An effective hybrid biogeography-based optimization algorithm for the distributed assembly permutation flow-shop scheduling problem
•The BBO algorithm is deeply studied by integrating several novel local search heuristics.•A hybrid algorithm called HBBO is proposed for solving the DAPFSP.•The performance of the HBBO is evaluated by using 1710 benchmark instances.•New best solutions are obtained by the proposed hybrid scheme. Dis...
Gespeichert in:
| Veröffentlicht in: | Computers & industrial engineering Jg. 97; S. 128 - 136 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Elsevier Ltd
01.07.2016
Pergamon Press Inc |
| Schlagworte: | |
| ISSN: | 0360-8352, 1879-0550 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •The BBO algorithm is deeply studied by integrating several novel local search heuristics.•A hybrid algorithm called HBBO is proposed for solving the DAPFSP.•The performance of the HBBO is evaluated by using 1710 benchmark instances.•New best solutions are obtained by the proposed hybrid scheme.
Distributed assembly permutation flow-shop scheduling problem (DAPFSP) is widely exists in modern supply chains and manufacturing systems. In this paper, an effective hybrid biogeography-based optimization (HBBO) algorithm that integrates several novel heuristics is proposed to solve the DAPFSP with the objective of minimizing the makespan. Firstly, the path relinking heuristic is employed in the migration phase as product local search strategy to optimize the assembly sequence. Secondly, an insertion-based heuristic is used in the mutation phase to determine the job permutation for each product. Then, a novel local search method is designed based on the problem characteristics and embedded in the HBBO scheme to further improve the most promising individual. Finally, computational simulations on 900 small-sized instances and 810 large-sized instances are conducted to demonstrate the effectiveness of the proposed algorithm, and the new best known solutions for 162 instances are found. |
|---|---|
| AbstractList | Distributed assembly permutation flow-shop scheduling problem (DAPFSP) is widely exists in modern supply chains and manufacturing systems. In this paper, an effective hybrid biogeography-based optimization (HBBO) algorithm that integrates several novel heuristics is proposed to solve the DAPFSP with the objective of minimizing the makespan. Firstly, the path relinking heuristic is employed in the migration phase as product local search strategy to optimize the assembly sequence. Secondly, an insertion-based heuristic is used in the mutation phase to determine the job permutation for each product. Then, a novel local search method is designed based on the problem characteristics and embedded in the HBBO scheme to further improve the most promising individual. Finally, computational simulations on 900 small-sized instances and 810 large-sized instances are conducted to demonstrate the effectiveness of the proposed algorithm, and the new best known solutions for 162 instances are found. •The BBO algorithm is deeply studied by integrating several novel local search heuristics.•A hybrid algorithm called HBBO is proposed for solving the DAPFSP.•The performance of the HBBO is evaluated by using 1710 benchmark instances.•New best solutions are obtained by the proposed hybrid scheme. Distributed assembly permutation flow-shop scheduling problem (DAPFSP) is widely exists in modern supply chains and manufacturing systems. In this paper, an effective hybrid biogeography-based optimization (HBBO) algorithm that integrates several novel heuristics is proposed to solve the DAPFSP with the objective of minimizing the makespan. Firstly, the path relinking heuristic is employed in the migration phase as product local search strategy to optimize the assembly sequence. Secondly, an insertion-based heuristic is used in the mutation phase to determine the job permutation for each product. Then, a novel local search method is designed based on the problem characteristics and embedded in the HBBO scheme to further improve the most promising individual. Finally, computational simulations on 900 small-sized instances and 810 large-sized instances are conducted to demonstrate the effectiveness of the proposed algorithm, and the new best known solutions for 162 instances are found. |
| Author | Lin, Jian Zhang, Shuai |
| Author_xml | – sequence: 1 givenname: Jian orcidid: 0000-0003-1265-5314 surname: Lin fullname: Lin, Jian email: linjian1001@126.com – sequence: 2 givenname: Shuai surname: Zhang fullname: Zhang, Shuai |
| BookMark | eNp9kTtvFTEQRi0UJG4CP4DOEg3NLn7uQ1RRxEuKRAO15cf4rq9214vtDbq0_HEcXaoUqcYanWPP-LtGV2tcAaG3lLSU0O7DqbUBWlaPLZEtIfIFOtChHxsiJblCB8I70gxcslfoOucTIUTIkR7Q39sVg_dgS3gAPJ1NCg6bEI8Qj0lv07kxOoPDcSthCX90CXHFej7GFMq0YB8TLhNgF3JJweylojpnWMx8xhukZS8Xxc_xd5OnuOFsJ3D7HNYj3lI0Myyv0Uuv5wxv_tcb9PPzpx93X5v771--3d3eN1ZQWhrRMzF6zkRnDACRnR8oG_gI4IyQlnV8cEKYQTo7AqWOauqZE9xSLiynnt-g95d767u_dshFLSFbmGe9QtyzogOTYuA96yv67gl6inta63SK9mPHRjKOrFL9hbIp5pzAKxsu-5akw6woUY_hqFPtg3oMRxGpajjVpE_MLYVFp_OzzseLA_WPHgIklSuyWnAh1fyUi-EZ-x-et6w0 |
| CODEN | CINDDL |
| CitedBy_id | crossref_primary_10_1016_j_swevo_2019_100575 crossref_primary_10_1016_j_engappai_2023_107818 crossref_primary_10_1016_j_cor_2020_105204 crossref_primary_10_1016_j_ejor_2023_02_001 crossref_primary_10_1080_21681015_2024_2435847 crossref_primary_10_1007_s00500_023_08342_2 crossref_primary_10_1108_ECAM_04_2021_0311 crossref_primary_10_1016_j_eswa_2021_116484 crossref_primary_10_1080_0305215X_2024_2328188 crossref_primary_10_1016_j_neucom_2024_127897 crossref_primary_10_3390_sym14112225 crossref_primary_10_1016_j_cor_2024_106850 crossref_primary_10_1080_0305215X_2023_2241372 crossref_primary_10_1038_s41598_022_19215_3 crossref_primary_10_1016_j_swevo_2025_101996 crossref_primary_10_1109_ACCESS_2020_2996305 crossref_primary_10_1080_00207543_2020_1757174 crossref_primary_10_1016_j_jii_2024_100574 crossref_primary_10_1016_j_asoc_2021_107750 crossref_primary_10_1016_j_swevo_2020_100785 crossref_primary_10_1109_JSYST_2018_2825337 crossref_primary_10_1038_s41598_024_57044_8 crossref_primary_10_1016_j_eswa_2020_113776 crossref_primary_10_1016_j_cie_2022_108126 crossref_primary_10_1016_j_cie_2023_109239 crossref_primary_10_3390_sym14020204 crossref_primary_10_1016_j_cie_2023_109717 crossref_primary_10_1016_j_cor_2019_04_011 crossref_primary_10_1016_j_simpat_2017_09_001 crossref_primary_10_3390_app8122621 crossref_primary_10_1016_j_asoc_2024_112247 crossref_primary_10_3233_JIFS_235854 crossref_primary_10_1016_j_swevo_2021_100874 crossref_primary_10_1016_j_asoc_2021_108371 crossref_primary_10_1016_j_eswa_2023_120113 crossref_primary_10_1016_j_swevo_2017_12_005 crossref_primary_10_1007_s12293_018_00278_7 crossref_primary_10_1080_0305215X_2019_1674295 crossref_primary_10_1109_TCYB_2022_3217074 crossref_primary_10_1109_TSMC_2023_3272311 crossref_primary_10_1007_s10462_021_10081_5 crossref_primary_10_1016_j_cie_2018_03_043 crossref_primary_10_1016_j_swevo_2025_102155 crossref_primary_10_1007_s10479_023_05456_6 crossref_primary_10_1016_j_cie_2020_107082 crossref_primary_10_1016_j_swevo_2020_100807 crossref_primary_10_1016_j_eswa_2017_12_039 crossref_primary_10_1080_00207543_2020_1842938 crossref_primary_10_1016_j_asoc_2019_105805 crossref_primary_10_1080_00207543_2020_1797207 crossref_primary_10_1016_j_engappai_2024_108569 crossref_primary_10_1109_TFUZZ_2020_2986673 crossref_primary_10_1109_TSMC_2022_3225443 crossref_primary_10_1109_ACCESS_2020_3041369 crossref_primary_10_1016_j_engappai_2022_105418 crossref_primary_10_1016_j_knosys_2021_108036 crossref_primary_10_1016_j_asoc_2023_110695 crossref_primary_10_1016_j_cie_2018_03_014 crossref_primary_10_3233_JIFS_201391 crossref_primary_10_1007_s12652_022_04392_w crossref_primary_10_1111_itor_12719 crossref_primary_10_1016_j_asoc_2019_105492 crossref_primary_10_1080_00207543_2023_2255681 crossref_primary_10_1080_00207543_2020_1836422 crossref_primary_10_1080_0305215X_2021_1886289 crossref_primary_10_1109_TEVC_2022_3150771 crossref_primary_10_1016_j_procs_2017_09_073 crossref_primary_10_1016_j_asoc_2017_10_045 crossref_primary_10_1155_2017_7249876 crossref_primary_10_1016_j_jmsy_2021_10_012 crossref_primary_10_1016_j_swevo_2023_101335 crossref_primary_10_1109_ACCESS_2019_2917273 crossref_primary_10_1016_j_jmsy_2025_02_002 crossref_primary_10_1016_j_swevo_2018_12_001 crossref_primary_10_1038_s41598_024_80785_5 crossref_primary_10_1108_K_11_2021_1112 crossref_primary_10_1080_21693277_2022_2070559 crossref_primary_10_1016_j_engappai_2020_103540 crossref_primary_10_1080_00207543_2019_1705418 crossref_primary_10_1016_j_swevo_2017_04_007 crossref_primary_10_1109_TSMC_2024_3490544 crossref_primary_10_1016_j_asoc_2023_110022 crossref_primary_10_1080_0305215X_2025_2466827 crossref_primary_10_1080_00207543_2022_2047238 crossref_primary_10_1016_j_engappai_2024_109851 crossref_primary_10_1080_00207543_2020_1780333 crossref_primary_10_1177_1063293X19882744 crossref_primary_10_1177_30504554251347434 crossref_primary_10_1016_j_cor_2025_107158 crossref_primary_10_1007_s10489_020_01809_x crossref_primary_10_1016_j_eswa_2023_122434 crossref_primary_10_1080_00207543_2018_1550269 crossref_primary_10_1016_j_procs_2019_12_208 crossref_primary_10_1016_j_cie_2020_107021 |
| Cites_doi | 10.1016/j.cie.2015.02.009 10.1080/18756891.2011.9727808 10.1016/j.ijpe.2012.06.007 10.1016/j.swevo.2011.05.002 10.1016/j.cie.2008.03.003 10.1080/00207543.2013.848042 10.1016/j.ejor.2009.01.008 10.1007/s10845-012-0728-4 10.1002/nav.3800010110 10.1016/j.omega.2004.12.006 10.1016/0305-0548(93)E0014-K 10.1016/j.cie.2011.11.002 10.1016/j.cor.2011.10.024 10.1057/jors.2013.71 10.1016/j.ejor.2005.12.024 10.1016/j.eswa.2009.10.031 10.1016/j.cor.2013.12.012 10.1016/j.knosys.2015.01.017 10.1007/s11071-014-1356-7 10.1016/j.ins.2013.04.015 10.1080/00207543.2013.807955 10.1016/j.cor.2013.01.005 10.1016/j.engappai.2010.08.005 10.1109/TEVC.2008.919004 10.1080/00207543.2010.510808 10.1016/S0360-8352(02)00078-5 10.1016/j.ijpe.2013.05.004 10.1016/j.asoc.2013.07.018 10.1016/j.ejor.2005.12.009 10.1287/opre.26.1.36 10.1016/j.asoc.2011.10.024 10.1002/col.21836 10.1016/j.cie.2014.04.006 10.1007/s00500-013-1136-1 10.1016/j.ins.2011.04.018 10.1016/j.eswa.2005.04.009 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd Copyright Pergamon Press Inc. Jul 2016 |
| Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Copyright Pergamon Press Inc. Jul 2016 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.cie.2016.05.005 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1879-0550 |
| EndPage | 136 |
| ExternalDocumentID | 4088213041 10_1016_j_cie_2016_05_005 S0360835216301450 |
| Genre | Feature |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKG AABNK AACTN AAEDT AAEDW AAFWJ AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARIN AATTM AAXKI AAXUO ABAOU ABDPE ABJNI ABMAC ABUCO ABWVN ABXDB ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ACRPL ADBBV ADEZE ADGUI ADMUD ADNMO ADRHT ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LX9 LY1 LY7 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SSH SST SSW SSZ T5K TAE TN5 WUQ XPP ZMT ~G- 9DU AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c411t-47249f3246bbee056f812839eedb45c2638d44b85dc9e11d1a1f2d43c134c31f3 |
| ISICitedReferencesCount | 112 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000378662500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-8352 |
| IngestDate | Sun Sep 28 11:30:25 EDT 2025 Sun Nov 09 07:00:03 EST 2025 Sat Nov 29 01:39:49 EST 2025 Tue Nov 18 21:26:14 EST 2025 Sun Apr 06 06:54:02 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Distributed assembly permutation flow-shop scheduling problem Evolutionary computations Local search Biogeography-based optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c411t-47249f3246bbee056f812839eedb45c2638d44b85dc9e11d1a1f2d43c134c31f3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-1265-5314 |
| PQID | 1796290992 |
| PQPubID | 9545 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_1825483727 proquest_journals_1796290992 crossref_citationtrail_10_1016_j_cie_2016_05_005 crossref_primary_10_1016_j_cie_2016_05_005 elsevier_sciencedirect_doi_10_1016_j_cie_2016_05_005 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-07-01 |
| PublicationDateYYYYMMDD | 2016-07-01 |
| PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Computers & industrial engineering |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd Pergamon Press Inc |
| Publisher_xml | – name: Elsevier Ltd – name: Pergamon Press Inc |
| References | Lin (b0110) 2015; 78 Chang, Chen (b0025) 2014; 18 Wang, Duan (b0195) 2014; 73 De Giovanni, Pezzella (b0055) 2010; 200 Moon, Kim, Hur (b0145) 2002; 43 Burke, Hyde, Kendall, Ochoa, Özcan, Woodward (b0015) 2010 Reeves (b0155) 1995; 22 Ruiz, Maroto, Alcaraz (b0165) 2006; 34 Richter, Engelbrecht (b0160) 2014 Jamuna, Swarup (b0095) 2011; 1 Ma, Simon (b0130) 2011; 24 Gao, Chen (b0070) 2011; 4 Chang, Chen, Tiwari, Iquebal (b0030) 2013; 13 Chen, Chang, Lin (b0045) 2014; 25 Fernandez-Viagas, Framinan (b0065) 2014; 45 Tasgetiren, Pan, Suganthan, Chen (b0190) 2011; 181 Hatami, Ruiz, Andrés-Romano (b0085) 2013; 51 Bhattacharya, Chattopadhyay (b0005) 2011; 37 Johnson (b0100) 1954; 1 Tasgetiren, Liang, Sevkli, Gencyilmaz (b0180) 2007; 177 Chen, Chen, Chang, Chen (b0050) 2012; 62 Tasgetiren, Pan, Suganthan, Buyukdagli (b0185) 2013; 40 Lin (b0115) 2015 Pan, Tasgetiren, Liang (b0150) 2008; 55 Wang, Wang, Liu, Xu (b0205) 2013; 145 Malan, Engelbrecht (b0135) 2013; 241 Deng, Gu (b0060) 2012; 39 Liu, Liu (b0125) 2013; 13 Lin, Xu, Zhang (b0120) 2014; 39 Ruiz, Stützle (b0170) 2007; 177 Chang, Huang, Wu, Cheng (b0040) 2013; 141 Lin (b0105) 2014; 77 Burke, Gendreau, Hyde, Kendall, Ochoa, Özcan, Qu (b0010) 2013; 64 Montgomery (b0140) 2008 Chang, Huang, Ting (b0035) 2011; 49 Glover (b0075) 1997; Vol. 7 Simon (b0175) 2008; 12 Xu, Yin, Cheng, Wu, Gu (b0210) 2014; 52 Hsu, Chang, Chen (b0090) 2015; 83 Wang, Shen (b0200) 2007 Gonzalez, Sahni (b0080) 1978; 26 Chan, Chung, Chan (b0020) 2005; 29 Deng (10.1016/j.cie.2016.05.005_b0060) 2012; 39 Lin (10.1016/j.cie.2016.05.005_b0120) 2014; 39 Pan (10.1016/j.cie.2016.05.005_b0150) 2008; 55 Glover (10.1016/j.cie.2016.05.005_b0075) 1997; Vol. 7 De Giovanni (10.1016/j.cie.2016.05.005_b0055) 2010; 200 Simon (10.1016/j.cie.2016.05.005_b0175) 2008; 12 Fernandez-Viagas (10.1016/j.cie.2016.05.005_b0065) 2014; 45 Burke (10.1016/j.cie.2016.05.005_b0010) 2013; 64 Wang (10.1016/j.cie.2016.05.005_b0195) 2014; 73 Chang (10.1016/j.cie.2016.05.005_b0040) 2013; 141 Chan (10.1016/j.cie.2016.05.005_b0020) 2005; 29 Hatami (10.1016/j.cie.2016.05.005_b0085) 2013; 51 Lin (10.1016/j.cie.2016.05.005_b0110) 2015; 78 Liu (10.1016/j.cie.2016.05.005_b0125) 2013; 13 Jamuna (10.1016/j.cie.2016.05.005_b0095) 2011; 1 Ruiz (10.1016/j.cie.2016.05.005_b0165) 2006; 34 Chen (10.1016/j.cie.2016.05.005_b0045) 2014; 25 Montgomery (10.1016/j.cie.2016.05.005_b0140) 2008 Moon (10.1016/j.cie.2016.05.005_b0145) 2002; 43 Reeves (10.1016/j.cie.2016.05.005_b0155) 1995; 22 Gao (10.1016/j.cie.2016.05.005_b0070) 2011; 4 Ma (10.1016/j.cie.2016.05.005_b0130) 2011; 24 Tasgetiren (10.1016/j.cie.2016.05.005_b0190) 2011; 181 Bhattacharya (10.1016/j.cie.2016.05.005_b0005) 2011; 37 Burke (10.1016/j.cie.2016.05.005_b0015) 2010 Wang (10.1016/j.cie.2016.05.005_b0205) 2013; 145 Xu (10.1016/j.cie.2016.05.005_b0210) 2014; 52 Lin (10.1016/j.cie.2016.05.005_b0105) 2014; 77 Hsu (10.1016/j.cie.2016.05.005_b0090) 2015; 83 Lin (10.1016/j.cie.2016.05.005_b0115) 2015 Chen (10.1016/j.cie.2016.05.005_b0050) 2012; 62 Gonzalez (10.1016/j.cie.2016.05.005_b0080) 1978; 26 Malan (10.1016/j.cie.2016.05.005_b0135) 2013; 241 Tasgetiren (10.1016/j.cie.2016.05.005_b0180) 2007; 177 Tasgetiren (10.1016/j.cie.2016.05.005_b0185) 2013; 40 Chang (10.1016/j.cie.2016.05.005_b0035) 2011; 49 Ruiz (10.1016/j.cie.2016.05.005_b0170) 2007; 177 Chang (10.1016/j.cie.2016.05.005_b0025) 2014; 18 Chang (10.1016/j.cie.2016.05.005_b0030) 2013; 13 Wang (10.1016/j.cie.2016.05.005_b0200) 2007 Johnson (10.1016/j.cie.2016.05.005_b0100) 1954; 1 Richter (10.1016/j.cie.2016.05.005_b0160) 2014 |
| References_xml | – volume: 13 start-page: 4536 year: 2013 end-page: 4547 ident: b0030 article-title: A block-based evolutionary algorithm for flow-shop scheduling problem publication-title: Applied Soft Computing – volume: 25 start-page: 1257 year: 2014 end-page: 1270 ident: b0045 article-title: A self-evolving artificial immune system II with T-cell and B-cell for permutation flow-shop problem publication-title: Journal of Intelligent Manufacturing – volume: 1 start-page: 61 year: 1954 end-page: 68 ident: b0100 article-title: Optimal two- and three-stage production schedules with setup times included publication-title: Naval Research Logistics Quarterly – volume: Vol. 7 start-page: 1 year: 1997 end-page: 75 ident: b0075 article-title: Tabu search and adaptive memory programming-advances, applications and challenges publication-title: Interfaces in computer science and operations research – volume: 51 start-page: 5292 year: 2013 end-page: 5308 ident: b0085 article-title: The distributed assembly permutation flowshop scheduling problem publication-title: International Journal of Production Research – volume: 22 start-page: 5 year: 1995 end-page: 13 ident: b0155 article-title: A genetic algorithm for flowshop sequencing publication-title: Computers & Operations Research – volume: 45 start-page: 60 year: 2014 end-page: 67 ident: b0065 article-title: On insertion tie-breaking rules in heuristics for the permutation flowshop scheduling problem publication-title: Computers & Operations Research – volume: 78 start-page: 59 year: 2015 end-page: 74 ident: b0110 article-title: A hybrid biogeography-based optimization for the fuzzy flexible job-shop scheduling problem publication-title: Knowledge-Based Systems – volume: 64 start-page: 1695 year: 2013 end-page: 1724 ident: b0010 article-title: Hyper-heuristics: A survey of the state of the art publication-title: Journal of the Operational Research Society – volume: 37 start-page: 3605 year: 2011 end-page: 3615 ident: b0005 article-title: Solving complex economic load dispatch problems using biogeography-based optimization publication-title: Expert Systems with Applications – volume: 49 start-page: 5207 year: 2011 end-page: 5230 ident: b0035 article-title: A hybrid genetic-immune algorithm with improved lifespan and elite antigen for flow-shop scheduling problems publication-title: International Journal of Production Research – volume: 12 start-page: 702 year: 2008 end-page: 713 ident: b0175 article-title: Biogeography-based optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 62 start-page: 536 year: 2012 end-page: 545 ident: b0050 article-title: Extended artificial chromosomes genetic algorithm for permutation flowshop scheduling problems publication-title: Computers & Industrial Engineering – volume: 241 start-page: 148 year: 2013 end-page: 163 ident: b0135 article-title: A survey of techniques for characterising fitness landscapes and some possible ways forward publication-title: Information Sciences – volume: 83 start-page: 159 year: 2015 end-page: 171 ident: b0090 article-title: A linkage mining in block-based evolutionary algorithm for permutation flowshop scheduling problem publication-title: Computers & Industrial Engineering – volume: 39 start-page: 2152 year: 2012 end-page: 2160 ident: b0060 article-title: A hybrid discrete differential evolution algorithm for the no-idle permutation flow shop scheduling problem with makespan criterion publication-title: Computers & Operations Research – volume: 177 start-page: 2033 year: 2007 end-page: 2049 ident: b0170 article-title: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem publication-title: European Journal of Operational Research – volume: 39 start-page: 607 year: 2014 end-page: 615 ident: b0120 article-title: Hybrid biogeography based optimization for constrained optimal spot color matching publication-title: Color Research & Application – volume: 181 start-page: 3459 year: 2011 end-page: 3475 ident: b0190 article-title: A discrete artificial bee colony algorithm for the total flowtime minimization in permutation flow shops publication-title: Information Sciences – year: 2007 ident: b0200 article-title: Process planning and scheduling for distributed manufacturing – volume: 141 start-page: 45 year: 2013 end-page: 55 ident: b0040 article-title: A block mining and re-combination enhanced genetic algorithm for the permutation flowshop scheduling problem publication-title: International Journal of Production Economics – volume: 29 start-page: 364 year: 2005 end-page: 371 ident: b0020 article-title: An adaptive genetic algorithm with dominated genes for distributed scheduling problems publication-title: Expert Systems with Applications – volume: 26 start-page: 36 year: 1978 end-page: 52 ident: b0080 article-title: Flowshop and jobshop schedules: Complexity and approximation publication-title: Operations Research – start-page: 1 year: 2015 end-page: 10 ident: b0115 article-title: A hybrid discrete biogeography-based optimization for the permutation flow shop scheduling problem publication-title: International Journal of Production Research – volume: 43 start-page: 331 year: 2002 end-page: 349 ident: b0145 article-title: Integrated process planning and scheduling with minimizing total tardiness in multi-plants supply chain publication-title: Computers & Industrial Engineering – volume: 145 start-page: 387 year: 2013 end-page: 396 ident: b0205 article-title: An effective estimation of distribution algorithm for solving the distributed permutation flow-shop scheduling problem publication-title: International Journal of Production Economics – volume: 200 start-page: 395 year: 2010 end-page: 408 ident: b0055 article-title: An improved genetic algorithm for the distributed and flexible job-shop scheduling problem publication-title: European Journal of Operational Research – volume: 177 start-page: 1930 year: 2007 end-page: 1947 ident: b0180 article-title: A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem publication-title: European Journal of Operational Research – volume: 4 start-page: 497 year: 2011 end-page: 508 ident: b0070 article-title: A hybrid genetic algorithm for the distributed permutation flowshop scheduling problem publication-title: International Journal of Computational Intelligence Systems – volume: 34 start-page: 461 year: 2006 end-page: 476 ident: b0165 article-title: Two new robust genetic algorithms for the flowshop scheduling problem publication-title: Omega – start-page: 449 year: 2010 end-page: 468 ident: b0015 article-title: A classification of hyper-heuristic approaches publication-title: Handbook of metaheuristics – year: 2014 ident: b0160 article-title: Recent advances in the theory and application of fitness landscapes – year: 2008 ident: b0140 article-title: Design and analysis of experiments – volume: 77 start-page: 983 year: 2014 end-page: 992 ident: b0105 article-title: Parameter estimation for time-delay chaotic systems by hybrid biogeography-based optimization publication-title: Nonlinear Dynamics – volume: 55 start-page: 795 year: 2008 end-page: 816 ident: b0150 article-title: A discrete differential evolution algorithm for the permutation flowshop scheduling problem publication-title: Computers & Industrial Engineering – volume: 1 start-page: 89 year: 2011 end-page: 96 ident: b0095 article-title: Biogeography based optimization for optimal meter placement for security constrained state estimation publication-title: Swarm and Evolutionary Computation – volume: 13 start-page: 1459 year: 2013 end-page: 1463 ident: b0125 article-title: A hybrid discrete artificial bee colony algorithm for permutation flowshop scheduling problem publication-title: Applied Soft Computing – volume: 18 start-page: 1177 year: 2014 end-page: 1188 ident: b0025 article-title: A block based estimation of distribution algorithm using bivariate model for scheduling problems publication-title: Soft Computing – volume: 73 start-page: 96 year: 2014 end-page: 114 ident: b0195 article-title: A hybrid biogeography-based optimization algorithm for job shop scheduling problem publication-title: Computers & Industrial Engineering – volume: 24 start-page: 517 year: 2011 end-page: 525 ident: b0130 article-title: Blended biogeography-based optimization for constrained optimization publication-title: Engineering Applications of Artificial Intelligence – volume: 52 start-page: 1188 year: 2014 end-page: 1199 ident: b0210 article-title: An improved memetic algorithm based on a dynamic neighbourhood for the permutation flowshop scheduling problem publication-title: International Journal of Production Research – volume: 40 start-page: 1729 year: 2013 end-page: 1743 ident: b0185 article-title: A variable iterated greedy algorithm with differential evolution for the no-idle permutation flowshop scheduling problem publication-title: Computers & Operations Research – volume: 83 start-page: 159 year: 2015 ident: 10.1016/j.cie.2016.05.005_b0090 article-title: A linkage mining in block-based evolutionary algorithm for permutation flowshop scheduling problem publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2015.02.009 – volume: 4 start-page: 497 issue: 4 year: 2011 ident: 10.1016/j.cie.2016.05.005_b0070 article-title: A hybrid genetic algorithm for the distributed permutation flowshop scheduling problem publication-title: International Journal of Computational Intelligence Systems doi: 10.1080/18756891.2011.9727808 – start-page: 449 year: 2010 ident: 10.1016/j.cie.2016.05.005_b0015 article-title: A classification of hyper-heuristic approaches – volume: 141 start-page: 45 issue: 1 year: 2013 ident: 10.1016/j.cie.2016.05.005_b0040 article-title: A block mining and re-combination enhanced genetic algorithm for the permutation flowshop scheduling problem publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2012.06.007 – volume: 1 start-page: 89 year: 2011 ident: 10.1016/j.cie.2016.05.005_b0095 article-title: Biogeography based optimization for optimal meter placement for security constrained state estimation publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2011.05.002 – volume: 55 start-page: 795 issue: 4 year: 2008 ident: 10.1016/j.cie.2016.05.005_b0150 article-title: A discrete differential evolution algorithm for the permutation flowshop scheduling problem publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2008.03.003 – volume: 52 start-page: 1188 issue: 4 year: 2014 ident: 10.1016/j.cie.2016.05.005_b0210 article-title: An improved memetic algorithm based on a dynamic neighbourhood for the permutation flowshop scheduling problem publication-title: International Journal of Production Research doi: 10.1080/00207543.2013.848042 – year: 2008 ident: 10.1016/j.cie.2016.05.005_b0140 – volume: 200 start-page: 395 issue: 2 year: 2010 ident: 10.1016/j.cie.2016.05.005_b0055 article-title: An improved genetic algorithm for the distributed and flexible job-shop scheduling problem publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2009.01.008 – volume: 25 start-page: 1257 issue: 6 year: 2014 ident: 10.1016/j.cie.2016.05.005_b0045 article-title: A self-evolving artificial immune system II with T-cell and B-cell for permutation flow-shop problem publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-012-0728-4 – volume: 1 start-page: 61 issue: 1 year: 1954 ident: 10.1016/j.cie.2016.05.005_b0100 article-title: Optimal two- and three-stage production schedules with setup times included publication-title: Naval Research Logistics Quarterly doi: 10.1002/nav.3800010110 – volume: 34 start-page: 461 issue: 5 year: 2006 ident: 10.1016/j.cie.2016.05.005_b0165 article-title: Two new robust genetic algorithms for the flowshop scheduling problem publication-title: Omega doi: 10.1016/j.omega.2004.12.006 – volume: 22 start-page: 5 issue: 1 year: 1995 ident: 10.1016/j.cie.2016.05.005_b0155 article-title: A genetic algorithm for flowshop sequencing publication-title: Computers & Operations Research doi: 10.1016/0305-0548(93)E0014-K – volume: 62 start-page: 536 issue: 2 year: 2012 ident: 10.1016/j.cie.2016.05.005_b0050 article-title: Extended artificial chromosomes genetic algorithm for permutation flowshop scheduling problems publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2011.11.002 – volume: 39 start-page: 2152 issue: 9 year: 2012 ident: 10.1016/j.cie.2016.05.005_b0060 article-title: A hybrid discrete differential evolution algorithm for the no-idle permutation flow shop scheduling problem with makespan criterion publication-title: Computers & Operations Research doi: 10.1016/j.cor.2011.10.024 – volume: 64 start-page: 1695 issue: 12 year: 2013 ident: 10.1016/j.cie.2016.05.005_b0010 article-title: Hyper-heuristics: A survey of the state of the art publication-title: Journal of the Operational Research Society doi: 10.1057/jors.2013.71 – volume: 177 start-page: 1930 issue: 3 year: 2007 ident: 10.1016/j.cie.2016.05.005_b0180 article-title: A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2005.12.024 – volume: 37 start-page: 3605 issue: 5 year: 2011 ident: 10.1016/j.cie.2016.05.005_b0005 article-title: Solving complex economic load dispatch problems using biogeography-based optimization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.10.031 – volume: 45 start-page: 60 year: 2014 ident: 10.1016/j.cie.2016.05.005_b0065 article-title: On insertion tie-breaking rules in heuristics for the permutation flowshop scheduling problem publication-title: Computers & Operations Research doi: 10.1016/j.cor.2013.12.012 – volume: 78 start-page: 59 year: 2015 ident: 10.1016/j.cie.2016.05.005_b0110 article-title: A hybrid biogeography-based optimization for the fuzzy flexible job-shop scheduling problem publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2015.01.017 – volume: 77 start-page: 983 issue: 3 year: 2014 ident: 10.1016/j.cie.2016.05.005_b0105 article-title: Parameter estimation for time-delay chaotic systems by hybrid biogeography-based optimization publication-title: Nonlinear Dynamics doi: 10.1007/s11071-014-1356-7 – volume: 241 start-page: 148 year: 2013 ident: 10.1016/j.cie.2016.05.005_b0135 article-title: A survey of techniques for characterising fitness landscapes and some possible ways forward publication-title: Information Sciences doi: 10.1016/j.ins.2013.04.015 – volume: 51 start-page: 5292 issue: 17 year: 2013 ident: 10.1016/j.cie.2016.05.005_b0085 article-title: The distributed assembly permutation flowshop scheduling problem publication-title: International Journal of Production Research doi: 10.1080/00207543.2013.807955 – volume: 40 start-page: 1729 issue: 7 year: 2013 ident: 10.1016/j.cie.2016.05.005_b0185 article-title: A variable iterated greedy algorithm with differential evolution for the no-idle permutation flowshop scheduling problem publication-title: Computers & Operations Research doi: 10.1016/j.cor.2013.01.005 – volume: 24 start-page: 517 issue: 3 year: 2011 ident: 10.1016/j.cie.2016.05.005_b0130 article-title: Blended biogeography-based optimization for constrained optimization publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2010.08.005 – volume: 12 start-page: 702 issue: 6 year: 2008 ident: 10.1016/j.cie.2016.05.005_b0175 article-title: Biogeography-based optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2008.919004 – year: 2014 ident: 10.1016/j.cie.2016.05.005_b0160 – volume: 49 start-page: 5207 issue: 17 year: 2011 ident: 10.1016/j.cie.2016.05.005_b0035 article-title: A hybrid genetic-immune algorithm with improved lifespan and elite antigen for flow-shop scheduling problems publication-title: International Journal of Production Research doi: 10.1080/00207543.2010.510808 – volume: 43 start-page: 331 issue: 1 year: 2002 ident: 10.1016/j.cie.2016.05.005_b0145 article-title: Integrated process planning and scheduling with minimizing total tardiness in multi-plants supply chain publication-title: Computers & Industrial Engineering doi: 10.1016/S0360-8352(02)00078-5 – start-page: 1 year: 2015 ident: 10.1016/j.cie.2016.05.005_b0115 article-title: A hybrid discrete biogeography-based optimization for the permutation flow shop scheduling problem publication-title: International Journal of Production Research – volume: 145 start-page: 387 issue: 1 year: 2013 ident: 10.1016/j.cie.2016.05.005_b0205 article-title: An effective estimation of distribution algorithm for solving the distributed permutation flow-shop scheduling problem publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2013.05.004 – volume: 13 start-page: 4536 issue: 12 year: 2013 ident: 10.1016/j.cie.2016.05.005_b0030 article-title: A block-based evolutionary algorithm for flow-shop scheduling problem publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2013.07.018 – volume: 177 start-page: 2033 issue: 3 year: 2007 ident: 10.1016/j.cie.2016.05.005_b0170 article-title: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2005.12.009 – volume: 26 start-page: 36 issue: 1 year: 1978 ident: 10.1016/j.cie.2016.05.005_b0080 article-title: Flowshop and jobshop schedules: Complexity and approximation publication-title: Operations Research doi: 10.1287/opre.26.1.36 – volume: 13 start-page: 1459 issue: 3 year: 2013 ident: 10.1016/j.cie.2016.05.005_b0125 article-title: A hybrid discrete artificial bee colony algorithm for permutation flowshop scheduling problem publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2011.10.024 – volume: Vol. 7 start-page: 1 year: 1997 ident: 10.1016/j.cie.2016.05.005_b0075 article-title: Tabu search and adaptive memory programming-advances, applications and challenges – volume: 39 start-page: 607 issue: 6 year: 2014 ident: 10.1016/j.cie.2016.05.005_b0120 article-title: Hybrid biogeography based optimization for constrained optimal spot color matching publication-title: Color Research & Application doi: 10.1002/col.21836 – volume: 73 start-page: 96 year: 2014 ident: 10.1016/j.cie.2016.05.005_b0195 article-title: A hybrid biogeography-based optimization algorithm for job shop scheduling problem publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2014.04.006 – volume: 18 start-page: 1177 issue: 6 year: 2014 ident: 10.1016/j.cie.2016.05.005_b0025 article-title: A block based estimation of distribution algorithm using bivariate model for scheduling problems publication-title: Soft Computing doi: 10.1007/s00500-013-1136-1 – volume: 181 start-page: 3459 issue: 16 year: 2011 ident: 10.1016/j.cie.2016.05.005_b0190 article-title: A discrete artificial bee colony algorithm for the total flowtime minimization in permutation flow shops publication-title: Information Sciences doi: 10.1016/j.ins.2011.04.018 – year: 2007 ident: 10.1016/j.cie.2016.05.005_b0200 – volume: 29 start-page: 364 issue: 2 year: 2005 ident: 10.1016/j.cie.2016.05.005_b0020 article-title: An adaptive genetic algorithm with dominated genes for distributed scheduling problems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2005.04.009 |
| SSID | ssj0004591 |
| Score | 2.4937873 |
| Snippet | •The BBO algorithm is deeply studied by integrating several novel local search heuristics.•A hybrid algorithm called HBBO is proposed for solving the... Distributed assembly permutation flow-shop scheduling problem (DAPFSP) is widely exists in modern supply chains and manufacturing systems. In this paper, an... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 128 |
| SubjectTerms | Algorithms Assembly Biogeography Biogeography-based optimization Computer simulation Distributed assembly permutation flow-shop scheduling problem Evolutionary computations Heuristic Job shops Local search Manufacturers Mathematical models Optimization Optimization algorithms Permutations Scheduling Studies Supply chains |
| Title | An effective hybrid biogeography-based optimization algorithm for the distributed assembly permutation flow-shop scheduling problem |
| URI | https://dx.doi.org/10.1016/j.cie.2016.05.005 https://www.proquest.com/docview/1796290992 https://www.proquest.com/docview/1825483727 |
| Volume | 97 |
| WOSCitedRecordID | wos000378662500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0550 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKxgM8cBlMFAYyEk9URnES5_JYoSFAaEJioL5FseOsmdqkatpue-aPcxxfEm1iAiReospx6qjn6_F3js8FoTcsKGMvZynhnHESCskJF0VBgpQXkntcxF05hh9f4pOTZDZLv45GO5sLs1vEdZ1cXqar_ypqGANhq9TZvxC3-1IYgM8gdLiC2OH6R4Kf1iZIQ8UEza9URtaEV82ZNMWpidq4ikkDumJpkjAn-eKsWVeb-dJFHRaqoK7qhQVTgV_LJVduEFDjWxueuGguSDtvVhOwj2G_MmntXXuaIeO1bSPaDmRV3ylE9pUQXVSQaQ02gGzv0J5v82roo6CRi2c1jjObPNNHKumELY8oAjhUxjpY12hTavLG9cZMdaWUGzpfux_O34EuVKF6UVeJ1WP9BufCDr-pJdWKQELVcap3B-37MUtBoe9PPx3PPg_qzOtei_YV7Xl4Fxl4baHfMZpre3tHWE4foQfG0sBTjZDHaCTrA_TQWB3Y6PT2AN0flKR8gn5Oa-zggzV88E344CF8sIMPBvhggA8ewAdb-OABfLCDD-7hgw18nqLvH45P338kplEHESGlGxLGYMSXQM0jzqUESl0CbQTmDfyLh0z4oOOLMOQJK0QqKS1oTku_CANBg1AEtAwO0V7d1PIZwrk6Zo6FH5cpg3s8ZSLIRQJWFWd-IqIx8uyPnQlTxV41U1lkNlzxHMZlpuSTeSwD-YzRW_fISpdwuW1yaCWYGQ6quWUGcLvtsSMr7czogjaDvS7yUzDB_DF67W6D-lZncnktmy3MUR6aJAAr4vm_rfwC3ev_cUdob7Peypforthtqnb9yuD6F5T_yRY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+effective+hybrid+biogeography-based+optimization+algorithm+for+the+distributed+assembly+permutation+flow-shop+scheduling+problem&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Lin%2C+Jian&rft.au=Zhang%2C+Shuai&rft.date=2016-07-01&rft.pub=Elsevier+Ltd&rft.issn=0360-8352&rft.volume=97&rft.spage=128&rft.epage=136&rft_id=info:doi/10.1016%2Fj.cie.2016.05.005&rft.externalDocID=S0360835216301450 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon |