A hybrid topology scale-free Gaussian-dynamic particle swarm optimization algorithm applied to real power loss minimization
This paper proposes a hybrid topology scale-free Gaussian-dynamic particle swarm (HTSFGDPS) optimization algorithm for real power loss minimization problem of power system. The swarm population is divided into two parts: hybrid topology population and scale-free topology population. The novel hybrid...
Saved in:
| Published in: | Engineering applications of artificial intelligence Vol. 32; pp. 63 - 75 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.06.2014
|
| Subjects: | |
| ISSN: | 0952-1976, 1873-6769 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper proposes a hybrid topology scale-free Gaussian-dynamic particle swarm (HTSFGDPS) optimization algorithm for real power loss minimization problem of power system. The swarm population is divided into two parts: hybrid topology population and scale-free topology population. The novel hybrid topology is mixed with fully connected topology and ring topology. Then, it enables the particles to have stronger exploration ability and fast convergence rate at the same time. In the scale-free part, the topology will be gradually generated as the construction process and the optimization process progress synchronously. As a result, the topology exhibits disassortative mixing property, which can improve the swarm population diversity. This work focuses on a new combination of swarm intelligence optimization theory and complex network theory, as well as its application to electric power system. The presented method is tested on IEEE 14-Bus and 30-Bus power system. The numerical results, compared with other stochastic search algorithms, show that HTSFGDPS could find high-quality solutions with higher convergence speed and probability. |
|---|---|
| AbstractList | This paper proposes a hybrid topology scale-free Gaussian-dynamic particle swarm (HTSFGDPS) optimization algorithm for real power loss minimization problem of power system. The swarm population is divided into two parts: hybrid topology population and scale-free topology population. The novel hybrid topology is mixed with fully connected topology and ring topology. Then, it enables the particles to have stronger exploration ability and fast convergence rate at the same time. In the scale-free part, the topology will be gradually generated as the construction process and the optimization process progress synchronously. As a result, the topology exhibits disassortative mixing property, which can improve the swarm population diversity. This work focuses on a new combination of swarm intelligence optimization theory and complex network theory, as well as its application to electric power system. The presented method is tested on IEEE 14-Bus and 30-Bus power system. The numerical results, compared with other stochastic search algorithms, show that HTSFGDPS could find high-quality solutions with higher convergence speed and probability. |
| Author | Chen, Yang Zhao, Youtao Liu, Yancheng Wang, Chuan |
| Author_xml | – sequence: 1 givenname: Chuan surname: Wang fullname: Wang, Chuan email: chuanwang0101@163.com – sequence: 2 givenname: Yancheng surname: Liu fullname: Liu, Yancheng – sequence: 3 givenname: Youtao surname: Zhao fullname: Zhao, Youtao – sequence: 4 givenname: Yang surname: Chen fullname: Chen, Yang |
| BookMark | eNqFkEFP3DAQha2KSl1o_0LlYy9JbSfrZKUeQIgCEhKX9mwNzniZlWMH2wta-ueb7VIOXDjNHN739PQds6MQAzL2VYpaCqm_b2oMa5gmoFoJ2dZC1UL2H9hC9l1T6U6vjthCrJaqkqtOf2LHOW-EEE3f6gX7c8bvd3eJBl7iFH1c73i24LFyCZFfwjZnglANuwAjWT5BKmQ98vwEaeRxKjTSMxSKgYNfx0TlfuTzGE-4r-QJwfMpPmHiPubMRwqvxGf20YHP-OXlnrDfPy9-nV9VN7eX1-dnN5VtpSyVtg2swCloFPYghO4bh7bvBtUq12pr9TAIJxrU6NqlAnB418jBWoGd7uf_hH079E4pPmwxFzNStug9BIzbbKTu5FJr2eg5-uMQtWlem9AZS-Xf2JKAvJHC7J2bjfnv3OydG6HM7HzG9Rt8SjRC2r0Pnh5AnD08EiaTLWGwOFBCW8wQ6b2KvzuBpsQ |
| CitedBy_id | crossref_primary_10_1109_TEVC_2023_3277501 crossref_primary_10_1007_s11708_022_0847_3 crossref_primary_10_1016_j_engappai_2016_10_009 crossref_primary_10_1016_j_swevo_2018_01_011 crossref_primary_10_1016_j_physa_2022_127764 crossref_primary_10_1016_j_asoc_2017_04_025 crossref_primary_10_1016_j_engappai_2014_12_003 crossref_primary_10_1007_s00500_015_1784_4 crossref_primary_10_1007_s00500_022_07417_w crossref_primary_10_1016_j_ins_2018_09_034 crossref_primary_10_1007_s10489_021_03003_z crossref_primary_10_1016_j_eswa_2021_116049 crossref_primary_10_1007_s10489_022_03438_y crossref_primary_10_1109_JSYST_2016_2573799 crossref_primary_10_1007_s00170_014_6181_0 crossref_primary_10_1007_s00500_016_2111_4 crossref_primary_10_1016_j_asoc_2018_04_051 crossref_primary_10_1007_s00500_016_2413_6 crossref_primary_10_1016_j_swevo_2022_101142 crossref_primary_10_1007_s11356_021_16072_x crossref_primary_10_3390_s22051999 crossref_primary_10_3233_JIFS_201667 |
| Cites_doi | 10.1109/TPWRS.2005.846049 10.1038/35075138 10.1109/CEC.1999.785509 10.1109/TEVC.2009.2026270 10.1016/j.ins.2011.02.026 10.1126/science.286.5439.509 10.1109/59.744492 10.1145/1068009.1068040 10.1109/ROBOT.2007.364137 10.1109/APPEEC.2009.4918302 10.1007/s100510050359 10.1016/j.epsr.2007.06.005 10.1016/j.ijepes.2008.04.005 10.1109/TPWRS.2005.846064 10.1109/59.898095 10.1016/S0378-4371(00)00018-2 10.1109/ICNN.1995.488968 10.1016/S0142-0615(98)00016-7 10.1103/PhysRevLett.89.208701 10.1007/BFb0040810 10.1109/59.744495 10.1109/4235.985692 10.1109/TEVC.2009.2019825 10.1103/PhysRevE.65.066130 10.1103/PhysRevLett.94.018102 10.1007/s00521-010-0356-x 10.1038/nature01624 10.3724/SP.J.1001.2009.00339 10.1016/j.ijepes.2008.03.003 10.1109/ICEC.1997.592326 10.1007/BFb0040811 10.1016/j.ins.2010.10.015 10.1007/978-3-540-70928-2_10 10.1103/RevModPhys.74.47 10.1109/TEVC.2004.826074 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Ltd |
| Copyright_xml | – notice: 2014 Elsevier Ltd |
| DBID | AAYXX CITATION 7SC 7TB 8FD F28 FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1016/j.engappai.2014.02.018 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1873-6769 |
| EndPage | 75 |
| ExternalDocumentID | 10_1016_j_engappai_2014_02_018 S0952197614000542 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 7TB 8FD F28 FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c411t-6c3a9af2a32e8a00683fec87d242f46cc6dd0f03e6ef452aafeb31dcc0e768eb3 |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000336953900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 |
| IngestDate | Sat Sep 27 20:28:07 EDT 2025 Tue Nov 18 21:51:49 EST 2025 Sat Nov 29 07:59:02 EST 2025 Fri Feb 23 02:28:54 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Power system Scale free network Real power loss minimization Gaussian dynamic particle swarm optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c411t-6c3a9af2a32e8a00683fec87d242f46cc6dd0f03e6ef452aafeb31dcc0e768eb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1671566136 |
| PQPubID | 23500 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_1671566136 crossref_citationtrail_10_1016_j_engappai_2014_02_018 crossref_primary_10_1016_j_engappai_2014_02_018 elsevier_sciencedirect_doi_10_1016_j_engappai_2014_02_018 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-06-01 |
| PublicationDateYYYYMMDD | 2014-06-01 |
| PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2014 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Barabási, Albert (bib3) 1999; 286 Momoh, El-Hawary, Adapa (bib26) 1999; 14 Shi, Y., Eberhart, R., 1998. Parameter selection in particle swarm optimization. In Proceedings of the 7th Annual Conference on Evolutionary Programming, pp. 591–600. Kennedy, J., 2003. Bare bones particle swarms. In: Proceedings of the IEEE Swarm Intelligence Symposium, pp. 80–87. Gabaix, Gopikrishnan, Plerou, Stanley (bib9) 2003; 423 Yoshida, Fukuyama, Kawata, Takayama, Nakanishi (bib38) 2000; 15 Zhao, Guo, Cao (bib42) 2005; 20 Barabási, Albert, Jeong (bib4) 2000; 281 Momoh, Adapa, El-Hawary (bib25) 1999; 14 Kennedy, J., 1997. The particle swarm: social adaptation of knowledge. In: Proceedings of the IEEE International Conference on Evolutionary Computation. Indianapolis, IN, pp. 303–308. Angeline, P., 1998. Evolutionary optimization versus particle swarm optimization philosophy and performance differences. In Proceedings of the 7th Annual Conference on Evolutionary Programming, pp. 601–610. Eguiluz, Chialvo, Cecchi, Baliki, Apkarian (bib7) 2005; 94 Zhang, X.X., Chen, W.R., Cai, W.Z., Dai, C.H.,2009. Dynamic multigroups self-adaptive differential evolution algorithm with local search for reactive power optimization. In: Proceedings of the. Asia-Pacific Power and Energy Engineering Conference, vol. 3, Wuhan, 28–31 March, pp. 2911–2914. Giacobini, Preuss, Tomassini (bib13) 2006; 2006 Kennedy, J.,1999. Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1931–1938. Payne, Eppstein (bib29) 2009; 13 Redner (bib30) 1998; 4 Esmin, Lambert-Torres, Zambroni (bib8) 2005; 20 Ghosh, Das, Kundu, Suresh, Abraham (bib11) 2012; 182 Vázquez, Pastor-Satottas, Vespignani (bib36) 2000; 65 Ni, Zhang, Wang, Xing (bib28) 2009; 20 Zhang, Yi (bib39) 2011; 181 Varadarajan, Swarup (bib34) 2008; 78 Jeong, Mason, Barabási, Oltvai (bib15) 2001; 411 Mendes, Kennedy, Neves (bib24) 2004; 8 Ghosh, Das, Kundu, Suresh, Panigrahi, Cui (bib12) 2012; 21 Clerc, Kennedy (bib5) 2002; 6 Newman (bib27) 2002; 89 Zhang, Liu (bib40) 2008; 30 Albert, Barabási (bib1) 2002; 74 Deb, Goyal (bib6) 1996; 26 Li (bib23) 2010; 14 Goldberg (bib14) 1989 Varadarajan, Swarup (bib35) 2008; 30 Gasparri, A., Panzieri, S., Pascucci, F., Ulivi, G., 2007. A spatially structured genetic algorithm over complex networks for mobile robot localisation. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 4277–4282. Kennedy, J., 2005. Dynamic-probabilistic particle swarms. In: Proc.eedings of the Genetic and Evolutionary Computation Conference. New York, NY, United States, pp. 201–207. Kennedy, J., Eberhart, R.C., 1995. Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948. Wu, Cao, Wen (bib37) 1998; 20 Kirley, M., Stewart, R., 2007. Multiobjective Evolutionary Algorithms on Complex Networks. In: Proceedings of the 4th International Conference on Evolutionary Multicriterion Optimization (LNCS), pp. 81–95. 10.1016/j.engappai.2014.02.018_bib18 Clerc (10.1016/j.engappai.2014.02.018_bib5) 2002; 6 Barabási (10.1016/j.engappai.2014.02.018_bib4) 2000; 281 10.1016/j.engappai.2014.02.018_bib10 Zhao (10.1016/j.engappai.2014.02.018_bib42) 2005; 20 Li (10.1016/j.engappai.2014.02.018_bib23) 2010; 14 10.1016/j.engappai.2014.02.018_bib16 Varadarajan (10.1016/j.engappai.2014.02.018_bib34) 2008; 78 10.1016/j.engappai.2014.02.018_bib17 Giacobini (10.1016/j.engappai.2014.02.018_bib13) 2006; 2006 Jeong (10.1016/j.engappai.2014.02.018_bib15) 2001; 411 Albert (10.1016/j.engappai.2014.02.018_bib1) 2002; 74 10.1016/j.engappai.2014.02.018_bib31 Vázquez (10.1016/j.engappai.2014.02.018_bib36) 2000; 65 Eguiluz (10.1016/j.engappai.2014.02.018_bib7) 2005; 94 Ghosh (10.1016/j.engappai.2014.02.018_bib12) 2012; 21 Momoh (10.1016/j.engappai.2014.02.018_bib25) 1999; 14 Redner (10.1016/j.engappai.2014.02.018_bib30) 1998; 4 Yoshida (10.1016/j.engappai.2014.02.018_bib38) 2000; 15 Gabaix (10.1016/j.engappai.2014.02.018_bib9) 2003; 423 Ghosh (10.1016/j.engappai.2014.02.018_bib11) 2012; 182 Goldberg (10.1016/j.engappai.2014.02.018_bib14) 1989 10.1016/j.engappai.2014.02.018_bib21 Mendes (10.1016/j.engappai.2014.02.018_bib24) 2004; 8 10.1016/j.engappai.2014.02.018_bib22 Ni (10.1016/j.engappai.2014.02.018_bib28) 2009; 20 Varadarajan (10.1016/j.engappai.2014.02.018_bib35) 2008; 30 Barabási (10.1016/j.engappai.2014.02.018_bib3) 1999; 286 Wu (10.1016/j.engappai.2014.02.018_bib37) 1998; 20 Newman (10.1016/j.engappai.2014.02.018_bib27) 2002; 89 Payne (10.1016/j.engappai.2014.02.018_bib29) 2009; 13 Deb (10.1016/j.engappai.2014.02.018_bib6) 1996; 26 Momoh (10.1016/j.engappai.2014.02.018_bib26) 1999; 14 10.1016/j.engappai.2014.02.018_bib41 Esmin (10.1016/j.engappai.2014.02.018_bib8) 2005; 20 10.1016/j.engappai.2014.02.018_bib20 Zhang (10.1016/j.engappai.2014.02.018_bib39) 2011; 181 Zhang (10.1016/j.engappai.2014.02.018_bib40) 2008; 30 10.1016/j.engappai.2014.02.018_bib2 |
| References_xml | – volume: 14 start-page: 150 year: 2010 end-page: 169 ident: bib23 article-title: Niching without niching parameters: particle swarm optimization using a ring topology publication-title: IEEE Trans. Evol. Comput. – volume: 181 start-page: 4550 year: 2011 end-page: 4568 ident: bib39 article-title: Scale-free fully informed particle swarm optimization algorithm publication-title: Inf. Sci. – volume: 8 start-page: 204 year: 2004 end-page: 210 ident: bib24 article-title: The fully informed particle swarm: simpler, maybe better publication-title: IEEE Trans. Evol. Comput. – reference: Angeline, P., 1998. Evolutionary optimization versus particle swarm optimization philosophy and performance differences. In Proceedings of the 7th Annual Conference on Evolutionary Programming, pp. 601–610. – volume: 94 start-page: 018102 year: 2005 ident: bib7 article-title: Scale-free brain functional networks publication-title: Phys. Rev. Lett. – volume: 65 start-page: 066130 year: 2000 ident: bib36 article-title: Large-scale topological and dynamical properties of the internet publication-title: Phys. Rev. E – volume: 281 start-page: 69 year: 2000 end-page: 77 ident: bib4 article-title: Scale-free characteristics of random networks: the topology of the world wide web publication-title: Physica A – volume: 2006 start-page: 86 year: 2006 end-page: 98 ident: bib13 article-title: Effects of scale-free and small-world topologies on binary coded self-adaptive CEA publication-title: Proc. Evol. Comput. Combinatorial Optim. – volume: 411 start-page: 41 year: 2001 end-page: 42 ident: bib15 article-title: Lethality and centrality in protein networks publication-title: Nature – reference: Kirley, M., Stewart, R., 2007. Multiobjective Evolutionary Algorithms on Complex Networks. In: Proceedings of the 4th International Conference on Evolutionary Multicriterion Optimization (LNCS), pp. 81–95. – year: 1989 ident: bib14 article-title: Genetic algorithms in search, optimization and machine learning – volume: 20 start-page: 1070 year: 2005 end-page: 1078 ident: bib42 article-title: A multi-agent based particle swarm optimization approach for reactive power dispatch publication-title: IEEE Trans. Power Syst. – volume: 21 start-page: 237 year: 2012 end-page: 250 ident: bib12 article-title: An inertia- adaptive particle swarm system with particle mobility factor for improved global optimization publication-title: Neural Comput. Appl. – reference: Gasparri, A., Panzieri, S., Pascucci, F., Ulivi, G., 2007. A spatially structured genetic algorithm over complex networks for mobile robot localisation. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 4277–4282. – volume: 30 start-page: 525 year: 2008 end-page: 532 ident: bib40 article-title: Multi-objective reactive power and voltage control based on fuzzy optimization strategy and fuzzy adaptive particle swarm publication-title: Int. J. Electr. Power Energy Syst. – reference: Kennedy, J., 1997. The particle swarm: social adaptation of knowledge. In: Proceedings of the IEEE International Conference on Evolutionary Computation. Indianapolis, IN, pp. 303–308. – volume: 14 start-page: 105 year: 1999 end-page: 111 ident: bib26 article-title: A review of selected optimal power flow literature to 1993. II. Newton, linear programming and interior point methods publication-title: IEEE Trans. Power Syst. – volume: 26 start-page: 30 year: 1996 end-page: 45 ident: bib6 article-title: A combined genetic adaptive search (GeneAS) for engineering design publication-title: Comput. Sci. Inf. – reference: Kennedy, J., Eberhart, R.C., 1995. Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948. – reference: Shi, Y., Eberhart, R., 1998. Parameter selection in particle swarm optimization. In Proceedings of the 7th Annual Conference on Evolutionary Programming, pp. 591–600. – volume: 20 start-page: 563 year: 1998 end-page: 569 ident: bib37 article-title: Optimal reactive power dispatch using an adaptive genetic algorithm publication-title: Int. J. Electr. Power Energy Syst. – volume: 15 start-page: 1232 year: 2000 end-page: 1239 ident: bib38 article-title: A particle swarm optimization for reactive power and voltage control considering voltage security assessment publication-title: IEEE Trans. Power Syst. – volume: 20 start-page: 339 year: 2009 end-page: 349 ident: bib28 article-title: Dynamic probabilistic particle swarm optimization based on varying multi-cluster structure publication-title: J. Softw. – volume: 4 start-page: 131 year: 1998 end-page: 134 ident: bib30 article-title: How popular is your paper? an empirical study of the citation distribution publication-title: Eur. Phys. J. B – volume: 286 start-page: 509 year: 1999 end-page: 512 ident: bib3 article-title: Emergence of scaling in random networks publication-title: Science – volume: 14 start-page: 96 year: 1999 end-page: 104 ident: bib25 article-title: A review of selected optimal power flow literature to 1993. I. Nonlinear and quadratic programming approaches publication-title: IEEE Trans. Power Syst. – volume: 423 start-page: 267 year: 2003 end-page: 270 ident: bib9 article-title: A theory of power-law distributions in financial market fluctuations publication-title: Nature – volume: 6 start-page: 58 year: 2002 end-page: 73 ident: bib5 article-title: The particle swarm: explosion, stability, and convergence in a multi-dimensional complex space publication-title: IEEE Trans. Evol. Comput. – reference: Kennedy, J.,1999. Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1931–1938. – volume: 13 start-page: 895 year: 2009 end-page: 912 ident: bib29 article-title: Evolutionary dynamics on scale-free interaction networks publication-title: IEEE Trans. Evol. Comput. – reference: Kennedy, J., 2005. Dynamic-probabilistic particle swarms. In: Proc.eedings of the Genetic and Evolutionary Computation Conference. New York, NY, United States, pp. 201–207. – volume: 30 start-page: 435 year: 2008 end-page: 441 ident: bib35 article-title: Differential evolutionary algorithm for optimal reactive power dispatch publication-title: Int. J. Electr. Power Energy Syst. – reference: Kennedy, J., 2003. Bare bones particle swarms. In: Proceedings of the IEEE Swarm Intelligence Symposium, pp. 80–87. – volume: 74 start-page: 47 year: 2002 end-page: 97 ident: bib1 article-title: Statistical mechanics of complex networks publication-title: Rev. Mod. Phys. – volume: 20 start-page: 859 year: 2005 end-page: 866 ident: bib8 article-title: A hybrid particle swarm optimization applied to loss power minimization publication-title: IEEE Trans. Power Syst. – reference: Zhang, X.X., Chen, W.R., Cai, W.Z., Dai, C.H.,2009. Dynamic multigroups self-adaptive differential evolution algorithm with local search for reactive power optimization. In: Proceedings of the. Asia-Pacific Power and Energy Engineering Conference, vol. 3, Wuhan, 28–31 March, pp. 2911–2914. – volume: 89 start-page: 1 year: 2002 end-page: 5 ident: bib27 article-title: Assortative mixing in networks publication-title: Phys. Rev. Lett. – volume: 78 start-page: 815 year: 2008 end-page: 823 ident: bib34 article-title: Network loss minimization with voltage security using differential evolution publication-title: Electr. Power Syst. Res. – volume: 182 start-page: 156 year: 2012 end-page: 168 ident: bib11 article-title: Inter-particle communication and search-dynamics of publication-title: Inf. Sci. – volume: 20 start-page: 859 issue: 2 year: 2005 ident: 10.1016/j.engappai.2014.02.018_bib8 article-title: A hybrid particle swarm optimization applied to loss power minimization publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2005.846049 – volume: 411 start-page: 41 year: 2001 ident: 10.1016/j.engappai.2014.02.018_bib15 article-title: Lethality and centrality in protein networks publication-title: Nature doi: 10.1038/35075138 – ident: 10.1016/j.engappai.2014.02.018_bib18 doi: 10.1109/CEC.1999.785509 – volume: 14 start-page: 150 issue: 1 year: 2010 ident: 10.1016/j.engappai.2014.02.018_bib23 article-title: Niching without niching parameters: particle swarm optimization using a ring topology publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2026270 – volume: 181 start-page: 4550 year: 2011 ident: 10.1016/j.engappai.2014.02.018_bib39 article-title: Scale-free fully informed particle swarm optimization algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2011.02.026 – volume: 286 start-page: 509 year: 1999 ident: 10.1016/j.engappai.2014.02.018_bib3 article-title: Emergence of scaling in random networks publication-title: Science doi: 10.1126/science.286.5439.509 – volume: 14 start-page: 96 issue: 1 year: 1999 ident: 10.1016/j.engappai.2014.02.018_bib25 article-title: A review of selected optimal power flow literature to 1993. I. Nonlinear and quadratic programming approaches publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.744492 – ident: 10.1016/j.engappai.2014.02.018_bib21 doi: 10.1145/1068009.1068040 – ident: 10.1016/j.engappai.2014.02.018_bib10 doi: 10.1109/ROBOT.2007.364137 – volume: 2006 start-page: 86 year: 2006 ident: 10.1016/j.engappai.2014.02.018_bib13 article-title: Effects of scale-free and small-world topologies on binary coded self-adaptive CEA publication-title: Proc. Evol. Comput. Combinatorial Optim. – ident: 10.1016/j.engappai.2014.02.018_bib41 doi: 10.1109/APPEEC.2009.4918302 – volume: 4 start-page: 131 year: 1998 ident: 10.1016/j.engappai.2014.02.018_bib30 article-title: How popular is your paper? an empirical study of the citation distribution publication-title: Eur. Phys. J. B doi: 10.1007/s100510050359 – year: 1989 ident: 10.1016/j.engappai.2014.02.018_bib14 – volume: 78 start-page: 815 issue: 5 year: 2008 ident: 10.1016/j.engappai.2014.02.018_bib34 article-title: Network loss minimization with voltage security using differential evolution publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2007.06.005 – volume: 30 start-page: 525 issue: 9 year: 2008 ident: 10.1016/j.engappai.2014.02.018_bib40 article-title: Multi-objective reactive power and voltage control based on fuzzy optimization strategy and fuzzy adaptive particle swarm publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2008.04.005 – volume: 20 start-page: 1070 issue: 2 year: 2005 ident: 10.1016/j.engappai.2014.02.018_bib42 article-title: A multi-agent based particle swarm optimization approach for reactive power dispatch publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2005.846064 – ident: 10.1016/j.engappai.2014.02.018_bib20 – volume: 15 start-page: 1232 issue: 4 year: 2000 ident: 10.1016/j.engappai.2014.02.018_bib38 article-title: A particle swarm optimization for reactive power and voltage control considering voltage security assessment publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.898095 – volume: 281 start-page: 69 year: 2000 ident: 10.1016/j.engappai.2014.02.018_bib4 article-title: Scale-free characteristics of random networks: the topology of the world wide web publication-title: Physica A doi: 10.1016/S0378-4371(00)00018-2 – ident: 10.1016/j.engappai.2014.02.018_bib16 doi: 10.1109/ICNN.1995.488968 – volume: 20 start-page: 563 issue: 8 year: 1998 ident: 10.1016/j.engappai.2014.02.018_bib37 article-title: Optimal reactive power dispatch using an adaptive genetic algorithm publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/S0142-0615(98)00016-7 – volume: 89 start-page: 1 issue: 20 year: 2002 ident: 10.1016/j.engappai.2014.02.018_bib27 article-title: Assortative mixing in networks publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.208701 – ident: 10.1016/j.engappai.2014.02.018_bib31 doi: 10.1007/BFb0040810 – volume: 14 start-page: 105 issue: 1 year: 1999 ident: 10.1016/j.engappai.2014.02.018_bib26 article-title: A review of selected optimal power flow literature to 1993. II. Newton, linear programming and interior point methods publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.744495 – volume: 6 start-page: 58 issue: 1 year: 2002 ident: 10.1016/j.engappai.2014.02.018_bib5 article-title: The particle swarm: explosion, stability, and convergence in a multi-dimensional complex space publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.985692 – volume: 13 start-page: 895 issue: 4 year: 2009 ident: 10.1016/j.engappai.2014.02.018_bib29 article-title: Evolutionary dynamics on scale-free interaction networks publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2019825 – volume: 65 start-page: 066130 year: 2000 ident: 10.1016/j.engappai.2014.02.018_bib36 article-title: Large-scale topological and dynamical properties of the internet publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.65.066130 – volume: 94 start-page: 018102 issue: 1 year: 2005 ident: 10.1016/j.engappai.2014.02.018_bib7 article-title: Scale-free brain functional networks publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.018102 – volume: 21 start-page: 237 issue: 2 year: 2012 ident: 10.1016/j.engappai.2014.02.018_bib12 article-title: An inertia- adaptive particle swarm system with particle mobility factor for improved global optimization publication-title: Neural Comput. Appl. doi: 10.1007/s00521-010-0356-x – volume: 26 start-page: 30 issue: 4 year: 1996 ident: 10.1016/j.engappai.2014.02.018_bib6 article-title: A combined genetic adaptive search (GeneAS) for engineering design publication-title: Comput. Sci. Inf. – volume: 423 start-page: 267 year: 2003 ident: 10.1016/j.engappai.2014.02.018_bib9 article-title: A theory of power-law distributions in financial market fluctuations publication-title: Nature doi: 10.1038/nature01624 – volume: 20 start-page: 339 issue: 2 year: 2009 ident: 10.1016/j.engappai.2014.02.018_bib28 article-title: Dynamic probabilistic particle swarm optimization based on varying multi-cluster structure publication-title: J. Softw. doi: 10.3724/SP.J.1001.2009.00339 – volume: 30 start-page: 435 issue: 8 year: 2008 ident: 10.1016/j.engappai.2014.02.018_bib35 article-title: Differential evolutionary algorithm for optimal reactive power dispatch publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2008.03.003 – ident: 10.1016/j.engappai.2014.02.018_bib17 doi: 10.1109/ICEC.1997.592326 – ident: 10.1016/j.engappai.2014.02.018_bib2 doi: 10.1007/BFb0040811 – volume: 182 start-page: 156 issue: 1 year: 2012 ident: 10.1016/j.engappai.2014.02.018_bib11 article-title: Inter-particle communication and search-dynamics of lbest particle swarm optimizers: an analysis publication-title: Inf. Sci. doi: 10.1016/j.ins.2010.10.015 – ident: 10.1016/j.engappai.2014.02.018_bib22 doi: 10.1007/978-3-540-70928-2_10 – volume: 74 start-page: 47 year: 2002 ident: 10.1016/j.engappai.2014.02.018_bib1 article-title: Statistical mechanics of complex networks publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.74.47 – volume: 8 start-page: 204 year: 2004 ident: 10.1016/j.engappai.2014.02.018_bib24 article-title: The fully informed particle swarm: simpler, maybe better publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.826074 |
| SSID | ssj0003846 |
| Score | 2.1936972 |
| Snippet | This paper proposes a hybrid topology scale-free Gaussian-dynamic particle swarm (HTSFGDPS) optimization algorithm for real power loss minimization problem of... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 63 |
| SubjectTerms | Algorithms Convergence Electric power generation Gaussian dynamic particle swarm optimization Mathematical models Optimization Power loss Power system Real power loss minimization Scale free network Swarm intelligence Topology |
| Title | A hybrid topology scale-free Gaussian-dynamic particle swarm optimization algorithm applied to real power loss minimization |
| URI | https://dx.doi.org/10.1016/j.engappai.2014.02.018 https://www.proquest.com/docview/1671566136 |
| Volume | 32 |
| WOSCitedRecordID | wos000336953900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMX3qjlJSNxiwJxnOdxVRUBQhWHIu0t8jpOd6vdJMqjFPHX-HGMX0m6PEoPXKLIikdO5svMeDwPhF6LQMi2IYnrhYK50iJwkygVLi1YHshjJEJUovCn-OQkWSzSz7PZD5sLc7GJyzK5vEzr_8pqGANmy9TZG7B7IAoDcA9MhyuwHa7_xPi5s_om07DAqqx1gaUW-CDcohGACNa3Mm3SzXUneqc2FJz2K2u2TgUSZGtSMx22OauadbfaOszYqmCoNrIScS17qzmbSrbSWZfDjCtu_rHQoTM9JVeBB42KUFL9QiYlQUfnvhZAR6t-EjG07pW6AJSuhFG32uGtnL0gtTpWjcEKWprC02dTvwYJxvirwUHpuyTV3WGsrDa-UC1sjWTUalv3X_lFIWjfxPkbWBi8K1vLYL5AVWk1Yv9KBe4dzTjEK9pQuPPM0skknczzM6BzC-37cZiCWtiffzhefBwsAZroRDH7JpMM9d-v6E_G0Y6ZoGyf0_vortm04LmGygM0E-VDdM9sYLBRDy0M2R4hduwR-j7HGo7YwhGPcMS7cMQWjljBEU_hiAc4YgNHIIklHLGCI5ZwxFM4PkZf3h2fHr13TcMPlweEdG7EKUtZ4TPqi4TJ7CVaCJ7EOdiRRRBxHuW5V3hURKIIQp-xQiwpyTn3BOya4f4J2iurUhwgHMY0FEHM_ZB7ASnYktCl7I-b5gkXYVIcotB-6YybaviyKcsm-zuvD9HbYV6t68FcOyO1jMyMVaut1Qwweu3cV5bzGYh9eZbHSlH1bUaiWHpeCI2e3nhFz9Cd8Yd7jva6phcv0G1-0a3b5qUB8U-p_90K |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+topology+scale-free+Gaussian-dynamic+particle+swarm+optimization+algorithm+applied+to+real+power+loss+minimization&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Wang%2C+Chuan&rft.au=Liu%2C+Yancheng&rft.au=Zhao%2C+Youtao&rft.au=Chen%2C+Yang&rft.date=2014-06-01&rft.issn=0952-1976&rft.volume=32&rft.spage=63&rft.epage=75&rft_id=info:doi/10.1016%2Fj.engappai.2014.02.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2014_02_018 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |