A new spinning reserve requirement forecast method for deregulated electricity markets
Ancillary services are necessary for maintaining the security and reliability of power systems and constitute an important part of trade in competitive electricity markets. Spinning Reserve (SR) is one of the most important ancillary services for saving power system stability and integrity in respon...
Saved in:
| Published in: | Applied energy Vol. 87; no. 6; pp. 1870 - 1879 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Kidlington
Elsevier Ltd
01.06.2010
Elsevier |
| Series: | Applied Energy |
| Subjects: | |
| ISSN: | 0306-2619, 1872-9118 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Ancillary services are necessary for maintaining the security and reliability of power systems and constitute an important part of trade in competitive electricity markets. Spinning Reserve (SR) is one of the most important ancillary services for saving power system stability and integrity in response to contingencies and disturbances that continuously occur in the power systems. Hence, an accurate day-ahead forecast of SR requirement helps the Independent System Operator (ISO) to conduct a reliable and economic operation of the power system. However, SR signal has complex, non-stationary and volatile behavior along the time domain and depends greatly on system load. In this paper, a new hybrid forecast engine is proposed for SR requirement prediction. The proposed forecast engine has an iterative training mechanism composed of Levenberg–Marquadt (LM) learning algorithm and Real Coded Genetic Algorithm (RCGA), implemented on the Multi-Layer Perceptron (MLP) neural network. The proposed forecast methodology is examined by means of real data of Pennsylvania–New Jersey–Maryland (PJM) electricity market and the California ISO (CAISO) controlled grid. The obtained forecast results are presented and compared with those of the other SR forecast methods. |
|---|---|
| AbstractList | Ancillary services are necessary for maintaining the security and reliability of power systems and constitute an important part of trade in competitive electricity markets. Spinning Reserve (SR) is one of the most important ancillary services for saving power system stability and integrity in response to contingencies and disturbances that continuously occur in the power systems. Hence, an accurate day-ahead forecast of SR requirement helps the Independent System Operator (ISO) to conduct a reliable and economic operation of the power system. However, SR signal has complex, non-stationary and volatile behavior along the time domain and depends greatly on system load. In this paper, a new hybrid forecast engine is proposed for SR requirement prediction. The proposed forecast engine has an iterative training mechanism composed of Levenberg-Marquadt (LM) learning algorithm and Real Coded Genetic Algorithm (RCGA), implemented on the Multi-Layer Perceptron (MLP) neural network. The proposed forecast methodology is examined by means of real data of Pennsylvania-New Jersey-Maryland (PJM) electricity market and the California ISO (CAISO) controlled grid. The obtained forecast results are presented and compared with those of the other SR forecast methods. |
| Author | Keynia, Farshid Amjady, Nima |
| Author_xml | – sequence: 1 givenname: Nima surname: Amjady fullname: Amjady, Nima email: amjady@tavanir.org.ir – sequence: 2 givenname: Farshid surname: Keynia fullname: Keynia, Farshid |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22751969$$DView record in Pascal Francis http://econpapers.repec.org/article/eeeappene/v_3a87_3ay_3a2010_3ai_3a6_3ap_3a1870-1879.htm$$DView record in RePEc |
| BookMark | eNqFUU1v2zAMFYYWWPrxFwZfdnQmya4sATusKPYFBNhl61VgJSpV5siepGbIvx-NrDvs0sMjQYLvUeK7YGdpSsjYG8HXggv1breGGRPm7XEtOTfUXHOpXrGV0INsjRD6jK14x1UrlTCv2UUpO865FJKv2P1tk_B3U-aYUkzbJmPBfEDKv55ixj2m2oQpo4NSmz3Wx8kvdeMx4_ZphIq-wRFdzdHFemz2kH9iLVfsPMBY8PpvvmQ_Pn38fvel3Xz7_PXudtO6Xoja3kDQDnrd99ybXgZtTFAOfAcPYDQfVPADatCgvHRGKw0OO_8Q9NB3YEzXXbLNSTfjjM7OOdIDjhYRYV6OYg-2Az1QOBIkF5xSJCjCTKAbcUvB2Me6J7m3J7kZioMxZEguln-yUg43wihDc-9Pcy5PpWQMlj4PNU6pZoijpTWLNXZnn62xizVLn6whuvqP_rzhReKHExHppoeI2RYXMTn05JWr1k_xJYk_ODmw8g |
| CODEN | APENDX |
| CitedBy_id | crossref_primary_10_1016_j_egypro_2018_12_044 crossref_primary_10_1049_tje2_12356 crossref_primary_10_1080_15325008_2016_1232321 crossref_primary_10_1109_JSYST_2014_2370894 crossref_primary_10_3390_electronics11182857 crossref_primary_10_1016_j_eneco_2019_05_006 crossref_primary_10_1016_j_apenergy_2016_11_102 crossref_primary_10_1016_j_apenergy_2013_03_031 crossref_primary_10_1016_j_apenergy_2012_01_053 crossref_primary_10_1109_TPWRD_2010_2102369 crossref_primary_10_1016_j_epsr_2016_08_009 crossref_primary_10_1080_15325008_2013_769034 crossref_primary_10_1016_j_apenergy_2011_04_011 crossref_primary_10_1109_TPWRS_2023_3257353 crossref_primary_10_1016_j_simpat_2013_06_001 |
| Cites_doi | 10.1016/j.epsr.2006.09.022 10.1109/JPROC.2005.857492 10.1109/TPWRS.2005.860926 10.1016/j.apenergy.2007.07.007 10.1057/palgrave.jors.2601995 10.1109/TPWRS.2005.857016 10.1016/j.apenergy.2008.07.005 10.1109/TPWRS.2004.835668 10.1109/72.329697 10.1109/TPWRS.2005.857015 10.1016/j.apenergy.2008.08.001 10.1016/j.apenergy.2008.09.025 10.1109/TPWRS.2008.2006997 10.1109/HICSS.2001.926283 10.1109/TPWRS.2007.894867 10.1016/j.apenergy.2009.01.021 10.1016/j.apenergy.2008.10.009 10.1016/j.energy.2008.09.020 |
| ContentType | Journal Article |
| Copyright | 2009 Elsevier Ltd 2015 INIST-CNRS |
| Copyright_xml | – notice: 2009 Elsevier Ltd – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW DKI X2L |
| DOI | 10.1016/j.apenergy.2009.10.026 |
| DatabaseName | CrossRef Pascal-Francis RePEc IDEAS RePEc |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences Applied Sciences |
| EISSN | 1872-9118 |
| EndPage | 1879 |
| ExternalDocumentID | eeeappene_v_3a87_3ay_3a2010_3ai_3a6_3ap_3a1870_1879_htm 22751969 10_1016_j_apenergy_2009_10_026 S030626190900470X |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO AAYOK ABEFU ABFNM ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SES SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ ZY4 ~02 ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 02 0R 1 8P AAPBV ABPTK ADALY DKI G- HZ IPNFZ K M X2L |
| ID | FETCH-LOGICAL-c411t-5af8ca48440d942f899f6cad3aba98076fd7e8a8a6d2c9868ace3dbf8743a9933 |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000278306300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Wed Aug 18 03:07:34 EDT 2021 Mon Jul 21 09:14:24 EDT 2025 Sat Nov 29 07:21:10 EST 2025 Tue Nov 18 22:19:32 EST 2025 Fri Feb 23 02:36:46 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | LM learning algorithm Hybrid forecast engine Spinning reserve requirement RCGA Electricity market Methodology Forecast model Forecasting Learning Energy requirement Electricity Levenberg Marquardt algorithm Genetic algorithm Reserve power Hybrid model Open market |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c411t-5af8ca48440d942f899f6cad3aba98076fd7e8a8a6d2c9868ace3dbf8743a9933 |
| PageCount | 10 |
| ParticipantIDs | repec_primary_eeeappene_v_3a87_3ay_3a2010_3ai_3a6_3ap_3a1870_1879_htm pascalfrancis_primary_22751969 crossref_citationtrail_10_1016_j_apenergy_2009_10_026 crossref_primary_10_1016_j_apenergy_2009_10_026 elsevier_sciencedirect_doi_10_1016_j_apenergy_2009_10_026 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-06-01 |
| PublicationDateYYYYMMDD | 2010-06-01 |
| PublicationDate_xml | – month: 06 year: 2010 text: 2010-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationSeriesTitle | Applied Energy |
| PublicationTitle | Applied energy |
| PublicationYear | 2010 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Cai, Huang, Yang, Tan (bib4) 2009; 86 Verbic, Gubina (bib2) 2004; 19 Bouffard, Galiana, Conejo (bib6) 2005; 20 Aghaei, Shayanfar, Amjady (bib1) 2009; 86 Pindoriya, Singh, Singh (bib3) 2008; 20–24 Open access same time information system (OASIS) of California electricity market. PJM Web site. Tsekouras, Hatziargyriou, Dialynas (bib15) 2006; 21 Galiana, Bouffard, Arroyo, Restrepo (bib21) 2005; 93 Georgopoulou, Giannakoglou (bib8) 2009; 86 Wong, Fuller (bib7) 2007; 22 Nogales, Conejo (bib24) 2006; 57 Pinson, Nielsen, Madsen, Kariniotakis (bib14) 2009; 86 Michalewicz (bib18) 1996 Amjady, Keynia (bib12) 2009; 24 Diongue, Guégan, Vignal (bib13) 2009; 86 AlRashidi MR, EL-Naggar KM. Long term electric load forecasting based on particle swarm optimization. Appl Energy. doi:10.1016/j.apenergy.(2009) 04.024. Hagan, Menhaj (bib16) 1994; 5 . Bouffard, Galiana, Conejo (bib5) 2005; 20 Oren SS. Design of ancillary service markets. In: Proceedings of the 34th annual Hawaii international conference on system sciences; 2001. p. 1–9. Delarue, D’haeseleer (bib9) 2008; 85 Amjady, Keynia (bib10) 2009; 34 Catalão, Mariano, Mendes, Ferreira (bib23) 2007; 77 Goldberg (bib17) 1989 Georgopoulou (10.1016/j.apenergy.2009.10.026_bib8) 2009; 86 10.1016/j.apenergy.2009.10.026_bib11 10.1016/j.apenergy.2009.10.026_bib22 Bouffard (10.1016/j.apenergy.2009.10.026_bib5) 2005; 20 Goldberg (10.1016/j.apenergy.2009.10.026_bib17) 1989 Catalão (10.1016/j.apenergy.2009.10.026_bib23) 2007; 77 Verbic (10.1016/j.apenergy.2009.10.026_bib2) 2004; 19 Cai (10.1016/j.apenergy.2009.10.026_bib4) 2009; 86 10.1016/j.apenergy.2009.10.026_bib19 Tsekouras (10.1016/j.apenergy.2009.10.026_bib15) 2006; 21 Pindoriya (10.1016/j.apenergy.2009.10.026_bib3) 2008; 20–24 Diongue (10.1016/j.apenergy.2009.10.026_bib13) 2009; 86 Pinson (10.1016/j.apenergy.2009.10.026_bib14) 2009; 86 Wong (10.1016/j.apenergy.2009.10.026_bib7) 2007; 22 Amjady (10.1016/j.apenergy.2009.10.026_bib10) 2009; 34 Galiana (10.1016/j.apenergy.2009.10.026_bib21) 2005; 93 Nogales (10.1016/j.apenergy.2009.10.026_bib24) 2006; 57 Aghaei (10.1016/j.apenergy.2009.10.026_bib1) 2009; 86 Hagan (10.1016/j.apenergy.2009.10.026_bib16) 1994; 5 Delarue (10.1016/j.apenergy.2009.10.026_bib9) 2008; 85 Amjady (10.1016/j.apenergy.2009.10.026_bib12) 2009; 24 Bouffard (10.1016/j.apenergy.2009.10.026_bib6) 2005; 20 Michalewicz (10.1016/j.apenergy.2009.10.026_bib18) 1996 10.1016/j.apenergy.2009.10.026_bib20 |
| References_xml | – volume: 34 start-page: 46 year: 2009 end-page: 57 ident: bib10 article-title: Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm publication-title: Energy – volume: 93 start-page: 1970 year: 2005 end-page: 1983 ident: bib21 article-title: Scheduling and pricing of coupled energy and primary, secondary, and tertiary reserves publication-title: Proc IEEE – reference: PJM Web site. < – volume: 57 start-page: 350 year: 2006 end-page: 356 ident: bib24 article-title: Electricity price forecasting through transfer function models publication-title: J Oper Res Soc – volume: 20–24 start-page: 1 year: 2008 end-page: 8 ident: bib3 article-title: Forecasting the day-ahead spinning reserve requirement in competitive electricity market publication-title: IEEE Gen Meet – volume: 85 start-page: 171 year: 2008 end-page: 181 ident: bib9 article-title: Adaptive mixed-integer programming unit commitment strategy for determining the value of forecasting publication-title: Appl Energy – reference: Open access same time information system (OASIS) of California electricity market. < – reference: Oren SS. Design of ancillary service markets. In: Proceedings of the 34th annual Hawaii international conference on system sciences; 2001. p. 1–9. – volume: 77 start-page: 1297 year: 2007 end-page: 1304 ident: bib23 article-title: Short-term electricity prices forecasting in a competitive market: a neural network approach publication-title: Electr Power Syst Res – volume: 22 start-page: 631 year: 2007 end-page: 638 ident: bib7 article-title: Pricing energy and reserves using stochastic optimization in an alternative electricity market publication-title: IEEE Trans Power Syst – volume: 86 start-page: 480 year: 2009 end-page: 495 ident: bib4 article-title: Identification of optimal strategies for energy management systems planning under multiple uncertainties publication-title: Appl Energy – volume: 21 start-page: 385 year: 2006 end-page: 391 ident: bib15 article-title: An optimized adaptive neural network for annual midterm energy forecasting publication-title: IEEE Trans Power Syst – volume: 20 start-page: 1827 year: 2005 end-page: 1835 ident: bib6 article-title: Market-clearing with stochastic security—part II: case studies publication-title: IEEE Trans Power Syst – volume: 86 start-page: 505 year: 2009 end-page: 510 ident: bib13 article-title: Forecasting electricity spot market prices with a k-factor GIGARCH process publication-title: Appl Energy – reference: >. – year: 1989 ident: bib17 article-title: Genetic algorithms in search optimization and machine learning – volume: 5 start-page: 989 year: 1994 end-page: 993 ident: bib16 article-title: Training feed forward networks with Marquardt algorithm publication-title: IEEE Trans Neural Networks – volume: 19 start-page: 1853 year: 2004 end-page: 1958 ident: bib2 article-title: Cost-based models for the power-reserve pricing of frequency control publication-title: IEEE Trans Power Syst – reference: AlRashidi MR, EL-Naggar KM. Long term electric load forecasting based on particle swarm optimization. Appl Energy. doi:10.1016/j.apenergy.(2009) 04.024. – volume: 86 start-page: 1675 year: 2009 end-page: 1682 ident: bib1 article-title: Joint market clearing in a stochastic framework considering power system security publication-title: Appl Energy – year: 1996 ident: bib18 article-title: Genetic algorithms – volume: 24 start-page: 306 year: 2009 end-page: 318 ident: bib12 article-title: Day-ahead price forecasting of electricity markets by mutual information technique and cascaded neuro-evolutionary algorithm publication-title: IEEE Trans Power Syst – volume: 20 start-page: 1818 year: 2005 end-page: 1826 ident: bib5 article-title: Market-clearing with stochastic security—part I: formulation publication-title: IEEE Trans Power Syst – volume: 86 start-page: 1229 year: 2009 end-page: 1239 ident: bib8 article-title: Two-level, two-objective evolutionary algorithms for solving unit commitment problems publication-title: Appl Energy – volume: 86 start-page: 1326 year: 2009 end-page: 1334 ident: bib14 article-title: Skill forecasting from ensemble predictions of wind power publication-title: Appl Energy – volume: 77 start-page: 1297 year: 2007 ident: 10.1016/j.apenergy.2009.10.026_bib23 article-title: Short-term electricity prices forecasting in a competitive market: a neural network approach publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2006.09.022 – volume: 93 start-page: 1970 issue: 11 year: 2005 ident: 10.1016/j.apenergy.2009.10.026_bib21 article-title: Scheduling and pricing of coupled energy and primary, secondary, and tertiary reserves publication-title: Proc IEEE doi: 10.1109/JPROC.2005.857492 – volume: 21 start-page: 385 issue: 1 year: 2006 ident: 10.1016/j.apenergy.2009.10.026_bib15 article-title: An optimized adaptive neural network for annual midterm energy forecasting publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2005.860926 – volume: 85 start-page: 171 year: 2008 ident: 10.1016/j.apenergy.2009.10.026_bib9 article-title: Adaptive mixed-integer programming unit commitment strategy for determining the value of forecasting publication-title: Appl Energy doi: 10.1016/j.apenergy.2007.07.007 – volume: 57 start-page: 350 issue: 4 year: 2006 ident: 10.1016/j.apenergy.2009.10.026_bib24 article-title: Electricity price forecasting through transfer function models publication-title: J Oper Res Soc doi: 10.1057/palgrave.jors.2601995 – volume: 20 start-page: 1818 year: 2005 ident: 10.1016/j.apenergy.2009.10.026_bib5 article-title: Market-clearing with stochastic security—part I: formulation publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2005.857016 – volume: 86 start-page: 505 issue: 4 year: 2009 ident: 10.1016/j.apenergy.2009.10.026_bib13 article-title: Forecasting electricity spot market prices with a k-factor GIGARCH process publication-title: Appl Energy doi: 10.1016/j.apenergy.2008.07.005 – volume: 19 start-page: 1853 year: 2004 ident: 10.1016/j.apenergy.2009.10.026_bib2 article-title: Cost-based models for the power-reserve pricing of frequency control publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2004.835668 – ident: 10.1016/j.apenergy.2009.10.026_bib20 – volume: 5 start-page: 989 issue: 6 year: 1994 ident: 10.1016/j.apenergy.2009.10.026_bib16 article-title: Training feed forward networks with Marquardt algorithm publication-title: IEEE Trans Neural Networks doi: 10.1109/72.329697 – year: 1989 ident: 10.1016/j.apenergy.2009.10.026_bib17 – volume: 20 start-page: 1827 year: 2005 ident: 10.1016/j.apenergy.2009.10.026_bib6 article-title: Market-clearing with stochastic security—part II: case studies publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2005.857015 – year: 1996 ident: 10.1016/j.apenergy.2009.10.026_bib18 – volume: 86 start-page: 1229 year: 2009 ident: 10.1016/j.apenergy.2009.10.026_bib8 article-title: Two-level, two-objective evolutionary algorithms for solving unit commitment problems publication-title: Appl Energy doi: 10.1016/j.apenergy.2008.08.001 – volume: 86 start-page: 480 issue: 2 year: 2009 ident: 10.1016/j.apenergy.2009.10.026_bib4 article-title: Identification of optimal strategies for energy management systems planning under multiple uncertainties publication-title: Appl Energy doi: 10.1016/j.apenergy.2008.09.025 – volume: 24 start-page: 306 issue: 1 year: 2009 ident: 10.1016/j.apenergy.2009.10.026_bib12 article-title: Day-ahead price forecasting of electricity markets by mutual information technique and cascaded neuro-evolutionary algorithm publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2008.2006997 – ident: 10.1016/j.apenergy.2009.10.026_bib22 doi: 10.1109/HICSS.2001.926283 – volume: 20–24 start-page: 1 year: 2008 ident: 10.1016/j.apenergy.2009.10.026_bib3 article-title: Forecasting the day-ahead spinning reserve requirement in competitive electricity market publication-title: IEEE Gen Meet – ident: 10.1016/j.apenergy.2009.10.026_bib11 – volume: 22 start-page: 631 year: 2007 ident: 10.1016/j.apenergy.2009.10.026_bib7 article-title: Pricing energy and reserves using stochastic optimization in an alternative electricity market publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2007.894867 – volume: 86 start-page: 1675 year: 2009 ident: 10.1016/j.apenergy.2009.10.026_bib1 article-title: Joint market clearing in a stochastic framework considering power system security publication-title: Appl Energy doi: 10.1016/j.apenergy.2009.01.021 – volume: 86 start-page: 1326 issue: 7–8 year: 2009 ident: 10.1016/j.apenergy.2009.10.026_bib14 article-title: Skill forecasting from ensemble predictions of wind power publication-title: Appl Energy doi: 10.1016/j.apenergy.2008.10.009 – ident: 10.1016/j.apenergy.2009.10.026_bib19 – volume: 34 start-page: 46 year: 2009 ident: 10.1016/j.apenergy.2009.10.026_bib10 article-title: Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm publication-title: Energy doi: 10.1016/j.energy.2008.09.020 |
| SSID | ssj0002120 |
| Score | 2.0673769 |
| Snippet | Ancillary services are necessary for maintaining the security and reliability of power systems and constitute an important part of trade in competitive... |
| SourceID | repec pascalfrancis crossref elsevier |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 1870 |
| SubjectTerms | Applied sciences Economic data Electric energy Electricity market Electricity market Spinning reserve requirement Hybrid forecast engine LM learning algorithm RCGA Energy Energy economics Exact sciences and technology General, economic and professional studies Hybrid forecast engine LM learning algorithm Methodology. Modelling RCGA Spinning reserve requirement |
| Title | A new spinning reserve requirement forecast method for deregulated electricity markets |
| URI | https://dx.doi.org/10.1016/j.apenergy.2009.10.026 http://econpapers.repec.org/article/eeeappene/v_3a87_3ay_3a2010_3ai_3a6_3ap_3a1870-1879.htm |
| Volume | 87 |
| WOSCitedRecordID | wos000278306300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdg4wBCCAYT5WPygdsUaJM0sY8V6sSXJg4D9WY5tiNS0RA1WbX993vPH2mAwtiBg9PUjd2k7-fnZ_e99yPkVay0VDKzLHU6Slk8iQowCyI-LmH6leOCa5tn9lN-esoWC_7Z-8-3lk4gr2t2ccGb_ypqqANhY-jsDcTddwoVcA5ChyOIHY7_JPgZsoQft01lyYiOMbxovUFyFPT5tZuB6FpolGw7zx9tXQ2RtNPS0oMF6rhxKoUW-sqGRbdDIzZYrsbGDfaQWS2l19jVVtl_NJe188c9kegxrYfbDPgPeXCHCuFVUIHLraHq9HNl9ZsenDBHB-LnVKQ036mv3dbB8rVs3C27BKLobhfvSJD9y8TVuxMGT7WlCP0guyaHSgH93Cb7cT7loLX3Z-_niw_9RB37rJ3hyQYB5Lvv6E-2y_1GtjCiSkeFAsuctWmMGtgpZw_JA7_AoDMHjEfklqkPyL1B2skDcjjfRjfCpV69t4_J1xkF7NCAHeqxQwfYoQE71GEH39MBdugAO9Rj5wn5cjI_e_su8sQbkUonky6aypJhtvs0HWuexiWsyctMSZ3IQnI2zrNS54ZJJjMdK84yJpVJdFEyMEclGLzJIdmrf9TmKaFweaqTPNEZS9JMqcJIO0eA1a2nqZyOyDT8pEL5rPRIjvJd_F2oI_Kmb9e4vCzXtuBBYsJbl85qFADGa9se_STi_itjQBYmmBqRuZV5_4ExRjbYk9iIRLIcDpdQcGTBSwUlg9JAwaEicICIb93q2Y0f6zm5ux2uL8hetz43L8kdtemqdn3kIX8Fz9vFvg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+spinning+reserve+requirement+forecast+method+for+deregulated+electricity+markets&rft.jtitle=Applied+energy&rft.au=Amjady%2C+Nima&rft.au=Keynia%2C+Farshid&rft.date=2010-06-01&rft.issn=0306-2619&rft.volume=87&rft.issue=6&rft.spage=1870&rft.epage=1879&rft_id=info:doi/10.1016%2Fj.apenergy.2009.10.026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2009_10_026 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |