Prediction of soil fertility properties in Southern Brazil via proximal sensing
Abstract Although proximal sensing coupled with machine learning (ML) algorithms have been successful for characterizing soils, questions remain regarding their effectiveness under varied soil conditions. This study evaluated for the first time the efficiency of a portable X-ray fluorescence spectro...
Saved in:
| Published in: | Anais da Academia Brasileira de Ciências Vol. 97; no. suppl 2; p. e20250075 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Brazil
Academia Brasileira de Ciências
01.01.2025
|
| Subjects: | |
| ISSN: | 0001-3765, 1678-2690, 1678-2690 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Abstract Although proximal sensing coupled with machine learning (ML) algorithms have been successful for characterizing soils, questions remain regarding their effectiveness under varied soil conditions. This study evaluated for the first time the efficiency of a portable X-ray fluorescence spectrometer (pXRF) to predict 17 soil fertility properties in Rio Grande do Sul (RS) state, Brazil, through ML algorithms. A total of 468 surface soil samples were analyzed by pXRF and by conventional (reference) methods. Six algorithms were employed: Projection Pursuit Regression, Partial Least Squares, Random Forest, Support Vector Machine, Extreme Gradient Boosting, and Cubist. Predictions accuracy was assessed using the coefficient of determination (R²), root mean square error, normalized root mean square error, residual prediction deviation (RPD) and Ratio of Performance to Interquartile Distance. Cubist and Random Forest outperformed other algorithms, reaching the following R² values: available/exchangeable Al (R² = 0.70), Ca (0.57), Mg (0.75), Mn (0.84), S (0.60), Cu (0.81), K (0.82), P (0.54), besides P-rem (0.80), H+Al (0.73), and total N (0.52). Predictions for organic carbon and available B, Fe, Na, Zn require further investigations. The pXRF combined with ML algorithms can accelerate decisions for agricultural management in RS state, Brazil, by optimizing soil analysis for improved crop management. |
|---|---|
| AbstractList | Abstract Although proximal sensing coupled with machine learning (ML) algorithms have been successful for characterizing soils, questions remain regarding their effectiveness under varied soil conditions. This study evaluated for the first time the efficiency of a portable X-ray fluorescence spectrometer (pXRF) to predict 17 soil fertility properties in Rio Grande do Sul (RS) state, Brazil, through ML algorithms. A total of 468 surface soil samples were analyzed by pXRF and by conventional (reference) methods. Six algorithms were employed: Projection Pursuit Regression, Partial Least Squares, Random Forest, Support Vector Machine, Extreme Gradient Boosting, and Cubist. Predictions accuracy was assessed using the coefficient of determination (R²), root mean square error, normalized root mean square error, residual prediction deviation (RPD) and Ratio of Performance to Interquartile Distance. Cubist and Random Forest outperformed other algorithms, reaching the following R² values: available/exchangeable Al (R² = 0.70), Ca (0.57), Mg (0.75), Mn (0.84), S (0.60), Cu (0.81), K (0.82), P (0.54), besides P-rem (0.80), H+Al (0.73), and total N (0.52). Predictions for organic carbon and available B, Fe, Na, Zn require further investigations. The pXRF combined with ML algorithms can accelerate decisions for agricultural management in RS state, Brazil, by optimizing soil analysis for improved crop management. Although proximal sensing coupled with machine learning (ML) algorithms have been successful for characterizing soils, questions remain regarding their effectiveness under varied soil conditions. This study evaluated for the first time the efficiency of a portable X-ray fluorescence spectrometer (pXRF) to predict 17 soil fertility properties in Rio Grande do Sul (RS) state, Brazil, through ML algorithms. A total of 468 surface soil samples were analyzed by pXRF and by conventional (reference) methods. Six algorithms were employed: Projection Pursuit Regression, Partial Least Squares, Random Forest, Support Vector Machine, Extreme Gradient Boosting, and Cubist. Predictions accuracy was assessed using the coefficient of determination (R²), root mean square error, normalized root mean square error, residual prediction deviation (RPD) and Ratio of Performance to Interquartile Distance. Cubist and Random Forest outperformed other algorithms, reaching the following R² values: available/exchangeable Al (R² = 0.70), Ca (0.57), Mg (0.75), Mn (0.84), S (0.60), Cu (0.81), K (0.82), P (0.54), besides P-rem (0.80), H+Al (0.73), and total N (0.52). Predictions for organic carbon and available B, Fe, Na, Zn require further investigations. The pXRF combined with ML algorithms can accelerate decisions for agricultural management in RS state, Brazil, by optimizing soil analysis for improved crop management.Although proximal sensing coupled with machine learning (ML) algorithms have been successful for characterizing soils, questions remain regarding their effectiveness under varied soil conditions. This study evaluated for the first time the efficiency of a portable X-ray fluorescence spectrometer (pXRF) to predict 17 soil fertility properties in Rio Grande do Sul (RS) state, Brazil, through ML algorithms. A total of 468 surface soil samples were analyzed by pXRF and by conventional (reference) methods. Six algorithms were employed: Projection Pursuit Regression, Partial Least Squares, Random Forest, Support Vector Machine, Extreme Gradient Boosting, and Cubist. Predictions accuracy was assessed using the coefficient of determination (R²), root mean square error, normalized root mean square error, residual prediction deviation (RPD) and Ratio of Performance to Interquartile Distance. Cubist and Random Forest outperformed other algorithms, reaching the following R² values: available/exchangeable Al (R² = 0.70), Ca (0.57), Mg (0.75), Mn (0.84), S (0.60), Cu (0.81), K (0.82), P (0.54), besides P-rem (0.80), H+Al (0.73), and total N (0.52). Predictions for organic carbon and available B, Fe, Na, Zn require further investigations. The pXRF combined with ML algorithms can accelerate decisions for agricultural management in RS state, Brazil, by optimizing soil analysis for improved crop management. Although proximal sensing coupled with machine learning (ML) algorithms have been successful for characterizing soils, questions remain regarding their effectiveness under varied soil conditions. This study evaluated for the first time the efficiency of a portable X-ray fluorescence spectrometer (pXRF) to predict 17 soil fertility properties in Rio Grande do Sul (RS) state, Brazil, through ML algorithms. A total of 468 surface soil samples were analyzed by pXRF and by conventional (reference) methods. Six algorithms were employed: Projection Pursuit Regression, Partial Least Squares, Random Forest, Support Vector Machine, Extreme Gradient Boosting, and Cubist. Predictions accuracy was assessed using the coefficient of determination (R²), root mean square error, normalized root mean square error, residual prediction deviation (RPD) and Ratio of Performance to Interquartile Distance. Cubist and Random Forest outperformed other algorithms, reaching the following R² values: available/exchangeable Al (R² = 0.70), Ca (0.57), Mg (0.75), Mn (0.84), S (0.60), Cu (0.81), K (0.82), P (0.54), besides P-rem (0.80), H+Al (0.73), and total N (0.52). Predictions for organic carbon and available B, Fe, Na, Zn require further investigations. The pXRF combined with ML algorithms can accelerate decisions for agricultural management in RS state, Brazil, by optimizing soil analysis for improved crop management. |
| Author | REIS, RENATA A. MANCINI, MARCELO ARAÚJO, ELIAS FRANK DE CARNEIRO, MARCO AURÉLIO C. CURI, NILTON NACHTIGALL, STEFAN D. SILVA, SÉRGIO HENRIQUE GODINHO |
| AuthorAffiliation | CMPC Celulose RioGrandense Universidade Federal de Lavras |
| AuthorAffiliation_xml | – name: CMPC Celulose RioGrandense – name: Universidade Federal de Lavras |
| Author_xml | – sequence: 1 givenname: STEFAN D. orcidid: 0000-0003-4623-8033 surname: NACHTIGALL fullname: NACHTIGALL, STEFAN D. organization: Universidade Federal de Lavras, Brazil – sequence: 2 givenname: MARCELO orcidid: 0000-0003-4118-7943 surname: MANCINI fullname: MANCINI, MARCELO organization: Universidade Federal de Lavras, Brazil – sequence: 3 givenname: RENATA A. orcidid: 0000-0001-8856-2558 surname: REIS fullname: REIS, RENATA A. organization: Universidade Federal de Lavras, Brazil – sequence: 4 givenname: ELIAS FRANK DE orcidid: 0000-0003-0300-5272 surname: ARAÚJO fullname: ARAÚJO, ELIAS FRANK DE organization: CMPC Celulose RioGrandense, Brazil – sequence: 5 givenname: MARCO AURÉLIO C. orcidid: 0000-0003-4349-3071 surname: CARNEIRO fullname: CARNEIRO, MARCO AURÉLIO C. organization: Universidade Federal de Lavras, Brazil – sequence: 6 givenname: NILTON orcidid: 0000-0002-2604-0866 surname: CURI fullname: CURI, NILTON organization: Universidade Federal de Lavras, Brazil – sequence: 7 givenname: SÉRGIO HENRIQUE GODINHO orcidid: 0000-0003-2750-5976 surname: SILVA fullname: SILVA, SÉRGIO HENRIQUE GODINHO organization: Universidade Federal de Lavras, Brazil |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41059799$$D View this record in MEDLINE/PubMed |
| BookMark | eNpVkVFPHCEUhUljU1fbn6CZx76MvTAwDI-tqdbERBPbZ8IwF8tmFrYwY7r-elnX3cQH4EK-e3K454QchRiQkDMKF1Qo-AYAtG5kKxiw1wUgxQeyoK3satYqOCKLA3NMTnJeAjCuOvhEjjkFoaRSC3J3n3DwdvIxVNFVOfqxcpgmP_ppU61TXG8vmCsfqoc4T38xhepHMs-Fe_JmS_z3KzNWGUP24fEz-ejMmPHL23lK_lz9_H35q769u765_H5bW07pVHOKHWu5KLujVroBGsd5zyizzrhBSkOdGCgaEJ0wDAVzDfDCtaiUtLI5JTc73SGapV6n4iFtdDRevz7E9KhNMW5H1K7rjAEz2MFaDj0q23fcKdfwXgrV9kXrYqeVrccx6mWcUyjm9cN2gHo_5FJToAJoafi6ayi__zdjnvTKZ4vjaALGOeuGlYQkV8AKev6Gzv0Kh4PTfQIFEDvApphzQndAKOht0vqdiX3SzQujI5hu |
| Cites_doi | 10.1016/j.trac.2010.05.006 10.1590/0001-3765202120200646 10.1038/s41598-024-71381-8 10.1016/j.compag.2022.107459 10.1016/j.foreco.2016.03.046 10.1016/j.catena.2021.105190 10.1007/s11119-021-09825-8 10.1016/j.biosystemseng.2005.05.001 10.1590/1413-70542016405011416 10.1080/01621459.1981.10477729 10.1016/S0169-7439(01)00155-1 10.1023/A:1010933404324 10.1016/j.geodrs.2016.12.001 10.3738/1982.2278.974 10.1016/j.scib.2021.10.013 10.1002/saj2.20593 10.1071/SR20136 10.1201/9780367816377 10.1016/j.catena.2024.108503 10.1023/B:STCO.0000035301.49549.88 10.3390/s21010148 10.1016/bs.agron.2020.12.001 10.1016/S1002-0160(21)60092-9 10.1007/s00704-012-0796-6 10.1007/s10533-016-0266-9 10.1002/saj2.20151 10.1145/380995.380999 10.3390/agronomy10060787 10.1016/j.sab.2023.106835 10.1016/j.geoderma.2019.02.011 10.1590/1413-70542018425017518 10.1127/0941-2948/2013/0507 10.1214/aos/1013203451 10.1007/s11119-018-9608-z 10.1007/s11368-024-03825-7 10.1016/j.geoderma.2016.05.005 10.1021/es500257e 10.1111/ejss.12875 10.1016/j.catena.2021.105791 10.1016/j.catena.2020.105003 10.1007/s10661-015-4479-5 10.1111/ejss.12729 10.1590/s0100-204x2016000900031 10.1016/j.geoderma.2016.10.022 10.1021/jf0100907 10.1016/j.geoderma.2021.115347 10.1016/j.measurement.2024.114330 10.18637/jss.v028.i05 10.1016/j.geoderma.2018.12.032 10.1097/00010694-193401000-00003 10.1016/j.geoderma.2021.114998 10.1080/10408398.2020.1776677 10.1016/j.scitotenv.2020.137078 10.1007/s10705-017-9870-x |
| ContentType | Journal Article |
| Copyright | This work is licensed under a Creative Commons Attribution 4.0 International License. |
| Copyright_xml | – notice: This work is licensed under a Creative Commons Attribution 4.0 International License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 GPN DOA |
| DOI | 10.1590/0001-3765202520250075 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic SciELO DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1678-2690 |
| ExternalDocumentID | oai_doaj_org_article_f88aa0adcdcc40be9cb84f9f34b7596b S0001_37652025001101501 41059799 10_1590_0001_3765202520250075 |
| Genre | Journal Article |
| GeographicLocations | Brazil |
| GeographicLocations_xml | – name: Brazil |
| GroupedDBID | --Z -~X 2WC 53G 5GY 5VS 635 6J9 AAFWJ AAYXX ABXHO ACGFO ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS APOWU AZFZN BAWUL BCNDV C1A CITATION DIK E3Z EBS EJD F5P FIJ GROUPED_DOAJ GX1 HH5 IPNFZ LPU M~E OK1 OVT P2P RDY RIG RNS RSC SCD TR2 XSB CGR CUY CVF ECM EIF NPM 7X8 GPN |
| ID | FETCH-LOGICAL-c411t-41e82645e82f1c7fd03f44b212cfafd77a1f5d1ea0585a2e52f3047fd6e997c73 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001589930700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0001-3765 1678-2690 |
| IngestDate | Mon Oct 13 19:21:19 EDT 2025 Tue Nov 18 22:59:27 EST 2025 Thu Oct 09 20:00:33 EDT 2025 Fri Oct 10 01:53:54 EDT 2025 Thu Oct 09 00:44:59 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | suppl 2 |
| Keywords | soil properties Portable X-ray fluorescence pedometrics soil variation |
| Language | English |
| License | http://creativecommons.org/licenses/by/4.0 This work is licensed under a Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c411t-41e82645e82f1c7fd03f44b212cfafd77a1f5d1ea0585a2e52f3047fd6e997c73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-0300-5272 0000-0003-4349-3071 0000-0003-4118-7943 0000-0002-2604-0866 0000-0003-4623-8033 0000-0001-8856-2558 0000-0003-2750-5976 |
| OpenAccessLink | https://doaj.org/article/f88aa0adcdcc40be9cb84f9f34b7596b |
| PMID | 41059799 |
| PQID | 3259074902 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f88aa0adcdcc40be9cb84f9f34b7596b scielo_journals_S0001_37652025001101501 proquest_miscellaneous_3259074902 pubmed_primary_41059799 crossref_primary_10_1590_0001_3765202520250075 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Brazil |
| PublicationPlace_xml | – name: Brazil |
| PublicationTitle | Anais da Academia Brasileira de Ciências |
| PublicationTitleAlternate | An Acad Bras Cienc |
| PublicationYear | 2025 |
| Publisher | Academia Brasileira de Ciências |
| Publisher_xml | – name: Academia Brasileira de Ciências |
| References | MEYER D (ref53) 2024 LIMA RF (ref44) 2023; 38 CHANG S-T (ref19) 2001; 49 SIMONSSON M (ref69) 2016; 131 ANTONANGELO J (ref8) 2024; 14 LIU F (ref45) 2022; 67 KARAMI A (ref39) 2024; 36 SAEYS W (ref66) 2005; 91 YESILONIS I (ref90) 2016; 370 SMOLA AJ (ref70) 2004; 14 PADARIAN J (ref59) 2017; 9 FENG X (ref27) 2021; 61 VETTORI L (ref81) 1969 WEINDORF DC (ref85) 2014 ANDRADE R (ref5) 2023 GOZUKARA G (ref33) 2022; 203 MANCINI M (ref48) 2024; 88 MOURA-BUENO JM (ref55) 2020 MOURA-BUENO JM (ref54) 2019 ANDRADE R (ref7) 2021; 27 TEIXEIRA AFS (ref76) 2022; 116 MCLEAN EO (ref51) 1958; 22 WOLD S (ref87) 2001; 58 ALVAREZ VVH (ref3) 2000; 25 TORNQUIST CG (ref79) 2024 SILVA SHG (ref68) 2021; 167 PELEGRINO MHP (ref61) 2016; 40 ALVARES CA (ref2) 2013; 22 XU D (ref88) 2019; 70 BREIMAN L (ref17) 2002; 103 CHEN T (ref22) 2025 GUPTA S (ref35) 2024; 36 ZHU Y (ref93) 2011 TAVARES TR (ref74) 2020; 21 BENEDET L (ref11) 2021; 197 MARSCHNER H (ref49) 2012 TAVARES TR (ref75) 2020; 10 KESKIN H (ref40) 2019 CHATTERJEE S (ref20) 2021; 201 BELLON-MAUREL V (ref10) 2010; 29 FARIA ÁJG (ref26) 2020; 58 FONTENELLI JV (ref29) 2021; 402 KUHN M (ref41) 2008; 28 LOPES AS (ref46) 2016 MASCARENHAS HAA (ref50) 2013; 10 KÄMPF N (ref37) 2012 ROURKE SM (ref58) 2016; 279 TANURE TMP (ref72) 2024 BOEHMKE B (ref14) 2019 HENGL T (ref36) 2017; 109 SILVA SHG (ref67) 2020; 362 DUFFNER A (ref24) 2014; 48 (ref25) 2023 XU Y (ref89) 2020; 456 RESENDE M (ref64) 2014 MEHLICH A (ref52) 1953 BRUNGARD C (ref18) 2021; 397 MOZAFFARI H (ref56) 2024; 228 FISCHER S (ref28) 2020; 716 RIBEIRO JV (ref65) 2024; 211 BENEDET L (ref12) 2021; 93 LILAND KH (ref43) 2024 WANG Y (ref84) 1997 ZHAO D (ref92) 2022; 209 BENNETT KP (ref13) 2000; 2 LUDWIG B (ref47) 2017; 288 ANDRADE R (ref4) 2020; 357 BONFATTI BR (ref15) 2016 WALKLEY A (ref82) 1934; 37 CHEN T (ref21) 2016 TEIXEIRA PC (ref78) 2017 ANDRADE R (ref6) 2020 WEINDORF DC (ref86) 2020; 84 BAGATINI T (ref9) 2016; 51 TEIXEIRA AFS (ref77) 2018; 42 ALVARES CA (ref1) 2013; 113 GJENGEDAL E (ref32) 2015; 187 TÓTH T (ref80) 2019; 342 MOZAFFARI H (ref57) 2024; 247 FRIEDMAN JH (ref31) 1981; 76 PELEGRINO MHP (ref60) 2022; 23 PELEGRINO MHP (ref62) 2019; 20 FRIEDMAN JH (ref30) 2001; 29 RAWAL A (ref63) 2019; 338 TAVARES TR (ref73) 2025; 245 STRECK EV (ref71) 2018 KUHN M (ref42) 2011 ZHANG Y (ref91) 2020; 71 KARAMI A (ref38) 2024; 24 WAN M (ref83) 2020; 363 GOZUKARA G (ref34) 2022; 32 BREIMAN L (ref16) 2001; 45 DASGUPTA S (ref23) 2022; 30 TAVARES, TR; MINASNY, B; MCBRATNEY, A; MOLIN, JP; MARQUES, GT; RAGAGNIN, MM; DOS, SANTOS FR; DE, CARVALHO HWP; LAVRES, J 2025; 245 SAEYS, W; MOUAZEN, AM; RAMON, H 2005; 91 SILVA, SHG 2021; 167 YESILONIS, I; SZLAVECZ, K; POUYAT, R; WHIGHAM, D; XIA, L 2016; 370 TANURE, TMP; DOMINGUES, EP; MAGALHÃES, AS 2024 LUDWIG, B; VORMSTEIN, S; NIEBUHR, J; HEINZE, S; MARSCHNER, B; VOHLAND, M 2017; 288 MEYER, D; DIMITRIADOU, E; HORNIK, K; WEINGESSEL, A; LEISCH, F 2024 LOPES, AS; GUIMARÃES, GUILHERME LR 2016 ALVAREZ, VVH; NOVAIS, R; DIAS, L; OLIVEIRA, JA 2000; 25 RAWAL, A; CHAKRABORTY, S; LI, B; LEWIS, K; GODOY, M; PAULETTE, L; WEINDORF, DC 2019; 338 BAGATINI, T; GIASSON, E; TESKE, R 2016; 51 KUHN, M 2008; 28 LILAND, KH; MEVIK, B-H; WEHRENS, R 2024 ZHAO, D; WANG, J; ZHAO, X; TRIANTAFILIS, J 2022; 209 MOURA-BUENO, JM; SIMÃO, R; DALMOLIN, D; HORST-HEINEN, Z; TEN, CATEN A; VASQUES, GM; DOTTO, AC; GRUNWALD, S 2020 KARAMI, A; MOOSAVI, AA; POURGHASEMI, HR; RONAGHI, A; GHASEMI-FASAEI, R; VIDAL, E; LADO, M 2024; 36 BREIMAN, L; CUTLER, A; LIAW, A; WIENER, M 2002; 103 WANG, Y; WITTEN, IH 1997 GOZUKARA, G; ALTUNBAS, S; DENGIZ, O; ADAK, A 2022; 203 TAVARES, TR; MOUAZEN, AM; ALVES, EEN; DOS, SANTOS FR; MELQUIADES, FL; PEREIRA, DE CARVALHO HW; MOLIN, JP 2020; 10 FARIA, ÁJG; SILVA, SHG; MELO, LCA; ANDRADE, R; MANCINI, M; MESQUITA, LF; DOS, SANTOS TEIXEIRA AF; GUILHERME, LRG; CURI, N 2020; 58 ANTONANGELO, J; ZHANG, H 2024; 14 MASCARENHAS, HAA; ESTEVES, JAF; WUTKE, EB; RECO, PC; LEÃO, PCL 2013; 10 MOZAFFARI, H; MOOSAVI, AA; BAGHERNEJAD, M; CORNELIS, W 2024; 228 ANDRADE, R; SILVA, SHG; WEINDORF, DC; CHAKRABORTY, S; FARIA, WM; GUILHERME, LRG; CURI, N 2021; 27 KARAMI, A; MOOSAVI, AA; POURGHASEMI, HR; RONAGHI, A; GHASEMI-FASAEI, R; LADO, M 2024; 24 MANCINI, M 2024; 88 PELEGRINO, MHP; SILVA, SHG; DE, FARIA ÁJG; MANCINI, M; TEIXEIRA, AFS; CHAKRABORTY, S; WEINDORF, DC; GUILHERME, LRG; CURI, N 2022; 23 GJENGEDAL, E; MARTINSEN, T; STEINNES, E 2015; 187 FISCHER, S; HILGER, T; PIEPHO, H-P; JORDAN, I; KARUNGI, J; TOWETT, E; SHEPHERD, K; CADISCH, G 2020; 716 HENGL, T 2017; 109 CHEN, T 2025 ALVARES, CA; STAPE, JL; SENTELHAS, PC; DE, MORAES GONÇALVES JL 2013; 113 SIMONSSON, M; COURT, M; BERGHOLM, J; LEMARCHAND, D; HILLIER, S 2016; 131 ZHANG, Y; HARTEMINK, AE 2020; 71 BONFATTI, BR; HARTEMINK, AE; GIASSON, E; TORNQUIST, CG; ADHIKARI, K 2016 GOZUKARA, G; ZHANG, Y; HARTEMINK, AE 2022; 32 WOLD, S; SJÖSTRÖM, M; ERIKSSON, L 2001; 58 BRUNGARD, C; NAUMAN, T; DUNIWAY, M; VEBLEN, K; NEHRING, K; WHITE, D; SALLEY, S; ANCHANG, J 2021; 397 PADARIAN, J; MINASNY, B; MCBRATNEY, AB 2017; 9 ROURKE, SM; STOCKMANN, U; HOLDEN, NM; MCBRATNEY, AB; MINASNY, B 2016; 279 MARSCHNER, H 2012 MEHLICH, A 1953 BREIMAN, L 2001; 45 FONTENELLI, JV; ADAMCHUK, VI; FERREIRA, MMC; AMARAL, LR; GUIMARÃES, CCB; DEMATTÊ, JAM; MAGALHÃES, PSG 2021; 402 ANDRADE, R; SILVA, SHG; FARIA, WM; POGGERE, GC; BARBOSA, JZ; GUILHERME, LRG; CURI, N 2020 KÄMPF, N; MARQUES, J; CURI, N 2012 VETTORI, L 1969 DUFFNER, A; WENG, L; HOFFLAND, E; VAN, DER ZEE SEATM 2014; 48 SMOLA, AJ; SCHÖLKOPF, B 2004; 14 LIU, F; WU, H; ZHAO, Y; LI, D; YANG, J-L; SONG, X; SHI, Z; ZHU, A-X; ZHANG, G-L 2022; 67 STRECK, EV; KAMPF, N; DALMOLIN, S; KLAMT, E; NASCIMENTO, PC; SCHNEIDER, P; GIASSON, E; PINTO, LFS 2018 XU, Y; DU, A; WANG, Z; ZHU, W; LI, C; WU, L 2020; 456 WEINDORF, DC; CHAKRABORTY, S 2020; 84 ANDRADE, R; FARIA, WM; SILVA, SHG; CHAKRABORTY, S; WEINDORF, DC; MESQUITA, LF; GUILHERME, LRG; CURI, N 2020; 357 BENNETT, KP; CAMPBELL, C 2000; 2 FRIEDMAN, JH 2001; 29 XU, D; ZHAO, R; LI, S; CHEN, S; JIANG, Q; ZHOU, L; SHI, Z 2019; 70 CHATTERJEE, S; HARTEMINK, AE; TRIANTAFILIS, J; DESAI, AR; SOLDAT, D; ZHU, J; TOWNSEND, PA; ZHANG, Y; HUANG, J 2021; 201 LIMA, RF; APARECIDO, LEO; TORSONI, GB; ROLIM, GS 2023; 38 BELLON-MAUREL, V; FERNANDEZ-AHUMADA, E; PALAGOS, B; ROGER, J-M; MCBRATNEY, A 2010; 29 MOURA-BUENO, JM; DALMOLIN, RSD; HORST-HEINEN, TZ; CANCIAN, LC; SCHENATO, RB; DOTTO, AC; FLORES, CA 2019 MOZAFFARI, H; MOOSAVI, AA; OSTOVARI, Y 2024; 247 TAVARES, TR; MOLIN, JP; JAVADI, SH; CARVALHO, HWP; MOUAZEN, AM 2020; 21 CHEN, T; GUESTRIN, C 2016 WALKLEY, A; BLACK, IA 1934; 37 WAN, M; HU, W; QU, M; LI, W; ZHANG, C; KANG, J; HONG, Y; CHEN, Y; HUANG, B 2020; 363 WEINDORF, DC; BAKR, N; ZHU, Y 2014 RESENDE, M; CURI, N; RESENDE, SB; CORRÊA, GF; KER, JC 2014 TEIXEIRA, PC; DONAGEMMA, GK; FONTANA, A; TEIXEIRA, WG 2017 TÓTH, T; KOVÁCS, ZA; RÉKÁSI, M 2019; 342 2023 FENG, X; ZHANG, H; YU, P 2021; 61 BENEDET, L; NILSSON, MS; SILVA, SHG; PELEGRINO, MHP; MANCINI, M; DE, MENEZES MD; GUILHERME, LRG; CURI, N 2021; 93 CHANG, S-T; WU, J-H; WANG, S-Y; KANG, P-L; YANG, N-S; SHYUR, L-F 2001; 49 FRIEDMAN, JH; STUETZLE, W 1981; 76 PELEGRINO, MHP; WEINDORF, DC; SILVA, SHG; DE, MENEZES MD; POGGERE, GC; GUILHERME, LRG; CURI, N 2019; 20 BOEHMKE, B; GREENWELL, B 2019 PELEGRINO, MHP; SILVA, SHG; MENEZES, MD; SILVA, E; OWENS, PR; CURI, N 2016; 40 ANDRADE, R 2023 GUPTA, S; HASLER, JK; ALEWELL, C 2024; 36 ALVARES, CA; STAPE, JL; SENTELHAS, PC; DE, MORAES GONÇALVES JL; SPAROVEK, G 2013; 22 SILVA, SHG 2020; 362 DASGUPTA, S; CHAKRABORTY, S; WEINDORF, DC; LI, B; SILVA, SHG; BHATTACHARYYA, K 2022; 30 TEIXEIRA, AFS; WEINDORF, DC; SILVA, SHG; GUILHERME, LRG; CURI, N 2018; 42 TORNQUIST, CG; GAMBOA, CH; ANDRIOLLO, DD; REICHERT, JM; DOS, SANTOS FJ 2024 MCLEAN, EO; HEDDLESON, MR; BARTLETT, RJ; HOLOWAYCHUK, N 1958; 22 KESKIN, H; GRUNWALD, S; HARRIS, WG 2019 KUHN, M; QUINLAN, R 2011 BENEDET, L 2021; 197 RIBEIRO, JV; DOS, SANTOS FR; DE, OLIVEIRA JF; BARBOSA, GMC; MELQUIADES, FL 2024; 211 TEIXEIRA, AFS; ANDRADE, R; MANCINI, M; SILVA, SHG; WEINDORF, DC; CHAKRABORTY, S; GUILHERME, LRG; CURI, N 2022; 116 ZHU, Y; WEINDORF, DC; ZHANG, W 2011 |
| References_xml | – volume: 29 start-page: 1073 year: 2010 ident: ref10 article-title: Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy publication-title: TrAC Trends Anal Chem doi: 10.1016/j.trac.2010.05.006 – volume: 93 year: 2021 ident: ref12 article-title: X-ray fluorescence spectrometry applied to digital mapping of soil fertility attributes in tropical region with elevated spatial variability publication-title: An Acad Bras Cienc doi: 10.1590/0001-3765202120200646 – volume: 14 year: 2024 ident: ref8 article-title: Assessment of portable X-ray fluorescence (pXRF) for plant-available nutrient prediction in biochar-amended soils publication-title: Sci Rep doi: 10.1038/s41598-024-71381-8 – volume: 203 year: 2022 ident: ref33 article-title: Assessing the effect of soil to water ratios and sampling strategies on the prediction of EC and pH using pXRF and Vis-NIR spectra publication-title: Comput Electron Agric doi: 10.1016/j.compag.2022.107459 – volume: 370 start-page: 83 year: 2016 ident: ref90 article-title: Historical land use and stand age effects on forest soil properties in the Mid-Atlantic US publication-title: For Ecol Manage doi: 10.1016/j.foreco.2016.03.046 – volume: 30 year: 2022 ident: ref23 article-title: Influence of auxiliary soil variables to improve PXRF-based soil fertility evaluation in India publication-title: Geoderma Reg – year: 2024 ident: ref53 – volume: 201 year: 2021 ident: ref20 article-title: Characterization of field-scale soil variation using a stepwise multi-sensor fusion approach and a cost-benefit analysis publication-title: Catena doi: 10.1016/j.catena.2021.105190 – volume-title: Advances in Agronomy year: 2016 ident: ref46 – volume: 23 start-page: 18 year: 2022 ident: ref60 article-title: Prediction of soil nutrient content via pXRF spectrometry and its spatial variation in a highly variable tropical area publication-title: Precis Agric doi: 10.1007/s11119-021-09825-8 – volume: 91 start-page: 393 year: 2005 ident: ref66 article-title: Potential for onsite and online analysis of pig manure using visible and near infrared reflectance spectroscopy publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2005.05.001 – year: 2016 ident: ref15 – volume: 40 start-page: 534 year: 2016 ident: ref61 article-title: Mapping soils in two watersheds using legacy data and extrapolation for similar surrounding areas publication-title: Ciência e Agrotecnologia doi: 10.1590/1413-70542016405011416 – volume: 76 start-page: 817 year: 1981 ident: ref31 article-title: Projection Pursuit Regression publication-title: J Am Stat Assoc doi: 10.1080/01621459.1981.10477729 – volume: 58 start-page: 109 year: 2001 ident: ref87 article-title: PLS-regression: a basic tool of chemometrics publication-title: Chemom Intell Lab Syst doi: 10.1016/S0169-7439(01)00155-1 – volume: 245 year: 2025 ident: ref73 article-title: Do XRF local models have temporal stability for predicting plant-available nutrients in different years? publication-title: A long-term study showing the effect of soil fertility management in a tropical field. Soil Tillage Res – volume-title: Pedologia Fundamentos year: 2012 ident: ref37 – volume: 45 start-page: 5 year: 2001 ident: ref16 article-title: Random Forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 9 start-page: 17 year: 2017 ident: ref59 article-title: Chile and the Chilean soil grid: A contribution to GlobalSoilMap publication-title: Geoderma Reg doi: 10.1016/j.geodrs.2016.12.001 – volume: 10 start-page: 281 year: 2013 ident: ref50 article-title: Disability and toxicity of nutrients in visual soybeans publication-title: Nucleus doi: 10.3738/1982.2278.974 – volume: 36 year: 2024 ident: ref35 article-title: Mining soil data of Switzerland: New maps for soil texture, soil organic carbon, nitrogen, and phosphorus publication-title: Geoderma Reg – volume: 67 start-page: 328 year: 2022 ident: ref45 article-title: Mapping high resolution National Soil Information Grids of China publication-title: Sci Bull doi: 10.1016/j.scib.2021.10.013 – volume: 88 start-page: 8 year: 2024 ident: ref48 article-title: Multinational prediction of soil organic carbon and texture via proximal sensors publication-title: Soil Sci Soc Am J doi: 10.1002/saj2.20593 – volume: 58 start-page: 683 year: 2020 ident: ref26 article-title: Soils of the Brazilian Coastal Plains biome: prediction of chemical attributes via portable X-ray fluorescence (pXRF) spectrometry and robust prediction models publication-title: Soil Res doi: 10.1071/SR20136 – year: 2014 ident: ref64 – volume-title: Hands-On Machine Learning with R year: 2019 ident: ref14 doi: 10.1201/9780367816377 – volume: 247 year: 2024 ident: ref57 article-title: Feasibility of proximal sensing for predicting soil loss tolerance publication-title: Catena doi: 10.1016/j.catena.2024.108503 – volume: 14 start-page: 199 year: 2004 ident: ref70 article-title: A tutorial on support vector regression publication-title: Stat Comput doi: 10.1023/B:STCO.0000035301.49549.88 – volume: 22 start-page: 382 year: 1958 ident: ref51 article-title: Aluminum in Soils: I publication-title: Extraction Methods and Magnitudes in Clays and Ohio Soils. Soil Sci Soc Am J – year: 2024 ident: ref72 – volume: 21 year: 2020 ident: ref74 article-title: Combined Use of Vis-NIR and XRF Sensors for Tropical Soil Fertility Analysis: Assessing Different Data Fusion Approaches publication-title: Sensors doi: 10.3390/s21010148 – volume: 167 start-page: 1 year: 2021 ident: ref68 article-title: pXRF in tropical soils: Methodology, applications, achievements and challenges publication-title: Adv Agron doi: 10.1016/bs.agron.2020.12.001 – volume: 32 start-page: 602 year: 2022 ident: ref34 article-title: Using pXRF and vis-NIR spectra for predicting properties of soils developed in loess publication-title: Pedosphere doi: 10.1016/S1002-0160(21)60092-9 – volume: 113 start-page: 407 year: 2013 ident: ref1 article-title: Modeling monthly mean air temperature for Brazil publication-title: Theor Appl Climatol doi: 10.1007/s00704-012-0796-6 – year: 2020 ident: ref55 – year: 2023 ident: ref5 – year: 2025 ident: ref22 – volume: 116 year: 2022 ident: ref76 article-title: Proximal sensor data fusion for tropical soil property prediction: Soil fertility properties publication-title: J South Am Earth Sci – volume: 36 year: 2024 ident: ref39 article-title: Proximal sensing approach for characterization of calcareous soils using multiblock data analysis publication-title: Geoderma Reg – volume: 131 start-page: 77 year: 2016 ident: ref69 article-title: Mineralogy and biogeochemistry of potassium in the Skogaby experimental forest, southwest Sweden: pools, fluxes and K/Rb ratios in soil and biomass publication-title: Biogeochemistry doi: 10.1007/s10533-016-0266-9 – volume-title: Overbeck year: 2024 ident: ref79 – volume: 357 year: 2020 ident: ref4 article-title: Prediction of soil fertility via portable X-ray fluorescence (pXRF) spectrometry and soil texture in the Brazilian Coastal Plains publication-title: Geoderma – year: 2014 ident: ref85 – volume: 84 start-page: 1384 year: 2020 ident: ref86 article-title: Portable X-ray fluorescence spectrometry analysis of soils publication-title: Soil Sci Soc Am J doi: 10.1002/saj2.20151 – volume: 2 start-page: 1 year: 2000 ident: ref13 article-title: Support vector machines publication-title: ACM SIGKDD Explor Newsl doi: 10.1145/380995.380999 – volume: 10 year: 2020 ident: ref75 article-title: Assessing soil key fertility attributes using a portable X-ray fluorescence: A simple method to overcome matrix effect publication-title: Agronomy doi: 10.3390/agronomy10060787 – volume: 211 year: 2024 ident: ref65 article-title: Optimization of pXRF instrumentation conditions and multivariate modeling in soil fertility attributes determination publication-title: Spectrochim Acta Part B At Spectrosc doi: 10.1016/j.sab.2023.106835 – volume: 342 start-page: 106 year: 2019 ident: ref80 article-title: XRF-measured rubidium concentration is the best predictor variable for estimating the soil clay content and salinity of semi-humid soils in two catenas publication-title: Geoderma doi: 10.1016/j.geoderma.2019.02.011 – volume: 42 start-page: 501 year: 2018 ident: ref77 article-title: Portable x-ray fluorescence (pXRF) spectrometry applied to the prediction of chemical attributes in inceptisols under different land use publication-title: Cienc e Agrotecnologia doi: 10.1590/1413-70542018425017518 – volume: 22 start-page: 711 year: 2013 ident: ref2 article-title: Köppen’s climate classification map for Brazil publication-title: Meteorol Zeitschrift doi: 10.1127/0941-2948/2013/0507 – volume: 29 start-page: 1189 year: 2001 ident: ref30 article-title: Greedy Function Approximation: A Gradient Boosting Machine publication-title: Ann Stat doi: 10.1214/aos/1013203451 – volume: 363 year: 2020 ident: ref83 article-title: Rapid estimation of soil cation exchange capacity through sensor data fusion of portable XRF spectrometry and Vis-NIR spectroscopy publication-title: Geoderma – volume: 103 start-page: 239 year: 2002 ident: ref17 article-title: randomForest: Breiman and Cutlers Random Forests for Classification and Regression publication-title: CRAN Contrib Packag – year: 1997 ident: ref84 – volume: 20 start-page: 746 year: 2019 ident: ref62 article-title: Synthesis of proximal sensing, terrain analysis, and parent material information for available micronutrient prediction in tropical soils publication-title: Precis Agric doi: 10.1007/s11119-018-9608-z – volume: 24 start-page: 2248 year: 2024 ident: ref38 article-title: Application of proximal sensing approach to predict cation exchange capacity of calcareous soils using linear and nonlinear data mining algorithms publication-title: J Soils Sediments doi: 10.1007/s11368-024-03825-7 – year: 2019 ident: ref54 – year: 2024 ident: ref43 – year: 1953 ident: ref52 – year: 2011 ident: ref93 – volume: 279 start-page: 31 year: 2016 ident: ref58 article-title: An assessment of model averaging to improve predictive power of portable vis-NIR and XRF for the determination of agronomic soil properties publication-title: Geoderma doi: 10.1016/j.geoderma.2016.05.005 – volume: 48 start-page: 5700 year: 2014 ident: ref24 article-title: Multi-surface Modeling To Predict Free Zinc Ion Concentrations in Low-Zinc Soils publication-title: Environ Sci Technol doi: 10.1021/es500257e – year: 2018 ident: ref71 – volume: 71 start-page: 316 year: 2020 ident: ref91 article-title: Data fusion of vis-NIR and PXRF spectra to predict soil physical and chemical properties publication-title: Eur J Soil Sci doi: 10.1111/ejss.12875 – volume: 209 year: 2022 ident: ref92 article-title: Clay content mapping and uncertainty estimation using weighted model averaging publication-title: CATENA doi: 10.1016/j.catena.2021.105791 – volume: 197 year: 2021 ident: ref11 article-title: Rapid soil fertility prediction using X-ray fluorescence data and machine learning algorithms publication-title: CATENA doi: 10.1016/j.catena.2020.105003 – volume: 38 start-page: 1 year: 2023 ident: ref44 article-title: Climate Change Assessment in Brazil: Utilizing the Köppen-Geiger (1936) Climate Classification publication-title: Rev Bras Meteorol – year: 2019 ident: ref40 – volume: 187 year: 2015 ident: ref32 article-title: Background levels of some major, trace, and rare earth elements in indigenous plant species growing in Norway and the influence of soil acidification, soil parent material, and seasonal variation on these levels publication-title: Environ Monit Assess doi: 10.1007/s10661-015-4479-5 – year: 2017 ident: ref78 – volume: 70 start-page: 162 year: 2019 ident: ref88 article-title: Multi-sensor fusion for the determination of several soil properties in the Yangtze River Delta, China publication-title: Eur J Soil Sci doi: 10.1111/ejss.12729 – year: 2020 ident: ref6 – volume: 51 start-page: 1317 year: 2016 ident: ref9 article-title: Expansão de mapas pedológicos para áreas fisiograficamente semelhantes por meio de mapeamento digital de solos publication-title: Pesqui Agropecu Bras doi: 10.1590/s0100-204x2016000900031 – volume: 288 start-page: 37 year: 2017 ident: ref47 article-title: Estimation accuracies of near infrared spectroscopy for general soil properties and enzyme activities for two forest sites along three transects publication-title: Geoderma doi: 10.1016/j.geoderma.2016.10.022 – volume: 456 year: 2020 ident: ref89 article-title: Effects of different rotation periods of Eucalyptus plantations on soil physiochemical properties, enzyme activities, microbial biomass and microbial community structure and diversity publication-title: For Ecol Manage – volume: 49 start-page: 3420 year: 2001 ident: ref19 article-title: Antioxidant Activity of Extracts from Acacia confusa Bark and Heartwood publication-title: J Agric Food Chem doi: 10.1021/jf0100907 – volume-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining year: 2016 ident: ref21 – volume: 402 year: 2021 ident: ref29 article-title: Evaluating the synergy of three soil spectrometers for improving the prediction and mapping of soil properties in a high anthropic management area: A case of study from Southeast Brazil publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115347 – volume: 228 year: 2024 ident: ref56 article-title: Revisiting soil texture analysis: Introducing a rapid single-reading hydrometer approach publication-title: Measurement doi: 10.1016/j.measurement.2024.114330 – volume: 362 year: 2020 ident: ref67 article-title: Soil texture prediction in tropical soils: A portable X-ray fluorescence spectrometry approach publication-title: Geoderma – volume: 28 start-page: 1 year: 2008 ident: ref41 article-title: Building Predictive Models in R Using the caret Package publication-title: J Stat Softw doi: 10.18637/jss.v028.i05 – volume: 338 start-page: 375 year: 2019 ident: ref63 article-title: Determination of base saturation percentage in agricultural soils via portable X-ray fluorescence spectrometer publication-title: Geoderma doi: 10.1016/j.geoderma.2018.12.032 – volume: 27 year: 2021 ident: ref7 article-title: Micronutrients prediction via pXRF spectrometry in Brazil: Influence of weathering degree publication-title: Geoderma Reg – volume: 37 start-page: 29 year: 1934 ident: ref82 article-title: An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method publication-title: Soil Sci doi: 10.1097/00010694-193401000-00003 – volume: 397 year: 2021 ident: ref18 article-title: Regional ensemble modeling reduces uncertainty for digital soil mapping publication-title: Geoderma doi: 10.1016/j.geoderma.2021.114998 – volume: 61 start-page: 2340 year: 2021 ident: ref27 article-title: X-ray fluorescence application in food, feed, and agricultural science: a critical review publication-title: Crit Rev Food Sci Nutr doi: 10.1080/10408398.2020.1776677 – volume: 716 year: 2020 ident: ref28 article-title: Soil and farm management effects on yield and nutrient concentrations of food crops in East Africa publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.137078 – year: 2012 ident: ref49 – year: 2011 ident: ref42 – year: 2023 ident: ref25 – volume: 25 start-page: 27 year: 2000 ident: ref3 article-title: Determinação e uso do fósforo remanescente publication-title: B Inf SBCS – volume: 109 start-page: 77 year: 2017 ident: ref36 article-title: Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning publication-title: Nutr Cycl Agroecosystems doi: 10.1007/s10705-017-9870-x – year: 1969 ident: ref81 – volume: 116 year: 2022 article-title: Proximal sensor data fusion for tropical soil property prediction: Soil fertility properties publication-title: J South Am Earth Sci – volume: 23 start-page: 18 year: 2022 end-page: 34 article-title: Prediction of soil nutrient content via pXRF spectrometry and its spatial variation in a highly variable tropical area publication-title: Precis Agric – volume: 197 year: 2021 article-title: Rapid soil fertility prediction using X-ray fluorescence data and machine learning algorithms publication-title: CATENA – volume: 14 start-page: 199 year: 2004 end-page: 222 article-title: A tutorial on support vector regression publication-title: Stat Comput – year: 2024 publication-title: Soil Carbon Stocks in the Brazilian Pampa: An Update – year: 2020 publication-title: Proximal sensing applied to soil texture prediction and mapping in Brazil – volume: 201 year: 2021 article-title: Characterization of field-scale soil variation using a stepwise multi-sensor fusion approach and a cost-benefit analysis publication-title: Catena – volume: 370 start-page: 83 year: 2016 end-page: 92 article-title: Historical land use and stand age effects on forest soil properties in the Mid-Atlantic US publication-title: For Ecol Manage – year: 2016 publication-title: XGBoost – year: 1953 publication-title: Determination of P, Ca, Mg, K, Na and NH4 by North Carolina soil testing laboratories – year: 2019 publication-title: Digital mapping of soil carbon fractions with machine learning – volume: 103 start-page: 239 year: 2002 end-page: 248 article-title: randomForest: Breiman and Cutlers Random Forests for Classification and Regression publication-title: CRAN Contrib Packag – volume: 61 start-page: 2340 year: 2021 end-page: 2350 article-title: X-ray fluorescence application in food, feed, and agricultural science: a critical review publication-title: Crit Rev Food Sci Nutr – volume: 362 year: 2020 article-title: Soil texture prediction in tropical soils: A portable X-ray fluorescence spectrometry approach publication-title: Geoderma – volume: 247 year: 2024 article-title: Feasibility of proximal sensing for predicting soil loss tolerance publication-title: Catena – volume: 67 start-page: 328 year: 2022 end-page: 340 article-title: Mapping high resolution National Soil Information Grids of China publication-title: Sci Bull – year: 2016 publication-title: Chapter One - A Career Perspective on Soil Management in the Cerrado Region of Brazil – volume: 245 year: 2025 article-title: Do XRF local models have temporal stability for predicting plant-available nutrients in different years? publication-title: A long-term study showing the effect of soil fertility management in a tropical field. Soil Tillage Res – year: 2023 publication-title: Proximal sensing provides clean, fast, and accurate quality control of organic and mineral fertilizers – volume: 84 start-page: 1384 year: 2020 end-page: 1392 article-title: Portable X-ray fluorescence spectrometry analysis of soils publication-title: Soil Sci Soc Am J – volume: 279 start-page: 31 year: 2016 end-page: 44 article-title: An assessment of model averaging to improve predictive power of portable vis-NIR and XRF for the determination of agronomic soil properties publication-title: Geoderma – year: 1997 publication-title: Inducing Model Trees for Continuous Classes – volume: 29 start-page: 1073 year: 2010 end-page: 1081 article-title: Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy publication-title: TrAC Trends Anal Chem – year: 2011 publication-title: Cubist: Rule- And Instance-Based Regression Modeling – volume: 42 start-page: 501 year: 2018 end-page: 512 article-title: Portable x-ray fluorescence (pXRF) spectrometry applied to the prediction of chemical attributes in inceptisols under different land use publication-title: Cienc e Agrotecnologia – volume: 10 year: 2020 article-title: Assessing soil key fertility attributes using a portable X-ray fluorescence: A simple method to overcome matrix effect publication-title: Agronomy – year: 2020 publication-title: When does stratification of a subtropical soil spectral library improve predictions of soil organic carbon content? – year: 2014 publication-title: Pedologia Base Para Distinção de Ambientes, 6ª ed – volume: 91 start-page: 393 year: 2005 end-page: 402 article-title: Potential for onsite and online analysis of pig manure using visible and near infrared reflectance spectroscopy publication-title: Biosyst Eng – volume: 71 start-page: 316 year: 2020 end-page: 333 article-title: Data fusion of vis-NIR and PXRF spectra to predict soil physical and chemical properties publication-title: Eur J Soil Sci – volume: 27 year: 2021 article-title: Micronutrients prediction via pXRF spectrometry in Brazil: Influence of weathering degree publication-title: Geoderma Reg – volume: 76 start-page: 817 year: 1981 end-page: 823 article-title: Projection Pursuit Regression publication-title: J Am Stat Assoc – volume: 22 start-page: 382 year: 1958 end-page: 387 article-title: Aluminum in Soils: I publication-title: Extraction Methods and Magnitudes in Clays and Ohio Soils. Soil Sci Soc Am J – year: 2019 publication-title: Prediction of soil classes in a complex landscape in Southern Brazil – year: 1969 publication-title: Boletim Técnico n – volume: 109 start-page: 77 year: 2017 end-page: 102 article-title: Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning publication-title: Nutr Cycl Agroecosystems – volume: 70 start-page: 162 year: 2019 end-page: 173 article-title: Multi-sensor fusion for the determination of several soil properties in the Yangtze River Delta, China publication-title: Eur J Soil Sci – volume: 14 year: 2024 article-title: Assessment of portable X-ray fluorescence (pXRF) for plant-available nutrient prediction in biochar-amended soils publication-title: Sci Rep – volume: 49 start-page: 3420 year: 2001 end-page: 3424 article-title: Antioxidant Activity of Extracts from Acacia confusa Bark and Heartwood publication-title: J Agric Food Chem – year: 2011 publication-title: Characterizing soils using a portable X-ray fluorescence spectrometer: 1 – volume: 363 year: 2020 article-title: Rapid estimation of soil cation exchange capacity through sensor data fusion of portable XRF spectrometry and Vis-NIR spectroscopy publication-title: Geoderma – volume: 187 year: 2015 article-title: Background levels of some major, trace, and rare earth elements in indigenous plant species growing in Norway and the influence of soil acidification, soil parent material, and seasonal variation on these levels publication-title: Environ Monit Assess – year: 2018 publication-title: Solos do Rio Grande do Sul, 3ª ed – year: 2023 publication-title: The State of Food Security and Nutrition in the World 2023, 1-316 p – volume: 21 year: 2020 article-title: Combined Use of Vis-NIR and XRF Sensors for Tropical Soil Fertility Analysis: Assessing Different Data Fusion Approaches publication-title: Sensors – volume: 209 year: 2022 article-title: Clay content mapping and uncertainty estimation using weighted model averaging publication-title: CATENA – volume: 29 start-page: 1189 year: 2001 end-page: 1232 article-title: Greedy Function Approximation: A Gradient Boosting Machine publication-title: Ann Stat – volume: 397 year: 2021 article-title: Regional ensemble modeling reduces uncertainty for digital soil mapping publication-title: Geoderma – volume: 24 start-page: 2248 year: 2024 end-page: 2267 article-title: Application of proximal sensing approach to predict cation exchange capacity of calcareous soils using linear and nonlinear data mining algorithms publication-title: J Soils Sediments – volume: 357 year: 2020 article-title: Prediction of soil fertility via portable X-ray fluorescence (pXRF) spectrometry and soil texture in the Brazilian Coastal Plains publication-title: Geoderma – volume: 131 start-page: 77 year: 2016 end-page: 102 article-title: Mineralogy and biogeochemistry of potassium in the Skogaby experimental forest, southwest Sweden: pools, fluxes and K/Rb ratios in soil and biomass publication-title: Biogeochemistry – volume: 716 year: 2020 article-title: Soil and farm management effects on yield and nutrient concentrations of food crops in East Africa publication-title: Sci Total Environ – volume: 36 year: 2024 article-title: Mining soil data of Switzerland: New maps for soil texture, soil organic carbon, nitrogen, and phosphorus publication-title: Geoderma Reg – volume: 38 start-page: 1 year: 2023 end-page: 33 article-title: Climate Change Assessment in Brazil: Utilizing the Köppen-Geiger (1936) Climate Classification publication-title: Rev Bras Meteorol – volume: 32 start-page: 602 year: 2022 end-page: 615 article-title: Using pXRF and vis-NIR spectra for predicting properties of soils developed in loess publication-title: Pedosphere – volume: 9 start-page: 17 year: 2017 end-page: 28 article-title: Chile and the Chilean soil grid: A contribution to GlobalSoilMap publication-title: Geoderma Reg – year: 2014 publication-title: Advances in Portable X-ray Fluorescence (PXRF) for Environmental, Pedological, and Agronomic Applications – year: 2017 publication-title: Manual de métodos de análise de solo, 3ª ed – volume: 228 year: 2024 article-title: Revisiting soil texture analysis: Introducing a rapid single-reading hydrometer approach publication-title: Measurement – volume: 28 start-page: 1 year: 2008 end-page: 26 article-title: Building Predictive Models in R Using the caret Package publication-title: J Stat Softw – volume: 167 start-page: 1 year: 2021 end-page: 62 article-title: pXRF in tropical soils: Methodology, applications, achievements and challenges publication-title: Adv Agron – volume: 37 start-page: 29 year: 1934 end-page: 38 article-title: An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method publication-title: Soil Sci – year: 2024 publication-title: e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien – volume: 20 start-page: 746 year: 2019 end-page: 766 article-title: Synthesis of proximal sensing, terrain analysis, and parent material information for available micronutrient prediction in tropical soils publication-title: Precis Agric – volume: 338 start-page: 375 year: 2019 end-page: 382 article-title: Determination of base saturation percentage in agricultural soils via portable X-ray fluorescence spectrometer publication-title: Geoderma – volume: 113 start-page: 407 year: 2013 end-page: 427 article-title: Modeling monthly mean air temperature for Brazil publication-title: Theor Appl Climatol – year: 2016 publication-title: Digital mapping of soil carbon in a viticultural region of Southern Brazil – volume: 402 year: 2021 article-title: Evaluating the synergy of three soil spectrometers for improving the prediction and mapping of soil properties in a high anthropic management area: A case of study from Southeast Brazil publication-title: Geoderma – volume: 10 start-page: 281 year: 2013 end-page: 306 article-title: Disability and toxicity of nutrients in visual soybeans publication-title: Nucleus – volume: 48 start-page: 5700 year: 2014 end-page: 5708 article-title: Multi-surface Modeling To Predict Free Zinc Ion Concentrations in Low-Zinc Soils publication-title: Environ Sci Technol – volume: 88 start-page: 8 year: 2024 end-page: 26 article-title: Multinational prediction of soil organic carbon and texture via proximal sensors publication-title: Soil Sci Soc Am J – volume: 288 start-page: 37 year: 2017 end-page: 46 article-title: Estimation accuracies of near infrared spectroscopy for general soil properties and enzyme activities for two forest sites along three transects publication-title: Geoderma – year: 2024 publication-title: pls: Partial Least Squares and Principal Component Regression – volume: 40 start-page: 534 year: 2016 end-page: 546 article-title: Mapping soils in two watersheds using legacy data and extrapolation for similar surrounding areas publication-title: Ciência e Agrotecnologia – volume: 58 start-page: 109 year: 2001 end-page: 130 article-title: PLS-regression: a basic tool of chemometrics publication-title: Chemom Intell Lab Syst – volume: 93 year: 2021 article-title: X-ray fluorescence spectrometry applied to digital mapping of soil fertility attributes in tropical region with elevated spatial variability publication-title: An Acad Bras Cienc – volume: 51 start-page: 1317 year: 2016 end-page: 1325 article-title: Expansão de mapas pedológicos para áreas fisiograficamente semelhantes por meio de mapeamento digital de solos publication-title: Pesqui Agropecu Bras – volume: 342 start-page: 106 year: 2019 end-page: 108 article-title: XRF-measured rubidium concentration is the best predictor variable for estimating the soil clay content and salinity of semi-humid soils in two catenas publication-title: Geoderma – year: 2019 publication-title: Random Forests – volume: 211 year: 2024 article-title: Optimization of pXRF instrumentation conditions and multivariate modeling in soil fertility attributes determination publication-title: Spectrochim Acta Part B At Spectrosc – year: 2012 publication-title: Marschner’s mineral nutrition of higher plants, Academic press – volume: 58 start-page: 683 year: 2020 end-page: 695 article-title: Soils of the Brazilian Coastal Plains biome: prediction of chemical attributes via portable X-ray fluorescence (pXRF) spectrometry and robust prediction models publication-title: Soil Res – volume: 203 year: 2022 article-title: Assessing the effect of soil to water ratios and sampling strategies on the prediction of EC and pH using pXRF and Vis-NIR spectra publication-title: Comput Electron Agric – volume: 25 start-page: 27 year: 2000 end-page: 32 article-title: Determinação e uso do fósforo remanescente publication-title: B Inf SBCS – volume: 2 start-page: 1 year: 2000 end-page: 13 article-title: Support vector machines publication-title: ACM SIGKDD Explor Newsl – year: 2012 publication-title: Mineralogia de solos brasileiros – volume: 36 year: 2024 article-title: Proximal sensing approach for characterization of calcareous soils using multiblock data analysis publication-title: Geoderma Reg – volume: 456 year: 2020 article-title: Effects of different rotation periods of Eucalyptus plantations on soil physiochemical properties, enzyme activities, microbial biomass and microbial community structure and diversity publication-title: For Ecol Manage – year: 2024 publication-title: Regional impacts of climate change on agricultural productivity: evidence on large-scale and family farming in Brazil – volume: 30 year: 2022 article-title: Influence of auxiliary soil variables to improve PXRF-based soil fertility evaluation in India publication-title: Geoderma Reg – volume: 22 start-page: 711 year: 2013 end-page: 728 article-title: Köppen’s climate classification map for Brazil publication-title: Meteorol Zeitschrift – volume: 45 start-page: 5 year: 2001 end-page: 32 article-title: Random Forests publication-title: Mach Learn – year: 2025 publication-title: xgboost: Extreme Gradient Boosting |
| SSID | ssj0024980 |
| Score | 2.3720896 |
| Snippet | Abstract Although proximal sensing coupled with machine learning (ML) algorithms have been successful for characterizing soils, questions remain regarding... Although proximal sensing coupled with machine learning (ML) algorithms have been successful for characterizing soils, questions remain regarding their... |
| SourceID | doaj scielo proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | e20250075 |
| SubjectTerms | Algorithms Brazil Environmental Monitoring - methods Machine Learning MULTIDISCIPLINARY SCIENCES pedometrics Portable X-ray fluorescence Soil - chemistry soil properties soil variation Spectrometry, X-Ray Emission - methods |
| Title | Prediction of soil fertility properties in Southern Brazil via proximal sensing |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/41059799 https://www.proquest.com/docview/3259074902 http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652025001101501&lng=en&tlng=en https://doaj.org/article/f88aa0adcdcc40be9cb84f9f34b7596b |
| Volume | 97 |
| WOSCitedRecordID | wos001589930700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1678-2690 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024980 issn: 0001-3765 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1678-2690 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024980 issn: 0001-3765 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS91AEB5a6cFL8bXaRlvZQkE9pM0mm2z2WIviwaqgwrstm_1RAs88SZ4P8dC_vTNJnmgp9NJD9hCWZJnJZL7Zmf0G4HNu0Y1YbmObehOLkIa4UoWIsywTwnkEtKHvWnIqz87K6VRdPGn1RTVhAz3wILivoSyNSYyzzlqRVF7ZqhRBhUxUMldFRX_fRKpVMLVi2VNlMp7XyVVCxxU4mVKOoX5_kad85ol6wv6_oUyiEEUrmz11O8cb8HrEi-zbsM4JvPDNG5iMFtmx_ZE2-uAtnF-0lHQhQbN5YN28nrFAVdMEtNktbbq3xJ7K6ob1jfN827DD1jzgvGVtaMZ9fYPv6qimvfm5CdfHR1ffT-KxXUJsBeeLWHASrchxDNzK4JIsCFGhb7LBBCel4SF33JsEQwST-jwNlHMLrvBKSSuzLVhr5o1_D6ysvHOFQfBDx0cQNHiOcYctlMXoyXIZwZeV6PTtwIqhKZpAWffZbP2nrCM4JAE_TiZS6_4GqlqPqtb_UnUEn1bq0WgElNkwjZ_fdTrDIA6xkErSCN4Nent8FdWxUu4ygr1BkXq00k5fPltrT5-H-Jhv_4_F7sA6PXTYrfkAa4v2zn-EV3a5qLt2F17Kabnbf7M4_vh19BvJ3-2H |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+soil+fertility+properties+in+Southern+Brazil+via+proximal+sensing&rft.jtitle=Anais+da+Academia+Brasileira+de+Ci%C3%AAncias&rft.au=STEFAN+D.+NACHTIGALL&rft.au=MARCELO+MANCINI&rft.au=RENATA+A.+REIS&rft.au=ELIAS+FRANK+DE+ARA%C3%9AJO&rft.date=2025-01-01&rft.pub=Academia+Brasileira+de+Ci%C3%AAncias&rft.eissn=1678-2690&rft.volume=97&rft.issue=suppl+2&rft_id=info:doi/10.1590%2F0001-3765202520250075&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f88aa0adcdcc40be9cb84f9f34b7596b |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-3765&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-3765&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-3765&client=summon |