Observed and Modeled Mountain Waves from the Surface to the Mesosphere near the Drake Passage
Four state-of-the-science numerical weather prediction (NWP) models were used to perform mountain wave (MW)-resolving hindcasts over the Drake Passage of a 10-day period in 2010 with numerous observed MW cases. The Integrated Forecast System (IFS) and the Icosahedral Nonhydrostatic (ICON) model were...
Saved in:
| Published in: | Journal of the atmospheric sciences Vol. 79; no. 4; pp. 909 - 932 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Boston
American Meteorological Society
01.04.2022
|
| Subjects: | |
| ISSN: | 0022-4928, 1520-0469 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Four state-of-the-science numerical weather prediction (NWP) models were used to perform mountain wave (MW)-resolving hindcasts over the Drake Passage of a 10-day period in 2010 with numerous observed MW cases. The Integrated Forecast System (IFS) and the Icosahedral Nonhydrostatic (ICON) model were run at Δ
x
≈ 9 and 13 km globally. The Weather Research and Forecasting (WRF) Model and the Met Office Unified Model (UM) were both configured with a Δ
x
= 3-km regional domain. All domains had tops near 1 Pa (
z
≈ 80 km). These deep domains allowed
quantitative
validation against Atmospheric Infrared Sounder (AIRS) observations, accounting for observation time, viewing geometry, and radiative transfer. All models reproduced observed middle-atmosphere MWs with remarkable skill. Increased horizontal resolution improved validations. Still, all models underrepresented observed MW amplitudes, even after accounting for model effective resolution and instrument noise, suggesting even at Δ
x
≈ 3-km resolution, small-scale MWs are underresolved and/or overdiffused. MW drag parameterizations are still necessary in NWP models at current operational resolutions of Δ
x
≈ 10 km. Upper GW sponge layers in the operationally configured models significantly, artificially reduced MW amplitudes in the upper stratosphere and mesosphere. In the IFS, parameterized GW drags partly compensated this deficiency, but still, total drags were ≈6 times smaller than that resolved at Δ
x
≈ 3 km. Meridionally propagating MWs significantly enhance zonal drag over the Drake Passage. Interestingly, drag associated with meridional fluxes of zonal momentum (i.e.,
) were important; not accounting for these terms results in a drag in the wrong direction at and below the polar night jet. |
|---|---|
| AbstractList | Four state-of-the-science numerical weather prediction (NWP) models were used to perform mountain wave (MW)-resolving hindcasts over the Drake Passage of a 10-day period in 2010 with numerous observed MW cases. The Integrated Forecast System (IFS) and the Icosahedral Nonhydrostatic (ICON) model were run at Δx ≈ 9 and 13 km globally. The Weather Research and Forecasting (WRF) Model and the Met Office Unified Model (UM) were both configured with a Δx = 3-km regional domain. All domains had tops near 1 Pa (z ≈ 80 km). These deep domains allowed quantitative validation against Atmospheric Infrared Sounder (AIRS) observations, accounting for observation time, viewing geometry, and radiative transfer. All models reproduced observed middle-atmosphere MWs with remarkable skill. Increased horizontal resolution improved validations. Still, all models underrepresented observed MW amplitudes, even after accounting for model effective resolution and instrument noise, suggesting even at Δx ≈ 3-km resolution, small-scale MWs are underresolved and/or overdiffused. MW drag parameterizations are still necessary in NWP models at current operational resolutions of Δx ≈ 10 km. Upper GW sponge layers in the operationally configured models significantly, artificially reduced MW amplitudes in the upper stratosphere and mesosphere. In the IFS, parameterized GW drags partly compensated this deficiency, but still, total drags were ≈6 times smaller than that resolved at Δx ≈ 3 km. Meridionally propagating MWs significantly enhance zonal drag over the Drake Passage. Interestingly, drag associated with meridional fluxes of zonal momentum (i.e., u'υ' ¯ ) were important; not accounting for these terms results in a drag in the wrong direction at and below the polar night jet. Four state-of-the-science numerical weather prediction (NWP) models were used to perform mountain wave (MW)-resolving hindcasts over the Drake Passage of a 10-day period in 2010 with numerous observed MW cases. The Integrated Forecast System (IFS) and the Icosahedral Nonhydrostatic (ICON) model were run at Δ x ≈ 9 and 13 km globally. The Weather Research and Forecasting (WRF) Model and the Met Office Unified Model (UM) were both configured with a Δ x = 3-km regional domain. All domains had tops near 1 Pa ( z ≈ 80 km). These deep domains allowed quantitative validation against Atmospheric Infrared Sounder (AIRS) observations, accounting for observation time, viewing geometry, and radiative transfer. All models reproduced observed middle-atmosphere MWs with remarkable skill. Increased horizontal resolution improved validations. Still, all models underrepresented observed MW amplitudes, even after accounting for model effective resolution and instrument noise, suggesting even at Δ x ≈ 3-km resolution, small-scale MWs are underresolved and/or overdiffused. MW drag parameterizations are still necessary in NWP models at current operational resolutions of Δ x ≈ 10 km. Upper GW sponge layers in the operationally configured models significantly, artificially reduced MW amplitudes in the upper stratosphere and mesosphere. In the IFS, parameterized GW drags partly compensated this deficiency, but still, total drags were ≈6 times smaller than that resolved at Δ x ≈ 3 km. Meridionally propagating MWs significantly enhance zonal drag over the Drake Passage. Interestingly, drag associated with meridional fluxes of zonal momentum (i.e., ) were important; not accounting for these terms results in a drag in the wrong direction at and below the polar night jet. Four state-of-the-science numerical weather prediction (NWP) models were used to perform mountain wave (MW)-resolving hindcasts over the Drake Passage of a 10-day period in 2010 with numerous observed MW cases. The Integrated Forecast System (IFS) and the Icosahedral Nonhydrostatic (ICON) model were run at Δx ≈ 9 and 13 km globally. The Weather Research and Forecasting (WRF) Model and the Met Office Unified Model (UM) were both configured with a Δx = 3-km regional domain. All domains had tops near 1 Pa (z ≈ 80 km). These deep domains allowed quantitative validation against Atmospheric Infrared Sounder (AIRS) observations, accounting for observation time, viewing geometry, and radiative transfer. All models reproduced observed middle-atmosphere MWs with remarkable skill. Increased horizontal resolution improved validations. Still, all models underrepresented observed MW amplitudes, even after accounting for model effective resolution and instrument noise, suggesting even at Δx ≈ 3-km resolution, small-scale MWs are underresolved and/or overdiffused. MW drag parameterizations are still necessary in NWP models at current operational resolutions of Δx ≈ 10 km. Upper GW sponge layers in the operationally configured models significantly, artificially reduced MW amplitudes in the upper stratosphere and mesosphere. In the IFS, parameterized GW drags partly compensated this deficiency, but still, total drags were ≈6 times smaller than that resolved at Δx ≈ 3 km. Meridionally propagating MWs significantly enhance zonal drag over the Drake Passage. Interestingly, drag associated with meridional fluxes of zonal momentum (i.e.,u′υ′¯ ) were important; not accounting for these terms results in a drag in the wrong direction at and below the polar night jet.Significance StatementThis study had three purposes: to quantitatively evaluate how well four state-of-the-science weather models could reproduce observed mountain waves (MWs) in the middle atmosphere, to compare the simulated MWs within the models, and to quantitatively evaluate two MW parameterizations in a widely used climate model. These models reproduced observed MWs with remarkable skill. Still, MW parameterizations are necessary in current Δx ≈ 10-km resolution global weather models. Even Δx ≈ 3-km resolution does not appear to be high enough to represent all momentum-fluxing MW scales. Meridionally propagating MWs can significantly influence zonal winds over the Drake Passage. Parameterizations that handle horizontal propagation may need to consider horizontal fluxes of horizontal momentum in order to get the direction of their forcing correct. |
| Author | van Niekerk, Annelize Bacmeister, Julio T. Gisinger, Sonja Plougonven, Riwal Ern, Manfred Sato, Kaoru Alexander, M. Joan Stein, Olaf Polichtchouk, Inna Šácha, Petr Kruse, Christopher G. Hoffmann, Lars Holt, Laura Wright, Corwin Meyer, Catrin I. Shibuya, Ryosuke |
| Author_xml | – sequence: 1 givenname: Christopher G. orcidid: 0000-0001-9808-8167 surname: Kruse fullname: Kruse, Christopher G. organization: a NorthWest Research Associates, Boulder, Colorado – sequence: 2 givenname: M. Joan surname: Alexander fullname: Alexander, M. Joan organization: a NorthWest Research Associates, Boulder, Colorado – sequence: 3 givenname: Lars surname: Hoffmann fullname: Hoffmann, Lars organization: b Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany – sequence: 4 givenname: Annelize surname: van Niekerk fullname: van Niekerk, Annelize organization: c Met Office, Exeter, United Kingdom – sequence: 5 givenname: Inna surname: Polichtchouk fullname: Polichtchouk, Inna organization: d ECMWF, Reading, United Kingdom – sequence: 6 givenname: Julio T. surname: Bacmeister fullname: Bacmeister, Julio T. organization: e Climate and Global Dynamics Laboratory, NCAR, Boulder, Colorado – sequence: 7 givenname: Laura surname: Holt fullname: Holt, Laura organization: a NorthWest Research Associates, Boulder, Colorado – sequence: 8 givenname: Riwal surname: Plougonven fullname: Plougonven, Riwal organization: f Laboratoire de Météorologie Dynamique, Ecole Polytechnique, Palaiseau, France – sequence: 9 givenname: Petr surname: Šácha fullname: Šácha, Petr organization: g Department of Atmospheric Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic, h Institute of Meteorology and Climatology (BOKU), University of Natural Resources and Life Sciences, Vienna, Vienna, Austria – sequence: 10 givenname: Corwin surname: Wright fullname: Wright, Corwin organization: i Centre for Space, Atmospheric and Oceanic Science, University of Bath, Bath, United Kingdom – sequence: 11 givenname: Kaoru surname: Sato fullname: Sato, Kaoru organization: j Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan – sequence: 12 givenname: Ryosuke surname: Shibuya fullname: Shibuya, Ryosuke organization: k Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan – sequence: 13 givenname: Sonja surname: Gisinger fullname: Gisinger, Sonja organization: l Institute of Atmospheric Physics, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany – sequence: 14 givenname: Manfred surname: Ern fullname: Ern, Manfred organization: m Institut für Energie- und Klimaforschung–Stratosphäre (IEK-7), Forschungszentrum Jülich, Jülich, Germany – sequence: 15 givenname: Catrin I. surname: Meyer fullname: Meyer, Catrin I. organization: b Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany – sequence: 16 givenname: Olaf surname: Stein fullname: Stein, Olaf organization: b Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany |
| BackLink | https://insu.hal.science/insu-03726907$$DView record in HAL |
| BookMark | eNp1kM1LAzEQxYMoWD_OXgPehK2ZpMl2j8WqVSoVVDxJGLOzdrUmNdkt-N-7teJBcC6PGX7vMbw9tu2DJ8aOQPQBcn16PbrLxpmETEgt-7DFeqClyMTAFNusJ4SU2aCQw122l9Kr6Ebm0GNPs-dEcUUlR1_ym1DSgtba-gZrzx9xRYlXMbzzZk78ro0VOuJN-F5vKIW0nFMk7gnj920c8Y34LaaEL3TAdipcJDr80X32cHF-fzbJprPLq7PRNHMDgCZTQ1eQw0qAQVHJQmsNmgwZZ5TLCygkKjQglUAUpkSnIK_0cym0UZJUofbZySZ3jgu7jPU7xk8bsLaT0dTWPrVWqFyaQuQr6ODjDbyM4aOl1NjX0Ebf_WelybUZCIBhR51uKBdDSpGq31wQdl247Qq3YyvBrgu361z9x-HqBps6-CZivfjX9wV8-4Ta |
| CitedBy_id | crossref_primary_10_1016_j_jmaa_2025_129337 crossref_primary_10_3103_S1068373924090012 crossref_primary_10_5194_amt_15_7071_2022 crossref_primary_10_1002_qj_4421 crossref_primary_10_1063_5_0228355 crossref_primary_10_5194_acp_23_7901_2023 crossref_primary_10_5194_wcd_6_927_2025 crossref_primary_10_5194_acp_22_15093_2022 crossref_primary_10_1029_2022JA030866 crossref_primary_10_1038_s41597_024_03699_x crossref_primary_10_1029_2022JD037276 crossref_primary_10_1029_2023JD038795 crossref_primary_10_5194_amt_17_5785_2024 crossref_primary_10_1029_2022MS003505 crossref_primary_10_1029_2022GL098626 crossref_primary_10_1016_j_aml_2024_109435 crossref_primary_10_1088_1751_8121_acd429 crossref_primary_10_1002_qj_70004 crossref_primary_10_1029_2022MS003585 |
| Cites_doi | 10.5194/amt-7-4517-2014 10.1029/JC086iC10p09707 10.1029/93GL01214 10.1175/JAS3897.1 10.1175/JAS-D-11-0101.1 10.1175/JAS-D-11-0159.1 10.5194/gmd-13-1999-2020 10.1002/qj.4126 10.1175/JAS-D-16-0173.1 10.1175/BAMS-D-20-0034.1 10.1002/qj.49712656802 10.1002/qj.2378 10.1029/2001RG000106 10.1175/2010JCLI3490.1 10.1002/qj.2947 10.1175/JAS-D-18-0290.1 10.1175/2009BAMS2764.1 10.17815/jlsrf-4-121-1 10.1002/qj.828 10.1002/qj.49712353704 10.21957/ldw15ckqi 10.5067/8JKNEW6BFRVD 10.1175/2010MWR3307.1 10.1175/JAS-D-14-0147.1 10.1029/2012JD018658 10.1175/JCLI-D-19-0076.1 10.1175/JAS-D-17-0350.1 10.1002/2013JD020526 10.5194/acp-17-2901-2017 10.1029/2017MS001242 10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2 10.5194/acp-15-1071-2015 10.1175/JCLI-D-12-00558.1 10.1175/1520-0469(2003)060<0667:AASNGW>2.0.CO;2 10.1175/2008MWR2596.1 10.1175/JAS3543.1 10.1175/JAS-D-12-0180.1 10.5194/gmd-10-1487-2017 10.1029/2019MS001916 10.1029/2021MS002499 10.1175/MWR2830.1 10.1175/1520-0469(1983)040<2497:TIOGWB>2.0.CO;2 10.1175/BAMS-87-7-911 10.1175/JAS-D-15-0079.1 10.1029/2020GL089557 10.1175/2009JAS3197.1 10.5194/gmd-8-3975-2015 10.1002/2016GL072007 10.1175/MWR-D-20-0286.1 10.1175/AMSMONOGRAPHS-D-18-0022.1 10.1029/2005RG000183 10.1175/JAS-D-13-0332.1 10.1175/JAS-D-14-0324.1 10.1007/BF01027469 10.2151/jmsj.2016-013 10.1002/qj.49711247406 10.1029/2009GL038587 10.5194/acp-16-9381-2016 10.1002/2015MS000431 10.5194/acp-17-8553-2017 10.1256/qj.03.73 10.1029/2008JD011241 10.1175/BAMS-D-14-00269.1 10.1029/2006GL026684 10.1175/JAS-D-16-0297.1 10.5194/amt-11-215-2018 10.5194/acp-21-9515-2021 10.1109/TGRS.2002.808356 |
| ContentType | Journal Article |
| Copyright | Copyright American Meteorological Society 2022 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Copyright American Meteorological Society 2022 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 3V. 7TG 7TN 7UA 7XB 88F 88I 8AF 8FD 8FE 8FG 8FK 8G5 ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ GUQSH H8D H96 HCIFZ KL. L.G L7M M1Q M2O M2P MBDVC P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY Q9U R05 S0X 1XC VOOES |
| DOI | 10.1175/JAS-D-21-0252.1 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Military Database (Alumni Edition) Science Database (Alumni Edition) STEM Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials eLibrary Curriculum ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student ProQuest Research Library Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Military Database Research Library Science Database (ProQuest) Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic University of Michigan SIRS Editorial Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials elibrary ProQuest AP Science SciTech Premium Collection ProQuest Military Collection Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database Oceanic Abstracts ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library Advanced Technologies Database with Aerospace ProQuest Central Basic ProQuest Science Journals ProQuest Military Collection (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Research Library Prep |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology |
| EISSN | 1520-0469 |
| EndPage | 932 |
| ExternalDocumentID | oai:HAL:insu-03726907v1 10_1175_JAS_D_21_0252_1 |
| GeographicLocations | Drake Passage |
| GeographicLocations_xml | – name: Drake Passage |
| GroupedDBID | -~X .4S .DC 29L 4.4 5GY 6TJ 7XC 88I 8AF 8FE 8FG 8FH 8G5 8R4 8R5 8WZ A6W AAYXX ABDBF ABDNZ ABDPE ABEFU ABPPZ ABUFD ABUWG ACBEA ACGFO ACGOD ACIHN ACKIV ACNCT ACUHS ACYGS AEAQA AENEX AEUYN AFFHD AFFNX AFKRA AFRAH AGFAN AI. ALMA_UNASSIGNED_HOLDINGS ALQLQ ARAPS ARCSS ATCPS AZQEC BANNL BCR BCU BEC BENPR BES BGLVJ BHPHI BKOMP BKSAR BLC BPHCQ C1A CAG CCPQU CITATION COF CS3 D1K DU5 DWQXO E.L E3Z EAD EAP EAS EBS EDH EDO EJD EMK EPL EST ESX F8P FAC FAS FJW FRP GNUQQ GUQSH H13 HCIFZ H~9 I-F K6- LK5 M1Q M2O M2P M2Q M7R MV1 OHT OK1 P2P P62 PATMY PCBAR PEA PHGZM PHGZT PQGLB PQQKQ PROAC PYCSY Q2X QF4 QM1 QM9 QN7 QO4 R05 RNS RWA RWE RWL RXW S0X SJFOW TAE TN5 TR2 TUS U5U UNMZH UPT UQL VH1 XOL XSW Y6R YQT ZY4 ~02 3V. 7TG 7TN 7UA 7XB 8FD 8FK C1K F1W H8D H96 KL. L.G L7M MBDVC PKEHL PQEST PQUKI Q9U 1XC VOOES |
| ID | FETCH-LOGICAL-c411t-38c9ecaf016a0f2955515e6e6c63c79192a3a61230aa06dac317f5bd05632e393 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 47 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000808410000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-4928 |
| IngestDate | Tue Oct 14 20:52:11 EDT 2025 Sat Jul 26 00:28:13 EDT 2025 Tue Nov 18 22:33:42 EST 2025 Sat Nov 29 04:10:52 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | http://www.ametsoc.org/PUBSReuseLicenses Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c411t-38c9ecaf016a0f2955515e6e6c63c79192a3a61230aa06dac317f5bd05632e393 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9808-8167 |
| OpenAccessLink | https://insu.hal.science/insu-03726907 |
| PQID | 2675640118 |
| PQPubID | 31463 |
| PageCount | 24 |
| ParticipantIDs | hal_primary_oai_HAL_insu_03726907v1 proquest_journals_2675640118 crossref_primary_10_1175_JAS_D_21_0252_1 crossref_citationtrail_10_1175_JAS_D_21_0252_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-01 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Boston |
| PublicationPlace_xml | – name: Boston |
| PublicationTitle | Journal of the atmospheric sciences |
| PublicationYear | 2022 |
| Publisher | American Meteorological Society |
| Publisher_xml | – name: American Meteorological Society |
| References | Kruse (ref1161) 2020; 33 Grimsdell (ref231) 2010; 67 Giorgetta (ref221) 2018; 10 Meyer (ref541) 2018; 11 Meyer (ref1281) 2018; 11 Rabier (ref601) 2010; 91 Jiang (ref361) 2013; 70 Kruse (ref411) 2018 Eckermann (ref161) 2015; 72 Kruse (ref421) 2020; 33 Hoffmann (ref321) 2016; 16 Klemp (ref391) 2008; 136 Rabier (ref1341) 2010; 91 Beljaars (ref71) 2004; 130 van Niekerk (ref691) 2021; 147 Walters (ref1441) 2017; 10 Eyring (ref921) 2010 Eckermann (ref901) 2015; 72 McLandress (ref531) 2012; 69 Scinocca (ref631) 2003; 60 Fritts (ref211) 2016; 97 Bush (ref81) 2020; 13 Hoffmann (ref301) 2013; 118 Krause (ref1141) 2018; 4 Smith (ref681) 2017; 74 Sato (ref1361) 2012; 69 McFarlane (ref1261) 1987; 44 Aumann (ref781) 2003; 41 Chahine (ref91) 2006; 87 Danabasoglu (ref111) 2020; 12 Lindzen (ref1221) 1981; 86 Holton (ref1081) 1983; 40 Lauritzen (ref461) 2015; 8 Balmino (ref61) 1993; 20 Beljaars (ref811) 2004; 130 Wright (ref1461) 2017; 17 Amemiya (ref31) 2016; 94 Chen (ref101) 2005; 62 Hoffmann (ref291) 2009; 114 Hoffmann (ref311) 2014; 7 Krause (ref401) 2018; 4 Marsh (ref1251) 2013; 26 Smith (ref671) 2019 Orr (ref1311) 2010; 23 Dipankar (ref151) 2015; 7 Dee (ref871) 2011; 137 Hastings (ref991) 1999 Sato (ref621) 2012; 69 Scinocca (ref641) 2000; 126 Zängl (ref1471) 2015; 141 Fritts (ref201) 2003; 41 Amemiya (ref771) 2016; 94 Orr (ref581) 2015; 15 Grimsdell (ref971) 2010; 67 Alexander (ref01) 2007; 64 Hoffmann (ref1051) 2014; 7 Hoffmann (ref1071) 2017; 17 Baines (ref51) 1990; 11 Leuenberger (ref471) 2010; 138 Balmino (ref801) 1993; 20 Lott (ref501) 1997; 123 Leuenberger (ref1211) 2010; 138 Rapp (ref611) 2021; 102 Heinze (ref261) 2017; 143 McFarlane (ref521) 1987; 44 Eyring (ref181) 2010 Alexander (ref21) 2009; 36 McLandress (ref1271) 2012; 69 Hoffmann (ref331) 2017; 17 Dipankar (ref891) 2015; 7 Hastings (ref251) 1999 Smith (ref1421) 2017; 74 Liu (ref1231); 14 Kruse (ref1151) 2018 Kruse (ref1171) 2015; 72 van Niekerk (ref1431) 2021; 147 Fritts (ref951) 2016; 97 Ern (ref171) 2017; 44 Danabasoglu (ref851) 2020; 12 Hoffmann (ref1041) 2013; 118 Dee (ref131) 2011; 137 Alexander (ref751) 2013; 118 Marsh (ref511) 2013; 26 Farr (ref931) 2007; 45 Kruse (ref441) 2018; 75 Orr (ref1321) 2015; 15 Kruse (ref431) 2015; 72 Farr (ref191) 2007; 45 Jiang (ref1101) 2013; 70 Orr (ref571) 2010; 23 Chen (ref841) 2005; 62 Klemp (ref1131) 2008; 136 Giorgetta (ref961) 2018; 10 DeSouza-Machado (ref881) 2007; 34 Lauritzen (ref1201) 2015; 8 Zängl (ref731) 2015; 141 Jewtoukoff (ref1091) 2015; 72 Skamarock (ref651) 2004; 132 Walters (ref701) 2017; 10 Skamarock (ref661) 2021; 149 Hoffmann (ref1061) 2016; 16 Heinze (ref1001) 2017; 143 Kruse (ref1181) 2018; 75 Miller (ref1291) 1989; 40 Klemp (ref1121) 2021; 13 Alexander (ref11) 2013; 118 Liu (ref491); 14 Kruse (ref451) 2016; 73 Scinocca (ref1371) 2003; 60 Hindley (ref1021) 2020; 47 Kruse (ref1191) 2016; 73 DeSouza-Machado (ref141) 2007; 34 Lott (ref1241) 1997; 123 Palmer (ref1331) 1986; 112 Jewtoukoff (ref351) 2015; 72 Hendricks (ref271) 2014; 71 Skamarock (ref1401) 2021; 149 Jiang (ref1111) 2019; 76 Alexander (ref741) 2007; 64 Hindley (ref281) 2020; 47 Jiang (ref371) 2019; 76 Holton (ref341) 1983; 40 Lindzen (ref481) 1981; 86 Aumann (ref41) 2003; 41 Klemp (ref381) 2021; 13 Miller (ref551) 1989; 40 Smith (ref1411) 2019 Wright (ref721) 2017; 17 Scinocca (ref1381) 2000; 126 Rapp (ref1351) 2021; 102 Haiden (ref981) 2018 Alexander (ref761) 2009; 36 Weimer (ref1451) 2021; 21 Chahine (ref831) 2006; 87 Bush (ref821) 2020; 13 Baines (ref791) 1990; 11 Palmer (ref591) 1986; 112 Hendricks (ref1011) 2014; 71 Hoffmann (ref1031) 2009; 114 Weimer (ref711) 2021; 21 Ern (ref911) 2017; 44 Skamarock (ref1391) 2004; 132 Fritts (ref941) 2003; 41 Haiden (ref241) 2018 |
| References_xml | – volume: 7 start-page: 4517 year: 2014 ident: ref1051 article-title: Intercomparison of stratospheric gravity wave observations with AIRS and IASI publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-7-4517-2014 – volume: 7 start-page: 4517 year: 2014 ident: ref311 article-title: Intercomparison of stratospheric gravity wave observations with AIRS and IASI publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-7-4517-2014 – volume: 86 start-page: 9707 year: 1981 ident: ref1221 article-title: Turbulence and stress owing to gravity wave and tidal breakdown publication-title: J. Geophys. Res. doi: 10.1029/JC086iC10p09707 – volume: 20 start-page: 1063 year: 1993 ident: ref801 article-title: The spectra of the topography of the Earth, Venus and Mars publication-title: Geophys. Res. Lett. doi: 10.1029/93GL01214 – volume: 64 start-page: 1652 year: 2007 ident: ref01 article-title: Using satellite observations to constrain parameterizations of gravity wave effects for global models publication-title: J. Atmos. Sci. doi: 10.1175/JAS3897.1 – volume: 114 start-page: D07105 year: 2009 ident: ref1031 article-title: Retrieval of stratospheric temperatures from Atmospheric Infrared Sounder radiance measurements for gravity wave studies publication-title: J. Geophys. Res. – volume: 69 start-page: 1378 year: 2012 ident: ref1361 article-title: Gravity wave characteristics in the Southern Hemisphere revealed by a high-resolution middle-atmosphere general circulation model publication-title: J. Atmos. Sci. doi: 10.1175/JAS-D-11-0101.1 – volume: 69 start-page: 802 year: 2012 ident: ref1271 article-title: Is missing orographic gravity wave drag near 60° the cause of the stratospheric zonal wind biases in chemistry–climate models? publication-title: J. Atmos. Sci. doi: 10.1175/JAS-D-11-0159.1 – volume: 13 start-page: 1999 year: 2020 ident: ref821 article-title: The first Met Office Unified Model–JULES regional atmosphere and land configuration, RAL1 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-13-1999-2020 – volume: 147 start-page: 3243 year: 2021 ident: ref691 article-title: Towards a more ‘scale-aware’ orographic gravity wave drag parametrization: Description and initial testing publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.4126 – volume: 73 start-page: 5081 year: 2016 ident: ref451 article-title: The midlatitude lower-stratospheric mountain wave “valve layer.” publication-title: J. Atmos. Sci. doi: 10.1175/JAS-D-16-0173.1 – volume: 102 start-page: E871 year: 2021 ident: ref611 article-title: SOUTHTRAC-GW: An airborne field campaign to explore gravity wave dynamics at the world’s strongest hotspot publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/BAMS-D-20-0034.1 – volume: 126 start-page: 2353 year: 2000 ident: ref1381 article-title: The parametrization of drag induced by stratified flow over anisotropic orography publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.49712656802 – volume: 141 start-page: 563 year: 2015 ident: ref1471 article-title: The ICON (Icosahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.2378 – volume: 41 year: 2003 ident: ref941 article-title: Gravity wave dynamics and effects in the middle atmosphere publication-title: Rev. Geophys. doi: 10.1029/2001RG000106 – volume: 20 start-page: 1063 year: 1993 ident: ref61 article-title: The spectra of the topography of the Earth, Venus and Mars publication-title: Geophys. Res. Lett. doi: 10.1029/93GL01214 – volume: 11 year: 1990 ident: ref791 article-title: andT Rationale for a new physically based parameterization of subgrid scale orographic effects publication-title: Tech Rep – volume: 23 start-page: 5905 year: 2010 ident: ref571 article-title: Improved middle atmosphere climate and forecasts in the ECMWF model through a nonorographic gravity wave drag parameterization publication-title: J. Climate doi: 10.1175/2010JCLI3490.1 – volume: 143 start-page: 69 year: 2017 ident: ref261 article-title: Large-eddy simulations over Germany using ICON: A comprehensive evaluation publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.2947 – volume: 64 start-page: 1652 year: 2007 ident: ref741 article-title: Using satellite observations to constrain parameterizations of gravity wave effects for global models publication-title: J. Atmos. Sci. doi: 10.1175/JAS3897.1 – volume: 76 start-page: 1565 year: 2019 ident: ref371 article-title: Stratospheric trailing gravity waves from New Zealand publication-title: J. Atmos. Sci. doi: 10.1175/JAS-D-18-0290.1 – volume: 147 start-page: 3243 year: 2021 ident: ref1431 article-title: Towards a more ‘scale-aware’ orographic gravity wave drag parametrization: Description and initial testing publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.4126 – volume: 91 start-page: 69 year: 2010 ident: ref1341 article-title: The Concordiasi project in Antarctica publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/2009BAMS2764.1 – volume: 4 start-page: A132 year: 2018 ident: ref401 article-title: JURECA: Modular supercomputer at Jülich Supercomputing Centre publication-title: J. Large-Scale Res. Facil. doi: 10.17815/jlsrf-4-121-1 – volume: 137 start-page: 553 year: 2011 ident: ref131 article-title: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.828 – volume: 123 start-page: 101 year: 1997 ident: ref501 article-title: A new subgrid-scale orographic drag parametrization: Its formulation and testing publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.49712353704 – start-page: 831 year: 2018 ident: ref981 article-title: andF Evaluation of forecasts including the upgrade Rep https org publication-title: Tech doi: 10.21957/ldw15ckqi – volume: 14 start-page: 2015 ident: ref1231 article-title: andZ Antarctic mapping project digital elevation model version NASA Rep https org publication-title: Tech doi: 10.5067/8JKNEW6BFRVD – volume: 138 start-page: 3683 year: 2010 ident: ref1211 article-title: A generalization of the SLEVE vertical coordinate publication-title: Mon. Wea. Rev. doi: 10.1175/2010MWR3307.1 – volume: 69 start-page: 802 year: 2012 ident: ref531 article-title: Is missing orographic gravity wave drag near 60° the cause of the stratospheric zonal wind biases in chemistry–climate models? publication-title: J. Atmos. Sci. doi: 10.1175/JAS-D-11-0159.1 – volume: 143 start-page: 69 year: 2017 ident: ref1001 article-title: Large-eddy simulations over Germany using ICON: A comprehensive evaluation publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.2947 – volume: 72 start-page: 2330 year: 2015 ident: ref161 article-title: Effects of horizontal geometrical spreading on the parameterization of orographic gravity wave drag. Part I: Numerical transform solutions publication-title: J. Atmos. Sci. doi: 10.1175/JAS-D-14-0147.1 – volume: 118 start-page: 416 year: 2013 ident: ref1041 article-title: A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2012JD018658 – volume: 33 start-page: 3093 year: 2020 ident: ref1161 article-title: Regional to global evolution of impacts of parameterized mountain-wave drag in the lower stratosphere publication-title: J. Climate doi: 10.1175/JCLI-D-19-0076.1 – volume: 118 start-page: 416 year: 2013 ident: ref301 article-title: A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2012JD018658 – volume: 75 start-page: 2721 year: 2018 ident: ref1181 article-title: Nondissipative and dissipative momentum deposition by mountain wave events in sheared environments publication-title: J. Atmos. Sci. doi: 10.1175/JAS-D-17-0350.1 – volume: 118 start-page: 11 589 year: 2013 ident: ref11 article-title: Seasonal cycle of orographic gravity wave occurrence above small islands in the Southern Hemisphere: Implications for effects on the general circulation publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2013JD020526 – volume: 17 start-page: 2901 year: 2017 ident: ref1071 article-title: A decadal satellite record of gravity wave activity in the lower stratosphere to study polar stratospheric cloud formation publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-17-2901-2017 – volume: 10 start-page: 1613 year: 2018 ident: ref221 article-title: ICON-A, the atmosphere component of the ICON Earth system model: I. Model description publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2017MS001242 – volume: 44 start-page: 1775 year: 1987 ident: ref521 article-title: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2 – volume: 15 start-page: 1071 year: 2015 ident: ref1321 article-title: Inclusion of mountain-wave-induced cooling for the formation of PSCs over the Antarctic Peninsula in a chemistry–climate model publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-15-1071-2015 – volume: 26 start-page: 7372 year: 2013 ident: ref511 article-title: Climate change from 1850 to 2005 simulated in CESM1(WACCM) publication-title: J. Climate doi: 10.1175/JCLI-D-12-00558.1 – volume: 60 start-page: 667 year: 2003 ident: ref1371 article-title: An accurate spectral nonorographic gravity wave drag parameterization for general circulation models publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(2003)060<0667:AASNGW>2.0.CO;2 – volume: 136 start-page: 3987 year: 2008 ident: ref1131 article-title: An upper gravity-wave absorbing layer for NWP applications publication-title: Mon. Wea. Rev. doi: 10.1175/2008MWR2596.1 – volume: 62 start-page: 3213 year: 2005 ident: ref101 article-title: Mountain-wave momentum flux in an evolving synoptic-scale flow publication-title: J. Atmos. Sci. doi: 10.1175/JAS3543.1 – volume: 70 start-page: 1668 year: 2013 ident: ref361 article-title: A modeling study of stratospheric waves over the southern Andes and Drake Passage publication-title: J. Atmos. Sci. doi: 10.1175/JAS-D-12-0180.1 – start-page: 163 year: 2018 ident: ref1151 article-title: Mountain wave propagation and attenuation and their influences on Earth atmosphere Ph thesis University – volume: 10 start-page: 1487 year: 2017 ident: ref1441 article-title: The Met Office Unified Model global atmosphere 6.0/6.1 and JULES global land 6.0/6.1 configurations publication-title: Geosci. Model Dev. doi: 10.5194/gmd-10-1487-2017 – volume: 12 year: 2020 ident: ref111 article-title: The Community Earth System Model version 2 (CESM2) publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2019MS001916 – volume: 75 start-page: 2721 year: 2018 ident: ref441 article-title: Nondissipative and dissipative momentum deposition by mountain wave events in sheared environments publication-title: J. Atmos. Sci. doi: 10.1175/JAS-D-17-0350.1 – volume: 13 year: 2021 ident: ref1121 article-title: Adapting the MPAS dynamical core for applications extending into the thermosphere publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2021MS002499 – volume: 132 start-page: 3019 year: 2004 ident: ref651 article-title: Evaluating mesoscale NWP models using kinetic energy spectra publication-title: Mon. Wea. Rev. doi: 10.1175/MWR2830.1 – volume: 137 start-page: 553 year: 2011 ident: ref871 article-title: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.828 – volume: 40 start-page: 2497 year: 1983 ident: ref341 article-title: The influence of gravity wave breaking on the general circulation of the middle atmosphere publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1983)040<2497:TIOGWB>2.0.CO;2 – volume: 87 start-page: 911 year: 2006 ident: ref91 article-title: AIRS: Improving weather forecasting and providing new data on greenhouse gases publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/BAMS-87-7-911 – volume: 72 start-page: 4372 year: 2015 ident: ref431 article-title: Gravity wave diagnostics and characteristics in mesoscale fields publication-title: J. Atmos. Sci. doi: 10.1175/JAS-D-15-0079.1 – volume: 47 start-page: e2020GL089557 year: 2020 ident: ref1021 article-title: An 18-year climatology of directional stratospheric gravity wave momentum flux from 3-D satellite observations publication-title: Geophys. Res. Lett. doi: 10.1029/2020GL089557 – start-page: 163 year: 2018 ident: ref411 article-title: Mountain wave propagation and attenuation and their influences on Earth atmosphere Ph thesis University – volume: 73 start-page: 5081 year: 2016 ident: ref1191 article-title: The midlatitude lower-stratospheric mountain wave “valve layer.” publication-title: J. Atmos. Sci. doi: 10.1175/JAS-D-16-0173.1 – volume: 67 start-page: 1617 year: 2010 ident: ref971 article-title: Model study of waves generated by convection with direct validation via satellite publication-title: J. Atmos. Sci. doi: 10.1175/2009JAS3197.1 – volume: 8 start-page: 3975 year: 2015 ident: ref461 article-title: NCAR_Topo (v1.0): NCAR global model topography generation software for unstructured grids publication-title: Geosci. Model Dev. doi: 10.5194/gmd-8-3975-2015 – volume: 141 start-page: 563 year: 2015 ident: ref731 article-title: The ICON (Icosahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.2378 – volume: 44 start-page: 475 year: 2017 ident: ref171 article-title: Directional gravity wave momentum fluxes in the stratosphere derived from high-resolution AIRS temperature data publication-title: Geophys. Res. Lett. doi: 10.1002/2016GL072007 – volume: 102 start-page: E871 year: 2021 ident: ref1351 article-title: SOUTHTRAC-GW: An airborne field campaign to explore gravity wave dynamics at the world’s strongest hotspot publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/BAMS-D-20-0034.1 – volume: 149 start-page: 571 year: 2021 ident: ref1401 article-title: A fully compressible nonhydrostatic deep-atmosphere equations solver for MPAS publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-D-20-0286.1 – start-page: 59 year: 2019 ident: ref671 article-title: years of progress on mountain meteorology research Century of Progress in Atmospheric and Related Celebrating the American Meteorological Centennial Meteor No Meteor https org publication-title: Sciences Society doi: 10.1175/AMSMONOGRAPHS-D-18-0022.1 – volume: 10 start-page: 1613 year: 2018 ident: ref961 article-title: ICON-A, the atmosphere component of the ICON Earth system model: I. Model description publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2017MS001242 – volume: 45 start-page: RG2004 year: 2007 ident: ref191 article-title: The Shuttle Radar Topography Mission publication-title: Rev. Geophys. doi: 10.1029/2005RG000183 – volume: 14 start-page: 2015 ident: ref491 article-title: andZ Antarctic mapping project digital elevation model version NASA Rep https org publication-title: Tech doi: 10.5067/8JKNEW6BFRVD – volume: 11 year: 1990 ident: ref51 article-title: andT Rationale for a new physically based parameterization of subgrid scale orographic effects publication-title: Tech Rep – volume: 71 start-page: 1583 year: 2014 ident: ref1011 article-title: What is the source of the stratospheric gravity wave belt in austral winter? publication-title: J. Atmos. Sci. doi: 10.1175/JAS-D-13-0332.1 – volume: 72 start-page: 3449 year: 2015 ident: ref351 article-title: Comparison of gravity waves in the Southern Hemisphere derived from balloon observations and the ECMWF analyses publication-title: J. Atmos. Sci. doi: 10.1175/JAS-D-14-0324.1 – volume: 40 start-page: 84 year: 1989 ident: ref1291 article-title: Parameterization and influence of subgridscale orography in general circulation and numerical weather prediction models publication-title: Meteor. Atmos. Phys. doi: 10.1007/BF01027469 – volume: 94 start-page: 237 year: 2016 ident: ref31 article-title: A new gravity wave parameterization including three-dimensional propagation publication-title: J. Meteor. Soc. Japan doi: 10.2151/jmsj.2016-013 – volume: 123 start-page: 101 year: 1997 ident: ref1241 article-title: A new subgrid-scale orographic drag parametrization: Its formulation and testing publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.49712353704 – volume: 112 start-page: 1001 year: 1986 ident: ref591 article-title: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parametrization publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.49711247406 – volume: 8 start-page: 3975 year: 2015 ident: ref1201 article-title: NCAR_Topo (v1.0): NCAR global model topography generation software for unstructured grids publication-title: Geosci. Model Dev. doi: 10.5194/gmd-8-3975-2015 – volume: 36 start-page: L12816 year: 2009 ident: ref761 article-title: Momentum flux estimates for South Georgia island mountain waves in the stratosphere observed via satellite publication-title: Geophys. Res. Lett. doi: 10.1029/2009GL038587 – volume: 132 start-page: 3019 year: 2004 ident: ref1391 article-title: Evaluating mesoscale NWP models using kinetic energy spectra publication-title: Mon. Wea. Rev. doi: 10.1175/MWR2830.1 – volume: 118 start-page: 11 589 year: 2013 ident: ref751 article-title: Seasonal cycle of orographic gravity wave occurrence above small islands in the Southern Hemisphere: Implications for effects on the general circulation publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2013JD020526 – volume: 47 start-page: e2020GL089557 year: 2020 ident: ref281 article-title: An 18-year climatology of directional stratospheric gravity wave momentum flux from 3-D satellite observations publication-title: Geophys. Res. Lett. doi: 10.1029/2020GL089557 – volume: 16 start-page: 9381 year: 2016 ident: ref321 article-title: Stratospheric gravity waves at Southern Hemisphere orographic hotspots: 2003–2014 AIRS/Aqua observations publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-16-9381-2016 – start-page: 426 year: 2010 ident: ref181 article-title: andD SPARC CCMVal report on the evaluation of chemistry - climate models SPARC Tech Rep pp http www sparc climate org publications sparc reports – volume: 13 year: 2021 ident: ref381 article-title: Adapting the MPAS dynamical core for applications extending into the thermosphere publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2021MS002499 – volume: 16 start-page: 9381 year: 2016 ident: ref1061 article-title: Stratospheric gravity waves at Southern Hemisphere orographic hotspots: 2003–2014 AIRS/Aqua observations publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-16-9381-2016 – volume: 7 start-page: 963 year: 2015 ident: ref151 article-title: Large eddy simulation using the general circulation model ICON publication-title: J. Adv. Model. Earth Syst. doi: 10.1002/2015MS000431 – volume: 91 start-page: 69 year: 2010 ident: ref601 article-title: The Concordiasi project in Antarctica publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/2009BAMS2764.1 – volume: 26 start-page: 7372 year: 2013 ident: ref1251 article-title: Climate change from 1850 to 2005 simulated in CESM1(WACCM) publication-title: J. Climate doi: 10.1175/JCLI-D-12-00558.1 – volume: 44 start-page: 1775 year: 1987 ident: ref1261 article-title: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2 – volume: 17 start-page: 8553 year: 2017 ident: ref1461 article-title: Exploring gravity wave characteristics in 3-D using a novel S-transform technique: AIRS/Aqua measurements over the southern Andes and Drake Passage publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-17-8553-2017 – volume: 130 start-page: 1327 year: 2004 ident: ref71 article-title: A new parametrization of turbulent orographic form drag publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1256/qj.03.73 – volume: 114 start-page: D07105 year: 2009 ident: ref291 article-title: Retrieval of stratospheric temperatures from Atmospheric Infrared Sounder radiance measurements for gravity wave studies publication-title: J. Geophys. Res. doi: 10.1029/2008JD011241 – start-page: 147 year: 1999 ident: ref251 article-title: andP Global One kilometer Base Elevation GLOBE Rep pp https www ngdc noaa gov mgg topo report globedocumentationmanual pdf publication-title: Tech – volume: 97 start-page: 425 year: 2016 ident: ref951 article-title: The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An airborne and ground-based exploration of gravity wave propagation and effects from their sources throughout the lower and middle atmosphere publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/BAMS-D-14-00269.1 – volume: 15 start-page: 1071 year: 2015 ident: ref581 article-title: Inclusion of mountain-wave-induced cooling for the formation of PSCs over the Antarctic Peninsula in a chemistry–climate model publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-15-1071-2015 – volume: 126 start-page: 2353 year: 2000 ident: ref641 article-title: The parametrization of drag induced by stratified flow over anisotropic orography publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.49712656802 – volume: 97 start-page: 425 year: 2016 ident: ref211 article-title: The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An airborne and ground-based exploration of gravity wave propagation and effects from their sources throughout the lower and middle atmosphere publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/BAMS-D-14-00269.1 – volume: 71 start-page: 1583 year: 2014 ident: ref271 article-title: What is the source of the stratospheric gravity wave belt in austral winter? publication-title: J. Atmos. Sci. doi: 10.1175/JAS-D-13-0332.1 – volume: 72 start-page: 4372 year: 2015 ident: ref1171 article-title: Gravity wave diagnostics and characteristics in mesoscale fields publication-title: J. Atmos. Sci. doi: 10.1175/JAS-D-15-0079.1 – volume: 33 start-page: 3093 year: 2020 ident: ref421 article-title: Regional to global evolution of impacts of parameterized mountain-wave drag in the lower stratosphere publication-title: J. Climate doi: 10.1175/JCLI-D-19-0076.1 – volume: 12 year: 2020 ident: ref851 article-title: The Community Earth System Model version 2 (CESM2) publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2019MS001916 – volume: 41 year: 2003 ident: ref201 article-title: Gravity wave dynamics and effects in the middle atmosphere publication-title: Rev. Geophys. doi: 10.1029/2001RG000106 – volume: 34 start-page: L01802 year: 2007 ident: ref881 article-title: Fast forward radiative transfer modeling of 4.3 μm nonlocal thermodynamic equilibrium effects for infrared temperature sounders publication-title: Geophys. Res. Lett. doi: 10.1029/2006GL026684 – volume: 136 start-page: 3987 year: 2008 ident: ref391 article-title: An upper gravity-wave absorbing layer for NWP applications publication-title: Mon. Wea. Rev. doi: 10.1175/2008MWR2596.1 – volume: 74 start-page: 1381 year: 2017 ident: ref681 article-title: Broad-spectrum mountain waves publication-title: J. Atmos. Sci. doi: 10.1175/JAS-D-16-0297.1 – volume: 67 start-page: 1617 year: 2010 ident: ref231 article-title: Model study of waves generated by convection with direct validation via satellite publication-title: J. Atmos. Sci. doi: 10.1175/2009JAS3197.1 – volume: 34 start-page: L01802 year: 2007 ident: ref141 article-title: Fast forward radiative transfer modeling of 4.3 μm nonlocal thermodynamic equilibrium effects for infrared temperature sounders publication-title: Geophys. Res. Lett. doi: 10.1029/2006GL026684 – volume: 70 start-page: 1668 year: 2013 ident: ref1101 article-title: A modeling study of stratospheric waves over the southern Andes and Drake Passage publication-title: J. Atmos. Sci. doi: 10.1175/JAS-D-12-0180.1 – volume: 11 start-page: 215 year: 2018 ident: ref1281 article-title: Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-11-215-2018 – volume: 10 start-page: 1487 year: 2017 ident: ref701 article-title: The Met Office Unified Model global atmosphere 6.0/6.1 and JULES global land 6.0/6.1 configurations publication-title: Geosci. Model Dev. doi: 10.5194/gmd-10-1487-2017 – volume: 45 start-page: RG2004 year: 2007 ident: ref931 article-title: The Shuttle Radar Topography Mission publication-title: Rev. Geophys. doi: 10.1029/2005RG000183 – volume: 11 start-page: 215 year: 2018 ident: ref541 article-title: Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-11-215-2018 – volume: 36 start-page: L12816 year: 2009 ident: ref21 article-title: Momentum flux estimates for South Georgia island mountain waves in the stratosphere observed via satellite publication-title: Geophys. Res. Lett. doi: 10.1029/2009GL038587 – volume: 21 start-page: 9515 year: 2021 ident: ref1451 article-title: Mountain-wave-induced polar stratospheric clouds and their representation in the global chemistry model ICON-ART publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-21-9515-2021 – volume: 72 start-page: 3449 year: 2015 ident: ref1091 article-title: Comparison of gravity waves in the Southern Hemisphere derived from balloon observations and the ECMWF analyses publication-title: J. Atmos. Sci. doi: 10.1175/JAS-D-14-0324.1 – volume: 72 start-page: 2330 year: 2015 ident: ref901 article-title: Effects of horizontal geometrical spreading on the parameterization of orographic gravity wave drag. Part I: Numerical transform solutions publication-title: J. Atmos. Sci. doi: 10.1175/JAS-D-14-0147.1 – volume: 76 start-page: 1565 year: 2019 ident: ref1111 article-title: Stratospheric trailing gravity waves from New Zealand publication-title: J. Atmos. Sci. doi: 10.1175/JAS-D-18-0290.1 – volume: 94 start-page: 237 year: 2016 ident: ref771 article-title: A new gravity wave parameterization including three-dimensional propagation publication-title: J. Meteor. Soc. Japan doi: 10.2151/jmsj.2016-013 – volume: 130 start-page: 1327 year: 2004 ident: ref811 article-title: A new parametrization of turbulent orographic form drag publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1256/qj.03.73 – volume: 17 start-page: 2901 year: 2017 ident: ref331 article-title: A decadal satellite record of gravity wave activity in the lower stratosphere to study polar stratospheric cloud formation publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-17-2901-2017 – volume: 149 start-page: 571 year: 2021 ident: ref661 article-title: A fully compressible nonhydrostatic deep-atmosphere equations solver for MPAS publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-D-20-0286.1 – volume: 21 start-page: 9515 year: 2021 ident: ref711 article-title: Mountain-wave-induced polar stratospheric clouds and their representation in the global chemistry model ICON-ART publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-21-9515-2021 – volume: 86 start-page: 9707 year: 1981 ident: ref481 article-title: Turbulence and stress owing to gravity wave and tidal breakdown publication-title: J. Geophys. Res. doi: 10.1029/JC086iC10p09707 – start-page: 147 year: 1999 ident: ref991 article-title: andP Global One kilometer Base Elevation GLOBE Rep pp https www ngdc noaa gov mgg topo report globedocumentationmanual pdf publication-title: Tech – volume: 60 start-page: 667 year: 2003 ident: ref631 article-title: An accurate spectral nonorographic gravity wave drag parameterization for general circulation models publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(2003)060<0667:AASNGW>2.0.CO;2 – volume: 74 start-page: 1381 year: 2017 ident: ref1421 article-title: Broad-spectrum mountain waves publication-title: J. Atmos. Sci. doi: 10.1175/JAS-D-16-0297.1 – volume: 40 start-page: 2497 year: 1983 ident: ref1081 article-title: The influence of gravity wave breaking on the general circulation of the middle atmosphere publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1983)040<2497:TIOGWB>2.0.CO;2 – start-page: 426 year: 2010 ident: ref921 article-title: andD SPARC CCMVal report on the evaluation of chemistry - climate models SPARC Tech Rep pp http www sparc climate org publications sparc reports – volume: 112 start-page: 1001 year: 1986 ident: ref1331 article-title: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parametrization publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.49711247406 – start-page: 59 year: 2019 ident: ref1411 article-title: years of progress on mountain meteorology research Century of Progress in Atmospheric and Related Celebrating the American Meteorological Centennial Meteor No Meteor https org publication-title: Sciences Society doi: 10.1175/AMSMONOGRAPHS-D-18-0022.1 – volume: 41 start-page: 253 year: 2003 ident: ref41 article-title: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2002.808356 – volume: 41 start-page: 253 year: 2003 ident: ref781 article-title: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2002.808356 – volume: 23 start-page: 5905 year: 2010 ident: ref1311 article-title: Improved middle atmosphere climate and forecasts in the ECMWF model through a nonorographic gravity wave drag parameterization publication-title: J. Climate doi: 10.1175/2010JCLI3490.1 – volume: 69 start-page: 1378 year: 2012 ident: ref621 article-title: Gravity wave characteristics in the Southern Hemisphere revealed by a high-resolution middle-atmosphere general circulation model publication-title: J. Atmos. Sci. doi: 10.1175/JAS-D-11-0101.1 – volume: 7 start-page: 963 year: 2015 ident: ref891 article-title: Large eddy simulation using the general circulation model ICON publication-title: J. Adv. Model. Earth Syst. doi: 10.1002/2015MS000431 – volume: 87 start-page: 911 year: 2006 ident: ref831 article-title: AIRS: Improving weather forecasting and providing new data on greenhouse gases publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/BAMS-87-7-911 – volume: 62 start-page: 3213 year: 2005 ident: ref841 article-title: Mountain-wave momentum flux in an evolving synoptic-scale flow publication-title: J. Atmos. Sci. doi: 10.1175/JAS3543.1 – volume: 4 start-page: A132 year: 2018 ident: ref1141 article-title: JURECA: Modular supercomputer at Jülich Supercomputing Centre publication-title: J. Large-Scale Res. Facil. doi: 10.17815/jlsrf-4-121-1 – volume: 44 start-page: 475 year: 2017 ident: ref911 article-title: Directional gravity wave momentum fluxes in the stratosphere derived from high-resolution AIRS temperature data publication-title: Geophys. Res. Lett. doi: 10.1002/2016GL072007 – volume: 40 start-page: 84 year: 1989 ident: ref551 article-title: Parameterization and influence of subgridscale orography in general circulation and numerical weather prediction models publication-title: Meteor. Atmos. Phys. doi: 10.1007/BF01027469 – volume: 17 start-page: 8553 year: 2017 ident: ref721 article-title: Exploring gravity wave characteristics in 3-D using a novel S-transform technique: AIRS/Aqua measurements over the southern Andes and Drake Passage publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-17-8553-2017 – volume: 13 start-page: 1999 year: 2020 ident: ref81 article-title: The first Met Office Unified Model–JULES regional atmosphere and land configuration, RAL1 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-13-1999-2020 – start-page: 831 year: 2018 ident: ref241 article-title: andF Evaluation of forecasts including the upgrade Rep https org publication-title: Tech doi: 10.21957/ldw15ckqi – volume: 138 start-page: 3683 year: 2010 ident: ref471 article-title: A generalization of the SLEVE vertical coordinate publication-title: Mon. Wea. Rev. doi: 10.1175/2010MWR3307.1 |
| SSID | ssj0000271 |
| Score | 2.5601382 |
| Snippet | Four state-of-the-science numerical weather prediction (NWP) models were used to perform mountain wave (MW)-resolving hindcasts over the Drake Passage of a... |
| SourceID | hal proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 909 |
| SubjectTerms | Amplitudes Atmosphere Atmospheric Infrared Sounder Atmospheric models Climate models Direction Domains Drag Fluxes Fluxing Global weather Lee waves Lower mantle Mesosphere Meteorological satellites Middle atmosphere Modelling Momentum Mountain waves Mountains Numerical prediction Numerical weather forecasting Radiative transfer Resolution Sciences of the Universe Stratosphere Temperature Upper stratosphere Weather Weather forecasting Winds Zonal winds |
| Title | Observed and Modeled Mountain Waves from the Surface to the Mesosphere near the Drake Passage |
| URI | https://www.proquest.com/docview/2675640118 https://insu.hal.science/insu-03726907 |
| Volume | 79 |
| WOSCitedRecordID | wos000808410000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Collection customDbUrl: eissn: 1520-0469 dateEnd: 20231207 omitProxy: false ssIdentifier: ssj0000271 issn: 0022-4928 databaseCode: PCBAR dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1520-0469 dateEnd: 20231207 omitProxy: false ssIdentifier: ssj0000271 issn: 0022-4928 databaseCode: PATMY dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Military Database customDbUrl: eissn: 1520-0469 dateEnd: 20231207 omitProxy: false ssIdentifier: ssj0000271 issn: 0022-4928 databaseCode: M1Q dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/military providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1520-0469 dateEnd: 20231207 omitProxy: false ssIdentifier: ssj0000271 issn: 0022-4928 databaseCode: P5Z dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1520-0469 dateEnd: 20231207 omitProxy: false ssIdentifier: ssj0000271 issn: 0022-4928 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1520-0469 dateEnd: 20231207 omitProxy: false ssIdentifier: ssj0000271 issn: 0022-4928 databaseCode: M2O dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1520-0469 dateEnd: 20231207 omitProxy: false ssIdentifier: ssj0000271 issn: 0022-4928 databaseCode: M2P dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbYLQcuvBELpbIEQlzcJrbzOqGl26pC3W2gICokZDl-iIoqKcnu_n5mXG8rkODCZSInjmRl7JnPk_E3hLxKJGwbeC6Yt94wKRvJtPCCJSZYP8FFHg4KHxeLRXl2VtUx4DbEtMqNTQyG2nYGY-R7HJBtLvGc5NvLnwyrRuHf1VhCY0S2kKlMjsnWu4NF_fHGFvMi3fCFy4qXkdwHfObe--kpmzEOm2me8d30N780-o5ZkX8Y5-BxDu_971jvk7sRa9Lp1eR4QG659iGZzAEmd32IptPXdP_iHDBraD0i304aDNI6S3Vr6TwUycHrqsUAAv2i126geCCFAmykp6vea-PosgvNuRu6AUkKHG1h-YR7s17_cLQGgA5m6zH5fHjwaf-IxfoLzMg0XTJRmsoZ7QEV6sTzKgN0lbnc5SYXpqgAG2qhkb4l0TrJrTaARXzWWMBUgjtRiSdk3Hate0pokxstteGpzYysvG9skXhbNoUHuMrLZEJ2N19fmUhOjjUyLlTYpBSZAnWpmeKpQnWpdELeXL9wecXL8feuL0Gd172QT_toeqww118louAYH1hDr-2NLlVcxoO6UeSzfz9-Tu5wnGMhpWebjJf9yr0gt816eT70O3FW7pDRPP2Akp8EWYOss6-_ABnd7G4 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQYIL74qFApZ4iIvbxHZehwqtulRbulmKWkQvyHUcW1RUSUl2F_VP8RuZ8SatQIJbD5wiJ84h8eeZb2zPN4S8DCSEDTwWzJXOMCkLybRwggXGWz_BRewThSfJdJoeHWX7K-RnnwuDxyp7m-gNdVkbXCPf5MBsY4l5km_PvjOsGoW7q30JjSUs9uz5DwjZ2q3dEYzvK8533h1uj1lXVYAZGYYzJlKTWaMdcB0dOJ5FwBkiG9vYxMIkGTAeLTSKkgRaB3GpDXhYFxUlMAXBrUDxJTD51yUwHZxRefjx0vLzJOzVyWXG005KCDz05vvhARsxDqE7j_hG-JsXvPYVz2D-4Qq8f9u587_9mbvkdsek6XAJ_XtkxVb3ySCHIKBu_F4BfU23T0-AkfvWA_LlQ4FL0Lakuipp7ksA4XVe4fII_awXtqWYbkOBFNODeeO0sXRW-2Zu27pFCQZLK_hWf2_U6G-W7kP4AUb5Ifl0JV-7RlarurKPCC1io6U2PCwjIzPnijIJXJkWiQMyztNgQDb60Vamk17HCiCnyodgSaQAHmqkeKgQHiockDcXL5wtVUf-3vUFwOeiF6qFj4cThZkMKhAJx9WPBfRa77GjOiPVqkvgPP734-fk5vgwn6jJ7nTvCbnFEd_-8NI6WZ01c_uU3DCL2UnbPPPzgZLjq4bZL65hQo0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFqFeeKMuFLDEQ1zcTew8DwgtG1Yt3V1WlIpekHEcW1RUSUl2F_HX-HXMeJNWIMGtB06RE-eQ-PPMN-N5EPLUC8Bs4JFgtrCaBUEeMCWsYJ520k9wEblE4Uk8myXHx-l8g_zscmEwrLKTiU5QF5VGH_mAA7ONAsyTHNg2LGKejV-dfWPYQQpPWrt2GmuIHJgf38F8a17uZ7DWzzgfv_kw2mNthwGmA99fMJHo1Ghlgfcoz_I0BP4QmshEOhI6ToH9KKGwQImnlBcVSoO2tWFeAGsQ3AgsxATifzOJYo_3yOZ89Hr4_kIP8NjvapUHKU_awkKgrwdvh4csYxwMeR7yXf83nXjlC0Zk_qEYnLYb3_if_9NNcr3l2HS43hS3yIYpb5P-FMyDqnanCPQ5HZ2eAFd3ozvk07scndOmoKos6NQ1B8LrskTHCf2oVqahmIhDgS7Tw2VtlTZ0Ubnh1DRVg8UZDC3hW929rFZfDZ2DYQLi-i45upSvvUd6ZVWabULzSKtAae4XoQ5Sa_Mi9myR5LEFms4Tr092u5WXui3Kjr1BTqUzzuJQAlRkJrkvESrS75MX5y-creuR_H3qE4DS-SysI743nEjMcZCeiDn6RVYwa6fDkWzFVyMvQHT_348fk2uALjnZnx08IFscoe6imnZIb1EvzUNyVa8WJ039qN0clHy-bJz9AsFATIU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observed+and+Modeled+Mountain+Waves+from+the+Surface+to+the+Mesosphere+near+the+Drake+Passage&rft.jtitle=Journal+of+the+atmospheric+sciences&rft.au=Kruse%2C+Christopher+G&rft.au=Alexander%2C+M+Joan&rft.au=Hoffmann%2C+Lars&rft.au=Annelize+van+Niekerk&rft.date=2022-04-01&rft.pub=American+Meteorological+Society&rft.issn=0022-4928&rft.eissn=1520-0469&rft.volume=79&rft.issue=4&rft.spage=909&rft_id=info:doi/10.1175%2FJAS-D-21-0252.1&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-4928&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-4928&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-4928&client=summon |