Prediction of soil fertility properties in Southern Brazil via proximal sensing

Abstract Although proximal sensing coupled with machine learning (ML) algorithms have been successful for characterizing soils, questions remain regarding their effectiveness under varied soil conditions. This study evaluated for the first time the efficiency of a portable X-ray fluorescence spectro...

Full description

Saved in:
Bibliographic Details
Published in:Anais da Academia Brasileira de Ciências Vol. 97; no. suppl 2; p. e20250075
Main Authors: NACHTIGALL, STEFAN D., MANCINI, MARCELO, REIS, RENATA A., ARAÚJO, ELIAS FRANK DE, CARNEIRO, MARCO AURÉLIO C., CURI, NILTON, SILVA, SÉRGIO HENRIQUE GODINHO
Format: Journal Article
Language:English
Published: Brazil Academia Brasileira de Ciências 01.01.2025
Subjects:
ISSN:0001-3765, 1678-2690, 1678-2690
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Abstract Although proximal sensing coupled with machine learning (ML) algorithms have been successful for characterizing soils, questions remain regarding their effectiveness under varied soil conditions. This study evaluated for the first time the efficiency of a portable X-ray fluorescence spectrometer (pXRF) to predict 17 soil fertility properties in Rio Grande do Sul (RS) state, Brazil, through ML algorithms. A total of 468 surface soil samples were analyzed by pXRF and by conventional (reference) methods. Six algorithms were employed: Projection Pursuit Regression, Partial Least Squares, Random Forest, Support Vector Machine, Extreme Gradient Boosting, and Cubist. Predictions accuracy was assessed using the coefficient of determination (R²), root mean square error, normalized root mean square error, residual prediction deviation (RPD) and Ratio of Performance to Interquartile Distance. Cubist and Random Forest outperformed other algorithms, reaching the following R² values: available/exchangeable Al (R² = 0.70), Ca (0.57), Mg (0.75), Mn (0.84), S (0.60), Cu (0.81), K (0.82), P (0.54), besides P-rem (0.80), H+Al (0.73), and total N (0.52). Predictions for organic carbon and available B, Fe, Na, Zn require further investigations. The pXRF combined with ML algorithms can accelerate decisions for agricultural management in RS state, Brazil, by optimizing soil analysis for improved crop management.
AbstractList Abstract Although proximal sensing coupled with machine learning (ML) algorithms have been successful for characterizing soils, questions remain regarding their effectiveness under varied soil conditions. This study evaluated for the first time the efficiency of a portable X-ray fluorescence spectrometer (pXRF) to predict 17 soil fertility properties in Rio Grande do Sul (RS) state, Brazil, through ML algorithms. A total of 468 surface soil samples were analyzed by pXRF and by conventional (reference) methods. Six algorithms were employed: Projection Pursuit Regression, Partial Least Squares, Random Forest, Support Vector Machine, Extreme Gradient Boosting, and Cubist. Predictions accuracy was assessed using the coefficient of determination (R²), root mean square error, normalized root mean square error, residual prediction deviation (RPD) and Ratio of Performance to Interquartile Distance. Cubist and Random Forest outperformed other algorithms, reaching the following R² values: available/exchangeable Al (R² = 0.70), Ca (0.57), Mg (0.75), Mn (0.84), S (0.60), Cu (0.81), K (0.82), P (0.54), besides P-rem (0.80), H+Al (0.73), and total N (0.52). Predictions for organic carbon and available B, Fe, Na, Zn require further investigations. The pXRF combined with ML algorithms can accelerate decisions for agricultural management in RS state, Brazil, by optimizing soil analysis for improved crop management.
Although proximal sensing coupled with machine learning (ML) algorithms have been successful for characterizing soils, questions remain regarding their effectiveness under varied soil conditions. This study evaluated for the first time the efficiency of a portable X-ray fluorescence spectrometer (pXRF) to predict 17 soil fertility properties in Rio Grande do Sul (RS) state, Brazil, through ML algorithms. A total of 468 surface soil samples were analyzed by pXRF and by conventional (reference) methods. Six algorithms were employed: Projection Pursuit Regression, Partial Least Squares, Random Forest, Support Vector Machine, Extreme Gradient Boosting, and Cubist. Predictions accuracy was assessed using the coefficient of determination (R²), root mean square error, normalized root mean square error, residual prediction deviation (RPD) and Ratio of Performance to Interquartile Distance. Cubist and Random Forest outperformed other algorithms, reaching the following R² values: available/exchangeable Al (R² = 0.70), Ca (0.57), Mg (0.75), Mn (0.84), S (0.60), Cu (0.81), K (0.82), P (0.54), besides P-rem (0.80), H+Al (0.73), and total N (0.52). Predictions for organic carbon and available B, Fe, Na, Zn require further investigations. The pXRF combined with ML algorithms can accelerate decisions for agricultural management in RS state, Brazil, by optimizing soil analysis for improved crop management.Although proximal sensing coupled with machine learning (ML) algorithms have been successful for characterizing soils, questions remain regarding their effectiveness under varied soil conditions. This study evaluated for the first time the efficiency of a portable X-ray fluorescence spectrometer (pXRF) to predict 17 soil fertility properties in Rio Grande do Sul (RS) state, Brazil, through ML algorithms. A total of 468 surface soil samples were analyzed by pXRF and by conventional (reference) methods. Six algorithms were employed: Projection Pursuit Regression, Partial Least Squares, Random Forest, Support Vector Machine, Extreme Gradient Boosting, and Cubist. Predictions accuracy was assessed using the coefficient of determination (R²), root mean square error, normalized root mean square error, residual prediction deviation (RPD) and Ratio of Performance to Interquartile Distance. Cubist and Random Forest outperformed other algorithms, reaching the following R² values: available/exchangeable Al (R² = 0.70), Ca (0.57), Mg (0.75), Mn (0.84), S (0.60), Cu (0.81), K (0.82), P (0.54), besides P-rem (0.80), H+Al (0.73), and total N (0.52). Predictions for organic carbon and available B, Fe, Na, Zn require further investigations. The pXRF combined with ML algorithms can accelerate decisions for agricultural management in RS state, Brazil, by optimizing soil analysis for improved crop management.
Although proximal sensing coupled with machine learning (ML) algorithms have been successful for characterizing soils, questions remain regarding their effectiveness under varied soil conditions. This study evaluated for the first time the efficiency of a portable X-ray fluorescence spectrometer (pXRF) to predict 17 soil fertility properties in Rio Grande do Sul (RS) state, Brazil, through ML algorithms. A total of 468 surface soil samples were analyzed by pXRF and by conventional (reference) methods. Six algorithms were employed: Projection Pursuit Regression, Partial Least Squares, Random Forest, Support Vector Machine, Extreme Gradient Boosting, and Cubist. Predictions accuracy was assessed using the coefficient of determination (R²), root mean square error, normalized root mean square error, residual prediction deviation (RPD) and Ratio of Performance to Interquartile Distance. Cubist and Random Forest outperformed other algorithms, reaching the following R² values: available/exchangeable Al (R² = 0.70), Ca (0.57), Mg (0.75), Mn (0.84), S (0.60), Cu (0.81), K (0.82), P (0.54), besides P-rem (0.80), H+Al (0.73), and total N (0.52). Predictions for organic carbon and available B, Fe, Na, Zn require further investigations. The pXRF combined with ML algorithms can accelerate decisions for agricultural management in RS state, Brazil, by optimizing soil analysis for improved crop management.
Author REIS, RENATA A.
MANCINI, MARCELO
ARAÚJO, ELIAS FRANK DE
CARNEIRO, MARCO AURÉLIO C.
CURI, NILTON
NACHTIGALL, STEFAN D.
SILVA, SÉRGIO HENRIQUE GODINHO
AuthorAffiliation CMPC Celulose RioGrandense
Universidade Federal de Lavras
AuthorAffiliation_xml – name: CMPC Celulose RioGrandense
– name: Universidade Federal de Lavras
Author_xml – sequence: 1
  givenname: STEFAN D.
  orcidid: 0000-0003-4623-8033
  surname: NACHTIGALL
  fullname: NACHTIGALL, STEFAN D.
  organization: Universidade Federal de Lavras, Brazil
– sequence: 2
  givenname: MARCELO
  orcidid: 0000-0003-4118-7943
  surname: MANCINI
  fullname: MANCINI, MARCELO
  organization: Universidade Federal de Lavras, Brazil
– sequence: 3
  givenname: RENATA A.
  orcidid: 0000-0001-8856-2558
  surname: REIS
  fullname: REIS, RENATA A.
  organization: Universidade Federal de Lavras, Brazil
– sequence: 4
  givenname: ELIAS FRANK DE
  orcidid: 0000-0003-0300-5272
  surname: ARAÚJO
  fullname: ARAÚJO, ELIAS FRANK DE
  organization: CMPC Celulose RioGrandense, Brazil
– sequence: 5
  givenname: MARCO AURÉLIO C.
  orcidid: 0000-0003-4349-3071
  surname: CARNEIRO
  fullname: CARNEIRO, MARCO AURÉLIO C.
  organization: Universidade Federal de Lavras, Brazil
– sequence: 6
  givenname: NILTON
  orcidid: 0000-0002-2604-0866
  surname: CURI
  fullname: CURI, NILTON
  organization: Universidade Federal de Lavras, Brazil
– sequence: 7
  givenname: SÉRGIO HENRIQUE GODINHO
  orcidid: 0000-0003-2750-5976
  surname: SILVA
  fullname: SILVA, SÉRGIO HENRIQUE GODINHO
  organization: Universidade Federal de Lavras, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41059799$$D View this record in MEDLINE/PubMed
BookMark eNpVkVFPHCEUhUljU1fbn6CZx76MvTAwDI-tqdbERBPbZ8IwF8tmFrYwY7r-elnX3cQH4EK-e3K454QchRiQkDMKF1Qo-AYAtG5kKxiw1wUgxQeyoK3satYqOCKLA3NMTnJeAjCuOvhEjjkFoaRSC3J3n3DwdvIxVNFVOfqxcpgmP_ppU61TXG8vmCsfqoc4T38xhepHMs-Fe_JmS_z3KzNWGUP24fEz-ejMmPHL23lK_lz9_H35q769u765_H5bW07pVHOKHWu5KLujVroBGsd5zyizzrhBSkOdGCgaEJ0wDAVzDfDCtaiUtLI5JTc73SGapV6n4iFtdDRevz7E9KhNMW5H1K7rjAEz2MFaDj0q23fcKdfwXgrV9kXrYqeVrccx6mWcUyjm9cN2gHo_5FJToAJoafi6ayi__zdjnvTKZ4vjaALGOeuGlYQkV8AKev6Gzv0Kh4PTfQIFEDvApphzQndAKOht0vqdiX3SzQujI5hu
Cites_doi 10.1016/j.trac.2010.05.006
10.1590/0001-3765202120200646
10.1038/s41598-024-71381-8
10.1016/j.compag.2022.107459
10.1016/j.foreco.2016.03.046
10.1016/j.catena.2021.105190
10.1007/s11119-021-09825-8
10.1016/j.biosystemseng.2005.05.001
10.1590/1413-70542016405011416
10.1080/01621459.1981.10477729
10.1016/S0169-7439(01)00155-1
10.1023/A:1010933404324
10.1016/j.geodrs.2016.12.001
10.3738/1982.2278.974
10.1016/j.scib.2021.10.013
10.1002/saj2.20593
10.1071/SR20136
10.1201/9780367816377
10.1016/j.catena.2024.108503
10.1023/B:STCO.0000035301.49549.88
10.3390/s21010148
10.1016/bs.agron.2020.12.001
10.1016/S1002-0160(21)60092-9
10.1007/s00704-012-0796-6
10.1007/s10533-016-0266-9
10.1002/saj2.20151
10.1145/380995.380999
10.3390/agronomy10060787
10.1016/j.sab.2023.106835
10.1016/j.geoderma.2019.02.011
10.1590/1413-70542018425017518
10.1127/0941-2948/2013/0507
10.1214/aos/1013203451
10.1007/s11119-018-9608-z
10.1007/s11368-024-03825-7
10.1016/j.geoderma.2016.05.005
10.1021/es500257e
10.1111/ejss.12875
10.1016/j.catena.2021.105791
10.1016/j.catena.2020.105003
10.1007/s10661-015-4479-5
10.1111/ejss.12729
10.1590/s0100-204x2016000900031
10.1016/j.geoderma.2016.10.022
10.1021/jf0100907
10.1016/j.geoderma.2021.115347
10.1016/j.measurement.2024.114330
10.18637/jss.v028.i05
10.1016/j.geoderma.2018.12.032
10.1097/00010694-193401000-00003
10.1016/j.geoderma.2021.114998
10.1080/10408398.2020.1776677
10.1016/j.scitotenv.2020.137078
10.1007/s10705-017-9870-x
ContentType Journal Article
Copyright This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright_xml – notice: This work is licensed under a Creative Commons Attribution 4.0 International License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
GPN
DOA
DOI 10.1590/0001-3765202520250075
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
SciELO
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1678-2690
ExternalDocumentID oai_doaj_org_article_f88aa0adcdcc40be9cb84f9f34b7596b
S0001_37652025001101501
41059799
10_1590_0001_3765202520250075
Genre Journal Article
GeographicLocations Brazil
GeographicLocations_xml – name: Brazil
GroupedDBID --Z
-~X
2WC
53G
5GY
5VS
635
6J9
AAFWJ
AAYXX
ABXHO
ACGFO
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
APOWU
AZFZN
BAWUL
BCNDV
C1A
CITATION
DIK
E3Z
EBS
EJD
F5P
FIJ
GROUPED_DOAJ
GX1
HH5
IPNFZ
LPU
M~E
OK1
OVT
P2P
RDY
RIG
RNS
RSC
SCD
TR2
XSB
CGR
CUY
CVF
ECM
EIF
NPM
7X8
GPN
ID FETCH-LOGICAL-c411t-41e82645e82f1c7fd03f44b212cfafd77a1f5d1ea0585a2e52f3047fd6e997c73
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001589930700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0001-3765
1678-2690
IngestDate Mon Oct 13 19:21:19 EDT 2025
Tue Nov 18 22:59:27 EST 2025
Thu Oct 09 20:00:33 EDT 2025
Fri Oct 10 01:53:54 EDT 2025
Thu Oct 09 00:44:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue suppl 2
Keywords soil properties
Portable X-ray fluorescence
pedometrics
soil variation
Language English
License http://creativecommons.org/licenses/by/4.0
This work is licensed under a Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c411t-41e82645e82f1c7fd03f44b212cfafd77a1f5d1ea0585a2e52f3047fd6e997c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0300-5272
0000-0003-4349-3071
0000-0003-4118-7943
0000-0002-2604-0866
0000-0003-4623-8033
0000-0001-8856-2558
0000-0003-2750-5976
OpenAccessLink https://doaj.org/article/f88aa0adcdcc40be9cb84f9f34b7596b
PMID 41059799
PQID 3259074902
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_f88aa0adcdcc40be9cb84f9f34b7596b
scielo_journals_S0001_37652025001101501
proquest_miscellaneous_3259074902
pubmed_primary_41059799
crossref_primary_10_1590_0001_3765202520250075
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Brazil
PublicationPlace_xml – name: Brazil
PublicationTitle Anais da Academia Brasileira de Ciências
PublicationTitleAlternate An Acad Bras Cienc
PublicationYear 2025
Publisher Academia Brasileira de Ciências
Publisher_xml – name: Academia Brasileira de Ciências
References MEYER D (ref53) 2024
LIMA RF (ref44) 2023; 38
CHANG S-T (ref19) 2001; 49
SIMONSSON M (ref69) 2016; 131
ANTONANGELO J (ref8) 2024; 14
LIU F (ref45) 2022; 67
KARAMI A (ref39) 2024; 36
SAEYS W (ref66) 2005; 91
YESILONIS I (ref90) 2016; 370
SMOLA AJ (ref70) 2004; 14
PADARIAN J (ref59) 2017; 9
FENG X (ref27) 2021; 61
VETTORI L (ref81) 1969
WEINDORF DC (ref85) 2014
ANDRADE R (ref5) 2023
GOZUKARA G (ref33) 2022; 203
MANCINI M (ref48) 2024; 88
MOURA-BUENO JM (ref55) 2020
MOURA-BUENO JM (ref54) 2019
ANDRADE R (ref7) 2021; 27
TEIXEIRA AFS (ref76) 2022; 116
MCLEAN EO (ref51) 1958; 22
WOLD S (ref87) 2001; 58
ALVAREZ VVH (ref3) 2000; 25
TORNQUIST CG (ref79) 2024
SILVA SHG (ref68) 2021; 167
PELEGRINO MHP (ref61) 2016; 40
ALVARES CA (ref2) 2013; 22
XU D (ref88) 2019; 70
BREIMAN L (ref17) 2002; 103
CHEN T (ref22) 2025
GUPTA S (ref35) 2024; 36
ZHU Y (ref93) 2011
TAVARES TR (ref74) 2020; 21
BENEDET L (ref11) 2021; 197
MARSCHNER H (ref49) 2012
TAVARES TR (ref75) 2020; 10
KESKIN H (ref40) 2019
CHATTERJEE S (ref20) 2021; 201
BELLON-MAUREL V (ref10) 2010; 29
FARIA ÁJG (ref26) 2020; 58
FONTENELLI JV (ref29) 2021; 402
KUHN M (ref41) 2008; 28
LOPES AS (ref46) 2016
MASCARENHAS HAA (ref50) 2013; 10
KÄMPF N (ref37) 2012
ROURKE SM (ref58) 2016; 279
TANURE TMP (ref72) 2024
BOEHMKE B (ref14) 2019
HENGL T (ref36) 2017; 109
SILVA SHG (ref67) 2020; 362
DUFFNER A (ref24) 2014; 48
(ref25) 2023
XU Y (ref89) 2020; 456
RESENDE M (ref64) 2014
MEHLICH A (ref52) 1953
BRUNGARD C (ref18) 2021; 397
MOZAFFARI H (ref56) 2024; 228
FISCHER S (ref28) 2020; 716
RIBEIRO JV (ref65) 2024; 211
BENEDET L (ref12) 2021; 93
LILAND KH (ref43) 2024
WANG Y (ref84) 1997
ZHAO D (ref92) 2022; 209
BENNETT KP (ref13) 2000; 2
LUDWIG B (ref47) 2017; 288
ANDRADE R (ref4) 2020; 357
BONFATTI BR (ref15) 2016
WALKLEY A (ref82) 1934; 37
CHEN T (ref21) 2016
TEIXEIRA PC (ref78) 2017
ANDRADE R (ref6) 2020
WEINDORF DC (ref86) 2020; 84
BAGATINI T (ref9) 2016; 51
TEIXEIRA AFS (ref77) 2018; 42
ALVARES CA (ref1) 2013; 113
GJENGEDAL E (ref32) 2015; 187
TÓTH T (ref80) 2019; 342
MOZAFFARI H (ref57) 2024; 247
FRIEDMAN JH (ref31) 1981; 76
PELEGRINO MHP (ref60) 2022; 23
PELEGRINO MHP (ref62) 2019; 20
FRIEDMAN JH (ref30) 2001; 29
RAWAL A (ref63) 2019; 338
TAVARES TR (ref73) 2025; 245
STRECK EV (ref71) 2018
KUHN M (ref42) 2011
ZHANG Y (ref91) 2020; 71
KARAMI A (ref38) 2024; 24
WAN M (ref83) 2020; 363
GOZUKARA G (ref34) 2022; 32
BREIMAN L (ref16) 2001; 45
DASGUPTA S (ref23) 2022; 30
TAVARES, TR; MINASNY, B; MCBRATNEY, A; MOLIN, JP; MARQUES, GT; RAGAGNIN, MM; DOS, SANTOS FR; DE, CARVALHO HWP; LAVRES, J 2025; 245
SAEYS, W; MOUAZEN, AM; RAMON, H 2005; 91
SILVA, SHG 2021; 167
YESILONIS, I; SZLAVECZ, K; POUYAT, R; WHIGHAM, D; XIA, L 2016; 370
TANURE, TMP; DOMINGUES, EP; MAGALHÃES, AS 2024
LUDWIG, B; VORMSTEIN, S; NIEBUHR, J; HEINZE, S; MARSCHNER, B; VOHLAND, M 2017; 288
MEYER, D; DIMITRIADOU, E; HORNIK, K; WEINGESSEL, A; LEISCH, F 2024
LOPES, AS; GUIMARÃES, GUILHERME LR 2016
ALVAREZ, VVH; NOVAIS, R; DIAS, L; OLIVEIRA, JA 2000; 25
RAWAL, A; CHAKRABORTY, S; LI, B; LEWIS, K; GODOY, M; PAULETTE, L; WEINDORF, DC 2019; 338
BAGATINI, T; GIASSON, E; TESKE, R 2016; 51
KUHN, M 2008; 28
LILAND, KH; MEVIK, B-H; WEHRENS, R 2024
ZHAO, D; WANG, J; ZHAO, X; TRIANTAFILIS, J 2022; 209
MOURA-BUENO, JM; SIMÃO, R; DALMOLIN, D; HORST-HEINEN, Z; TEN, CATEN A; VASQUES, GM; DOTTO, AC; GRUNWALD, S 2020
KARAMI, A; MOOSAVI, AA; POURGHASEMI, HR; RONAGHI, A; GHASEMI-FASAEI, R; VIDAL, E; LADO, M 2024; 36
BREIMAN, L; CUTLER, A; LIAW, A; WIENER, M 2002; 103
WANG, Y; WITTEN, IH 1997
GOZUKARA, G; ALTUNBAS, S; DENGIZ, O; ADAK, A 2022; 203
TAVARES, TR; MOUAZEN, AM; ALVES, EEN; DOS, SANTOS FR; MELQUIADES, FL; PEREIRA, DE CARVALHO HW; MOLIN, JP 2020; 10
FARIA, ÁJG; SILVA, SHG; MELO, LCA; ANDRADE, R; MANCINI, M; MESQUITA, LF; DOS, SANTOS TEIXEIRA AF; GUILHERME, LRG; CURI, N 2020; 58
ANTONANGELO, J; ZHANG, H 2024; 14
MASCARENHAS, HAA; ESTEVES, JAF; WUTKE, EB; RECO, PC; LEÃO, PCL 2013; 10
MOZAFFARI, H; MOOSAVI, AA; BAGHERNEJAD, M; CORNELIS, W 2024; 228
ANDRADE, R; SILVA, SHG; WEINDORF, DC; CHAKRABORTY, S; FARIA, WM; GUILHERME, LRG; CURI, N 2021; 27
KARAMI, A; MOOSAVI, AA; POURGHASEMI, HR; RONAGHI, A; GHASEMI-FASAEI, R; LADO, M 2024; 24
MANCINI, M 2024; 88
PELEGRINO, MHP; SILVA, SHG; DE, FARIA ÁJG; MANCINI, M; TEIXEIRA, AFS; CHAKRABORTY, S; WEINDORF, DC; GUILHERME, LRG; CURI, N 2022; 23
GJENGEDAL, E; MARTINSEN, T; STEINNES, E 2015; 187
FISCHER, S; HILGER, T; PIEPHO, H-P; JORDAN, I; KARUNGI, J; TOWETT, E; SHEPHERD, K; CADISCH, G 2020; 716
HENGL, T 2017; 109
CHEN, T 2025
ALVARES, CA; STAPE, JL; SENTELHAS, PC; DE, MORAES GONÇALVES JL 2013; 113
SIMONSSON, M; COURT, M; BERGHOLM, J; LEMARCHAND, D; HILLIER, S 2016; 131
ZHANG, Y; HARTEMINK, AE 2020; 71
BONFATTI, BR; HARTEMINK, AE; GIASSON, E; TORNQUIST, CG; ADHIKARI, K 2016
GOZUKARA, G; ZHANG, Y; HARTEMINK, AE 2022; 32
WOLD, S; SJÖSTRÖM, M; ERIKSSON, L 2001; 58
BRUNGARD, C; NAUMAN, T; DUNIWAY, M; VEBLEN, K; NEHRING, K; WHITE, D; SALLEY, S; ANCHANG, J 2021; 397
PADARIAN, J; MINASNY, B; MCBRATNEY, AB 2017; 9
ROURKE, SM; STOCKMANN, U; HOLDEN, NM; MCBRATNEY, AB; MINASNY, B 2016; 279
MARSCHNER, H 2012
MEHLICH, A 1953
BREIMAN, L 2001; 45
FONTENELLI, JV; ADAMCHUK, VI; FERREIRA, MMC; AMARAL, LR; GUIMARÃES, CCB; DEMATTÊ, JAM; MAGALHÃES, PSG 2021; 402
ANDRADE, R; SILVA, SHG; FARIA, WM; POGGERE, GC; BARBOSA, JZ; GUILHERME, LRG; CURI, N 2020
KÄMPF, N; MARQUES, J; CURI, N 2012
VETTORI, L 1969
DUFFNER, A; WENG, L; HOFFLAND, E; VAN, DER ZEE SEATM 2014; 48
SMOLA, AJ; SCHÖLKOPF, B 2004; 14
LIU, F; WU, H; ZHAO, Y; LI, D; YANG, J-L; SONG, X; SHI, Z; ZHU, A-X; ZHANG, G-L 2022; 67
STRECK, EV; KAMPF, N; DALMOLIN, S; KLAMT, E; NASCIMENTO, PC; SCHNEIDER, P; GIASSON, E; PINTO, LFS 2018
XU, Y; DU, A; WANG, Z; ZHU, W; LI, C; WU, L 2020; 456
WEINDORF, DC; CHAKRABORTY, S 2020; 84
ANDRADE, R; FARIA, WM; SILVA, SHG; CHAKRABORTY, S; WEINDORF, DC; MESQUITA, LF; GUILHERME, LRG; CURI, N 2020; 357
BENNETT, KP; CAMPBELL, C 2000; 2
FRIEDMAN, JH 2001; 29
XU, D; ZHAO, R; LI, S; CHEN, S; JIANG, Q; ZHOU, L; SHI, Z 2019; 70
CHATTERJEE, S; HARTEMINK, AE; TRIANTAFILIS, J; DESAI, AR; SOLDAT, D; ZHU, J; TOWNSEND, PA; ZHANG, Y; HUANG, J 2021; 201
LIMA, RF; APARECIDO, LEO; TORSONI, GB; ROLIM, GS 2023; 38
BELLON-MAUREL, V; FERNANDEZ-AHUMADA, E; PALAGOS, B; ROGER, J-M; MCBRATNEY, A 2010; 29
MOURA-BUENO, JM; DALMOLIN, RSD; HORST-HEINEN, TZ; CANCIAN, LC; SCHENATO, RB; DOTTO, AC; FLORES, CA 2019
MOZAFFARI, H; MOOSAVI, AA; OSTOVARI, Y 2024; 247
TAVARES, TR; MOLIN, JP; JAVADI, SH; CARVALHO, HWP; MOUAZEN, AM 2020; 21
CHEN, T; GUESTRIN, C 2016
WALKLEY, A; BLACK, IA 1934; 37
WAN, M; HU, W; QU, M; LI, W; ZHANG, C; KANG, J; HONG, Y; CHEN, Y; HUANG, B 2020; 363
WEINDORF, DC; BAKR, N; ZHU, Y 2014
RESENDE, M; CURI, N; RESENDE, SB; CORRÊA, GF; KER, JC 2014
TEIXEIRA, PC; DONAGEMMA, GK; FONTANA, A; TEIXEIRA, WG 2017
TÓTH, T; KOVÁCS, ZA; RÉKÁSI, M 2019; 342
2023
FENG, X; ZHANG, H; YU, P 2021; 61
BENEDET, L; NILSSON, MS; SILVA, SHG; PELEGRINO, MHP; MANCINI, M; DE, MENEZES MD; GUILHERME, LRG; CURI, N 2021; 93
CHANG, S-T; WU, J-H; WANG, S-Y; KANG, P-L; YANG, N-S; SHYUR, L-F 2001; 49
FRIEDMAN, JH; STUETZLE, W 1981; 76
PELEGRINO, MHP; WEINDORF, DC; SILVA, SHG; DE, MENEZES MD; POGGERE, GC; GUILHERME, LRG; CURI, N 2019; 20
BOEHMKE, B; GREENWELL, B 2019
PELEGRINO, MHP; SILVA, SHG; MENEZES, MD; SILVA, E; OWENS, PR; CURI, N 2016; 40
ANDRADE, R 2023
GUPTA, S; HASLER, JK; ALEWELL, C 2024; 36
ALVARES, CA; STAPE, JL; SENTELHAS, PC; DE, MORAES GONÇALVES JL; SPAROVEK, G 2013; 22
SILVA, SHG 2020; 362
DASGUPTA, S; CHAKRABORTY, S; WEINDORF, DC; LI, B; SILVA, SHG; BHATTACHARYYA, K 2022; 30
TEIXEIRA, AFS; WEINDORF, DC; SILVA, SHG; GUILHERME, LRG; CURI, N 2018; 42
TORNQUIST, CG; GAMBOA, CH; ANDRIOLLO, DD; REICHERT, JM; DOS, SANTOS FJ 2024
MCLEAN, EO; HEDDLESON, MR; BARTLETT, RJ; HOLOWAYCHUK, N 1958; 22
KESKIN, H; GRUNWALD, S; HARRIS, WG 2019
KUHN, M; QUINLAN, R 2011
BENEDET, L 2021; 197
RIBEIRO, JV; DOS, SANTOS FR; DE, OLIVEIRA JF; BARBOSA, GMC; MELQUIADES, FL 2024; 211
TEIXEIRA, AFS; ANDRADE, R; MANCINI, M; SILVA, SHG; WEINDORF, DC; CHAKRABORTY, S; GUILHERME, LRG; CURI, N 2022; 116
ZHU, Y; WEINDORF, DC; ZHANG, W 2011
References_xml – volume: 29
  start-page: 1073
  year: 2010
  ident: ref10
  article-title: Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy
  publication-title: TrAC Trends Anal Chem
  doi: 10.1016/j.trac.2010.05.006
– volume: 93
  year: 2021
  ident: ref12
  article-title: X-ray fluorescence spectrometry applied to digital mapping of soil fertility attributes in tropical region with elevated spatial variability
  publication-title: An Acad Bras Cienc
  doi: 10.1590/0001-3765202120200646
– volume: 14
  year: 2024
  ident: ref8
  article-title: Assessment of portable X-ray fluorescence (pXRF) for plant-available nutrient prediction in biochar-amended soils
  publication-title: Sci Rep
  doi: 10.1038/s41598-024-71381-8
– volume: 203
  year: 2022
  ident: ref33
  article-title: Assessing the effect of soil to water ratios and sampling strategies on the prediction of EC and pH using pXRF and Vis-NIR spectra
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2022.107459
– volume: 370
  start-page: 83
  year: 2016
  ident: ref90
  article-title: Historical land use and stand age effects on forest soil properties in the Mid-Atlantic US
  publication-title: For Ecol Manage
  doi: 10.1016/j.foreco.2016.03.046
– volume: 30
  year: 2022
  ident: ref23
  article-title: Influence of auxiliary soil variables to improve PXRF-based soil fertility evaluation in India
  publication-title: Geoderma Reg
– year: 2024
  ident: ref53
– volume: 201
  year: 2021
  ident: ref20
  article-title: Characterization of field-scale soil variation using a stepwise multi-sensor fusion approach and a cost-benefit analysis
  publication-title: Catena
  doi: 10.1016/j.catena.2021.105190
– volume-title: Advances in Agronomy
  year: 2016
  ident: ref46
– volume: 23
  start-page: 18
  year: 2022
  ident: ref60
  article-title: Prediction of soil nutrient content via pXRF spectrometry and its spatial variation in a highly variable tropical area
  publication-title: Precis Agric
  doi: 10.1007/s11119-021-09825-8
– volume: 91
  start-page: 393
  year: 2005
  ident: ref66
  article-title: Potential for onsite and online analysis of pig manure using visible and near infrared reflectance spectroscopy
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2005.05.001
– year: 2016
  ident: ref15
– volume: 40
  start-page: 534
  year: 2016
  ident: ref61
  article-title: Mapping soils in two watersheds using legacy data and extrapolation for similar surrounding areas
  publication-title: Ciência e Agrotecnologia
  doi: 10.1590/1413-70542016405011416
– volume: 76
  start-page: 817
  year: 1981
  ident: ref31
  article-title: Projection Pursuit Regression
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1981.10477729
– volume: 58
  start-page: 109
  year: 2001
  ident: ref87
  article-title: PLS-regression: a basic tool of chemometrics
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/S0169-7439(01)00155-1
– volume: 245
  year: 2025
  ident: ref73
  article-title: Do XRF local models have temporal stability for predicting plant-available nutrients in different years?
  publication-title: A long-term study showing the effect of soil fertility management in a tropical field. Soil Tillage Res
– volume-title: Pedologia Fundamentos
  year: 2012
  ident: ref37
– volume: 45
  start-page: 5
  year: 2001
  ident: ref16
  article-title: Random Forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 9
  start-page: 17
  year: 2017
  ident: ref59
  article-title: Chile and the Chilean soil grid: A contribution to GlobalSoilMap
  publication-title: Geoderma Reg
  doi: 10.1016/j.geodrs.2016.12.001
– volume: 10
  start-page: 281
  year: 2013
  ident: ref50
  article-title: Disability and toxicity of nutrients in visual soybeans
  publication-title: Nucleus
  doi: 10.3738/1982.2278.974
– volume: 36
  year: 2024
  ident: ref35
  article-title: Mining soil data of Switzerland: New maps for soil texture, soil organic carbon, nitrogen, and phosphorus
  publication-title: Geoderma Reg
– volume: 67
  start-page: 328
  year: 2022
  ident: ref45
  article-title: Mapping high resolution National Soil Information Grids of China
  publication-title: Sci Bull
  doi: 10.1016/j.scib.2021.10.013
– volume: 88
  start-page: 8
  year: 2024
  ident: ref48
  article-title: Multinational prediction of soil organic carbon and texture via proximal sensors
  publication-title: Soil Sci Soc Am J
  doi: 10.1002/saj2.20593
– volume: 58
  start-page: 683
  year: 2020
  ident: ref26
  article-title: Soils of the Brazilian Coastal Plains biome: prediction of chemical attributes via portable X-ray fluorescence (pXRF) spectrometry and robust prediction models
  publication-title: Soil Res
  doi: 10.1071/SR20136
– year: 2014
  ident: ref64
– volume-title: Hands-On Machine Learning with R
  year: 2019
  ident: ref14
  doi: 10.1201/9780367816377
– volume: 247
  year: 2024
  ident: ref57
  article-title: Feasibility of proximal sensing for predicting soil loss tolerance
  publication-title: Catena
  doi: 10.1016/j.catena.2024.108503
– volume: 14
  start-page: 199
  year: 2004
  ident: ref70
  article-title: A tutorial on support vector regression
  publication-title: Stat Comput
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 22
  start-page: 382
  year: 1958
  ident: ref51
  article-title: Aluminum in Soils: I
  publication-title: Extraction Methods and Magnitudes in Clays and Ohio Soils. Soil Sci Soc Am J
– year: 2024
  ident: ref72
– volume: 21
  year: 2020
  ident: ref74
  article-title: Combined Use of Vis-NIR and XRF Sensors for Tropical Soil Fertility Analysis: Assessing Different Data Fusion Approaches
  publication-title: Sensors
  doi: 10.3390/s21010148
– volume: 167
  start-page: 1
  year: 2021
  ident: ref68
  article-title: pXRF in tropical soils: Methodology, applications, achievements and challenges
  publication-title: Adv Agron
  doi: 10.1016/bs.agron.2020.12.001
– volume: 32
  start-page: 602
  year: 2022
  ident: ref34
  article-title: Using pXRF and vis-NIR spectra for predicting properties of soils developed in loess
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(21)60092-9
– volume: 113
  start-page: 407
  year: 2013
  ident: ref1
  article-title: Modeling monthly mean air temperature for Brazil
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-012-0796-6
– year: 2020
  ident: ref55
– year: 2023
  ident: ref5
– year: 2025
  ident: ref22
– volume: 116
  year: 2022
  ident: ref76
  article-title: Proximal sensor data fusion for tropical soil property prediction: Soil fertility properties
  publication-title: J South Am Earth Sci
– volume: 36
  year: 2024
  ident: ref39
  article-title: Proximal sensing approach for characterization of calcareous soils using multiblock data analysis
  publication-title: Geoderma Reg
– volume: 131
  start-page: 77
  year: 2016
  ident: ref69
  article-title: Mineralogy and biogeochemistry of potassium in the Skogaby experimental forest, southwest Sweden: pools, fluxes and K/Rb ratios in soil and biomass
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-016-0266-9
– volume-title: Overbeck
  year: 2024
  ident: ref79
– volume: 357
  year: 2020
  ident: ref4
  article-title: Prediction of soil fertility via portable X-ray fluorescence (pXRF) spectrometry and soil texture in the Brazilian Coastal Plains
  publication-title: Geoderma
– year: 2014
  ident: ref85
– volume: 84
  start-page: 1384
  year: 2020
  ident: ref86
  article-title: Portable X-ray fluorescence spectrometry analysis of soils
  publication-title: Soil Sci Soc Am J
  doi: 10.1002/saj2.20151
– volume: 2
  start-page: 1
  year: 2000
  ident: ref13
  article-title: Support vector machines
  publication-title: ACM SIGKDD Explor Newsl
  doi: 10.1145/380995.380999
– volume: 10
  year: 2020
  ident: ref75
  article-title: Assessing soil key fertility attributes using a portable X-ray fluorescence: A simple method to overcome matrix effect
  publication-title: Agronomy
  doi: 10.3390/agronomy10060787
– volume: 211
  year: 2024
  ident: ref65
  article-title: Optimization of pXRF instrumentation conditions and multivariate modeling in soil fertility attributes determination
  publication-title: Spectrochim Acta Part B At Spectrosc
  doi: 10.1016/j.sab.2023.106835
– volume: 342
  start-page: 106
  year: 2019
  ident: ref80
  article-title: XRF-measured rubidium concentration is the best predictor variable for estimating the soil clay content and salinity of semi-humid soils in two catenas
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.02.011
– volume: 42
  start-page: 501
  year: 2018
  ident: ref77
  article-title: Portable x-ray fluorescence (pXRF) spectrometry applied to the prediction of chemical attributes in inceptisols under different land use
  publication-title: Cienc e Agrotecnologia
  doi: 10.1590/1413-70542018425017518
– volume: 22
  start-page: 711
  year: 2013
  ident: ref2
  article-title: Köppen’s climate classification map for Brazil
  publication-title: Meteorol Zeitschrift
  doi: 10.1127/0941-2948/2013/0507
– volume: 29
  start-page: 1189
  year: 2001
  ident: ref30
  article-title: Greedy Function Approximation: A Gradient Boosting Machine
  publication-title: Ann Stat
  doi: 10.1214/aos/1013203451
– volume: 363
  year: 2020
  ident: ref83
  article-title: Rapid estimation of soil cation exchange capacity through sensor data fusion of portable XRF spectrometry and Vis-NIR spectroscopy
  publication-title: Geoderma
– volume: 103
  start-page: 239
  year: 2002
  ident: ref17
  article-title: randomForest: Breiman and Cutlers Random Forests for Classification and Regression
  publication-title: CRAN Contrib Packag
– year: 1997
  ident: ref84
– volume: 20
  start-page: 746
  year: 2019
  ident: ref62
  article-title: Synthesis of proximal sensing, terrain analysis, and parent material information for available micronutrient prediction in tropical soils
  publication-title: Precis Agric
  doi: 10.1007/s11119-018-9608-z
– volume: 24
  start-page: 2248
  year: 2024
  ident: ref38
  article-title: Application of proximal sensing approach to predict cation exchange capacity of calcareous soils using linear and nonlinear data mining algorithms
  publication-title: J Soils Sediments
  doi: 10.1007/s11368-024-03825-7
– year: 2019
  ident: ref54
– year: 2024
  ident: ref43
– year: 1953
  ident: ref52
– year: 2011
  ident: ref93
– volume: 279
  start-page: 31
  year: 2016
  ident: ref58
  article-title: An assessment of model averaging to improve predictive power of portable vis-NIR and XRF for the determination of agronomic soil properties
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.05.005
– volume: 48
  start-page: 5700
  year: 2014
  ident: ref24
  article-title: Multi-surface Modeling To Predict Free Zinc Ion Concentrations in Low-Zinc Soils
  publication-title: Environ Sci Technol
  doi: 10.1021/es500257e
– year: 2018
  ident: ref71
– volume: 71
  start-page: 316
  year: 2020
  ident: ref91
  article-title: Data fusion of vis-NIR and PXRF spectra to predict soil physical and chemical properties
  publication-title: Eur J Soil Sci
  doi: 10.1111/ejss.12875
– volume: 209
  year: 2022
  ident: ref92
  article-title: Clay content mapping and uncertainty estimation using weighted model averaging
  publication-title: CATENA
  doi: 10.1016/j.catena.2021.105791
– volume: 197
  year: 2021
  ident: ref11
  article-title: Rapid soil fertility prediction using X-ray fluorescence data and machine learning algorithms
  publication-title: CATENA
  doi: 10.1016/j.catena.2020.105003
– volume: 38
  start-page: 1
  year: 2023
  ident: ref44
  article-title: Climate Change Assessment in Brazil: Utilizing the Köppen-Geiger (1936) Climate Classification
  publication-title: Rev Bras Meteorol
– year: 2019
  ident: ref40
– volume: 187
  year: 2015
  ident: ref32
  article-title: Background levels of some major, trace, and rare earth elements in indigenous plant species growing in Norway and the influence of soil acidification, soil parent material, and seasonal variation on these levels
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-015-4479-5
– year: 2017
  ident: ref78
– volume: 70
  start-page: 162
  year: 2019
  ident: ref88
  article-title: Multi-sensor fusion for the determination of several soil properties in the Yangtze River Delta, China
  publication-title: Eur J Soil Sci
  doi: 10.1111/ejss.12729
– year: 2020
  ident: ref6
– volume: 51
  start-page: 1317
  year: 2016
  ident: ref9
  article-title: Expansão de mapas pedológicos para áreas fisiograficamente semelhantes por meio de mapeamento digital de solos
  publication-title: Pesqui Agropecu Bras
  doi: 10.1590/s0100-204x2016000900031
– volume: 288
  start-page: 37
  year: 2017
  ident: ref47
  article-title: Estimation accuracies of near infrared spectroscopy for general soil properties and enzyme activities for two forest sites along three transects
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.10.022
– volume: 456
  year: 2020
  ident: ref89
  article-title: Effects of different rotation periods of Eucalyptus plantations on soil physiochemical properties, enzyme activities, microbial biomass and microbial community structure and diversity
  publication-title: For Ecol Manage
– volume: 49
  start-page: 3420
  year: 2001
  ident: ref19
  article-title: Antioxidant Activity of Extracts from Acacia confusa Bark and Heartwood
  publication-title: J Agric Food Chem
  doi: 10.1021/jf0100907
– volume-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  year: 2016
  ident: ref21
– volume: 402
  year: 2021
  ident: ref29
  article-title: Evaluating the synergy of three soil spectrometers for improving the prediction and mapping of soil properties in a high anthropic management area: A case of study from Southeast Brazil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115347
– volume: 228
  year: 2024
  ident: ref56
  article-title: Revisiting soil texture analysis: Introducing a rapid single-reading hydrometer approach
  publication-title: Measurement
  doi: 10.1016/j.measurement.2024.114330
– volume: 362
  year: 2020
  ident: ref67
  article-title: Soil texture prediction in tropical soils: A portable X-ray fluorescence spectrometry approach
  publication-title: Geoderma
– volume: 28
  start-page: 1
  year: 2008
  ident: ref41
  article-title: Building Predictive Models in R Using the caret Package
  publication-title: J Stat Softw
  doi: 10.18637/jss.v028.i05
– volume: 338
  start-page: 375
  year: 2019
  ident: ref63
  article-title: Determination of base saturation percentage in agricultural soils via portable X-ray fluorescence spectrometer
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.12.032
– volume: 27
  year: 2021
  ident: ref7
  article-title: Micronutrients prediction via pXRF spectrometry in Brazil: Influence of weathering degree
  publication-title: Geoderma Reg
– volume: 37
  start-page: 29
  year: 1934
  ident: ref82
  article-title: An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method
  publication-title: Soil Sci
  doi: 10.1097/00010694-193401000-00003
– volume: 397
  year: 2021
  ident: ref18
  article-title: Regional ensemble modeling reduces uncertainty for digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.114998
– volume: 61
  start-page: 2340
  year: 2021
  ident: ref27
  article-title: X-ray fluorescence application in food, feed, and agricultural science: a critical review
  publication-title: Crit Rev Food Sci Nutr
  doi: 10.1080/10408398.2020.1776677
– volume: 716
  year: 2020
  ident: ref28
  article-title: Soil and farm management effects on yield and nutrient concentrations of food crops in East Africa
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.137078
– year: 2012
  ident: ref49
– year: 2011
  ident: ref42
– year: 2023
  ident: ref25
– volume: 25
  start-page: 27
  year: 2000
  ident: ref3
  article-title: Determinação e uso do fósforo remanescente
  publication-title: B Inf SBCS
– volume: 109
  start-page: 77
  year: 2017
  ident: ref36
  article-title: Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning
  publication-title: Nutr Cycl Agroecosystems
  doi: 10.1007/s10705-017-9870-x
– year: 1969
  ident: ref81
– volume: 116
  year: 2022
  article-title: Proximal sensor data fusion for tropical soil property prediction: Soil fertility properties
  publication-title: J South Am Earth Sci
– volume: 23
  start-page: 18
  year: 2022
  end-page: 34
  article-title: Prediction of soil nutrient content via pXRF spectrometry and its spatial variation in a highly variable tropical area
  publication-title: Precis Agric
– volume: 197
  year: 2021
  article-title: Rapid soil fertility prediction using X-ray fluorescence data and machine learning algorithms
  publication-title: CATENA
– volume: 14
  start-page: 199
  year: 2004
  end-page: 222
  article-title: A tutorial on support vector regression
  publication-title: Stat Comput
– year: 2024
  publication-title: Soil Carbon Stocks in the Brazilian Pampa: An Update
– year: 2020
  publication-title: Proximal sensing applied to soil texture prediction and mapping in Brazil
– volume: 201
  year: 2021
  article-title: Characterization of field-scale soil variation using a stepwise multi-sensor fusion approach and a cost-benefit analysis
  publication-title: Catena
– volume: 370
  start-page: 83
  year: 2016
  end-page: 92
  article-title: Historical land use and stand age effects on forest soil properties in the Mid-Atlantic US
  publication-title: For Ecol Manage
– year: 2016
  publication-title: XGBoost
– year: 1953
  publication-title: Determination of P, Ca, Mg, K, Na and NH4 by North Carolina soil testing laboratories
– year: 2019
  publication-title: Digital mapping of soil carbon fractions with machine learning
– volume: 103
  start-page: 239
  year: 2002
  end-page: 248
  article-title: randomForest: Breiman and Cutlers Random Forests for Classification and Regression
  publication-title: CRAN Contrib Packag
– volume: 61
  start-page: 2340
  year: 2021
  end-page: 2350
  article-title: X-ray fluorescence application in food, feed, and agricultural science: a critical review
  publication-title: Crit Rev Food Sci Nutr
– volume: 362
  year: 2020
  article-title: Soil texture prediction in tropical soils: A portable X-ray fluorescence spectrometry approach
  publication-title: Geoderma
– volume: 247
  year: 2024
  article-title: Feasibility of proximal sensing for predicting soil loss tolerance
  publication-title: Catena
– volume: 67
  start-page: 328
  year: 2022
  end-page: 340
  article-title: Mapping high resolution National Soil Information Grids of China
  publication-title: Sci Bull
– year: 2016
  publication-title: Chapter One - A Career Perspective on Soil Management in the Cerrado Region of Brazil
– volume: 245
  year: 2025
  article-title: Do XRF local models have temporal stability for predicting plant-available nutrients in different years?
  publication-title: A long-term study showing the effect of soil fertility management in a tropical field. Soil Tillage Res
– year: 2023
  publication-title: Proximal sensing provides clean, fast, and accurate quality control of organic and mineral fertilizers
– volume: 84
  start-page: 1384
  year: 2020
  end-page: 1392
  article-title: Portable X-ray fluorescence spectrometry analysis of soils
  publication-title: Soil Sci Soc Am J
– volume: 279
  start-page: 31
  year: 2016
  end-page: 44
  article-title: An assessment of model averaging to improve predictive power of portable vis-NIR and XRF for the determination of agronomic soil properties
  publication-title: Geoderma
– year: 1997
  publication-title: Inducing Model Trees for Continuous Classes
– volume: 29
  start-page: 1073
  year: 2010
  end-page: 1081
  article-title: Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy
  publication-title: TrAC Trends Anal Chem
– year: 2011
  publication-title: Cubist: Rule- And Instance-Based Regression Modeling
– volume: 42
  start-page: 501
  year: 2018
  end-page: 512
  article-title: Portable x-ray fluorescence (pXRF) spectrometry applied to the prediction of chemical attributes in inceptisols under different land use
  publication-title: Cienc e Agrotecnologia
– volume: 10
  year: 2020
  article-title: Assessing soil key fertility attributes using a portable X-ray fluorescence: A simple method to overcome matrix effect
  publication-title: Agronomy
– year: 2020
  publication-title: When does stratification of a subtropical soil spectral library improve predictions of soil organic carbon content?
– year: 2014
  publication-title: Pedologia Base Para Distinção de Ambientes, 6ª ed
– volume: 91
  start-page: 393
  year: 2005
  end-page: 402
  article-title: Potential for onsite and online analysis of pig manure using visible and near infrared reflectance spectroscopy
  publication-title: Biosyst Eng
– volume: 71
  start-page: 316
  year: 2020
  end-page: 333
  article-title: Data fusion of vis-NIR and PXRF spectra to predict soil physical and chemical properties
  publication-title: Eur J Soil Sci
– volume: 27
  year: 2021
  article-title: Micronutrients prediction via pXRF spectrometry in Brazil: Influence of weathering degree
  publication-title: Geoderma Reg
– volume: 76
  start-page: 817
  year: 1981
  end-page: 823
  article-title: Projection Pursuit Regression
  publication-title: J Am Stat Assoc
– volume: 22
  start-page: 382
  year: 1958
  end-page: 387
  article-title: Aluminum in Soils: I
  publication-title: Extraction Methods and Magnitudes in Clays and Ohio Soils. Soil Sci Soc Am J
– year: 2019
  publication-title: Prediction of soil classes in a complex landscape in Southern Brazil
– year: 1969
  publication-title: Boletim Técnico n
– volume: 109
  start-page: 77
  year: 2017
  end-page: 102
  article-title: Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning
  publication-title: Nutr Cycl Agroecosystems
– volume: 70
  start-page: 162
  year: 2019
  end-page: 173
  article-title: Multi-sensor fusion for the determination of several soil properties in the Yangtze River Delta, China
  publication-title: Eur J Soil Sci
– volume: 14
  year: 2024
  article-title: Assessment of portable X-ray fluorescence (pXRF) for plant-available nutrient prediction in biochar-amended soils
  publication-title: Sci Rep
– volume: 49
  start-page: 3420
  year: 2001
  end-page: 3424
  article-title: Antioxidant Activity of Extracts from Acacia confusa Bark and Heartwood
  publication-title: J Agric Food Chem
– year: 2011
  publication-title: Characterizing soils using a portable X-ray fluorescence spectrometer: 1
– volume: 363
  year: 2020
  article-title: Rapid estimation of soil cation exchange capacity through sensor data fusion of portable XRF spectrometry and Vis-NIR spectroscopy
  publication-title: Geoderma
– volume: 187
  year: 2015
  article-title: Background levels of some major, trace, and rare earth elements in indigenous plant species growing in Norway and the influence of soil acidification, soil parent material, and seasonal variation on these levels
  publication-title: Environ Monit Assess
– year: 2018
  publication-title: Solos do Rio Grande do Sul, 3ª ed
– year: 2023
  publication-title: The State of Food Security and Nutrition in the World 2023, 1-316 p
– volume: 21
  year: 2020
  article-title: Combined Use of Vis-NIR and XRF Sensors for Tropical Soil Fertility Analysis: Assessing Different Data Fusion Approaches
  publication-title: Sensors
– volume: 209
  year: 2022
  article-title: Clay content mapping and uncertainty estimation using weighted model averaging
  publication-title: CATENA
– volume: 29
  start-page: 1189
  year: 2001
  end-page: 1232
  article-title: Greedy Function Approximation: A Gradient Boosting Machine
  publication-title: Ann Stat
– volume: 397
  year: 2021
  article-title: Regional ensemble modeling reduces uncertainty for digital soil mapping
  publication-title: Geoderma
– volume: 24
  start-page: 2248
  year: 2024
  end-page: 2267
  article-title: Application of proximal sensing approach to predict cation exchange capacity of calcareous soils using linear and nonlinear data mining algorithms
  publication-title: J Soils Sediments
– volume: 357
  year: 2020
  article-title: Prediction of soil fertility via portable X-ray fluorescence (pXRF) spectrometry and soil texture in the Brazilian Coastal Plains
  publication-title: Geoderma
– volume: 131
  start-page: 77
  year: 2016
  end-page: 102
  article-title: Mineralogy and biogeochemistry of potassium in the Skogaby experimental forest, southwest Sweden: pools, fluxes and K/Rb ratios in soil and biomass
  publication-title: Biogeochemistry
– volume: 716
  year: 2020
  article-title: Soil and farm management effects on yield and nutrient concentrations of food crops in East Africa
  publication-title: Sci Total Environ
– volume: 36
  year: 2024
  article-title: Mining soil data of Switzerland: New maps for soil texture, soil organic carbon, nitrogen, and phosphorus
  publication-title: Geoderma Reg
– volume: 38
  start-page: 1
  year: 2023
  end-page: 33
  article-title: Climate Change Assessment in Brazil: Utilizing the Köppen-Geiger (1936) Climate Classification
  publication-title: Rev Bras Meteorol
– volume: 32
  start-page: 602
  year: 2022
  end-page: 615
  article-title: Using pXRF and vis-NIR spectra for predicting properties of soils developed in loess
  publication-title: Pedosphere
– volume: 9
  start-page: 17
  year: 2017
  end-page: 28
  article-title: Chile and the Chilean soil grid: A contribution to GlobalSoilMap
  publication-title: Geoderma Reg
– year: 2014
  publication-title: Advances in Portable X-ray Fluorescence (PXRF) for Environmental, Pedological, and Agronomic Applications
– year: 2017
  publication-title: Manual de métodos de análise de solo, 3ª ed
– volume: 228
  year: 2024
  article-title: Revisiting soil texture analysis: Introducing a rapid single-reading hydrometer approach
  publication-title: Measurement
– volume: 28
  start-page: 1
  year: 2008
  end-page: 26
  article-title: Building Predictive Models in R Using the caret Package
  publication-title: J Stat Softw
– volume: 167
  start-page: 1
  year: 2021
  end-page: 62
  article-title: pXRF in tropical soils: Methodology, applications, achievements and challenges
  publication-title: Adv Agron
– volume: 37
  start-page: 29
  year: 1934
  end-page: 38
  article-title: An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method
  publication-title: Soil Sci
– year: 2024
  publication-title: e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien
– volume: 20
  start-page: 746
  year: 2019
  end-page: 766
  article-title: Synthesis of proximal sensing, terrain analysis, and parent material information for available micronutrient prediction in tropical soils
  publication-title: Precis Agric
– volume: 338
  start-page: 375
  year: 2019
  end-page: 382
  article-title: Determination of base saturation percentage in agricultural soils via portable X-ray fluorescence spectrometer
  publication-title: Geoderma
– volume: 113
  start-page: 407
  year: 2013
  end-page: 427
  article-title: Modeling monthly mean air temperature for Brazil
  publication-title: Theor Appl Climatol
– year: 2016
  publication-title: Digital mapping of soil carbon in a viticultural region of Southern Brazil
– volume: 402
  year: 2021
  article-title: Evaluating the synergy of three soil spectrometers for improving the prediction and mapping of soil properties in a high anthropic management area: A case of study from Southeast Brazil
  publication-title: Geoderma
– volume: 10
  start-page: 281
  year: 2013
  end-page: 306
  article-title: Disability and toxicity of nutrients in visual soybeans
  publication-title: Nucleus
– volume: 48
  start-page: 5700
  year: 2014
  end-page: 5708
  article-title: Multi-surface Modeling To Predict Free Zinc Ion Concentrations in Low-Zinc Soils
  publication-title: Environ Sci Technol
– volume: 88
  start-page: 8
  year: 2024
  end-page: 26
  article-title: Multinational prediction of soil organic carbon and texture via proximal sensors
  publication-title: Soil Sci Soc Am J
– volume: 288
  start-page: 37
  year: 2017
  end-page: 46
  article-title: Estimation accuracies of near infrared spectroscopy for general soil properties and enzyme activities for two forest sites along three transects
  publication-title: Geoderma
– year: 2024
  publication-title: pls: Partial Least Squares and Principal Component Regression
– volume: 40
  start-page: 534
  year: 2016
  end-page: 546
  article-title: Mapping soils in two watersheds using legacy data and extrapolation for similar surrounding areas
  publication-title: Ciência e Agrotecnologia
– volume: 58
  start-page: 109
  year: 2001
  end-page: 130
  article-title: PLS-regression: a basic tool of chemometrics
  publication-title: Chemom Intell Lab Syst
– volume: 93
  year: 2021
  article-title: X-ray fluorescence spectrometry applied to digital mapping of soil fertility attributes in tropical region with elevated spatial variability
  publication-title: An Acad Bras Cienc
– volume: 51
  start-page: 1317
  year: 2016
  end-page: 1325
  article-title: Expansão de mapas pedológicos para áreas fisiograficamente semelhantes por meio de mapeamento digital de solos
  publication-title: Pesqui Agropecu Bras
– volume: 342
  start-page: 106
  year: 2019
  end-page: 108
  article-title: XRF-measured rubidium concentration is the best predictor variable for estimating the soil clay content and salinity of semi-humid soils in two catenas
  publication-title: Geoderma
– year: 2019
  publication-title: Random Forests
– volume: 211
  year: 2024
  article-title: Optimization of pXRF instrumentation conditions and multivariate modeling in soil fertility attributes determination
  publication-title: Spectrochim Acta Part B At Spectrosc
– year: 2012
  publication-title: Marschner’s mineral nutrition of higher plants, Academic press
– volume: 58
  start-page: 683
  year: 2020
  end-page: 695
  article-title: Soils of the Brazilian Coastal Plains biome: prediction of chemical attributes via portable X-ray fluorescence (pXRF) spectrometry and robust prediction models
  publication-title: Soil Res
– volume: 203
  year: 2022
  article-title: Assessing the effect of soil to water ratios and sampling strategies on the prediction of EC and pH using pXRF and Vis-NIR spectra
  publication-title: Comput Electron Agric
– volume: 25
  start-page: 27
  year: 2000
  end-page: 32
  article-title: Determinação e uso do fósforo remanescente
  publication-title: B Inf SBCS
– volume: 2
  start-page: 1
  year: 2000
  end-page: 13
  article-title: Support vector machines
  publication-title: ACM SIGKDD Explor Newsl
– year: 2012
  publication-title: Mineralogia de solos brasileiros
– volume: 36
  year: 2024
  article-title: Proximal sensing approach for characterization of calcareous soils using multiblock data analysis
  publication-title: Geoderma Reg
– volume: 456
  year: 2020
  article-title: Effects of different rotation periods of Eucalyptus plantations on soil physiochemical properties, enzyme activities, microbial biomass and microbial community structure and diversity
  publication-title: For Ecol Manage
– year: 2024
  publication-title: Regional impacts of climate change on agricultural productivity: evidence on large-scale and family farming in Brazil
– volume: 30
  year: 2022
  article-title: Influence of auxiliary soil variables to improve PXRF-based soil fertility evaluation in India
  publication-title: Geoderma Reg
– volume: 22
  start-page: 711
  year: 2013
  end-page: 728
  article-title: Köppen’s climate classification map for Brazil
  publication-title: Meteorol Zeitschrift
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  article-title: Random Forests
  publication-title: Mach Learn
– year: 2025
  publication-title: xgboost: Extreme Gradient Boosting
SSID ssj0024980
Score 2.3720896
Snippet Abstract Although proximal sensing coupled with machine learning (ML) algorithms have been successful for characterizing soils, questions remain regarding...
Although proximal sensing coupled with machine learning (ML) algorithms have been successful for characterizing soils, questions remain regarding their...
SourceID doaj
scielo
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e20250075
SubjectTerms Algorithms
Brazil
Environmental Monitoring - methods
Machine Learning
MULTIDISCIPLINARY SCIENCES
pedometrics
Portable X-ray fluorescence
Soil - chemistry
soil properties
soil variation
Spectrometry, X-Ray Emission - methods
Title Prediction of soil fertility properties in Southern Brazil via proximal sensing
URI https://www.ncbi.nlm.nih.gov/pubmed/41059799
https://www.proquest.com/docview/3259074902
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652025001101501&lng=en&tlng=en
https://doaj.org/article/f88aa0adcdcc40be9cb84f9f34b7596b
Volume 97
WOSCitedRecordID wos001589930700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1678-2690
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024980
  issn: 0001-3765
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1678-2690
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024980
  issn: 0001-3765
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS91AEB5a6cFL8bXaRlvZQkE9pM0mm2z2WIviwaqgwrstm_1RAs88SZ4P8dC_vTNJnmgp9NJD9hCWZJnJZL7Zmf0G4HNu0Y1YbmObehOLkIa4UoWIsywTwnkEtKHvWnIqz87K6VRdPGn1RTVhAz3wILivoSyNSYyzzlqRVF7ZqhRBhUxUMldFRX_fRKpVMLVi2VNlMp7XyVVCxxU4mVKOoX5_kad85ol6wv6_oUyiEEUrmz11O8cb8HrEi-zbsM4JvPDNG5iMFtmx_ZE2-uAtnF-0lHQhQbN5YN28nrFAVdMEtNktbbq3xJ7K6ob1jfN827DD1jzgvGVtaMZ9fYPv6qimvfm5CdfHR1ffT-KxXUJsBeeLWHASrchxDNzK4JIsCFGhb7LBBCel4SF33JsEQwST-jwNlHMLrvBKSSuzLVhr5o1_D6ysvHOFQfBDx0cQNHiOcYctlMXoyXIZwZeV6PTtwIqhKZpAWffZbP2nrCM4JAE_TiZS6_4GqlqPqtb_UnUEn1bq0WgElNkwjZ_fdTrDIA6xkErSCN4Nent8FdWxUu4ygr1BkXq00k5fPltrT5-H-Jhv_4_F7sA6PXTYrfkAa4v2zn-EV3a5qLt2F17Kabnbf7M4_vh19BvJ3-2H
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+soil+fertility+properties+in+Southern+Brazil+via+proximal+sensing&rft.jtitle=Anais+da+Academia+Brasileira+de+Ci%C3%AAncias&rft.au=STEFAN+D.+NACHTIGALL&rft.au=MARCELO+MANCINI&rft.au=RENATA+A.+REIS&rft.au=ELIAS+FRANK+DE+ARA%C3%9AJO&rft.date=2025-01-01&rft.pub=Academia+Brasileira+de+Ci%C3%AAncias&rft.eissn=1678-2690&rft.volume=97&rft.issue=suppl+2&rft_id=info:doi/10.1590%2F0001-3765202520250075&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f88aa0adcdcc40be9cb84f9f34b7596b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-3765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-3765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-3765&client=summon