A new spinning reserve requirement forecast method for deregulated electricity markets

Ancillary services are necessary for maintaining the security and reliability of power systems and constitute an important part of trade in competitive electricity markets. Spinning Reserve (SR) is one of the most important ancillary services for saving power system stability and integrity in respon...

Full description

Saved in:
Bibliographic Details
Published in:Applied energy Vol. 87; no. 6; pp. 1870 - 1879
Main Authors: Amjady, Nima, Keynia, Farshid
Format: Journal Article
Language:English
Published: Kidlington Elsevier Ltd 01.06.2010
Elsevier
Series:Applied Energy
Subjects:
ISSN:0306-2619, 1872-9118
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Ancillary services are necessary for maintaining the security and reliability of power systems and constitute an important part of trade in competitive electricity markets. Spinning Reserve (SR) is one of the most important ancillary services for saving power system stability and integrity in response to contingencies and disturbances that continuously occur in the power systems. Hence, an accurate day-ahead forecast of SR requirement helps the Independent System Operator (ISO) to conduct a reliable and economic operation of the power system. However, SR signal has complex, non-stationary and volatile behavior along the time domain and depends greatly on system load. In this paper, a new hybrid forecast engine is proposed for SR requirement prediction. The proposed forecast engine has an iterative training mechanism composed of Levenberg–Marquadt (LM) learning algorithm and Real Coded Genetic Algorithm (RCGA), implemented on the Multi-Layer Perceptron (MLP) neural network. The proposed forecast methodology is examined by means of real data of Pennsylvania–New Jersey–Maryland (PJM) electricity market and the California ISO (CAISO) controlled grid. The obtained forecast results are presented and compared with those of the other SR forecast methods.
AbstractList Ancillary services are necessary for maintaining the security and reliability of power systems and constitute an important part of trade in competitive electricity markets. Spinning Reserve (SR) is one of the most important ancillary services for saving power system stability and integrity in response to contingencies and disturbances that continuously occur in the power systems. Hence, an accurate day-ahead forecast of SR requirement helps the Independent System Operator (ISO) to conduct a reliable and economic operation of the power system. However, SR signal has complex, non-stationary and volatile behavior along the time domain and depends greatly on system load. In this paper, a new hybrid forecast engine is proposed for SR requirement prediction. The proposed forecast engine has an iterative training mechanism composed of Levenberg-Marquadt (LM) learning algorithm and Real Coded Genetic Algorithm (RCGA), implemented on the Multi-Layer Perceptron (MLP) neural network. The proposed forecast methodology is examined by means of real data of Pennsylvania-New Jersey-Maryland (PJM) electricity market and the California ISO (CAISO) controlled grid. The obtained forecast results are presented and compared with those of the other SR forecast methods.
Author Keynia, Farshid
Amjady, Nima
Author_xml – sequence: 1
  givenname: Nima
  surname: Amjady
  fullname: Amjady, Nima
  email: amjady@tavanir.org.ir
– sequence: 2
  givenname: Farshid
  surname: Keynia
  fullname: Keynia, Farshid
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22751969$$DView record in Pascal Francis
http://econpapers.repec.org/article/eeeappene/v_3a87_3ay_3a2010_3ai_3a6_3ap_3a1870-1879.htm$$DView record in RePEc
BookMark eNqFUU1v2zAMFYYWWPrxFwZfdnQmya4sATusKPYFBNhl61VgJSpV5siepGbIvx-NrDvs0sMjQYLvUeK7YGdpSsjYG8HXggv1breGGRPm7XEtOTfUXHOpXrGV0INsjRD6jK14x1UrlTCv2UUpO865FJKv2P1tk_B3U-aYUkzbJmPBfEDKv55ixj2m2oQpo4NSmz3Wx8kvdeMx4_ZphIq-wRFdzdHFemz2kH9iLVfsPMBY8PpvvmQ_Pn38fvel3Xz7_PXudtO6Xoja3kDQDnrd99ybXgZtTFAOfAcPYDQfVPADatCgvHRGKw0OO_8Q9NB3YEzXXbLNSTfjjM7OOdIDjhYRYV6OYg-2Az1QOBIkF5xSJCjCTKAbcUvB2Me6J7m3J7kZioMxZEguln-yUg43wihDc-9Pcy5PpWQMlj4PNU6pZoijpTWLNXZnn62xizVLn6whuvqP_rzhReKHExHppoeI2RYXMTn05JWr1k_xJYk_ODmw8g
CODEN APENDX
CitedBy_id crossref_primary_10_1016_j_egypro_2018_12_044
crossref_primary_10_1049_tje2_12356
crossref_primary_10_1080_15325008_2016_1232321
crossref_primary_10_1109_JSYST_2014_2370894
crossref_primary_10_3390_electronics11182857
crossref_primary_10_1016_j_eneco_2019_05_006
crossref_primary_10_1016_j_apenergy_2016_11_102
crossref_primary_10_1016_j_apenergy_2013_03_031
crossref_primary_10_1016_j_apenergy_2012_01_053
crossref_primary_10_1109_TPWRD_2010_2102369
crossref_primary_10_1016_j_epsr_2016_08_009
crossref_primary_10_1080_15325008_2013_769034
crossref_primary_10_1016_j_apenergy_2011_04_011
crossref_primary_10_1109_TPWRS_2023_3257353
crossref_primary_10_1016_j_simpat_2013_06_001
Cites_doi 10.1016/j.epsr.2006.09.022
10.1109/JPROC.2005.857492
10.1109/TPWRS.2005.860926
10.1016/j.apenergy.2007.07.007
10.1057/palgrave.jors.2601995
10.1109/TPWRS.2005.857016
10.1016/j.apenergy.2008.07.005
10.1109/TPWRS.2004.835668
10.1109/72.329697
10.1109/TPWRS.2005.857015
10.1016/j.apenergy.2008.08.001
10.1016/j.apenergy.2008.09.025
10.1109/TPWRS.2008.2006997
10.1109/HICSS.2001.926283
10.1109/TPWRS.2007.894867
10.1016/j.apenergy.2009.01.021
10.1016/j.apenergy.2008.10.009
10.1016/j.energy.2008.09.020
ContentType Journal Article
Copyright 2009 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2009 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DKI
X2L
DOI 10.1016/j.apenergy.2009.10.026
DatabaseName CrossRef
Pascal-Francis
RePEc IDEAS
RePEc
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1872-9118
EndPage 1879
ExternalDocumentID eeeappene_v_3a87_3ay_3a2010_3ai_3a6_3ap_3a1870_1879_htm
22751969
10_1016_j_apenergy_2009_10_026
S030626190900470X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
AAYOK
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZY4
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
02
0R
1
8P
AAPBV
ABPTK
ADALY
DKI
G-
HZ
IPNFZ
K
M
X2L
ID FETCH-LOGICAL-c411t-5af8ca48440d942f899f6cad3aba98076fd7e8a8a6d2c9868ace3dbf8743a9933
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000278306300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Wed Aug 18 03:07:34 EDT 2021
Mon Jul 21 09:14:24 EDT 2025
Sat Nov 29 07:21:10 EST 2025
Tue Nov 18 22:19:32 EST 2025
Fri Feb 23 02:36:46 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords LM learning algorithm
Hybrid forecast engine
Spinning reserve requirement
RCGA
Electricity market
Methodology
Forecast model
Forecasting
Learning
Energy requirement
Electricity
Levenberg Marquardt algorithm
Genetic algorithm
Reserve power
Hybrid model
Open market
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c411t-5af8ca48440d942f899f6cad3aba98076fd7e8a8a6d2c9868ace3dbf8743a9933
PageCount 10
ParticipantIDs repec_primary_eeeappene_v_3a87_3ay_3a2010_3ai_3a6_3ap_3a1870_1879_htm
pascalfrancis_primary_22751969
crossref_citationtrail_10_1016_j_apenergy_2009_10_026
crossref_primary_10_1016_j_apenergy_2009_10_026
elsevier_sciencedirect_doi_10_1016_j_apenergy_2009_10_026
PublicationCentury 2000
PublicationDate 2010-06-01
PublicationDateYYYYMMDD 2010-06-01
PublicationDate_xml – month: 06
  year: 2010
  text: 2010-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationSeriesTitle Applied Energy
PublicationTitle Applied energy
PublicationYear 2010
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Cai, Huang, Yang, Tan (bib4) 2009; 86
Verbic, Gubina (bib2) 2004; 19
Bouffard, Galiana, Conejo (bib6) 2005; 20
Aghaei, Shayanfar, Amjady (bib1) 2009; 86
Pindoriya, Singh, Singh (bib3) 2008; 20–24
Open access same time information system (OASIS) of California electricity market.
PJM Web site.
Tsekouras, Hatziargyriou, Dialynas (bib15) 2006; 21
Galiana, Bouffard, Arroyo, Restrepo (bib21) 2005; 93
Georgopoulou, Giannakoglou (bib8) 2009; 86
Wong, Fuller (bib7) 2007; 22
Nogales, Conejo (bib24) 2006; 57
Pinson, Nielsen, Madsen, Kariniotakis (bib14) 2009; 86
Michalewicz (bib18) 1996
Amjady, Keynia (bib12) 2009; 24
Diongue, Guégan, Vignal (bib13) 2009; 86
AlRashidi MR, EL-Naggar KM. Long term electric load forecasting based on particle swarm optimization. Appl Energy. doi:10.1016/j.apenergy.(2009) 04.024.
Hagan, Menhaj (bib16) 1994; 5
.
Bouffard, Galiana, Conejo (bib5) 2005; 20
Oren SS. Design of ancillary service markets. In: Proceedings of the 34th annual Hawaii international conference on system sciences; 2001. p. 1–9.
Delarue, D’haeseleer (bib9) 2008; 85
Amjady, Keynia (bib10) 2009; 34
Catalão, Mariano, Mendes, Ferreira (bib23) 2007; 77
Goldberg (bib17) 1989
Georgopoulou (10.1016/j.apenergy.2009.10.026_bib8) 2009; 86
10.1016/j.apenergy.2009.10.026_bib11
10.1016/j.apenergy.2009.10.026_bib22
Bouffard (10.1016/j.apenergy.2009.10.026_bib5) 2005; 20
Goldberg (10.1016/j.apenergy.2009.10.026_bib17) 1989
Catalão (10.1016/j.apenergy.2009.10.026_bib23) 2007; 77
Verbic (10.1016/j.apenergy.2009.10.026_bib2) 2004; 19
Cai (10.1016/j.apenergy.2009.10.026_bib4) 2009; 86
10.1016/j.apenergy.2009.10.026_bib19
Tsekouras (10.1016/j.apenergy.2009.10.026_bib15) 2006; 21
Pindoriya (10.1016/j.apenergy.2009.10.026_bib3) 2008; 20–24
Diongue (10.1016/j.apenergy.2009.10.026_bib13) 2009; 86
Pinson (10.1016/j.apenergy.2009.10.026_bib14) 2009; 86
Wong (10.1016/j.apenergy.2009.10.026_bib7) 2007; 22
Amjady (10.1016/j.apenergy.2009.10.026_bib10) 2009; 34
Galiana (10.1016/j.apenergy.2009.10.026_bib21) 2005; 93
Nogales (10.1016/j.apenergy.2009.10.026_bib24) 2006; 57
Aghaei (10.1016/j.apenergy.2009.10.026_bib1) 2009; 86
Hagan (10.1016/j.apenergy.2009.10.026_bib16) 1994; 5
Delarue (10.1016/j.apenergy.2009.10.026_bib9) 2008; 85
Amjady (10.1016/j.apenergy.2009.10.026_bib12) 2009; 24
Bouffard (10.1016/j.apenergy.2009.10.026_bib6) 2005; 20
Michalewicz (10.1016/j.apenergy.2009.10.026_bib18) 1996
10.1016/j.apenergy.2009.10.026_bib20
References_xml – volume: 34
  start-page: 46
  year: 2009
  end-page: 57
  ident: bib10
  article-title: Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm
  publication-title: Energy
– volume: 93
  start-page: 1970
  year: 2005
  end-page: 1983
  ident: bib21
  article-title: Scheduling and pricing of coupled energy and primary, secondary, and tertiary reserves
  publication-title: Proc IEEE
– reference: PJM Web site. <
– volume: 57
  start-page: 350
  year: 2006
  end-page: 356
  ident: bib24
  article-title: Electricity price forecasting through transfer function models
  publication-title: J Oper Res Soc
– volume: 20–24
  start-page: 1
  year: 2008
  end-page: 8
  ident: bib3
  article-title: Forecasting the day-ahead spinning reserve requirement in competitive electricity market
  publication-title: IEEE Gen Meet
– volume: 85
  start-page: 171
  year: 2008
  end-page: 181
  ident: bib9
  article-title: Adaptive mixed-integer programming unit commitment strategy for determining the value of forecasting
  publication-title: Appl Energy
– reference: Open access same time information system (OASIS) of California electricity market. <
– reference: Oren SS. Design of ancillary service markets. In: Proceedings of the 34th annual Hawaii international conference on system sciences; 2001. p. 1–9.
– volume: 77
  start-page: 1297
  year: 2007
  end-page: 1304
  ident: bib23
  article-title: Short-term electricity prices forecasting in a competitive market: a neural network approach
  publication-title: Electr Power Syst Res
– volume: 22
  start-page: 631
  year: 2007
  end-page: 638
  ident: bib7
  article-title: Pricing energy and reserves using stochastic optimization in an alternative electricity market
  publication-title: IEEE Trans Power Syst
– volume: 86
  start-page: 480
  year: 2009
  end-page: 495
  ident: bib4
  article-title: Identification of optimal strategies for energy management systems planning under multiple uncertainties
  publication-title: Appl Energy
– volume: 21
  start-page: 385
  year: 2006
  end-page: 391
  ident: bib15
  article-title: An optimized adaptive neural network for annual midterm energy forecasting
  publication-title: IEEE Trans Power Syst
– volume: 20
  start-page: 1827
  year: 2005
  end-page: 1835
  ident: bib6
  article-title: Market-clearing with stochastic security—part II: case studies
  publication-title: IEEE Trans Power Syst
– volume: 86
  start-page: 505
  year: 2009
  end-page: 510
  ident: bib13
  article-title: Forecasting electricity spot market prices with a k-factor GIGARCH process
  publication-title: Appl Energy
– reference: >.
– year: 1989
  ident: bib17
  article-title: Genetic algorithms in search optimization and machine learning
– volume: 5
  start-page: 989
  year: 1994
  end-page: 993
  ident: bib16
  article-title: Training feed forward networks with Marquardt algorithm
  publication-title: IEEE Trans Neural Networks
– volume: 19
  start-page: 1853
  year: 2004
  end-page: 1958
  ident: bib2
  article-title: Cost-based models for the power-reserve pricing of frequency control
  publication-title: IEEE Trans Power Syst
– reference: AlRashidi MR, EL-Naggar KM. Long term electric load forecasting based on particle swarm optimization. Appl Energy. doi:10.1016/j.apenergy.(2009) 04.024.
– volume: 86
  start-page: 1675
  year: 2009
  end-page: 1682
  ident: bib1
  article-title: Joint market clearing in a stochastic framework considering power system security
  publication-title: Appl Energy
– year: 1996
  ident: bib18
  article-title: Genetic algorithms
– volume: 24
  start-page: 306
  year: 2009
  end-page: 318
  ident: bib12
  article-title: Day-ahead price forecasting of electricity markets by mutual information technique and cascaded neuro-evolutionary algorithm
  publication-title: IEEE Trans Power Syst
– volume: 20
  start-page: 1818
  year: 2005
  end-page: 1826
  ident: bib5
  article-title: Market-clearing with stochastic security—part I: formulation
  publication-title: IEEE Trans Power Syst
– volume: 86
  start-page: 1229
  year: 2009
  end-page: 1239
  ident: bib8
  article-title: Two-level, two-objective evolutionary algorithms for solving unit commitment problems
  publication-title: Appl Energy
– volume: 86
  start-page: 1326
  year: 2009
  end-page: 1334
  ident: bib14
  article-title: Skill forecasting from ensemble predictions of wind power
  publication-title: Appl Energy
– volume: 77
  start-page: 1297
  year: 2007
  ident: 10.1016/j.apenergy.2009.10.026_bib23
  article-title: Short-term electricity prices forecasting in a competitive market: a neural network approach
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2006.09.022
– volume: 93
  start-page: 1970
  issue: 11
  year: 2005
  ident: 10.1016/j.apenergy.2009.10.026_bib21
  article-title: Scheduling and pricing of coupled energy and primary, secondary, and tertiary reserves
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2005.857492
– volume: 21
  start-page: 385
  issue: 1
  year: 2006
  ident: 10.1016/j.apenergy.2009.10.026_bib15
  article-title: An optimized adaptive neural network for annual midterm energy forecasting
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2005.860926
– volume: 85
  start-page: 171
  year: 2008
  ident: 10.1016/j.apenergy.2009.10.026_bib9
  article-title: Adaptive mixed-integer programming unit commitment strategy for determining the value of forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2007.07.007
– volume: 57
  start-page: 350
  issue: 4
  year: 2006
  ident: 10.1016/j.apenergy.2009.10.026_bib24
  article-title: Electricity price forecasting through transfer function models
  publication-title: J Oper Res Soc
  doi: 10.1057/palgrave.jors.2601995
– volume: 20
  start-page: 1818
  year: 2005
  ident: 10.1016/j.apenergy.2009.10.026_bib5
  article-title: Market-clearing with stochastic security—part I: formulation
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2005.857016
– volume: 86
  start-page: 505
  issue: 4
  year: 2009
  ident: 10.1016/j.apenergy.2009.10.026_bib13
  article-title: Forecasting electricity spot market prices with a k-factor GIGARCH process
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2008.07.005
– volume: 19
  start-page: 1853
  year: 2004
  ident: 10.1016/j.apenergy.2009.10.026_bib2
  article-title: Cost-based models for the power-reserve pricing of frequency control
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2004.835668
– ident: 10.1016/j.apenergy.2009.10.026_bib20
– volume: 5
  start-page: 989
  issue: 6
  year: 1994
  ident: 10.1016/j.apenergy.2009.10.026_bib16
  article-title: Training feed forward networks with Marquardt algorithm
  publication-title: IEEE Trans Neural Networks
  doi: 10.1109/72.329697
– year: 1989
  ident: 10.1016/j.apenergy.2009.10.026_bib17
– volume: 20
  start-page: 1827
  year: 2005
  ident: 10.1016/j.apenergy.2009.10.026_bib6
  article-title: Market-clearing with stochastic security—part II: case studies
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2005.857015
– year: 1996
  ident: 10.1016/j.apenergy.2009.10.026_bib18
– volume: 86
  start-page: 1229
  year: 2009
  ident: 10.1016/j.apenergy.2009.10.026_bib8
  article-title: Two-level, two-objective evolutionary algorithms for solving unit commitment problems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2008.08.001
– volume: 86
  start-page: 480
  issue: 2
  year: 2009
  ident: 10.1016/j.apenergy.2009.10.026_bib4
  article-title: Identification of optimal strategies for energy management systems planning under multiple uncertainties
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2008.09.025
– volume: 24
  start-page: 306
  issue: 1
  year: 2009
  ident: 10.1016/j.apenergy.2009.10.026_bib12
  article-title: Day-ahead price forecasting of electricity markets by mutual information technique and cascaded neuro-evolutionary algorithm
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2008.2006997
– ident: 10.1016/j.apenergy.2009.10.026_bib22
  doi: 10.1109/HICSS.2001.926283
– volume: 20–24
  start-page: 1
  year: 2008
  ident: 10.1016/j.apenergy.2009.10.026_bib3
  article-title: Forecasting the day-ahead spinning reserve requirement in competitive electricity market
  publication-title: IEEE Gen Meet
– ident: 10.1016/j.apenergy.2009.10.026_bib11
– volume: 22
  start-page: 631
  year: 2007
  ident: 10.1016/j.apenergy.2009.10.026_bib7
  article-title: Pricing energy and reserves using stochastic optimization in an alternative electricity market
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2007.894867
– volume: 86
  start-page: 1675
  year: 2009
  ident: 10.1016/j.apenergy.2009.10.026_bib1
  article-title: Joint market clearing in a stochastic framework considering power system security
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.01.021
– volume: 86
  start-page: 1326
  issue: 7–8
  year: 2009
  ident: 10.1016/j.apenergy.2009.10.026_bib14
  article-title: Skill forecasting from ensemble predictions of wind power
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2008.10.009
– ident: 10.1016/j.apenergy.2009.10.026_bib19
– volume: 34
  start-page: 46
  year: 2009
  ident: 10.1016/j.apenergy.2009.10.026_bib10
  article-title: Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2008.09.020
SSID ssj0002120
Score 2.0673769
Snippet Ancillary services are necessary for maintaining the security and reliability of power systems and constitute an important part of trade in competitive...
SourceID repec
pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 1870
SubjectTerms Applied sciences
Economic data
Electric energy
Electricity market
Electricity market Spinning reserve requirement Hybrid forecast engine LM learning algorithm RCGA
Energy
Energy economics
Exact sciences and technology
General, economic and professional studies
Hybrid forecast engine
LM learning algorithm
Methodology. Modelling
RCGA
Spinning reserve requirement
Title A new spinning reserve requirement forecast method for deregulated electricity markets
URI https://dx.doi.org/10.1016/j.apenergy.2009.10.026
http://econpapers.repec.org/article/eeeappene/v_3a87_3ay_3a2010_3ai_3a6_3ap_3a1870-1879.htm
Volume 87
WOSCitedRecordID wos000278306300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdg4wBCCAYT5WPygdsUaJM0sY8V6sSXJg4D9WY5tiNS0RA1WbX993vPH2mAwtiBg9PUjd2k7-fnZ_e99yPkVay0VDKzLHU6Slk8iQowCyI-LmH6leOCa5tn9lN-esoWC_7Z-8-3lk4gr2t2ccGb_ypqqANhY-jsDcTddwoVcA5ChyOIHY7_JPgZsoQft01lyYiOMbxovUFyFPT5tZuB6FpolGw7zx9tXQ2RtNPS0oMF6rhxKoUW-sqGRbdDIzZYrsbGDfaQWS2l19jVVtl_NJe188c9kegxrYfbDPgPeXCHCuFVUIHLraHq9HNl9ZsenDBHB-LnVKQ036mv3dbB8rVs3C27BKLobhfvSJD9y8TVuxMGT7WlCP0guyaHSgH93Cb7cT7loLX3Z-_niw_9RB37rJ3hyQYB5Lvv6E-2y_1GtjCiSkeFAsuctWmMGtgpZw_JA7_AoDMHjEfklqkPyL1B2skDcjjfRjfCpV69t4_J1xkF7NCAHeqxQwfYoQE71GEH39MBdugAO9Rj5wn5cjI_e_su8sQbkUonky6aypJhtvs0HWuexiWsyctMSZ3IQnI2zrNS54ZJJjMdK84yJpVJdFEyMEclGLzJIdmrf9TmKaFweaqTPNEZS9JMqcJIO0eA1a2nqZyOyDT8pEL5rPRIjvJd_F2oI_Kmb9e4vCzXtuBBYsJbl85qFADGa9se_STi_itjQBYmmBqRuZV5_4ExRjbYk9iIRLIcDpdQcGTBSwUlg9JAwaEicICIb93q2Y0f6zm5ux2uL8hetz43L8kdtemqdn3kIX8Fz9vFvg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+spinning+reserve+requirement+forecast+method+for+deregulated+electricity+markets&rft.jtitle=Applied+energy&rft.au=Amjady%2C+Nima&rft.au=Keynia%2C+Farshid&rft.date=2010-06-01&rft.issn=0306-2619&rft.volume=87&rft.issue=6&rft.spage=1870&rft.epage=1879&rft_id=info:doi/10.1016%2Fj.apenergy.2009.10.026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2009_10_026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon