73
  ident: bib5
  article-title: The particle swarm: explosion, stability, and convergence in a multi-dimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
– reference: Kennedy, J.,1999. Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1931–1938.
– volume: 13
  start-page: 895
  year: 2009
  end-page: 912
  ident: bib29
  article-title: Evolutionary dynamics on scale-free interaction networks
  publication-title: IEEE Trans. Evol. Comput.
– reference: Kennedy, J., 2005. Dynamic-probabilistic particle swarms. In: Proc.eedings of the Genetic and Evolutionary Computation Conference. New York, NY, United States, pp. 201–207.
– volume: 30
  start-page: 435
  year: 2008
  end-page: 441
  ident: bib35
  article-title: Differential evolutionary algorithm for optimal reactive power dispatch
  publication-title: Int. J. Electr. Power Energy Syst.
– reference: Kennedy, J., 2003. Bare bones particle swarms. In: Proceedings of the IEEE Swarm Intelligence Symposium, pp. 80–87.
– volume: 74
  start-page: 47
  year: 2002
  end-page: 97
  ident: bib1
  article-title: Statistical mechanics of complex networks
  publication-title: Rev. Mod. Phys.
– volume: 20
  start-page: 859
  year: 2005
  end-page: 866
  ident: bib8
  article-title: A hybrid particle swarm optimization applied to loss power minimization
  publication-title: IEEE Trans. Power Syst.
– reference: Zhang, X.X., Chen, W.R., Cai, W.Z., Dai, C.H.,2009. Dynamic multigroups self-adaptive differential evolution algorithm with local search for reactive power optimization. In: Proceedings of the. Asia-Pacific Power and Energy Engineering Conference, vol. 3, Wuhan, 28–31 March, pp. 2911–2914.
– volume: 89
  start-page: 1
  year: 2002
  end-page: 5
  ident: bib27
  article-title: Assortative mixing in networks
  publication-title: Phys. Rev. Lett.
– volume: 78
  start-page: 815
  year: 2008
  end-page: 823
  ident: bib34
  article-title: Network loss minimization with voltage security using differential evolution
  publication-title: Electr. Power Syst. Res.
– volume: 182
  start-page: 156
  year: 2012
  end-page: 168
  ident: bib11
  article-title: Inter-particle communication and search-dynamics of
  publication-title: Inf. Sci.
– volume: 20
  start-page: 859
  issue: 2
  year: 2005
  ident: 10.1016/j.engappai.2014.02.018_bib8
  article-title: A hybrid particle swarm optimization applied to loss power minimization
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2005.846049
– volume: 411
  start-page: 41
  year: 2001
  ident: 10.1016/j.engappai.2014.02.018_bib15
  article-title: Lethality and centrality in protein networks
  publication-title: Nature
  doi: 10.1038/35075138
– ident: 10.1016/j.engappai.2014.02.018_bib18
  doi: 10.1109/CEC.1999.785509
– volume: 14
  start-page: 150
  issue: 1
  year: 2010
  ident: 10.1016/j.engappai.2014.02.018_bib23
  article-title: Niching without niching parameters: particle swarm optimization using a ring topology
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2026270
– volume: 181
  start-page: 4550
  year: 2011
  ident: 10.1016/j.engappai.2014.02.018_bib39
  article-title: Scale-free fully informed particle swarm optimization algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2011.02.026
– volume: 286
  start-page: 509
  year: 1999
  ident: 10.1016/j.engappai.2014.02.018_bib3
  article-title: Emergence of scaling in random networks
  publication-title: Science
  doi: 10.1126/science.286.5439.509
– volume: 14
  start-page: 96
  issue: 1
  year: 1999
  ident: 10.1016/j.engappai.2014.02.018_bib25
  article-title: A review of selected optimal power flow literature to 1993. I. Nonlinear and quadratic programming approaches
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.744492
– ident: 10.1016/j.engappai.2014.02.018_bib21
  doi: 10.1145/1068009.1068040
– ident: 10.1016/j.engappai.2014.02.018_bib10
  doi: 10.1109/ROBOT.2007.364137
– volume: 2006
  start-page: 86
  year: 2006
  ident: 10.1016/j.engappai.2014.02.018_bib13
  article-title: Effects of scale-free and small-world topologies on binary coded self-adaptive CEA
  publication-title: Proc. Evol. Comput. Combinatorial Optim.
– ident: 10.1016/j.engappai.2014.02.018_bib41
  doi: 10.1109/APPEEC.2009.4918302
– volume: 4
  start-page: 131
  year: 1998
  ident: 10.1016/j.engappai.2014.02.018_bib30
  article-title: How popular is your paper? an empirical study of the citation distribution
  publication-title: Eur. Phys. J. B
  doi: 10.1007/s100510050359
– year: 1989
  ident: 10.1016/j.engappai.2014.02.018_bib14
– volume: 78
  start-page: 815
  issue: 5
  year: 2008
  ident: 10.1016/j.engappai.2014.02.018_bib34
  article-title: Network loss minimization with voltage security using differential evolution
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2007.06.005
– volume: 30
  start-page: 525
  issue: 9
  year: 2008
  ident: 10.1016/j.engappai.2014.02.018_bib40
  article-title: Multi-objective reactive power and voltage control based on fuzzy optimization strategy and fuzzy adaptive particle swarm
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2008.04.005
– volume: 20
  start-page: 1070
  issue: 2
  year: 2005
  ident: 10.1016/j.engappai.2014.02.018_bib42
  article-title: A multi-agent based particle swarm optimization approach for reactive power dispatch
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2005.846064
– ident: 10.1016/j.engappai.2014.02.018_bib20
– volume: 15
  start-page: 1232
  issue: 4
  year: 2000
  ident: 10.1016/j.engappai.2014.02.018_bib38
  article-title: A particle swarm optimization for reactive power and voltage control considering voltage security assessment
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.898095
– volume: 281
  start-page: 69
  year: 2000
  ident: 10.1016/j.engappai.2014.02.018_bib4
  article-title: Scale-free characteristics of random networks: the topology of the world wide web
  publication-title: Physica A
  doi: 10.1016/S0378-4371(00)00018-2
– ident: 10.1016/j.engappai.2014.02.018_bib16
  doi: 10.1109/ICNN.1995.488968
– volume: 20
  start-page: 563
  issue: 8
  year: 1998
  ident: 10.1016/j.engappai.2014.02.018_bib37
  article-title: Optimal reactive power dispatch using an adaptive genetic algorithm
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/S0142-0615(98)00016-7
– volume: 89
  start-page: 1
  issue: 20
  year: 2002
  ident: 10.1016/j.engappai.2014.02.018_bib27
  article-title: Assortative mixing in networks
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.208701
– ident: 10.1016/j.engappai.2014.02.018_bib31
  doi: 10.1007/BFb0040810
– volume: 14
  start-page: 105
  issue: 1
  year: 1999
  ident: 10.1016/j.engappai.2014.02.018_bib26
  article-title: A review of selected optimal power flow literature to 1993. II. Newton, linear programming and interior point methods
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.744495
– volume: 6
  start-page: 58
  issue: 1
  year: 2002
  ident: 10.1016/j.engappai.2014.02.018_bib5
  article-title: The particle swarm: explosion, stability, and convergence in a multi-dimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.985692
– volume: 13
  start-page: 895
  issue: 4
  year: 2009
  ident: 10.1016/j.engappai.2014.02.018_bib29
  article-title: Evolutionary dynamics on scale-free interaction networks
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2019825
– volume: 65
  start-page: 066130
  year: 2000
  ident: 10.1016/j.engappai.2014.02.018_bib36
  article-title: Large-scale topological and dynamical properties of the internet
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.65.066130
– volume: 94
  start-page: 018102
  issue: 1
  year: 2005
  ident: 10.1016/j.engappai.2014.02.018_bib7
  article-title: Scale-free brain functional networks
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.018102
– volume: 21
  start-page: 237
  issue: 2
  year: 2012
  ident: 10.1016/j.engappai.2014.02.018_bib12
  article-title: An inertia- adaptive particle swarm system with particle mobility factor for improved global optimization
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-010-0356-x
– volume: 26
  start-page: 30
  issue: 4
  year: 1996
  ident: 10.1016/j.engappai.2014.02.018_bib6
  article-title: A combined genetic adaptive search (GeneAS) for engineering design
  publication-title: Comput. Sci. Inf.
– volume: 423
  start-page: 267
  year: 2003
  ident: 10.1016/j.engappai.2014.02.018_bib9
  article-title: A theory of power-law distributions in financial market fluctuations
  publication-title: Nature
  doi: 10.1038/nature01624
– volume: 20
  start-page: 339
  issue: 2
  year: 2009
  ident: 10.1016/j.engappai.2014.02.018_bib28
  article-title: Dynamic probabilistic particle swarm optimization based on varying multi-cluster structure
  publication-title: J. Softw.
  doi: 10.3724/SP.J.1001.2009.00339
– volume: 30
  start-page: 435
  issue: 8
  year: 2008
  ident: 10.1016/j.engappai.2014.02.018_bib35
  article-title: Differential evolutionary algorithm for optimal reactive power dispatch
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2008.03.003
– ident: 10.1016/j.engappai.2014.02.018_bib17
  doi: 10.1109/ICEC.1997.592326
– ident: 10.1016/j.engappai.2014.02.018_bib2
  doi: 10.1007/BFb0040811
– volume: 182
  start-page: 156
  issue: 1
  year: 2012
  ident: 10.1016/j.engappai.2014.02.018_bib11
  article-title: Inter-particle communication and search-dynamics of lbest particle swarm optimizers: an analysis
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2010.10.015
– ident: 10.1016/j.engappai.2014.02.018_bib22
  doi: 10.1007/978-3-540-70928-2_10
– volume: 74
  start-page: 47
  year: 2002
  ident: 10.1016/j.engappai.2014.02.018_bib1
  article-title: Statistical mechanics of complex networks
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.74.47
– volume: 8
  start-page: 204
  year: 2004
  ident: 10.1016/j.engappai.2014.02.018_bib24
  article-title: The fully informed particle swarm: simpler, maybe better
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.826074
SSID ssj0003846
Score 2.193799
Snippet This paper proposes a hybrid topology scale-free Gaussian-dynamic particle swarm (HTSFGDPS) optimization algorithm for real power loss minimization problem of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 63
SubjectTerms Algorithms
Convergence
Electric power generation
Gaussian dynamic particle swarm optimization
Mathematical models
Optimization
Power loss
Power system
Real power loss minimization
Scale free network
Swarm intelligence
Topology
Title A hybrid topology scale-free Gaussian-dynamic particle swarm optimization algorithm applied to real power loss minimization
URI https://dx.doi.org/10.1016/j.engappai.2014.02.018
https://www.proquest.com/docview/1671566136
Volume 32
WOSCitedRecordID wos000336953900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6FlgMXdkTLokHiZhni3T5GVRFwqDgUKTdrMkvjKrEtL6Wof40fx5vNdsNSeuBiWaPM09jvy9v8FoTeRoSFJA091wsEOCiMZW5Gw8xllEceFwmJI6GGTSQnJ-lymX2ZzX7YWpiLTVKW6eVlVv9XVsMaMFuWzt6C3QNRWIB7YDpcge1w_SfGL5z1d1mGBVZlrRsstcAH7oqGAyJI38qySZfpSfRObSg47TfSbJ0KJMjWlGY6ZHNWNUW33jrE2KpgqDayE3EtZ6s5m0qO0inKYce1MP_Y6NCZfiVXiQeNylBS80ImLUHH4L4WQEfrfpIxVPRKXQBK19yoWx3wVsFekFodqcZkBS1N4ddn07iGF475V0OA0ne9TE-HsbLaxEK1sDWSUattPX_lF4WgYxPn7-Bg8KykkMl8oerSasT-tQ7cO5pxyFe0qXDnuaWTSzr53M-Bzh207ydRBmphf_HpePl5sASCVBeK2SeZVKj__kR_Mo52zARl-5w-RPeN04IXGiqP0IyXj9ED48Bgox5aWLIzQuzaE3S1wBqO2MIRj3DEu3DEFo5YwRFP4YgHOGIDRyCJJRyxgiOWcMRTOD5FXz8cnx59dM3AD5eGnte5MQ1IRoRPAp-nRFYvBYLTNGFgR4owpjRmbC7mAY-5CCOfEMFXgcconXPwmuH-Gdorq5I_R3hFWSBjrAlhApz6ZCXzfMIVeBcsYyvCD1Bk33ROTTd8OZRlk_-d1wfo_bCv1v1gbtyRWUbmxqrV1moOGL1x7xvL-RzEvvyWR0pe9W3uxYmMvHhBfHjrE71A98Y_3Eu01zU9f4Xu0ouuaJvXBsQ_ASsR3kc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+topology+scale-free+Gaussian-dynamic+particle+swarm+optimization+algorithm+applied+to+real+power+loss+minimization&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Wang%2C+Chuan&rft.au=Liu%2C+Yancheng&rft.au=Zhao%2C+Youtao&rft.au=Chen%2C+Yang&rft.date=2014-06-01&rft.issn=0952-1976&rft.volume=32&rft.spage=63&rft.epage=75&rft_id=info:doi/10.1016%2Fj.engappai.2014.02.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2014_02_018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon