Observed and Modeled Mountain Waves from the Surface to the Mesosphere near the Drake Passage

Four state-of-the-science numerical weather prediction (NWP) models were used to perform mountain wave (MW)-resolving hindcasts over the Drake Passage of a 10-day period in 2010 with numerous observed MW cases. The Integrated Forecast System (IFS) and the Icosahedral Nonhydrostatic (ICON) model were...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the atmospheric sciences Ročník 79; číslo 4; s. 909 - 932
Hlavní autoři: Kruse, Christopher G., Alexander, M. Joan, Hoffmann, Lars, van Niekerk, Annelize, Polichtchouk, Inna, Bacmeister, Julio T., Holt, Laura, Plougonven, Riwal, Šácha, Petr, Wright, Corwin, Sato, Kaoru, Shibuya, Ryosuke, Gisinger, Sonja, Ern, Manfred, Meyer, Catrin I., Stein, Olaf
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston American Meteorological Society 01.04.2022
Témata:
ISSN:0022-4928, 1520-0469
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Four state-of-the-science numerical weather prediction (NWP) models were used to perform mountain wave (MW)-resolving hindcasts over the Drake Passage of a 10-day period in 2010 with numerous observed MW cases. The Integrated Forecast System (IFS) and the Icosahedral Nonhydrostatic (ICON) model were run at Δ x ≈ 9 and 13 km globally. The Weather Research and Forecasting (WRF) Model and the Met Office Unified Model (UM) were both configured with a Δ x = 3-km regional domain. All domains had tops near 1 Pa ( z ≈ 80 km). These deep domains allowed quantitative validation against Atmospheric Infrared Sounder (AIRS) observations, accounting for observation time, viewing geometry, and radiative transfer. All models reproduced observed middle-atmosphere MWs with remarkable skill. Increased horizontal resolution improved validations. Still, all models underrepresented observed MW amplitudes, even after accounting for model effective resolution and instrument noise, suggesting even at Δ x ≈ 3-km resolution, small-scale MWs are underresolved and/or overdiffused. MW drag parameterizations are still necessary in NWP models at current operational resolutions of Δ x ≈ 10 km. Upper GW sponge layers in the operationally configured models significantly, artificially reduced MW amplitudes in the upper stratosphere and mesosphere. In the IFS, parameterized GW drags partly compensated this deficiency, but still, total drags were ≈6 times smaller than that resolved at Δ x ≈ 3 km. Meridionally propagating MWs significantly enhance zonal drag over the Drake Passage. Interestingly, drag associated with meridional fluxes of zonal momentum (i.e., ) were important; not accounting for these terms results in a drag in the wrong direction at and below the polar night jet.
AbstractList Four state-of-the-science numerical weather prediction (NWP) models were used to perform mountain wave (MW)-resolving hindcasts over the Drake Passage of a 10-day period in 2010 with numerous observed MW cases. The Integrated Forecast System (IFS) and the Icosahedral Nonhydrostatic (ICON) model were run at Δx ≈ 9 and 13 km globally. The Weather Research and Forecasting (WRF) Model and the Met Office Unified Model (UM) were both configured with a Δx = 3-km regional domain. All domains had tops near 1 Pa (z ≈ 80 km). These deep domains allowed quantitative validation against Atmospheric Infrared Sounder (AIRS) observations, accounting for observation time, viewing geometry, and radiative transfer. All models reproduced observed middle-atmosphere MWs with remarkable skill. Increased horizontal resolution improved validations. Still, all models underrepresented observed MW amplitudes, even after accounting for model effective resolution and instrument noise, suggesting even at Δx ≈ 3-km resolution, small-scale MWs are underresolved and/or overdiffused. MW drag parameterizations are still necessary in NWP models at current operational resolutions of Δx ≈ 10 km. Upper GW sponge layers in the operationally configured models significantly, artificially reduced MW amplitudes in the upper stratosphere and mesosphere. In the IFS, parameterized GW drags partly compensated this deficiency, but still, total drags were ≈6 times smaller than that resolved at Δx ≈ 3 km. Meridionally propagating MWs significantly enhance zonal drag over the Drake Passage. Interestingly, drag associated with meridional fluxes of zonal momentum (i.e., u'υ' ¯ ) were important; not accounting for these terms results in a drag in the wrong direction at and below the polar night jet.
Four state-of-the-science numerical weather prediction (NWP) models were used to perform mountain wave (MW)-resolving hindcasts over the Drake Passage of a 10-day period in 2010 with numerous observed MW cases. The Integrated Forecast System (IFS) and the Icosahedral Nonhydrostatic (ICON) model were run at Δ x ≈ 9 and 13 km globally. The Weather Research and Forecasting (WRF) Model and the Met Office Unified Model (UM) were both configured with a Δ x = 3-km regional domain. All domains had tops near 1 Pa ( z ≈ 80 km). These deep domains allowed quantitative validation against Atmospheric Infrared Sounder (AIRS) observations, accounting for observation time, viewing geometry, and radiative transfer. All models reproduced observed middle-atmosphere MWs with remarkable skill. Increased horizontal resolution improved validations. Still, all models underrepresented observed MW amplitudes, even after accounting for model effective resolution and instrument noise, suggesting even at Δ x ≈ 3-km resolution, small-scale MWs are underresolved and/or overdiffused. MW drag parameterizations are still necessary in NWP models at current operational resolutions of Δ x ≈ 10 km. Upper GW sponge layers in the operationally configured models significantly, artificially reduced MW amplitudes in the upper stratosphere and mesosphere. In the IFS, parameterized GW drags partly compensated this deficiency, but still, total drags were ≈6 times smaller than that resolved at Δ x ≈ 3 km. Meridionally propagating MWs significantly enhance zonal drag over the Drake Passage. Interestingly, drag associated with meridional fluxes of zonal momentum (i.e., ) were important; not accounting for these terms results in a drag in the wrong direction at and below the polar night jet.
Four state-of-the-science numerical weather prediction (NWP) models were used to perform mountain wave (MW)-resolving hindcasts over the Drake Passage of a 10-day period in 2010 with numerous observed MW cases. The Integrated Forecast System (IFS) and the Icosahedral Nonhydrostatic (ICON) model were run at Δx ≈ 9 and 13 km globally. The Weather Research and Forecasting (WRF) Model and the Met Office Unified Model (UM) were both configured with a Δx = 3-km regional domain. All domains had tops near 1 Pa (z ≈ 80 km). These deep domains allowed quantitative validation against Atmospheric Infrared Sounder (AIRS) observations, accounting for observation time, viewing geometry, and radiative transfer. All models reproduced observed middle-atmosphere MWs with remarkable skill. Increased horizontal resolution improved validations. Still, all models underrepresented observed MW amplitudes, even after accounting for model effective resolution and instrument noise, suggesting even at Δx ≈ 3-km resolution, small-scale MWs are underresolved and/or overdiffused. MW drag parameterizations are still necessary in NWP models at current operational resolutions of Δx ≈ 10 km. Upper GW sponge layers in the operationally configured models significantly, artificially reduced MW amplitudes in the upper stratosphere and mesosphere. In the IFS, parameterized GW drags partly compensated this deficiency, but still, total drags were ≈6 times smaller than that resolved at Δx ≈ 3 km. Meridionally propagating MWs significantly enhance zonal drag over the Drake Passage. Interestingly, drag associated with meridional fluxes of zonal momentum (i.e.,u′υ′¯ ) were important; not accounting for these terms results in a drag in the wrong direction at and below the polar night jet.Significance StatementThis study had three purposes: to quantitatively evaluate how well four state-of-the-science weather models could reproduce observed mountain waves (MWs) in the middle atmosphere, to compare the simulated MWs within the models, and to quantitatively evaluate two MW parameterizations in a widely used climate model. These models reproduced observed MWs with remarkable skill. Still, MW parameterizations are necessary in current Δx ≈ 10-km resolution global weather models. Even Δx ≈ 3-km resolution does not appear to be high enough to represent all momentum-fluxing MW scales. Meridionally propagating MWs can significantly influence zonal winds over the Drake Passage. Parameterizations that handle horizontal propagation may need to consider horizontal fluxes of horizontal momentum in order to get the direction of their forcing correct.
Author van Niekerk, Annelize
Bacmeister, Julio T.
Gisinger, Sonja
Plougonven, Riwal
Ern, Manfred
Sato, Kaoru
Alexander, M. Joan
Stein, Olaf
Polichtchouk, Inna
Šácha, Petr
Kruse, Christopher G.
Hoffmann, Lars
Holt, Laura
Wright, Corwin
Meyer, Catrin I.
Shibuya, Ryosuke
Author_xml – sequence: 1
  givenname: Christopher G.
  orcidid: 0000-0001-9808-8167
  surname: Kruse
  fullname: Kruse, Christopher G.
  organization: a NorthWest Research Associates, Boulder, Colorado
– sequence: 2
  givenname: M. Joan
  surname: Alexander
  fullname: Alexander, M. Joan
  organization: a NorthWest Research Associates, Boulder, Colorado
– sequence: 3
  givenname: Lars
  surname: Hoffmann
  fullname: Hoffmann, Lars
  organization: b Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany
– sequence: 4
  givenname: Annelize
  surname: van Niekerk
  fullname: van Niekerk, Annelize
  organization: c Met Office, Exeter, United Kingdom
– sequence: 5
  givenname: Inna
  surname: Polichtchouk
  fullname: Polichtchouk, Inna
  organization: d ECMWF, Reading, United Kingdom
– sequence: 6
  givenname: Julio T.
  surname: Bacmeister
  fullname: Bacmeister, Julio T.
  organization: e Climate and Global Dynamics Laboratory, NCAR, Boulder, Colorado
– sequence: 7
  givenname: Laura
  surname: Holt
  fullname: Holt, Laura
  organization: a NorthWest Research Associates, Boulder, Colorado
– sequence: 8
  givenname: Riwal
  surname: Plougonven
  fullname: Plougonven, Riwal
  organization: f Laboratoire de Météorologie Dynamique, Ecole Polytechnique, Palaiseau, France
– sequence: 9
  givenname: Petr
  surname: Šácha
  fullname: Šácha, Petr
  organization: g Department of Atmospheric Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic, h Institute of Meteorology and Climatology (BOKU), University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
– sequence: 10
  givenname: Corwin
  surname: Wright
  fullname: Wright, Corwin
  organization: i Centre for Space, Atmospheric and Oceanic Science, University of Bath, Bath, United Kingdom
– sequence: 11
  givenname: Kaoru
  surname: Sato
  fullname: Sato, Kaoru
  organization: j Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan
– sequence: 12
  givenname: Ryosuke
  surname: Shibuya
  fullname: Shibuya, Ryosuke
  organization: k Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
– sequence: 13
  givenname: Sonja
  surname: Gisinger
  fullname: Gisinger, Sonja
  organization: l Institute of Atmospheric Physics, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany
– sequence: 14
  givenname: Manfred
  surname: Ern
  fullname: Ern, Manfred
  organization: m Institut für Energie- und Klimaforschung–Stratosphäre (IEK-7), Forschungszentrum Jülich, Jülich, Germany
– sequence: 15
  givenname: Catrin I.
  surname: Meyer
  fullname: Meyer, Catrin I.
  organization: b Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany
– sequence: 16
  givenname: Olaf
  surname: Stein
  fullname: Stein, Olaf
  organization: b Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany
BackLink https://insu.hal.science/insu-03726907$$DView record in HAL
BookMark eNp1kM1LAzEQxYMoWD_OXgPehK2ZpMl2j8WqVSoVVDxJGLOzdrUmNdkt-N-7teJBcC6PGX7vMbw9tu2DJ8aOQPQBcn16PbrLxpmETEgt-7DFeqClyMTAFNusJ4SU2aCQw122l9Kr6Ebm0GNPs-dEcUUlR1_ym1DSgtba-gZrzx9xRYlXMbzzZk78ro0VOuJN-F5vKIW0nFMk7gnj920c8Y34LaaEL3TAdipcJDr80X32cHF-fzbJprPLq7PRNHMDgCZTQ1eQw0qAQVHJQmsNmgwZZ5TLCygkKjQglUAUpkSnIK_0cym0UZJUofbZySZ3jgu7jPU7xk8bsLaT0dTWPrVWqFyaQuQr6ODjDbyM4aOl1NjX0Ebf_WelybUZCIBhR51uKBdDSpGq31wQdl247Qq3YyvBrgu361z9x-HqBps6-CZivfjX9wV8-4Ta
CitedBy_id crossref_primary_10_1016_j_jmaa_2025_129337
crossref_primary_10_3103_S1068373924090012
crossref_primary_10_5194_amt_15_7071_2022
crossref_primary_10_1002_qj_4421
crossref_primary_10_1063_5_0228355
crossref_primary_10_5194_acp_23_7901_2023
crossref_primary_10_5194_wcd_6_927_2025
crossref_primary_10_5194_acp_22_15093_2022
crossref_primary_10_1029_2022JA030866
crossref_primary_10_1038_s41597_024_03699_x
crossref_primary_10_1029_2022JD037276
crossref_primary_10_1029_2023JD038795
crossref_primary_10_5194_amt_17_5785_2024
crossref_primary_10_1029_2022MS003505
crossref_primary_10_1029_2022GL098626
crossref_primary_10_1016_j_aml_2024_109435
crossref_primary_10_1088_1751_8121_acd429
crossref_primary_10_1002_qj_70004
crossref_primary_10_1029_2022MS003585
Cites_doi 10.5194/amt-7-4517-2014
10.1029/JC086iC10p09707
10.1029/93GL01214
10.1175/JAS3897.1
10.1175/JAS-D-11-0101.1
10.1175/JAS-D-11-0159.1
10.5194/gmd-13-1999-2020
10.1002/qj.4126
10.1175/JAS-D-16-0173.1
10.1175/BAMS-D-20-0034.1
10.1002/qj.49712656802
10.1002/qj.2378
10.1029/2001RG000106
10.1175/2010JCLI3490.1
10.1002/qj.2947
10.1175/JAS-D-18-0290.1
10.1175/2009BAMS2764.1
10.17815/jlsrf-4-121-1
10.1002/qj.828
10.1002/qj.49712353704
10.21957/ldw15ckqi
10.5067/8JKNEW6BFRVD
10.1175/2010MWR3307.1
10.1175/JAS-D-14-0147.1
10.1029/2012JD018658
10.1175/JCLI-D-19-0076.1
10.1175/JAS-D-17-0350.1
10.1002/2013JD020526
10.5194/acp-17-2901-2017
10.1029/2017MS001242
10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2
10.5194/acp-15-1071-2015
10.1175/JCLI-D-12-00558.1
10.1175/1520-0469(2003)060<0667:AASNGW>2.0.CO;2
10.1175/2008MWR2596.1
10.1175/JAS3543.1
10.1175/JAS-D-12-0180.1
10.5194/gmd-10-1487-2017
10.1029/2019MS001916
10.1029/2021MS002499
10.1175/MWR2830.1
10.1175/1520-0469(1983)040<2497:TIOGWB>2.0.CO;2
10.1175/BAMS-87-7-911
10.1175/JAS-D-15-0079.1
10.1029/2020GL089557
10.1175/2009JAS3197.1
10.5194/gmd-8-3975-2015
10.1002/2016GL072007
10.1175/MWR-D-20-0286.1
10.1175/AMSMONOGRAPHS-D-18-0022.1
10.1029/2005RG000183
10.1175/JAS-D-13-0332.1
10.1175/JAS-D-14-0324.1
10.1007/BF01027469
10.2151/jmsj.2016-013
10.1002/qj.49711247406
10.1029/2009GL038587
10.5194/acp-16-9381-2016
10.1002/2015MS000431
10.5194/acp-17-8553-2017
10.1256/qj.03.73
10.1029/2008JD011241
10.1175/BAMS-D-14-00269.1
10.1029/2006GL026684
10.1175/JAS-D-16-0297.1
10.5194/amt-11-215-2018
10.5194/acp-21-9515-2021
10.1109/TGRS.2002.808356
ContentType Journal Article
Copyright Copyright American Meteorological Society 2022
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright American Meteorological Society 2022
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
3V.
7TG
7TN
7UA
7XB
88F
88I
8AF
8FD
8FE
8FG
8FK
8G5
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
GUQSH
H8D
H96
HCIFZ
KL.
L.G
L7M
M1Q
M2O
M2P
MBDVC
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
Q9U
R05
S0X
1XC
VOOES
DOI 10.1175/JAS-D-21-0252.1
DatabaseName CrossRef
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Military Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
eLibrary
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Military Database
Research Library
Science Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
University of Michigan
SIRS Editorial
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Military Collection
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
Oceanic Abstracts
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
Advanced Technologies Database with Aerospace
ProQuest Central Basic
ProQuest Science Journals
ProQuest Military Collection (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Research Library Prep
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1520-0469
EndPage 932
ExternalDocumentID oai:HAL:insu-03726907v1
10_1175_JAS_D_21_0252_1
GeographicLocations Drake Passage
GeographicLocations_xml – name: Drake Passage
GroupedDBID -~X
.4S
.DC
29L
4.4
5GY
6TJ
7XC
88I
8AF
8FE
8FG
8FH
8G5
8R4
8R5
8WZ
A6W
AAYXX
ABDBF
ABDNZ
ABDPE
ABEFU
ABPPZ
ABUFD
ABUWG
ACBEA
ACGFO
ACGOD
ACIHN
ACKIV
ACNCT
ACUHS
ACYGS
AEAQA
AENEX
AEUYN
AFFHD
AFFNX
AFKRA
AFRAH
AGFAN
AI.
ALMA_UNASSIGNED_HOLDINGS
ALQLQ
ARAPS
ARCSS
ATCPS
AZQEC
BANNL
BCR
BCU
BEC
BENPR
BES
BGLVJ
BHPHI
BKOMP
BKSAR
BLC
BPHCQ
C1A
CAG
CCPQU
CITATION
COF
CS3
D1K
DU5
DWQXO
E.L
E3Z
EAD
EAP
EAS
EBS
EDH
EDO
EJD
EMK
EPL
EST
ESX
F8P
FAC
FAS
FJW
FRP
GNUQQ
GUQSH
H13
HCIFZ
H~9
I-F
K6-
LK5
M1Q
M2O
M2P
M2Q
M7R
MV1
OHT
OK1
P2P
P62
PATMY
PCBAR
PEA
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PYCSY
Q2X
QF4
QM1
QM9
QN7
QO4
R05
RNS
RWA
RWE
RWL
RXW
S0X
SJFOW
TAE
TN5
TR2
TUS
U5U
UNMZH
UPT
UQL
VH1
XOL
XSW
Y6R
YQT
ZY4
~02
3V.
7TG
7TN
7UA
7XB
8FD
8FK
C1K
F1W
H8D
H96
KL.
L.G
L7M
MBDVC
PKEHL
PQEST
PQUKI
Q9U
1XC
VOOES
ID FETCH-LOGICAL-c411t-38c9ecaf016a0f2955515e6e6c63c79192a3a61230aa06dac317f5bd05632e393
IEDL.DBID BENPR
ISICitedReferencesCount 47
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000808410000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-4928
IngestDate Tue Oct 14 20:52:11 EDT 2025
Sat Jul 26 00:28:13 EDT 2025
Tue Nov 18 22:33:42 EST 2025
Sat Nov 29 04:10:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://www.ametsoc.org/PUBSReuseLicenses
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c411t-38c9ecaf016a0f2955515e6e6c63c79192a3a61230aa06dac317f5bd05632e393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9808-8167
OpenAccessLink https://insu.hal.science/insu-03726907
PQID 2675640118
PQPubID 31463
PageCount 24
ParticipantIDs hal_primary_oai_HAL_insu_03726907v1
proquest_journals_2675640118
crossref_primary_10_1175_JAS_D_21_0252_1
crossref_citationtrail_10_1175_JAS_D_21_0252_1
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Boston
PublicationPlace_xml – name: Boston
PublicationTitle Journal of the atmospheric sciences
PublicationYear 2022
Publisher American Meteorological Society
Publisher_xml – name: American Meteorological Society
References Kruse (ref1161) 2020; 33
Grimsdell (ref231) 2010; 67
Giorgetta (ref221) 2018; 10
Meyer (ref541) 2018; 11
Meyer (ref1281) 2018; 11
Rabier (ref601) 2010; 91
Jiang (ref361) 2013; 70
Kruse (ref411) 2018
Eckermann (ref161) 2015; 72
Kruse (ref421) 2020; 33
Hoffmann (ref321) 2016; 16
Klemp (ref391) 2008; 136
Rabier (ref1341) 2010; 91
Beljaars (ref71) 2004; 130
van Niekerk (ref691) 2021; 147
Walters (ref1441) 2017; 10
Eyring (ref921) 2010
Eckermann (ref901) 2015; 72
McLandress (ref531) 2012; 69
Scinocca (ref631) 2003; 60
Fritts (ref211) 2016; 97
Bush (ref81) 2020; 13
Hoffmann (ref301) 2013; 118
Krause (ref1141) 2018; 4
Smith (ref681) 2017; 74
Sato (ref1361) 2012; 69
McFarlane (ref1261) 1987; 44
Aumann (ref781) 2003; 41
Chahine (ref91) 2006; 87
Danabasoglu (ref111) 2020; 12
Lindzen (ref1221) 1981; 86
Holton (ref1081) 1983; 40
Lauritzen (ref461) 2015; 8
Balmino (ref61) 1993; 20
Beljaars (ref811) 2004; 130
Wright (ref1461) 2017; 17
Amemiya (ref31) 2016; 94
Chen (ref101) 2005; 62
Hoffmann (ref291) 2009; 114
Hoffmann (ref311) 2014; 7
Krause (ref401) 2018; 4
Marsh (ref1251) 2013; 26
Smith (ref671) 2019
Orr (ref1311) 2010; 23
Dipankar (ref151) 2015; 7
Dee (ref871) 2011; 137
Hastings (ref991) 1999
Sato (ref621) 2012; 69
Scinocca (ref641) 2000; 126
Zängl (ref1471) 2015; 141
Fritts (ref201) 2003; 41
Amemiya (ref771) 2016; 94
Orr (ref581) 2015; 15
Grimsdell (ref971) 2010; 67
Alexander (ref01) 2007; 64
Hoffmann (ref1051) 2014; 7
Hoffmann (ref1071) 2017; 17
Baines (ref51) 1990; 11
Leuenberger (ref471) 2010; 138
Balmino (ref801) 1993; 20
Lott (ref501) 1997; 123
Leuenberger (ref1211) 2010; 138
Rapp (ref611) 2021; 102
Heinze (ref261) 2017; 143
McFarlane (ref521) 1987; 44
Eyring (ref181) 2010
Alexander (ref21) 2009; 36
McLandress (ref1271) 2012; 69
Hoffmann (ref331) 2017; 17
Dipankar (ref891) 2015; 7
Hastings (ref251) 1999
Smith (ref1421) 2017; 74
Liu (ref1231); 14
Kruse (ref1151) 2018
Kruse (ref1171) 2015; 72
van Niekerk (ref1431) 2021; 147
Fritts (ref951) 2016; 97
Ern (ref171) 2017; 44
Danabasoglu (ref851) 2020; 12
Hoffmann (ref1041) 2013; 118
Dee (ref131) 2011; 137
Alexander (ref751) 2013; 118
Marsh (ref511) 2013; 26
Farr (ref931) 2007; 45
Kruse (ref441) 2018; 75
Orr (ref1321) 2015; 15
Kruse (ref431) 2015; 72
Farr (ref191) 2007; 45
Jiang (ref1101) 2013; 70
Orr (ref571) 2010; 23
Chen (ref841) 2005; 62
Klemp (ref1131) 2008; 136
Giorgetta (ref961) 2018; 10
DeSouza-Machado (ref881) 2007; 34
Lauritzen (ref1201) 2015; 8
Zängl (ref731) 2015; 141
Jewtoukoff (ref1091) 2015; 72
Skamarock (ref651) 2004; 132
Walters (ref701) 2017; 10
Skamarock (ref661) 2021; 149
Hoffmann (ref1061) 2016; 16
Heinze (ref1001) 2017; 143
Kruse (ref1181) 2018; 75
Miller (ref1291) 1989; 40
Klemp (ref1121) 2021; 13
Alexander (ref11) 2013; 118
Liu (ref491); 14
Kruse (ref451) 2016; 73
Scinocca (ref1371) 2003; 60
Hindley (ref1021) 2020; 47
Kruse (ref1191) 2016; 73
DeSouza-Machado (ref141) 2007; 34
Lott (ref1241) 1997; 123
Palmer (ref1331) 1986; 112
Jewtoukoff (ref351) 2015; 72
Hendricks (ref271) 2014; 71
Skamarock (ref1401) 2021; 149
Jiang (ref1111) 2019; 76
Alexander (ref741) 2007; 64
Hindley (ref281) 2020; 47
Jiang (ref371) 2019; 76
Holton (ref341) 1983; 40
Lindzen (ref481) 1981; 86
Aumann (ref41) 2003; 41
Klemp (ref381) 2021; 13
Miller (ref551) 1989; 40
Smith (ref1411) 2019
Wright (ref721) 2017; 17
Scinocca (ref1381) 2000; 126
Rapp (ref1351) 2021; 102
Haiden (ref981) 2018
Alexander (ref761) 2009; 36
Weimer (ref1451) 2021; 21
Chahine (ref831) 2006; 87
Bush (ref821) 2020; 13
Baines (ref791) 1990; 11
Palmer (ref591) 1986; 112
Hendricks (ref1011) 2014; 71
Hoffmann (ref1031) 2009; 114
Weimer (ref711) 2021; 21
Ern (ref911) 2017; 44
Skamarock (ref1391) 2004; 132
Fritts (ref941) 2003; 41
Haiden (ref241) 2018
References_xml – volume: 7
  start-page: 4517
  year: 2014
  ident: ref1051
  article-title: Intercomparison of stratospheric gravity wave observations with AIRS and IASI
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-7-4517-2014
– volume: 7
  start-page: 4517
  year: 2014
  ident: ref311
  article-title: Intercomparison of stratospheric gravity wave observations with AIRS and IASI
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-7-4517-2014
– volume: 86
  start-page: 9707
  year: 1981
  ident: ref1221
  article-title: Turbulence and stress owing to gravity wave and tidal breakdown
  publication-title: J. Geophys. Res.
  doi: 10.1029/JC086iC10p09707
– volume: 20
  start-page: 1063
  year: 1993
  ident: ref801
  article-title: The spectra of the topography of the Earth, Venus and Mars
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/93GL01214
– volume: 64
  start-page: 1652
  year: 2007
  ident: ref01
  article-title: Using satellite observations to constrain parameterizations of gravity wave effects for global models
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS3897.1
– volume: 114
  start-page: D07105
  year: 2009
  ident: ref1031
  article-title: Retrieval of stratospheric temperatures from Atmospheric Infrared Sounder radiance measurements for gravity wave studies
  publication-title: J. Geophys. Res.
– volume: 69
  start-page: 1378
  year: 2012
  ident: ref1361
  article-title: Gravity wave characteristics in the Southern Hemisphere revealed by a high-resolution middle-atmosphere general circulation model
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS-D-11-0101.1
– volume: 69
  start-page: 802
  year: 2012
  ident: ref1271
  article-title: Is missing orographic gravity wave drag near 60° the cause of the stratospheric zonal wind biases in chemistry–climate models?
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS-D-11-0159.1
– volume: 13
  start-page: 1999
  year: 2020
  ident: ref821
  article-title: The first Met Office Unified Model–JULES regional atmosphere and land configuration, RAL1
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-13-1999-2020
– volume: 147
  start-page: 3243
  year: 2021
  ident: ref691
  article-title: Towards a more ‘scale-aware’ orographic gravity wave drag parametrization: Description and initial testing
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1002/qj.4126
– volume: 73
  start-page: 5081
  year: 2016
  ident: ref451
  article-title: The midlatitude lower-stratospheric mountain wave “valve layer.”
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS-D-16-0173.1
– volume: 102
  start-page: E871
  year: 2021
  ident: ref611
  article-title: SOUTHTRAC-GW: An airborne field campaign to explore gravity wave dynamics at the world’s strongest hotspot
  publication-title: Bull. Amer. Meteor. Soc.
  doi: 10.1175/BAMS-D-20-0034.1
– volume: 126
  start-page: 2353
  year: 2000
  ident: ref1381
  article-title: The parametrization of drag induced by stratified flow over anisotropic orography
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1002/qj.49712656802
– volume: 141
  start-page: 563
  year: 2015
  ident: ref1471
  article-title: The ICON (Icosahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1002/qj.2378
– volume: 41
  year: 2003
  ident: ref941
  article-title: Gravity wave dynamics and effects in the middle atmosphere
  publication-title: Rev. Geophys.
  doi: 10.1029/2001RG000106
– volume: 20
  start-page: 1063
  year: 1993
  ident: ref61
  article-title: The spectra of the topography of the Earth, Venus and Mars
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/93GL01214
– volume: 11
  year: 1990
  ident: ref791
  article-title: andT Rationale for a new physically based parameterization of subgrid scale orographic effects
  publication-title: Tech Rep
– volume: 23
  start-page: 5905
  year: 2010
  ident: ref571
  article-title: Improved middle atmosphere climate and forecasts in the ECMWF model through a nonorographic gravity wave drag parameterization
  publication-title: J. Climate
  doi: 10.1175/2010JCLI3490.1
– volume: 143
  start-page: 69
  year: 2017
  ident: ref261
  article-title: Large-eddy simulations over Germany using ICON: A comprehensive evaluation
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1002/qj.2947
– volume: 64
  start-page: 1652
  year: 2007
  ident: ref741
  article-title: Using satellite observations to constrain parameterizations of gravity wave effects for global models
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS3897.1
– volume: 76
  start-page: 1565
  year: 2019
  ident: ref371
  article-title: Stratospheric trailing gravity waves from New Zealand
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS-D-18-0290.1
– volume: 147
  start-page: 3243
  year: 2021
  ident: ref1431
  article-title: Towards a more ‘scale-aware’ orographic gravity wave drag parametrization: Description and initial testing
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1002/qj.4126
– volume: 91
  start-page: 69
  year: 2010
  ident: ref1341
  article-title: The Concordiasi project in Antarctica
  publication-title: Bull. Amer. Meteor. Soc.
  doi: 10.1175/2009BAMS2764.1
– volume: 4
  start-page: A132
  year: 2018
  ident: ref401
  article-title: JURECA: Modular supercomputer at Jülich Supercomputing Centre
  publication-title: J. Large-Scale Res. Facil.
  doi: 10.17815/jlsrf-4-121-1
– volume: 137
  start-page: 553
  year: 2011
  ident: ref131
  article-title: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1002/qj.828
– volume: 123
  start-page: 101
  year: 1997
  ident: ref501
  article-title: A new subgrid-scale orographic drag parametrization: Its formulation and testing
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1002/qj.49712353704
– start-page: 831
  year: 2018
  ident: ref981
  article-title: andF Evaluation of forecasts including the upgrade Rep https org
  publication-title: Tech
  doi: 10.21957/ldw15ckqi
– volume: 14
  start-page: 2015
  ident: ref1231
  article-title: andZ Antarctic mapping project digital elevation model version NASA Rep https org
  publication-title: Tech
  doi: 10.5067/8JKNEW6BFRVD
– volume: 138
  start-page: 3683
  year: 2010
  ident: ref1211
  article-title: A generalization of the SLEVE vertical coordinate
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/2010MWR3307.1
– volume: 69
  start-page: 802
  year: 2012
  ident: ref531
  article-title: Is missing orographic gravity wave drag near 60° the cause of the stratospheric zonal wind biases in chemistry–climate models?
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS-D-11-0159.1
– volume: 143
  start-page: 69
  year: 2017
  ident: ref1001
  article-title: Large-eddy simulations over Germany using ICON: A comprehensive evaluation
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1002/qj.2947
– volume: 72
  start-page: 2330
  year: 2015
  ident: ref161
  article-title: Effects of horizontal geometrical spreading on the parameterization of orographic gravity wave drag. Part I: Numerical transform solutions
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS-D-14-0147.1
– volume: 118
  start-page: 416
  year: 2013
  ident: ref1041
  article-title: A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2012JD018658
– volume: 33
  start-page: 3093
  year: 2020
  ident: ref1161
  article-title: Regional to global evolution of impacts of parameterized mountain-wave drag in the lower stratosphere
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-19-0076.1
– volume: 118
  start-page: 416
  year: 2013
  ident: ref301
  article-title: A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2012JD018658
– volume: 75
  start-page: 2721
  year: 2018
  ident: ref1181
  article-title: Nondissipative and dissipative momentum deposition by mountain wave events in sheared environments
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS-D-17-0350.1
– volume: 118
  start-page: 11 589
  year: 2013
  ident: ref11
  article-title: Seasonal cycle of orographic gravity wave occurrence above small islands in the Southern Hemisphere: Implications for effects on the general circulation
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2013JD020526
– volume: 17
  start-page: 2901
  year: 2017
  ident: ref1071
  article-title: A decadal satellite record of gravity wave activity in the lower stratosphere to study polar stratospheric cloud formation
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-17-2901-2017
– volume: 10
  start-page: 1613
  year: 2018
  ident: ref221
  article-title: ICON-A, the atmosphere component of the ICON Earth system model: I. Model description
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1029/2017MS001242
– volume: 44
  start-page: 1775
  year: 1987
  ident: ref521
  article-title: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2
– volume: 15
  start-page: 1071
  year: 2015
  ident: ref1321
  article-title: Inclusion of mountain-wave-induced cooling for the formation of PSCs over the Antarctic Peninsula in a chemistry–climate model
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-15-1071-2015
– volume: 26
  start-page: 7372
  year: 2013
  ident: ref511
  article-title: Climate change from 1850 to 2005 simulated in CESM1(WACCM)
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-12-00558.1
– volume: 60
  start-page: 667
  year: 2003
  ident: ref1371
  article-title: An accurate spectral nonorographic gravity wave drag parameterization for general circulation models
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(2003)060<0667:AASNGW>2.0.CO;2
– volume: 136
  start-page: 3987
  year: 2008
  ident: ref1131
  article-title: An upper gravity-wave absorbing layer for NWP applications
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/2008MWR2596.1
– volume: 62
  start-page: 3213
  year: 2005
  ident: ref101
  article-title: Mountain-wave momentum flux in an evolving synoptic-scale flow
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS3543.1
– volume: 70
  start-page: 1668
  year: 2013
  ident: ref361
  article-title: A modeling study of stratospheric waves over the southern Andes and Drake Passage
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS-D-12-0180.1
– start-page: 163
  year: 2018
  ident: ref1151
  article-title: Mountain wave propagation and attenuation and their influences on Earth atmosphere Ph thesis University
– volume: 10
  start-page: 1487
  year: 2017
  ident: ref1441
  article-title: The Met Office Unified Model global atmosphere 6.0/6.1 and JULES global land 6.0/6.1 configurations
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-10-1487-2017
– volume: 12
  year: 2020
  ident: ref111
  article-title: The Community Earth System Model version 2 (CESM2)
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1029/2019MS001916
– volume: 75
  start-page: 2721
  year: 2018
  ident: ref441
  article-title: Nondissipative and dissipative momentum deposition by mountain wave events in sheared environments
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS-D-17-0350.1
– volume: 13
  year: 2021
  ident: ref1121
  article-title: Adapting the MPAS dynamical core for applications extending into the thermosphere
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1029/2021MS002499
– volume: 132
  start-page: 3019
  year: 2004
  ident: ref651
  article-title: Evaluating mesoscale NWP models using kinetic energy spectra
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/MWR2830.1
– volume: 137
  start-page: 553
  year: 2011
  ident: ref871
  article-title: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1002/qj.828
– volume: 40
  start-page: 2497
  year: 1983
  ident: ref341
  article-title: The influence of gravity wave breaking on the general circulation of the middle atmosphere
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1983)040<2497:TIOGWB>2.0.CO;2
– volume: 87
  start-page: 911
  year: 2006
  ident: ref91
  article-title: AIRS: Improving weather forecasting and providing new data on greenhouse gases
  publication-title: Bull. Amer. Meteor. Soc.
  doi: 10.1175/BAMS-87-7-911
– volume: 72
  start-page: 4372
  year: 2015
  ident: ref431
  article-title: Gravity wave diagnostics and characteristics in mesoscale fields
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS-D-15-0079.1
– volume: 47
  start-page: e2020GL089557
  year: 2020
  ident: ref1021
  article-title: An 18-year climatology of directional stratospheric gravity wave momentum flux from 3-D satellite observations
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2020GL089557
– start-page: 163
  year: 2018
  ident: ref411
  article-title: Mountain wave propagation and attenuation and their influences on Earth atmosphere Ph thesis University
– volume: 73
  start-page: 5081
  year: 2016
  ident: ref1191
  article-title: The midlatitude lower-stratospheric mountain wave “valve layer.”
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS-D-16-0173.1
– volume: 67
  start-page: 1617
  year: 2010
  ident: ref971
  article-title: Model study of waves generated by convection with direct validation via satellite
  publication-title: J. Atmos. Sci.
  doi: 10.1175/2009JAS3197.1
– volume: 8
  start-page: 3975
  year: 2015
  ident: ref461
  article-title: NCAR_Topo (v1.0): NCAR global model topography generation software for unstructured grids
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-8-3975-2015
– volume: 141
  start-page: 563
  year: 2015
  ident: ref731
  article-title: The ICON (Icosahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1002/qj.2378
– volume: 44
  start-page: 475
  year: 2017
  ident: ref171
  article-title: Directional gravity wave momentum fluxes in the stratosphere derived from high-resolution AIRS temperature data
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2016GL072007
– volume: 102
  start-page: E871
  year: 2021
  ident: ref1351
  article-title: SOUTHTRAC-GW: An airborne field campaign to explore gravity wave dynamics at the world’s strongest hotspot
  publication-title: Bull. Amer. Meteor. Soc.
  doi: 10.1175/BAMS-D-20-0034.1
– volume: 149
  start-page: 571
  year: 2021
  ident: ref1401
  article-title: A fully compressible nonhydrostatic deep-atmosphere equations solver for MPAS
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/MWR-D-20-0286.1
– start-page: 59
  year: 2019
  ident: ref671
  article-title: years of progress on mountain meteorology research Century of Progress in Atmospheric and Related Celebrating the American Meteorological Centennial Meteor No Meteor https org
  publication-title: Sciences Society
  doi: 10.1175/AMSMONOGRAPHS-D-18-0022.1
– volume: 10
  start-page: 1613
  year: 2018
  ident: ref961
  article-title: ICON-A, the atmosphere component of the ICON Earth system model: I. Model description
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1029/2017MS001242
– volume: 45
  start-page: RG2004
  year: 2007
  ident: ref191
  article-title: The Shuttle Radar Topography Mission
  publication-title: Rev. Geophys.
  doi: 10.1029/2005RG000183
– volume: 14
  start-page: 2015
  ident: ref491
  article-title: andZ Antarctic mapping project digital elevation model version NASA Rep https org
  publication-title: Tech
  doi: 10.5067/8JKNEW6BFRVD
– volume: 11
  year: 1990
  ident: ref51
  article-title: andT Rationale for a new physically based parameterization of subgrid scale orographic effects
  publication-title: Tech Rep
– volume: 71
  start-page: 1583
  year: 2014
  ident: ref1011
  article-title: What is the source of the stratospheric gravity wave belt in austral winter?
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS-D-13-0332.1
– volume: 72
  start-page: 3449
  year: 2015
  ident: ref351
  article-title: Comparison of gravity waves in the Southern Hemisphere derived from balloon observations and the ECMWF analyses
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS-D-14-0324.1
– volume: 40
  start-page: 84
  year: 1989
  ident: ref1291
  article-title: Parameterization and influence of subgridscale orography in general circulation and numerical weather prediction models
  publication-title: Meteor. Atmos. Phys.
  doi: 10.1007/BF01027469
– volume: 94
  start-page: 237
  year: 2016
  ident: ref31
  article-title: A new gravity wave parameterization including three-dimensional propagation
  publication-title: J. Meteor. Soc. Japan
  doi: 10.2151/jmsj.2016-013
– volume: 123
  start-page: 101
  year: 1997
  ident: ref1241
  article-title: A new subgrid-scale orographic drag parametrization: Its formulation and testing
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1002/qj.49712353704
– volume: 112
  start-page: 1001
  year: 1986
  ident: ref591
  article-title: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parametrization
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1002/qj.49711247406
– volume: 8
  start-page: 3975
  year: 2015
  ident: ref1201
  article-title: NCAR_Topo (v1.0): NCAR global model topography generation software for unstructured grids
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-8-3975-2015
– volume: 36
  start-page: L12816
  year: 2009
  ident: ref761
  article-title: Momentum flux estimates for South Georgia island mountain waves in the stratosphere observed via satellite
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2009GL038587
– volume: 132
  start-page: 3019
  year: 2004
  ident: ref1391
  article-title: Evaluating mesoscale NWP models using kinetic energy spectra
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/MWR2830.1
– volume: 118
  start-page: 11 589
  year: 2013
  ident: ref751
  article-title: Seasonal cycle of orographic gravity wave occurrence above small islands in the Southern Hemisphere: Implications for effects on the general circulation
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2013JD020526
– volume: 47
  start-page: e2020GL089557
  year: 2020
  ident: ref281
  article-title: An 18-year climatology of directional stratospheric gravity wave momentum flux from 3-D satellite observations
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2020GL089557
– volume: 16
  start-page: 9381
  year: 2016
  ident: ref321
  article-title: Stratospheric gravity waves at Southern Hemisphere orographic hotspots: 2003–2014 AIRS/Aqua observations
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-16-9381-2016
– start-page: 426
  year: 2010
  ident: ref181
  article-title: andD SPARC CCMVal report on the evaluation of chemistry - climate models SPARC Tech Rep pp http www sparc climate org publications sparc reports
– volume: 13
  year: 2021
  ident: ref381
  article-title: Adapting the MPAS dynamical core for applications extending into the thermosphere
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1029/2021MS002499
– volume: 16
  start-page: 9381
  year: 2016
  ident: ref1061
  article-title: Stratospheric gravity waves at Southern Hemisphere orographic hotspots: 2003–2014 AIRS/Aqua observations
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-16-9381-2016
– volume: 7
  start-page: 963
  year: 2015
  ident: ref151
  article-title: Large eddy simulation using the general circulation model ICON
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1002/2015MS000431
– volume: 91
  start-page: 69
  year: 2010
  ident: ref601
  article-title: The Concordiasi project in Antarctica
  publication-title: Bull. Amer. Meteor. Soc.
  doi: 10.1175/2009BAMS2764.1
– volume: 26
  start-page: 7372
  year: 2013
  ident: ref1251
  article-title: Climate change from 1850 to 2005 simulated in CESM1(WACCM)
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-12-00558.1
– volume: 44
  start-page: 1775
  year: 1987
  ident: ref1261
  article-title: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2
– volume: 17
  start-page: 8553
  year: 2017
  ident: ref1461
  article-title: Exploring gravity wave characteristics in 3-D using a novel S-transform technique: AIRS/Aqua measurements over the southern Andes and Drake Passage
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-17-8553-2017
– volume: 130
  start-page: 1327
  year: 2004
  ident: ref71
  article-title: A new parametrization of turbulent orographic form drag
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1256/qj.03.73
– volume: 114
  start-page: D07105
  year: 2009
  ident: ref291
  article-title: Retrieval of stratospheric temperatures from Atmospheric Infrared Sounder radiance measurements for gravity wave studies
  publication-title: J. Geophys. Res.
  doi: 10.1029/2008JD011241
– start-page: 147
  year: 1999
  ident: ref251
  article-title: andP Global One kilometer Base Elevation GLOBE Rep pp https www ngdc noaa gov mgg topo report globedocumentationmanual pdf
  publication-title: Tech
– volume: 97
  start-page: 425
  year: 2016
  ident: ref951
  article-title: The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An airborne and ground-based exploration of gravity wave propagation and effects from their sources throughout the lower and middle atmosphere
  publication-title: Bull. Amer. Meteor. Soc.
  doi: 10.1175/BAMS-D-14-00269.1
– volume: 15
  start-page: 1071
  year: 2015
  ident: ref581
  article-title: Inclusion of mountain-wave-induced cooling for the formation of PSCs over the Antarctic Peninsula in a chemistry–climate model
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-15-1071-2015
– volume: 126
  start-page: 2353
  year: 2000
  ident: ref641
  article-title: The parametrization of drag induced by stratified flow over anisotropic orography
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1002/qj.49712656802
– volume: 97
  start-page: 425
  year: 2016
  ident: ref211
  article-title: The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An airborne and ground-based exploration of gravity wave propagation and effects from their sources throughout the lower and middle atmosphere
  publication-title: Bull. Amer. Meteor. Soc.
  doi: 10.1175/BAMS-D-14-00269.1
– volume: 71
  start-page: 1583
  year: 2014
  ident: ref271
  article-title: What is the source of the stratospheric gravity wave belt in austral winter?
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS-D-13-0332.1
– volume: 72
  start-page: 4372
  year: 2015
  ident: ref1171
  article-title: Gravity wave diagnostics and characteristics in mesoscale fields
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS-D-15-0079.1
– volume: 33
  start-page: 3093
  year: 2020
  ident: ref421
  article-title: Regional to global evolution of impacts of parameterized mountain-wave drag in the lower stratosphere
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-19-0076.1
– volume: 12
  year: 2020
  ident: ref851
  article-title: The Community Earth System Model version 2 (CESM2)
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1029/2019MS001916
– volume: 41
  year: 2003
  ident: ref201
  article-title: Gravity wave dynamics and effects in the middle atmosphere
  publication-title: Rev. Geophys.
  doi: 10.1029/2001RG000106
– volume: 34
  start-page: L01802
  year: 2007
  ident: ref881
  article-title: Fast forward radiative transfer modeling of 4.3 μm nonlocal thermodynamic equilibrium effects for infrared temperature sounders
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2006GL026684
– volume: 136
  start-page: 3987
  year: 2008
  ident: ref391
  article-title: An upper gravity-wave absorbing layer for NWP applications
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/2008MWR2596.1
– volume: 74
  start-page: 1381
  year: 2017
  ident: ref681
  article-title: Broad-spectrum mountain waves
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS-D-16-0297.1
– volume: 67
  start-page: 1617
  year: 2010
  ident: ref231
  article-title: Model study of waves generated by convection with direct validation via satellite
  publication-title: J. Atmos. Sci.
  doi: 10.1175/2009JAS3197.1
– volume: 34
  start-page: L01802
  year: 2007
  ident: ref141
  article-title: Fast forward radiative transfer modeling of 4.3 μm nonlocal thermodynamic equilibrium effects for infrared temperature sounders
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2006GL026684
– volume: 70
  start-page: 1668
  year: 2013
  ident: ref1101
  article-title: A modeling study of stratospheric waves over the southern Andes and Drake Passage
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS-D-12-0180.1
– volume: 11
  start-page: 215
  year: 2018
  ident: ref1281
  article-title: Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-11-215-2018
– volume: 10
  start-page: 1487
  year: 2017
  ident: ref701
  article-title: The Met Office Unified Model global atmosphere 6.0/6.1 and JULES global land 6.0/6.1 configurations
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-10-1487-2017
– volume: 45
  start-page: RG2004
  year: 2007
  ident: ref931
  article-title: The Shuttle Radar Topography Mission
  publication-title: Rev. Geophys.
  doi: 10.1029/2005RG000183
– volume: 11
  start-page: 215
  year: 2018
  ident: ref541
  article-title: Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-11-215-2018
– volume: 36
  start-page: L12816
  year: 2009
  ident: ref21
  article-title: Momentum flux estimates for South Georgia island mountain waves in the stratosphere observed via satellite
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2009GL038587
– volume: 21
  start-page: 9515
  year: 2021
  ident: ref1451
  article-title: Mountain-wave-induced polar stratospheric clouds and their representation in the global chemistry model ICON-ART
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-21-9515-2021
– volume: 72
  start-page: 3449
  year: 2015
  ident: ref1091
  article-title: Comparison of gravity waves in the Southern Hemisphere derived from balloon observations and the ECMWF analyses
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS-D-14-0324.1
– volume: 72
  start-page: 2330
  year: 2015
  ident: ref901
  article-title: Effects of horizontal geometrical spreading on the parameterization of orographic gravity wave drag. Part I: Numerical transform solutions
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS-D-14-0147.1
– volume: 76
  start-page: 1565
  year: 2019
  ident: ref1111
  article-title: Stratospheric trailing gravity waves from New Zealand
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS-D-18-0290.1
– volume: 94
  start-page: 237
  year: 2016
  ident: ref771
  article-title: A new gravity wave parameterization including three-dimensional propagation
  publication-title: J. Meteor. Soc. Japan
  doi: 10.2151/jmsj.2016-013
– volume: 130
  start-page: 1327
  year: 2004
  ident: ref811
  article-title: A new parametrization of turbulent orographic form drag
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1256/qj.03.73
– volume: 17
  start-page: 2901
  year: 2017
  ident: ref331
  article-title: A decadal satellite record of gravity wave activity in the lower stratosphere to study polar stratospheric cloud formation
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-17-2901-2017
– volume: 149
  start-page: 571
  year: 2021
  ident: ref661
  article-title: A fully compressible nonhydrostatic deep-atmosphere equations solver for MPAS
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/MWR-D-20-0286.1
– volume: 21
  start-page: 9515
  year: 2021
  ident: ref711
  article-title: Mountain-wave-induced polar stratospheric clouds and their representation in the global chemistry model ICON-ART
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-21-9515-2021
– volume: 86
  start-page: 9707
  year: 1981
  ident: ref481
  article-title: Turbulence and stress owing to gravity wave and tidal breakdown
  publication-title: J. Geophys. Res.
  doi: 10.1029/JC086iC10p09707
– start-page: 147
  year: 1999
  ident: ref991
  article-title: andP Global One kilometer Base Elevation GLOBE Rep pp https www ngdc noaa gov mgg topo report globedocumentationmanual pdf
  publication-title: Tech
– volume: 60
  start-page: 667
  year: 2003
  ident: ref631
  article-title: An accurate spectral nonorographic gravity wave drag parameterization for general circulation models
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(2003)060<0667:AASNGW>2.0.CO;2
– volume: 74
  start-page: 1381
  year: 2017
  ident: ref1421
  article-title: Broad-spectrum mountain waves
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS-D-16-0297.1
– volume: 40
  start-page: 2497
  year: 1983
  ident: ref1081
  article-title: The influence of gravity wave breaking on the general circulation of the middle atmosphere
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1983)040<2497:TIOGWB>2.0.CO;2
– start-page: 426
  year: 2010
  ident: ref921
  article-title: andD SPARC CCMVal report on the evaluation of chemistry - climate models SPARC Tech Rep pp http www sparc climate org publications sparc reports
– volume: 112
  start-page: 1001
  year: 1986
  ident: ref1331
  article-title: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parametrization
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1002/qj.49711247406
– start-page: 59
  year: 2019
  ident: ref1411
  article-title: years of progress on mountain meteorology research Century of Progress in Atmospheric and Related Celebrating the American Meteorological Centennial Meteor No Meteor https org
  publication-title: Sciences Society
  doi: 10.1175/AMSMONOGRAPHS-D-18-0022.1
– volume: 41
  start-page: 253
  year: 2003
  ident: ref41
  article-title: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2002.808356
– volume: 41
  start-page: 253
  year: 2003
  ident: ref781
  article-title: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2002.808356
– volume: 23
  start-page: 5905
  year: 2010
  ident: ref1311
  article-title: Improved middle atmosphere climate and forecasts in the ECMWF model through a nonorographic gravity wave drag parameterization
  publication-title: J. Climate
  doi: 10.1175/2010JCLI3490.1
– volume: 69
  start-page: 1378
  year: 2012
  ident: ref621
  article-title: Gravity wave characteristics in the Southern Hemisphere revealed by a high-resolution middle-atmosphere general circulation model
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS-D-11-0101.1
– volume: 7
  start-page: 963
  year: 2015
  ident: ref891
  article-title: Large eddy simulation using the general circulation model ICON
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1002/2015MS000431
– volume: 87
  start-page: 911
  year: 2006
  ident: ref831
  article-title: AIRS: Improving weather forecasting and providing new data on greenhouse gases
  publication-title: Bull. Amer. Meteor. Soc.
  doi: 10.1175/BAMS-87-7-911
– volume: 62
  start-page: 3213
  year: 2005
  ident: ref841
  article-title: Mountain-wave momentum flux in an evolving synoptic-scale flow
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS3543.1
– volume: 4
  start-page: A132
  year: 2018
  ident: ref1141
  article-title: JURECA: Modular supercomputer at Jülich Supercomputing Centre
  publication-title: J. Large-Scale Res. Facil.
  doi: 10.17815/jlsrf-4-121-1
– volume: 44
  start-page: 475
  year: 2017
  ident: ref911
  article-title: Directional gravity wave momentum fluxes in the stratosphere derived from high-resolution AIRS temperature data
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2016GL072007
– volume: 40
  start-page: 84
  year: 1989
  ident: ref551
  article-title: Parameterization and influence of subgridscale orography in general circulation and numerical weather prediction models
  publication-title: Meteor. Atmos. Phys.
  doi: 10.1007/BF01027469
– volume: 17
  start-page: 8553
  year: 2017
  ident: ref721
  article-title: Exploring gravity wave characteristics in 3-D using a novel S-transform technique: AIRS/Aqua measurements over the southern Andes and Drake Passage
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-17-8553-2017
– volume: 13
  start-page: 1999
  year: 2020
  ident: ref81
  article-title: The first Met Office Unified Model–JULES regional atmosphere and land configuration, RAL1
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-13-1999-2020
– start-page: 831
  year: 2018
  ident: ref241
  article-title: andF Evaluation of forecasts including the upgrade Rep https org
  publication-title: Tech
  doi: 10.21957/ldw15ckqi
– volume: 138
  start-page: 3683
  year: 2010
  ident: ref471
  article-title: A generalization of the SLEVE vertical coordinate
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/2010MWR3307.1
SSID ssj0000271
Score 2.5601375
Snippet Four state-of-the-science numerical weather prediction (NWP) models were used to perform mountain wave (MW)-resolving hindcasts over the Drake Passage of a...
SourceID hal
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 909
SubjectTerms Amplitudes
Atmosphere
Atmospheric Infrared Sounder
Atmospheric models
Climate models
Direction
Domains
Drag
Fluxes
Fluxing
Global weather
Lee waves
Lower mantle
Mesosphere
Meteorological satellites
Middle atmosphere
Modelling
Momentum
Mountain waves
Mountains
Numerical prediction
Numerical weather forecasting
Radiative transfer
Resolution
Sciences of the Universe
Stratosphere
Temperature
Upper stratosphere
Weather
Weather forecasting
Winds
Zonal winds
Title Observed and Modeled Mountain Waves from the Surface to the Mesosphere near the Drake Passage
URI https://www.proquest.com/docview/2675640118
https://insu.hal.science/insu-03726907
Volume 79
WOSCitedRecordID wos000808410000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Collection
  customDbUrl:
  eissn: 1520-0469
  dateEnd: 20231207
  omitProxy: false
  ssIdentifier: ssj0000271
  issn: 0022-4928
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1520-0469
  dateEnd: 20231207
  omitProxy: false
  ssIdentifier: ssj0000271
  issn: 0022-4928
  databaseCode: PCBAR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1520-0469
  dateEnd: 20231207
  omitProxy: false
  ssIdentifier: ssj0000271
  issn: 0022-4928
  databaseCode: PATMY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Military Database
  customDbUrl:
  eissn: 1520-0469
  dateEnd: 20231207
  omitProxy: false
  ssIdentifier: ssj0000271
  issn: 0022-4928
  databaseCode: M1Q
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/military
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1520-0469
  dateEnd: 20231207
  omitProxy: false
  ssIdentifier: ssj0000271
  issn: 0022-4928
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Research Library
  customDbUrl:
  eissn: 1520-0469
  dateEnd: 20231207
  omitProxy: false
  ssIdentifier: ssj0000271
  issn: 0022-4928
  databaseCode: M2O
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1520-0469
  dateEnd: 20231207
  omitProxy: false
  ssIdentifier: ssj0000271
  issn: 0022-4928
  databaseCode: M2P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdoxwMvfCM6xmQJhHjxFjtxUj-hsm6a0NoFxseENFmOcxETU7Ilbf9-7rx0E0jwwosjJ45k5c7nny93v2PsdQEJZLrIhAZlRBIXhRjLyolEZZUjCjUfsvi_HmXz-fj01OS9w63rwyrXNjEY6rLx5CPfVYhs04TyJN9dXgmqGkV_V_sSGgO2QUxlyZBtvN-f559ubbHK5JovPDFq3JP74J65-2FyIqZC4WFaabUjf9uXBj8oKvIP4xx2nIMH_zvXh-x-jzX55Fo5HrE7UD9moxnC5KYN3nT-hu9dnCNmDb0n7Oy4ICctlNzVJZ-FIjl0XdbkQODf3Ao6TgkpHGEjP1m2lfPAF03ozqBrOiIpAF7j8gn3pq37CTxHgI5m6yn7crD_ee9Q9PUXhE-kXIgYBQXeVYgKXVQpoxFdaUgh9WnsM4PY0MWO6Fsi56K0dB6xSKWLEjFVrCA28TM2rJsanjMuS1NIwgKyQNOsS1OaGNxYg0lc6iMYsZ3117e-JyenGhkXNhxSMm1RXHZqlbQkLitH7O3NC5fXvBx_H_oKxXkzivi0DydHlmL9bRRnivwDKxy1tZal7ZdxZ28Fufnvxy_YPUU6FkJ6tthw0S7hJbvrV4vzrt3utXKbDWbyI7XqOLQ5trn-_gtI_Oxc
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQaIX3qgLLVjiIS5uY-e1OVRo1aXa0s1S1FJ6QcZxJqKiSkqyu6h_it_YGW_SCiS49cApcuIocvJl5hvb8w1jLzMIIA6zWISgEhH4WSb6sjAiUHFhSELNuiz-o3E8mfSPj5P9Jfary4WhbZWdTXSGOq8szZFvKmS2UUB5km_PfgiqGkWrq10JjQUs9uD8J4ZszdbuEL_vK6V23h1uj0RbVUDYQMqp8PHxYE2BXMd4hUpC5AwhRBDZyLdxgozH-IZESTxjvCg3Fj1sEWY5MgVfgU_iS2jybwbIdOiPSuXHK8uvYtmpkweJ6rdSQuihN98PDsRQKAzdVag25G9e8MY32oP5hytw_m3n7v_2Zu6xOy2T5oMF9O-zJSgfsF6KQUBVu7UC_ppvn54gI3eth-zLh4ymoCHnpsx56koA0XFW0vQI_2zm0HBKt-FIivnBrC6MBT6tXDOFpmpIggF4iWN154a1-Q58H8MPNMqP2KdrGe1jtlxWJawyLvMkk8R0ZIaOJ8yTPPHB9ENIAhNZD3pso_va2rbS61QB5FS7ECwONcJDD7WSmuChZY-9ubzhbKE68veuLxA-l71ILXw0GGvKZNCeHyua_Zhjr7UOO7o1Uo2-As6Tf19-zm6PDtOxHu9O9p6yFUX4dpuX1tjytJ7BOrtl59OTpn7m_gfOvl43zC4AYlVCew
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFqFeeKMuFLDEQ1zcjZ33AaFlw6qlu8uK8ugFGceZiIoqKcnuIv4av46ZbNIKJLj1wCly4khx8mXmG9vzDWOPU_Ag9NNQ-KBi4blpKiKZG-GpMDckoWabLP4Pk3A2i46O4vkG-9nlwtC2ys4mNoY6Ky3NkQ8UMtvAozzJQd5ui5gn4xen3wRVkKKV1q6cxhoiB_DjO4Zv9fP9BL_1E6XGr96N9kRbYUBYT8qFcPFRwJoceY9xchX7yB98CCCwgWvDGNmPcQ0JlDjGOEFmLHrb3E8zZA2uApeEmND8b0ZB6Kge25yPXg7fnvsBFcpOq9yLVdQKC6G_HrweHopEKAzkla925W8-8dIX2pH5h2NovN342v_8nq6zqy3H5sP1T3GDbUBxk_WnGB6UVbOKwJ_y0ckxcvWmdYt9epPS5DRk3BQZnzbFgei4LGjihH80K6g5JeJwpMv8cFnlxgJflE1zCnVZkzgD8ALH2pxLKvMV-BwDEzTXt9n7CxntHdYrygK2GZdZnEriQDJFl-RncRa7YCIfYs8E1oE-2-2-vLatKDvVBjnRTXAW-hqhohOtpCaoaNlnz85uOF3rkfy96yOE0lkv0hHfG0405Thoxw0VzYussNdOhyPdmq9an4Po7r8vP2RXEF16sj87uMe2FEG92dW0w3qLagn32WW7WhzX1YP25-Ds80Xj7BeFYkxz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observed+and+Modeled+Mountain+Waves+from+the+Surface+to+the+Mesosphere+near+the+Drake+Passage&rft.jtitle=Journal+of+the+atmospheric+sciences&rft.au=Kruse%2C+Christopher+G.&rft.au=Alexander%2C+M.+Joan&rft.au=Hoffmann%2C+Lars&rft.au=van+Niekerk%2C+Annelize&rft.date=2022-04-01&rft.issn=0022-4928&rft.eissn=1520-0469&rft.volume=79&rft.issue=4&rft.spage=909&rft.epage=932&rft_id=info:doi/10.1175%2FJAS-D-21-0252.1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1175_JAS_D_21_0252_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-4928&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-4928&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-4928&client=summon