A review on application and heat transfer enhancement of supercritical CO2 in low-grade heat conversion
•The experimental tests on supercritical CO2 power cycle are briefly reviewed.•The heat transfer mechanisms present the principles for heat transfer optimization;•The various approaches of heat transfer enhancement are reviewed and discussed;•Buoyancy criteria provide guidance for the selection of e...
Saved in:
| Published in: | Applied energy Vol. 269; p. 114962 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.07.2020
|
| Subjects: | |
| ISSN: | 0306-2619, 1872-9118 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •The experimental tests on supercritical CO2 power cycle are briefly reviewed.•The heat transfer mechanisms present the principles for heat transfer optimization;•The various approaches of heat transfer enhancement are reviewed and discussed;•Buoyancy criteria provide guidance for the selection of enhancement approaches.
Trans-critical CO2 Rankine system is a new technology for low-grade heat utilization which has high energy conversion efficiency and exergo-economic efficiency. The gas heater is one of the most important components in trans-critical CO2 Rankine system, which is a crucial challenge for its practical application because of high pressure and abrupt change in thermo-physical properties of supercritical CO2.The aim of this paper is to provide basic background knowledge on trans-critical CO2 Rankine cycle in low-grade heat conversion and present a review of experimental tests and demonstrations on supercritical CO2 operation considering heat-to-power systems. Since the heat transfer criteria and enhancement of supercritical CO2 is vital for its application in the real-scale compact heat exchanger design and system operation, this review further discusses the turbulent convective heat transfer and its enhancement approaches of supercritical CO2 in heating system. A comprehensive summary of the heat transfer mechanisms and criteria as well as their derivation and evaluation methods is conducted to provide some references for the system operation, heat exchanger design and heat transfer enhancement. Some of the shortcomings of the existing research are pointed out. Based on the above discussion, this review presents the basic ideas and approaches of heat transfer enhancement and discus the application of heat transfer criteria in heat transfer enhancements. Finally, the authors bring forward the way of latter researching of supercritical heat transfer and enhanced measures. |
|---|---|
| AbstractList | Trans-critical CO₂ Rankine system is a new technology for low-grade heat utilization which has high energy conversion efficiency and exergo-economic efficiency. The gas heater is one of the most important components in trans-critical CO₂ Rankine system, which is a crucial challenge for its practical application because of high pressure and abrupt change in thermo-physical properties of supercritical CO₂.The aim of this paper is to provide basic background knowledge on trans-critical CO₂ Rankine cycle in low-grade heat conversion and present a review of experimental tests and demonstrations on supercritical CO₂ operation considering heat-to-power systems. Since the heat transfer criteria and enhancement of supercritical CO₂ is vital for its application in the real-scale compact heat exchanger design and system operation, this review further discusses the turbulent convective heat transfer and its enhancement approaches of supercritical CO₂ in heating system. A comprehensive summary of the heat transfer mechanisms and criteria as well as their derivation and evaluation methods is conducted to provide some references for the system operation, heat exchanger design and heat transfer enhancement. Some of the shortcomings of the existing research are pointed out. Based on the above discussion, this review presents the basic ideas and approaches of heat transfer enhancement and discus the application of heat transfer criteria in heat transfer enhancements. Finally, the authors bring forward the way of latter researching of supercritical heat transfer and enhanced measures. •The experimental tests on supercritical CO2 power cycle are briefly reviewed.•The heat transfer mechanisms present the principles for heat transfer optimization;•The various approaches of heat transfer enhancement are reviewed and discussed;•Buoyancy criteria provide guidance for the selection of enhancement approaches. Trans-critical CO2 Rankine system is a new technology for low-grade heat utilization which has high energy conversion efficiency and exergo-economic efficiency. The gas heater is one of the most important components in trans-critical CO2 Rankine system, which is a crucial challenge for its practical application because of high pressure and abrupt change in thermo-physical properties of supercritical CO2.The aim of this paper is to provide basic background knowledge on trans-critical CO2 Rankine cycle in low-grade heat conversion and present a review of experimental tests and demonstrations on supercritical CO2 operation considering heat-to-power systems. Since the heat transfer criteria and enhancement of supercritical CO2 is vital for its application in the real-scale compact heat exchanger design and system operation, this review further discusses the turbulent convective heat transfer and its enhancement approaches of supercritical CO2 in heating system. A comprehensive summary of the heat transfer mechanisms and criteria as well as their derivation and evaluation methods is conducted to provide some references for the system operation, heat exchanger design and heat transfer enhancement. Some of the shortcomings of the existing research are pointed out. Based on the above discussion, this review presents the basic ideas and approaches of heat transfer enhancement and discus the application of heat transfer criteria in heat transfer enhancements. Finally, the authors bring forward the way of latter researching of supercritical heat transfer and enhanced measures. |
| ArticleNumber | 114962 |
| Author | Zhang, Shijie Dang, Chaobin Liu, Chao Xu, Xiaoxiao |
| Author_xml | – sequence: 1 givenname: Shijie surname: Zhang fullname: Zhang, Shijie organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, No. 174 Shazhengjie, Shapingba, Chongqing 400044, PR China – sequence: 2 givenname: Xiaoxiao surname: Xu fullname: Xu, Xiaoxiao email: xuxiaoxiao@cqu.edu.cn organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, No. 174 Shazhengjie, Shapingba, Chongqing 400044, PR China – sequence: 3 givenname: Chao surname: Liu fullname: Liu, Chao organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, No. 174 Shazhengjie, Shapingba, Chongqing 400044, PR China – sequence: 4 givenname: Chaobin surname: Dang fullname: Dang, Chaobin organization: Department of Human and Engineered Environmental Studies, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8563, Japan |
| BookMark | eNqFkE1LAzEQhoNUsFb_guToZWu-ursBD5biFwhe9Byy2dk2ZZusSar4701dvXjxNMPwPi_Mc4omzjtA6IKSOSW0vNrO9QAOwvpzzgjLRypkyY7QlNYVKySl9QRNCSdlwUoqT9BpjFtCCKOMTNF6iQO8W_jA3mE9DL01OtnD7lq8AZ1wCtrFDgIGt9HOwA5cwr7DcT9AMMGmTPR49cywdbj3H8U66BZG1nj3DiHmvjN03Ok-wvnPnKHXu9uX1UPx9Hz_uFo-FUZQmgqmWVVJoA1U0EpJuhoEq-pGEMlqUUredkJL0RBec8nz-9UiB2rgZdMstNB8hi7H3iH4tz3EpHY2Guh77cDvo2JCkFISvuA5Wo5RE3yMATo1BLvT4VNRog5m1Vb9mlUHs2o0m8HrP6Cx6dtadmX7__GbEYfsIasPKhoL2WxrA5ikWm__q_gCT56bcA |
| CitedBy_id | crossref_primary_10_1016_j_energy_2025_134896 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122510 crossref_primary_10_1016_j_applthermaleng_2022_119922 crossref_primary_10_1016_j_enconman_2024_118850 crossref_primary_10_3390_math13020293 crossref_primary_10_3390_en15228358 crossref_primary_10_1016_j_nucengdes_2023_112184 crossref_primary_10_3389_fenrg_2023_1249849 crossref_primary_10_1016_j_pmatsci_2023_101107 crossref_primary_10_1016_j_applthermaleng_2025_128436 crossref_primary_10_1016_j_tsep_2024_102442 crossref_primary_10_1016_j_applthermaleng_2020_116139 crossref_primary_10_1016_j_surfcoat_2025_132597 crossref_primary_10_1016_j_applthermaleng_2023_120198 crossref_primary_10_1016_j_applthermaleng_2022_119727 crossref_primary_10_1016_j_ijheatmasstransfer_2025_127206 crossref_primary_10_1016_j_energy_2024_132588 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123258 crossref_primary_10_1017_jfm_2025_10563 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124563 crossref_primary_10_1016_j_egyr_2021_06_089 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125598 crossref_primary_10_1016_j_ijft_2024_100798 crossref_primary_10_1016_j_ecmx_2025_100988 crossref_primary_10_1016_j_enconman_2022_115993 crossref_primary_10_1016_j_apenergy_2023_121666 crossref_primary_10_1016_j_applthermaleng_2021_117839 crossref_primary_10_1016_j_applthermaleng_2025_126380 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124647 crossref_primary_10_1016_j_supflu_2022_105738 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124797 crossref_primary_10_1063_5_0254925 crossref_primary_10_1016_j_icheatmasstransfer_2024_107766 crossref_primary_10_1016_j_apt_2023_104104 crossref_primary_10_1016_j_applthermaleng_2022_118372 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126252 crossref_primary_10_1016_j_applthermaleng_2024_123165 crossref_primary_10_1016_j_icheatmasstransfer_2025_109275 crossref_primary_10_1016_j_enconman_2021_114994 crossref_primary_10_1080_10407782_2023_2257382 crossref_primary_10_1016_j_applthermaleng_2024_122630 crossref_primary_10_1016_j_energy_2021_122168 crossref_primary_10_1016_j_ijrefrig_2025_07_017 crossref_primary_10_1016_j_jclepro_2022_131029 crossref_primary_10_3389_fenrg_2023_1286376 crossref_primary_10_1016_j_enconman_2021_115040 crossref_primary_10_1016_j_tsep_2022_101533 crossref_primary_10_1007_s11630_023_1889_5 crossref_primary_10_1016_j_supflu_2022_105644 crossref_primary_10_1016_j_applthermaleng_2021_116684 crossref_primary_10_1016_j_icheatmasstransfer_2021_105532 crossref_primary_10_1016_j_rser_2024_115267 crossref_primary_10_1063_5_0261473 crossref_primary_10_1016_j_jobe_2022_105091 crossref_primary_10_1016_j_applthermaleng_2024_124925 crossref_primary_10_1016_j_egyr_2022_01_222 crossref_primary_10_1016_j_ijthermalsci_2022_107884 crossref_primary_10_1016_j_energy_2022_125444 crossref_primary_10_1002_metm_70017 crossref_primary_10_1016_j_applthermaleng_2025_127453 crossref_primary_10_1016_j_applthermaleng_2025_126321 crossref_primary_10_1016_j_enconman_2025_119592 crossref_primary_10_1016_j_energy_2024_132251 crossref_primary_10_1016_j_icheatmasstransfer_2025_108654 |
| Cites_doi | 10.1016/j.ijheatmasstransfer.2016.06.007 10.1017/jfm.2016.653 10.1016/j.applthermaleng.2019.04.097 10.1007/s00231-016-1874-6 10.1016/j.nucengdes.2016.12.016 10.1080/10789669.1998.10391405 10.1002/er.1201 10.3182/20091130-3-FR-4008.00018 10.1016/j.applthermaleng.2014.12.067 10.1016/j.applthermaleng.2017.03.146 10.1115/69-GT-102 10.1016/j.anucene.2009.04.016 10.1016/j.energy.2019.01.148 10.1016/j.energy.2019.03.150 10.1016/j.energy.2016.10.005 10.1146/annurev-fluid-120710-101234 10.1615/ICHMT.2006.TurbulHeatMassTransf.1080 10.1016/j.applthermaleng.2016.11.051 10.1016/j.applthermaleng.2017.07.049 10.1016/j.applthermaleng.2018.03.058 10.1016/j.supflu.2018.03.014 10.3390/app7121260 10.1016/j.ijheatfluidflow.2007.09.007 10.1016/j.applthermaleng.2013.08.007 10.1016/j.enconman.2013.11.020 10.1007/s00231-015-1580-9 10.1016/j.ijheatfluidflow.2010.06.013 10.1016/j.nucengdes.2012.09.040 10.1016/S0065-2156(08)70311-9 10.1016/j.applthermaleng.2006.07.007 10.1016/j.expthermflusci.2013.06.011 10.1016/j.applthermaleng.2013.05.034 10.1115/1.4007313 10.1115/ICONE16-48914 10.1016/j.nucengdes.2003.10.010 10.1016/j.expthermflusci.2017.11.024 10.1016/j.supflu.2015.02.001 10.1016/j.ijheatmasstransfer.2017.10.037 10.1016/0140-7007(94)00001-E 10.1016/j.ijheatmasstransfer.2017.03.063 10.1016/j.supflu.2005.12.004 10.1016/j.ijheatmasstransfer.2012.10.072 10.1016/j.ijrefrig.2008.01.010 10.1016/j.ijheatmasstransfer.2014.06.014 10.1016/j.nucengdes.2013.02.048 10.1016/j.ijheatmasstransfer.2017.01.004 10.1016/j.ijthermalsci.2014.01.011 10.1016/j.nucengdes.2013.10.005 10.1016/S0017-9310(02)00119-9 10.1016/j.supflu.2007.11.013 10.1063/1.1288608 10.1016/j.expthermflusci.2008.10.002 10.1016/j.expthermflusci.2010.06.001 10.1016/j.ijheatmasstransfer.2011.01.008 10.1016/j.energy.2019.03.109 10.2298/TSCI1004897F 10.1007/978-1-4757-0513-3_27 10.1016/j.ijheatmasstransfer.2019.04.013 10.1016/j.nucengdes.2010.06.012 10.1016/j.supflu.2016.05.028 10.1016/j.ijheatmasstransfer.2008.05.014 10.1016/j.applthermaleng.2017.03.109 10.1615/IHTC7.2970 10.1080/18811248.2007.9711284 10.1016/j.expthermflusci.2010.04.005 10.1016/0017-9310(70)90006-2 10.1016/j.egypro.2014.11.994 10.1016/j.ijheatmasstransfer.2007.09.008 10.1016/j.ijheatmasstransfer.2018.10.027 10.1016/j.enconman.2017.08.009 10.1016/j.energy.2017.09.010 10.1016/j.ijheatmasstransfer.2018.11.075 10.1016/j.rser.2015.04.039 10.1016/j.supflu.2019.02.023 10.1016/j.ijrefrig.2018.03.011 10.1016/j.ijheatmasstransfer.2017.11.039 10.2514/8.5979 10.1016/j.applthermaleng.2018.10.042 10.1016/j.expthermflusci.2019.04.025 10.1016/j.applthermaleng.2010.10.020 10.1016/j.ijheatmasstransfer.2018.07.042 10.1016/j.energy.2018.03.009 10.1016/j.supflu.2009.08.004 10.1016/j.nucengdes.2007.02.017 10.1016/j.energy.2017.12.163 10.1115/ICONE17-76022 10.13182/NT06-A3738 10.1177/1687814019830804 10.1016/j.applthermaleng.2019.03.034 10.1016/j.icheatmasstransfer.2014.02.017 10.1016/j.supflu.2019.104560 10.1016/j.ijthermalsci.2018.10.032 10.1016/j.ijheatmasstransfer.2013.07.056 10.1115/1.3689139 10.1016/j.ijheatmasstransfer.2015.08.001 10.1016/j.enconman.2018.04.072 10.1016/0017-9310(95)00008-W 10.1016/j.anucene.2014.06.035 10.1016/j.ijheatmasstransfer.2012.01.031 10.1016/0894-1777(92)90033-2 10.1016/j.ijheatmasstransfer.2013.06.038 10.1007/s12217-017-9546-9 10.1016/j.apenergy.2015.10.080 10.1016/0017-9310(76)90123-X 10.1016/j.ijheatmasstransfer.2007.06.026 10.1016/j.ijheatmasstransfer.2012.08.038 10.1016/j.nucengdes.2005.05.034 10.1016/j.applthermaleng.2017.01.103 10.1016/j.enconman.2019.05.053 10.1016/j.energy.2014.10.037 10.1016/j.anucene.2016.06.022 10.1016/j.nucengdes.2015.04.013 10.1115/1.1929787 10.1016/j.nucengdes.2011.06.016 10.1016/j.rser.2018.04.106 10.1016/j.ijheatmasstransfer.2017.12.097 10.1016/S0065-2717(08)70333-2 10.1016/j.supflu.2017.03.016 10.1016/j.applthermaleng.2019.01.077 10.1016/j.enconman.2017.12.046 10.1016/j.apenergy.2016.06.018 10.1016/j.nucengdes.2012.06.005 10.1016/j.energy.2017.09.022 10.1016/S0017-9310(96)00248-7 10.1016/j.ijheatmasstransfer.2017.05.078 10.1016/j.ijheatmasstransfer.2019.01.045 10.1016/j.applthermaleng.2018.09.081 10.1016/j.applthermaleng.2003.12.024 10.1016/j.ijheatmasstransfer.2018.11.045 10.1016/j.ijheatmasstransfer.2018.01.112 10.1016/j.rser.2004.09.014 10.1016/j.expthermflusci.2018.08.027 10.1016/j.applthermaleng.2017.12.042 10.1007/978-81-322-2743-4_49 10.1016/j.ijheatmasstransfer.2016.10.093 10.1016/0017-9310(85)90185-1 10.1016/j.applthermaleng.2007.11.001 10.3390/en10111692 10.1016/j.icheatmasstransfer.2018.04.006 10.1016/j.ijheatmasstransfer.2018.07.058 10.1016/j.ijheatmasstransfer.2014.10.074 10.1016/j.ijheatmasstransfer.2018.04.033 10.1016/j.enconman.2019.111986 10.1016/j.renene.2007.01.003 10.1007/s00231-011-0919-0 10.1016/S0065-2717(08)70016-9 10.1016/j.ijheatfluidflow.2010.09.001 10.1016/j.egypro.2017.12.302 10.1016/j.ijheatmasstransfer.2018.06.126 10.1016/j.expthermflusci.2019.06.002 10.1115/1.3245618 10.1134/S0040601516110021 10.1016/j.ijheatmasstransfer.2018.10.052 10.1017/jfm.2015.437 10.1115/1.4023747 10.1016/j.geothermics.2013.09.005 10.1016/S0065-2717(08)70153-9 10.1016/j.energy.2015.11.074 10.1016/j.ijheatmasstransfer.2018.08.072 10.1016/j.energy.2018.12.034 10.1016/j.ijheatmasstransfer.2010.12.039 10.1016/j.enconman.2018.03.005 10.1134/S0040601506040069 10.1007/BF00851521 10.1016/j.ijheatmasstransfer.2014.09.066 10.1016/S0029-5493(98)00240-4 10.1016/S0017-9310(02)00206-5 10.1007/s11630-018-0984-5 10.1016/j.nucengdes.2010.07.002 10.1016/j.energy.2018.12.151 10.1016/j.applthermaleng.2018.07.007 10.1016/j.nucengdes.2019.110207 10.1016/0017-9310(72)90148-2 10.1016/j.apenergy.2017.07.086 10.1016/j.supflu.2015.03.002 10.1016/j.applthermaleng.2014.10.031 10.1016/0017-9310(73)90135-X 10.1615/IHTC5.3130 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2020.114962 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| ExternalDocumentID | 10_1016_j_apenergy_2020_114962 S0306261920304748 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c411t-2a2779e1be7ed990f8e4278b409284693df4a94b03839310175e428e36bb5a4a3 |
| ISICitedReferencesCount | 68 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000537619800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Sat Sep 27 17:07:35 EDT 2025 Tue Nov 18 22:30:43 EST 2025 Sat Nov 29 07:24:00 EST 2025 Fri Feb 23 02:47:15 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Heat transfer enhancement Heat transfer mechanisms Trans-critical CO2 Rankine cycle Evaluation criteria Low-grade heat conversion |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c411t-2a2779e1be7ed990f8e4278b409284693df4a94b03839310175e428e36bb5a4a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2440690353 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2440690353 crossref_primary_10_1016_j_apenergy_2020_114962 crossref_citationtrail_10_1016_j_apenergy_2020_114962 elsevier_sciencedirect_doi_10_1016_j_apenergy_2020_114962 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-07-01 2020-07-00 20200701 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied energy |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Bae (b0760) 2013; 265 Yildiz, Groeneveld (b0170) 2014; 54 Yang, Chen, Chyu (b0625) 2018; 145 Hall, Jackson (b0030) 1967; vol. 182 Kline, Feuerstein, Tavoularis (b0345) 2018; 118 Shi, Shu, Tian, Huang, Chen, Li (b0540) 2017; 150 Zhao, Liu, Zhang, Jiang, Bo (b0845) 2018; 138 Pioro, Khartabil, Duffey (b0145) 2004; 230 Peeters, Sandham (b1115) 2019; 138 Li, Huang, Zhao (b0130) 2014; 78 Pioro, Duffey (b0380) 2006 Li, Meng, Li (b1120) 2011; 54 Zhang, Xu, Liu, Liu, Dang (b0365) 2019; 157 Hsieh, Lee, Lin, Chung (b0780) 2014; 61 . Tollefson J. Innovative zero-emissions power plant begins battery of tests; May 2018. Wang, Guo, Yan, Zhu, Luo (b0590) 2019; 11 Jiang, Liu, Zhao, Luo (b0475) 2013; 56 Petukhov, Protopopov, Silin (b0985) 1972; 10 Liao, Liu, Jiaqiang, Zhang (b0115) 2019; 199 Mokry, Pioro, Farah, King, Gupta, Peiman (b0935) 2011; 241 Bazargan (b0020) 2001 Naphon P, Wongwises S. A review of flow and heat transfer characteristics in curved tubes. Renew Sustain Energy Rev 2006;10(5):463–90. Jackson (b1045) 2006 Lee, Simon, Chow (b1080) 1985; 28 Kim JK, Jeon HK, Yoo JY, Lee JS. Experimental study on heat transfer characteristics of turbulent supercritical flow in vertical circular/non-circular tubes. In Proceedings of the 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH 11), Avignon, France, Oct. 2005, p. 2–6. Hsieh JC, Lin DTW, Lee BH, Chung MC. Experimental study on heat transfer of supercritical carbon dioxide in a long silica-based porous-media tube. Heat Mass Transfer 2016;53(3):995–1004. Kurganov, Zeigarnik, Maslakova (b0245) 2014; 77 Gupta, Saltanov, Mokry, Pioro, Trevani (b0470) 2013; 261 Tian, Wang, Zhang, Ma, Li, Shi (b0550) 2019; 100 Li, Zhai, Li, Wang, Lu (b0640) 2016; 116 Bazargan, Fraser, Chatoorgan (b1055) 2005; 127 Bae, Kim, Yoo (b0755) 2011; 32 He, Dang, Hihara (b0350) 2018; 127 Huang, Li (b0220) 2018; 131 Tian, Zhang, Ma, Li, Shi (b0990) 2018; 127 Jackson JD. An Semi-Empirical Model of Turbulent Convective Heat Transfer to Fluids at Supercritical Pressure. In 16th International Conference on Nuclear Engineering. American Society of Mechanical Engineers Digital Collection; 2008, p. 911–21. Goldmann K. Heat transfer to supercritical water at 5000 psi flowing at high mass flow rates through round tubes. International Developments in Heat Transfer, Part III. New York: ASME; 1961, p. 561–568. Ehsan, Guan, Klimenko, Wang (b0080) 2018; 168 Li, Zhai, Bi, Li, Wang, Junfu (b1125) 2017; 140 Li, Ge, Luo, Tassou (b0435) 2018; 136 Pioro (b0225) 2019; 354 Petukhov, Kurganov (b0385) 1983; 21 Zhang, Li, Kong, Liu, Lei (b0355) 2018; 122 Kurganov, Zeigarnik, Maslakova (b0235) 2013; 58 Jiang, Shi, Xu, He, Jackson (b0740) 2006; 38 Zhang, Jiang, Xu (b0085) 2013; 61 Sarkar (b0050) 2015; 48 Pizzarelli (b0210) 2018; 95 Huang, Wu, Sunden, Li (b0165) 2016; 162 Cheng, Yang, Huang (b0940) 2009; 36 Farzaneh-Gord, Mirmohammadi, Behi, Yahyaie (b0110) 2010; 14 Xu, Luo, Jiang (b0710) 2015; 91 Lei, Li, Zhang, Zhang (b0835) 2013; 135 Shiralkar, Griffith (b0295) 1968 Zhang, Xu, Liu, Liu, Zhipeng, Dang (b0560) 2019 Gao, Bai (b0530) 2017; 120 Watts MJ, C.T.C., Mixed convection heat transfer to supercritical pressure water. In 7th Int. Heat Transfer Conf., Munchen, W. Germany, 1982, Sep.6–10, vol. 495. Bae, Kim (b0445) 2009; 33 Zhang, Xu, Liu, Zhang, Dang (b0665) 2018; 125 Shenghui Liu, Liu, Wang, Leung (b0500) 2017; 106 Kacludis, Lyons, Nadav, Zdankiewicz (b0890) 2012 Gabaraev, Kuznetsov, Pioro, Duffey (b0930) 2007 Kurganov, Zeigarnik, Maslakova (b0230) 2012; 55 Kim, Kim (b0460) 2010; 240 Song, Kim, Kim, Bae (b0335) 2008; 44 MatthiasLinnemanna, Herres, Wolff, Vrabec (b1110) 2019; 195 Jackson, Li (b0840) 2002 Wang, Guan, Gurgenci, Hooman (b0515) 2018; 157 Kim (b0455) 2011; 32 Bellmore, Reid (b1060) 1980; 105 Inagaki, Koiso, Takumi, Ioka, Miyamoto (b1070) 1998; 185 Cui, Xiang, Guo, Huai, Zhang, Cheng (b0685) 2019; 152 Shome (b0975) 2014; 79 Urbano, Nasuti (b0270) 2013; 65 Seo, Kim, Anderson, Corradini (b1040) 2017; 154 Spindler K. A review on heat transfer correlations for supercritical carbon dioxide under cooling conditions. In 7th IIR Gustav Loretzen Conference on Natural Working Fluids, May 28–31, Trondheim, Norway; 2006. Zhang, Yamaguchi, Fujima, Enomoto, Sawada (b0100) 2006; 30 Yu, Li, Lei, Feng, Zhang, He (b0525) 2013; 59 Aneesh AM, Sharma A, Srivastava A, Chaudhuri P. Thermo-hydraulic performance of zigzag, wavy, and serpentine channel based PCHEs. Fluid Mechanics and Fluid Power–Contemporary Research. New Delhi: Springer; 2017, p. 507–516. Li, Wang, Li, Wang, He (b0075) 2014; 50 Lei, Li, Zhang, Dinh, Guo, Yu (b0565) 2017; 113 Wang, Xu, Wu, Liu, Dang (b0655) 2015; 99 Tanimizu K, Sadr R. Experimental investigation of heat transfer characteristics of pseudocritical carbon dioxide in a circular horizontal tube. In Proceedings of the ASME 2012 Summer Heat Transfer Conference HT2012, 2012, July 8–12. Chen Y. Novel cycles using carbon dioxide as working fluid (Ph.D. thesis). Stockholm: Division of Applied Thermo dynamics and Refrigeration, Energy Department, KTH University; 2006. Petukhov BS, Polyakov AF, Launder BE. Heat transfer in turbulent mixed convection; 1988. Liu, Huang, Wang, Leung (b0900) 2018; 117 Zhang, Li, Lei, Zhang, Kong (b0300) 2018; 127 Liu, He, Li, Qu, Tao (b0610) 2015; 101 Ehsan, Guan, Klimenko (b0195) 2018; 92 Liu, Xu, Liu, Bai, Dang (b0670) 2018; 147 Shitsman (b0320) 1963; 1 Yamagata, Nishikawa, Hasegawa, Fujii, Yoshida (b0925) 1972; 15 Kakaç S, S.R.K., Aung W. Handbook of single-phase convective heat transfer; 1987. Rao, Oumer, Jamaludin (b0185) 2016; 116 Hyungrae Kim, Song (b0440) 2008; 50 Polyakov AF. Heat Transfer under Supercritical Pressures 1991;21:1–53. Kim, Kwon, Kim, Park (b0580) 2018; 92 Kim WS, J.D. Jackson, He S. Computational Investigation into Buoyancy-Aided turbulent flow and heat transfer to air in a vertical tube. ICHMT DIGITAL LIBRARY ONLINE. Begel House Inc.; 2006. Jackson (b0885) 2017; 124 He, He, Seddighi (b0895) 2016; 809 Wang, Zhang, Xu (b0765) 2013; 368–370 Kurganov, Kaptil'Ny (b0340) 1992; 5 Tanimizu, Sadr (b0575) 2015; 52 Zahlan, Groeneveld, Tavoularis (b0485) 2015; 289 Cui, Guo, Huai, Zhang, Cheng, Zhou (b0705) 2019; 172 Goering, Humphrey, Greif (b1090) 1997; 40 Cheng, Ribatski, Thome (b0205) 2008; 31 Shiralkar, Griffith (b0390) 1969; 3 Wang, Xu, Liu, Bai, Dang (b1050) 2017; 108 Zhang, Xu, Liu, Liu, Zhang, Dang (b1095) 2019; 176 Liu, Huang, Wang, Leung (b0490) 2016; 98 Petukhov AP, Kuleshohov V, Sheckter YL. Turbulent flow and heat transfer in horizontal tubes with substantial influence of thermo-gravitational forces. In Fifth Int. Heat Transfer Conference; 1974 (3-7). Ma Ting, U.P., Chen Yitung, W Qiuwangang. Numerical study on thermal-hydraulic performance of a two-sided etched zigzag-type high-temperature printed circuit heat exchanger. In 9th International Conference on Applied Energy, ICAE2017, 21–24 August 2017. 142(3950–3955). Utamura, Hasuike, Yamamoto (b9000) 2010; 52 Shi, Shu, Tian, Huang, Chang, Chen (b0555) 2017; 10 Pioro, Duffey (b0150) 2005; 235 Kim, Jeon, Lee (b0750) 2007; 50 Lokshin V, S.I., Vikhrev YV. Calculating temperature conditions of radiant heating surfaces in supercritical boilers. Therm Eng 1968;15(9):34–39. Ge, Li, Luo, Tassou (b0430) 2018; 227 Fan, Tang, Li, Yang, Wang (b0215) 2019; 170 Petukhov, Polyakov, Shekhter, Kuleshov (b1010) 1977; vol. 2 Bazargan, Mohseni MM. The significance of the buffer zone of boundary layer on convective heat transfer to a vertical turbulent flow of a supercritical fluid. J Supercr Fluids 2009;51(2):221–9. Jiang, Zhang, Shi (b0450) 2008; 51 Xu, Luo, Jiang (b0505) 2017; 110 Shang, Chen (b0535) 2011; 31 McEligot, Coon, Perkins (b0865) 1970; 13 Jiang, Shi, Zhao, Xu (b0745) 2008; 51 Akbari, Mahmoudi (b0070) 2014; 78 Jackson, Cotton, Axcell (b0035) 1988 Jajja, Zada, Fronk (b0595) 2019; 130 Kim, Kim, Song, Cho (b0370) 2007; 44 Kurganov, Ankudinov (b0880) 1985; 32 Bae, Kim, Kang (b0315) 2010; 34 Wang, Sun, Lin, He, You, Yu (b0650) 2018; 27 Polyakov (b1000) 1974; 15 Zhang, Zhu, Li, Jiang (b1105) 2018; 151 Cheng, Zhao, Rowinski (b0395) 2017; 113 Li, Shu, Tian, Shi, Huang, Chen (b0545) 2017; 140 Grabezhnaya, Kirillov (b0970) 2006; 53 Zhu, Xu, Wu, Xie, Li (b0305) 2019; 136 Vikhrev, Barulin, Kon'Kov (b0375) 1967; 14 Prusa J, Yao LS. Heat transfer of fully developed flow in curved tubes. In ASME and American Institute of Chemical Engineers, 20th National Heat Transfer Conference. ASME and American Institute of Chemical Engineers, 20th National Heat Transfer Conference; 1981. Mikielewicz, Shehata, Jackson, McEligot (b0870) 2002; 45 Wang, Tian, Zhang, Li, Ma, Shi (b1130) 2019; 169 Swann, Russell, Jahn (b0055) 2017 Zhang, Guo, Huai, Cui, Cheng (b0690) 2019; 134 Kim, Kwon, Park, Park, Kim (b0585) 2019; 131 Licht, Anderson, Corradini (b0715) 2008; 29 Li, Sun, Xie, Sunden, Qin (b0730) 2019; 153 Hall, Jackson (b0800) 1971; vol. 7 Bae (b0325) 2011; 241 Zhao, Li, Wu (b0660) 2017; 127 Zhang, Yamaguchi, Uneno (b0105) 2007; 32 Yoo (b0160) 2013; 45 Sarkar, Tilak, Basu (b0180) 2014; 73 Hendricks, Graham, Hsu, Medeiros (b0910) 1962; 32 Liao, Zhao (b0420) 2002; 45 Kim, Jeon, Lee (b0410) 2007; 237 Xu, Zhang, Liu, Zhang, Dang (b1100) 2018; 89 Southwest Research Institute, Swri, gti and ge break ground on $119 million supercritical CO2 pilot power plant (October 2018). URL Kong, Li, Zhang, Guo, Luo, Lei (b0960) 2019; 151 Kurganov, Zeigarnik, Maslakova (b0240) 2013; 67 Mohseni, Bazargan (b0920) 2012; 34 Ciofalo, Arini, Di Liberto (b0645) 2015; 82 Pidaparti, Umrigar, McFarland, Anderson (b0480) 2014 Pidaparti, Anderson, Ranjan (b0795) 2019; 106 Lorentzen (b0005) 1995; 18 Protopopov (b1035) 1977 Wang, Leung, Wang, Bi (b0200) 2018; 142 Yu, Li, Lei, Feng, Zhang, He (b0520) 2013; 50 Zhang, Wang, Li, Xu (b0770) 2015; 88 Yuan, Piomelli (b0875) 2015; 780 Abadzic, Goldstein (b0915) 1970; 13 Deev VI, V.S.K., Churkin AN. Analysis and generalization of experimental data on heat transfer to supercritical pressure water flow in annular channels and rod bundles. Therm Eng 2017;64:142–50. Xu Jinliang, C.Y., Zhang Wei, Sun Dongliang. Turbulent convective heat transfer of CO2 in a helical tube at near-critical pressure. Licht (10.1016/j.apenergy.2020.114962_b0715) 2008; 29 Shiralkar (10.1016/j.apenergy.2020.114962_b0295) 1968 Shang (10.1016/j.apenergy.2020.114962_b0535) 2011; 31 Wang (10.1016/j.apenergy.2020.114962_b1130) 2019; 169 Tian (10.1016/j.apenergy.2020.114962_b0990) 2018; 127 Gupta (10.1016/j.apenergy.2020.114962_b0470) 2013; 261 10.1016/j.apenergy.2020.114962_b0905 Jiang (10.1016/j.apenergy.2020.114962_b0475) 2013; 56 Wang (10.1016/j.apenergy.2020.114962_b0515) 2018; 157 Cheng (10.1016/j.apenergy.2020.114962_b0395) 2017; 113 Yang (10.1016/j.apenergy.2020.114962_b0625) 2018; 145 Swann (10.1016/j.apenergy.2020.114962_b0055) 2017 Pioro (10.1016/j.apenergy.2020.114962_b0380) 2006 MatthiasLinnemanna (10.1016/j.apenergy.2020.114962_b1110) 2019; 195 10.1016/j.apenergy.2020.114962_b0695 Zhang (10.1016/j.apenergy.2020.114962_b0365) 2019; 157 Bae (10.1016/j.apenergy.2020.114962_b0325) 2011; 241 Petukhov (10.1016/j.apenergy.2020.114962_b0385) 1983; 21 Tsuzuki (10.1016/j.apenergy.2020.114962_b0065) 2007; 27 Pizzarelli (10.1016/j.apenergy.2020.114962_b0210) 2018; 95 Zhang (10.1016/j.apenergy.2020.114962_b0560) 2019 Lv (10.1016/j.apenergy.2020.114962_b0060) 2018; 165 Pioro (10.1016/j.apenergy.2020.114962_b0145) 2004; 230 10.1016/j.apenergy.2020.114962_b0010 He (10.1016/j.apenergy.2020.114962_b0810) 2008; 28 Eter (10.1016/j.apenergy.2020.114962_b0510) 2017; 313 Fan (10.1016/j.apenergy.2020.114962_b0215) 2019; 170 Petukhov (10.1016/j.apenergy.2020.114962_b0985) 1972; 10 Akbari (10.1016/j.apenergy.2020.114962_b0070) 2014; 78 Wang (10.1016/j.apenergy.2020.114962_b0650) 2018; 27 Narasimha (10.1016/j.apenergy.2020.114962_b0855) 1979; vol. 19 Huang (10.1016/j.apenergy.2020.114962_b0165) 2016; 162 Hall (10.1016/j.apenergy.2020.114962_b0800) 1971; vol. 7 Zhang (10.1016/j.apenergy.2020.114962_b0100) 2006; 30 Wang (10.1016/j.apenergy.2020.114962_b0200) 2018; 142 Kruizenga (10.1016/j.apenergy.2020.114962_b0680) 2012 Bellmore (10.1016/j.apenergy.2020.114962_b1060) 1980; 105 Vikhrev (10.1016/j.apenergy.2020.114962_b0375) 1967; 14 Lorentzen (10.1016/j.apenergy.2020.114962_b0005) 1995; 18 Zhang (10.1016/j.apenergy.2020.114962_b0665) 2018; 125 Tanimizu (10.1016/j.apenergy.2020.114962_b0575) 2015; 52 10.1016/j.apenergy.2020.114962_b0120 Zhang (10.1016/j.apenergy.2020.114962_b1105) 2018; 151 Lei (10.1016/j.apenergy.2020.114962_b0835) 2013; 135 Zhang (10.1016/j.apenergy.2020.114962_b0770) 2015; 88 Zhang (10.1016/j.apenergy.2020.114962_b0635) 2018; 120 Li (10.1016/j.apenergy.2020.114962_b0545) 2017; 140 Kim (10.1016/j.apenergy.2020.114962_b0580) 2018; 92 Wang (10.1016/j.apenergy.2020.114962_b0630) 2019; 129 Jiang (10.1016/j.apenergy.2020.114962_b0450) 2008; 51 Yu (10.1016/j.apenergy.2020.114962_b0525) 2013; 59 Kim (10.1016/j.apenergy.2020.114962_b0750) 2007; 50 Kurganov (10.1016/j.apenergy.2020.114962_b0880) 1985; 32 Li (10.1016/j.apenergy.2020.114962_b1120) 2011; 54 Zhang (10.1016/j.apenergy.2020.114962_b0300) 2018; 127 Shi (10.1016/j.apenergy.2020.114962_b0555) 2017; 10 10.1016/j.apenergy.2020.114962_b0265 Liu (10.1016/j.apenergy.2020.114962_b0670) 2018; 147 Kong (10.1016/j.apenergy.2020.114962_b0960) 2019; 151 Autier (10.1016/j.apenergy.2020.114962_b0095) 2009; 42 Song (10.1016/j.apenergy.2020.114962_b0335) 2008; 44 10.1016/j.apenergy.2020.114962_b0700 Son (10.1016/j.apenergy.2020.114962_b0465) 2012; 250 Xu (10.1016/j.apenergy.2020.114962_b0710) 2015; 91 Jiang (10.1016/j.apenergy.2020.114962_b0820) 2018; 127 Mokry (10.1016/j.apenergy.2020.114962_b0935) 2011; 241 Cheng (10.1016/j.apenergy.2020.114962_b0205) 2008; 31 Protopopov (10.1016/j.apenergy.2020.114962_b1035) 1977 Yalcinkaya (10.1016/j.apenergy.2020.114962_b0090) 2012; 27 Wang (10.1016/j.apenergy.2020.114962_b1050) 2017; 108 Shenghui Liu (10.1016/j.apenergy.2020.114962_b0500) 2017; 106 Wang (10.1016/j.apenergy.2020.114962_b0590) 2019; 11 Cui (10.1016/j.apenergy.2020.114962_b0705) 2019; 172 Rao (10.1016/j.apenergy.2020.114962_b0185) 2016; 116 Saltanov (10.1016/j.apenergy.2020.114962_b0980) 2015; 1 10.1016/j.apenergy.2020.114962_b0015 Zahlan (10.1016/j.apenergy.2020.114962_b0485) 2015; 289 10.1016/j.apenergy.2020.114962_b0135 Ciofalo (10.1016/j.apenergy.2020.114962_b0645) 2015; 82 Koshizuka (10.1016/j.apenergy.2020.114962_b0275) 1995; 38 Zhao (10.1016/j.apenergy.2020.114962_b0845) 2018; 138 Goering (10.1016/j.apenergy.2020.114962_b1090) 1997; 40 10.1016/j.apenergy.2020.114962_b0815 Kim (10.1016/j.apenergy.2020.114962_b0460) 2010; 240 Liu (10.1016/j.apenergy.2020.114962_b0675) 2017; 116 Yamagata (10.1016/j.apenergy.2020.114962_b0925) 1972; 15 Li (10.1016/j.apenergy.2020.114962_b0330) 2010; 34 Lei (10.1016/j.apenergy.2020.114962_b0360) 2019; 176 Kim (10.1016/j.apenergy.2020.114962_b0370) 2007; 44 Kurganov (10.1016/j.apenergy.2020.114962_b0240) 2013; 67 Kim (10.1016/j.apenergy.2020.114962_b0585) 2019; 131 Jiang (10.1016/j.apenergy.2020.114962_b0605) 2004; 24 Inagaki (10.1016/j.apenergy.2020.114962_b1070) 1998; 185 10.1016/j.apenergy.2020.114962_b1020 10.1016/j.apenergy.2020.114962_b0045 10.1016/j.apenergy.2020.114962_b1015 10.1016/j.apenergy.2020.114962_b0600 Cheng (10.1016/j.apenergy.2020.114962_b0260) 2001 10.1016/j.apenergy.2020.114962_b0965 Kim (10.1016/j.apenergy.2020.114962_b0455) 2011; 32 Kurganov (10.1016/j.apenergy.2020.114962_b0245) 2014; 77 Liu (10.1016/j.apenergy.2020.114962_b0490) 2016; 98 Jiang (10.1016/j.apenergy.2020.114962_b0745) 2008; 51 Liu (10.1016/j.apenergy.2020.114962_b0610) 2015; 101 Hendricks (10.1016/j.apenergy.2020.114962_b0910) 1962; 32 10.1016/j.apenergy.2020.114962_b0280 10.1016/j.apenergy.2020.114962_b0040 Liao (10.1016/j.apenergy.2020.114962_b0420) 2002; 45 Ehsan (10.1016/j.apenergy.2020.114962_b0080) 2018; 168 Zhang (10.1016/j.apenergy.2020.114962_b0355) 2018; 122 Kacludis (10.1016/j.apenergy.2020.114962_b0890) 2012 Li (10.1016/j.apenergy.2020.114962_b0730) 2019; 153 Pidaparti (10.1016/j.apenergy.2020.114962_b0795) 2019; 106 10.1016/j.apenergy.2020.114962_b0155 McEligot (10.1016/j.apenergy.2020.114962_b0865) 1970; 13 10.1016/j.apenergy.2020.114962_b1005 Gabaraev (10.1016/j.apenergy.2020.114962_b0930) 2007 10.1016/j.apenergy.2020.114962_b0830 10.1016/j.apenergy.2020.114962_b0955 Wang (10.1016/j.apenergy.2020.114962_b0655) 2015; 99 Li (10.1016/j.apenergy.2020.114962_b0640) 2016; 116 Shome (10.1016/j.apenergy.2020.114962_b0975) 2014; 79 Yildiz (10.1016/j.apenergy.2020.114962_b0170) 2014; 54 10.1016/j.apenergy.2020.114962_b0190 Styrikovich (10.1016/j.apenergy.2020.114962_b0290) 1967; 14 Shi (10.1016/j.apenergy.2020.114962_b0540) 2017; 150 Pioro (10.1016/j.apenergy.2020.114962_b0225) 2019; 354 10.1016/j.apenergy.2020.114962_b0860 Lei (10.1016/j.apenergy.2020.114962_b0495) 2017; 7 Jackson (10.1016/j.apenergy.2020.114962_b0805) 2013; 264 Kurganov (10.1016/j.apenergy.2020.114962_b0340) 1992; 5 Li (10.1016/j.apenergy.2020.114962_b0620) 2019; 130 Rahman (10.1016/j.apenergy.2020.114962_b0255) 2016; 97 Yu (10.1016/j.apenergy.2020.114962_b0520) 2013; 50 10.1016/j.apenergy.2020.114962_b1025 10.1016/j.apenergy.2020.114962_b0850 Abadzic (10.1016/j.apenergy.2020.114962_b0915) 1970; 13 Sarkar (10.1016/j.apenergy.2020.114962_b0050) 2015; 48 Zhang (10.1016/j.apenergy.2020.114962_b0690) 2019; 134 Huang (10.1016/j.apenergy.2020.114962_b0220) 2018; 131 Hiroaki (10.1016/j.apenergy.2020.114962_b0025) 1973; 16 Li (10.1016/j.apenergy.2020.114962_b0435) 2018; 136 Shokri (10.1016/j.apenergy.2020.114962_b0725) 2019; 147 Chen (10.1016/j.apenergy.2020.114962_b0125) 2010 Utamura (10.1016/j.apenergy.2020.114962_b9000) 2010; 52 Sarkar (10.1016/j.apenergy.2020.114962_b0180) 2014; 73 Cui (10.1016/j.apenergy.2020.114962_b0685) 2019; 152 Pioro (10.1016/j.apenergy.2020.114962_b0150) 2005; 235 Mikielewicz (10.1016/j.apenergy.2020.114962_b0870) 2002; 45 Cabeza (10.1016/j.apenergy.2020.114962_b0175) 2017; 125 10.1016/j.apenergy.2020.114962_b1065 Farzaneh-Gord (10.1016/j.apenergy.2020.114962_b0110) 2010; 14 10.1016/j.apenergy.2020.114962_b0400 Jiang (10.1016/j.apenergy.2020.114962_b0740) 2006; 38 Li (10.1016/j.apenergy.2020.114962_b0075) 2014; 50 10.1016/j.apenergy.2020.114962_b0405 Garg (10.1016/j.apenergy.2020.114962_b0825) 2000; 12 Li (10.1016/j.apenergy.2020.114962_b1125) 2017; 140 Bazargan (10.1016/j.apenergy.2020.114962_b1055) 2005; 127 Mohseni (10.1016/j.apenergy.2020.114962_b0920) 2012; 34 Wang (10.1016/j.apenergy.2020.114962_b0285) 2011; 54 Urbano (10.1016/j.apenergy.2020.114962_b0270) 2013; 65 Bazargan (10.1016/j.apenergy.2020.114962_b0020) 2001 Pidaparti (10.1016/j.apenergy.2020.114962_b0480) 2014 Li (10.1016/j.apenergy.2020.114962_b0130) 2014; 78 10.1016/j.apenergy.2020.114962_b0995 Peeters (10.1016/j.apenergy.2020.114962_b1115) 2019; 138 Shiralkar (10.1016/j.apenergy.2020.114962_b0390) 1969; 3 Adebiyi (10.1016/j.apenergy.2020.114962_b1030) 1976; 19 Liu (10.1016/j.apenergy.2020.114962_b0900) 2018; 117 Kurganov (10.1016/j.apenergy.2020.114962_b0230) 2012; 55 Bae (10.1016/j.apenergy.2020.114962_b0760) 2013; 265 Xu (10.1016/j.apenergy.2020.114962_b0505) 2017; 110 10.1016/j.apenergy.2020.114962_b1085 Bae (10.1016/j.apenergy.2020.114962_b0445) 2009; 33 Jackson (10.1016/j.apenergy.2020.114962_b0885) 2017; 124 Lei (10.1016/j.apenergy.2020.114962_b0565) 2017; 113 10.1016/j.apenergy.2020.114962_b0785 Hyungrae Kim (10.1016/j.apenergy.2020.114962_b0440) 2008; 50 Bae (10.1016/j.apenergy.2020.114962_b0755) 2011; 32 Shitsman (10.1016/j.apenergy.2020.114962_b0320) 1963; 1 Li (10.1016/j.apenergy.2020.114962_b0945) 2014; 34 Petukhov (10.1016/j.apenergy.2020.114962_b1010) 1977; vol. 2 Kline (10.1016/j.apenergy.2020.114962_b0345) 2018; 118 Zhang (10.1016/j.apenergy.2020.114962_b0105) 2007; 32 Gao (10.1016/j.apenergy.2020.114962_b0530) 2017; 120 Li (10.1016/j.apenergy.2020.114962_b0615) 2015; 78 Jackson (10.1016/j.apenergy.2020.114962_b0840) 2002 Jajja (10.1016/j.apenergy.2020.114962_b0595) 2019; 130 Li (10.1016/j.apenergy.2020.114962_b0790) 2016; 178 10.1016/j.apenergy.2020.114962_b1075 Zhu (10.1016/j.apenergy.2020.114962_b0305) 2019; 136 10.1016/j.apenergy.2020.114962_b0775 10.1016/j.apenergy.2020.114962_b0415 Liao (10.1016/j.apenergy.2020.114962_b0115) 2019; 199 Zhang (10.1016/j.apenergy.2020.114962_b0085) 2013; 61 Bae (10.1016/j.apenergy.2020.114962_b0315) 2010; 34 Zhang (10.1016/j.apenergy.2020.114962_b |
| References_xml | – year: 2006 ident: b0380 article-title: Heat transfer and Hydraulic Resistance at supercritical pressures in power-engineering applications – volume: 172 start-page: 517 year: 2019 end-page: 530 ident: b0705 article-title: Numerical investigations on serpentine channel for supercritical CO publication-title: Energy – volume: 265 start-page: 1036 year: 2013 end-page: 1044 ident: b0760 article-title: Heat transfer in CO publication-title: Nucl Eng Des – volume: 5 start-page: 465 year: 1992 end-page: 478 ident: b0340 article-title: Velocity and enthalpy fields and eddy diffusivities in a heated supercritical fluid flow publication-title: Exp Therm Fluid Sci – volume: 237 start-page: 1795 year: 2007 end-page: 1802 ident: b0410 article-title: Wall temperature measurement and heat transfer correlation of turbulent supercritical carbon dioxide flow in vertical circular/non-circular tubes publication-title: Nucl Eng Des – volume: 127 start-page: 674 year: 2018 end-page: 686 ident: b0300 article-title: Study on identification method of heat transfer deterioration of supercritical fluids in vertically heated tubes publication-title: Int J Heat Mass Transf – reference: Ma Ting, U.P., Chen Yitung, W Qiuwangang. Numerical study on thermal-hydraulic performance of a two-sided etched zigzag-type high-temperature printed circuit heat exchanger. In 9th International Conference on Applied Energy, ICAE2017, 21–24 August 2017. 142(3950–3955). – reference: Jackson JD. Progress in developing an improved empirical heat transfer equation for use in connection with advanced nuclear reactors cooled by water at supercritical pressure. In 17th International Conference on Nuclear Engineering. American Society of Mechanical Engineers Digital Collection; 2009, p. 807–819. – volume: 34 start-page: 122503 year: 2012 ident: b0920 article-title: A new analysis of heat transfer deterioration on basis of turbulent viscosity variations of supercritical fluids publication-title: J Heat Transfer – volume: 151 start-page: 66 year: 2019 end-page: 76 ident: b0960 article-title: A new criterion for the onset of heat transfer deterioration to supercritical water in vertically-upward smooth tubes publication-title: Appl Therm Eng – volume: 67 start-page: 535 year: 2013 end-page: 547 ident: b0240 article-title: Heat transfer and hydraulic resistance of supercritical pressure coolants. Part III: Generalized description of SCP fluids normal heat transfer, empirical calculating correlations, integral method of theoretical calculations publication-title: Int J Heat Mass Transf – reference: Lokshin V, S.I., Vikhrev YV. Calculating temperature conditions of radiant heating surfaces in supercritical boilers. Therm Eng 1968;15(9):34–39. – volume: 56 start-page: 741 year: 2013 end-page: 749 ident: b0475 article-title: Convection heat transfer of supercritical pressure carbon dioxide in a vertical micro tube from transition to turbulent flow regime publication-title: Int J Heat Mass Transf – volume: 195 start-page: 1402 year: 2019 end-page: 1414 ident: b1110 article-title: Design and test of a multi-coil helical evaporator for a high temperature organic Rankine cycle plant driven by biogas waste heat publication-title: Energy Convers Manage – volume: 14 start-page: 5 year: 1967 end-page: 9 ident: b0290 article-title: Problems in the development of designs of supercritical boilers publication-title: Therm Eng – volume: 28 start-page: 1662 year: 2008 end-page: 1675 ident: b0810 article-title: A computational study of convective heat transfer to carbon dioxide at a pressure just above the critical value publication-title: Appl Therm Eng – volume: 116 start-page: 500 year: 2017 end-page: 515 ident: b0675 article-title: Numerical study of the effect of buoyancy force and centrifugal force on heat transfer characteristics of supercritical CO publication-title: Appl Therm Eng – volume: vol. 2 start-page: 719 year: 1977 end-page: 727 ident: b1010 article-title: Experimental Study of the Effects of Thermogravitation in Horizontal Pipes publication-title: Heat Transfer and Turbulent Buoyant Convection Proc. ICHMT Conf. Dubrovnik, Yogoslavia – volume: 131 start-page: 1117 year: 2019 end-page: 1128 ident: b0585 article-title: Heat transfer model for horizontal flows of CO publication-title: Int J Heat Mass Transf – volume: 1 start-page: 237 year: 1963 end-page: 244 ident: b0320 article-title: Impairment of the heat transmission at supercritical pressures publication-title: High Temp – volume: 178 start-page: 126 year: 2016 end-page: 141 ident: b0790 article-title: Improved gas heaters for supercritical CO publication-title: Appl Energy – start-page: 6609 year: 2001 ident: b0260 article-title: Heat Transfer at Supercritical Pressures -Literature Review and Application to an HPLWR publication-title: FZKA – volume: 135 year: 2013 ident: b0835 article-title: Effect of Buoyancy on the Mechanism of Heat Transfer Deterioration of Supercritical Water in Horizontal Tubes publication-title: J Heat Transfer – volume: 32 start-page: 340 year: 2011 end-page: 351 ident: b0755 article-title: Effect of a helical wire on mixed convection heat transfer to carbon dioxide in a vertical circular tube at supercritical pressures publication-title: Int J Heat Fluid Flow – volume: 27 start-page: 1702 year: 2007 end-page: 1707 ident: b0065 article-title: High performance printed circuit heat exchanger publication-title: Appl Therm Eng – volume: 240 start-page: 3336 year: 2010 end-page: 3349 ident: b0460 article-title: Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube publication-title: Nucl Eng Des – volume: 368–370 start-page: 631 year: 2013 end-page: 635 ident: b0765 article-title: Experimental Investigation on Flow Characteristics of Supercritical CO publication-title: Applied Mechanics and Materials – volume: 88 start-page: 61 year: 2015 end-page: 70 ident: b0770 article-title: Mixed convective heat transfer of CO2 at supercritical pressures flowing upward through a vertical helically coiled tube publication-title: Appl Therm Eng – volume: 48 start-page: 434 year: 2015 end-page: 451 ident: b0050 article-title: Review and future trends of supercritical CO publication-title: Renew Sustain Energy Rev – volume: 32 start-page: 2617 year: 2007 end-page: 2628 ident: b0105 article-title: Experimental study on the performance of solar Rankine system using supercritical CO publication-title: Renew Energy – volume: 40 start-page: 2187 year: 1997 end-page: 2199 ident: b1090 article-title: The dual influence of curvature and buoyancy in fully developed tube flows publication-title: Int J Heat Mass Transf – volume: 235 start-page: 2407 year: 2005 end-page: 2430 ident: b0150 article-title: Experimental heat transfer in supercritical water flowing inside channels (survey) publication-title: Nucl Eng Des – volume: 13 year: 1970 ident: b0865 article-title: Relaminarization in tubes publication-title: Int J Heat Mass Transfer – reference: Prusa J, Yao LS. Heat transfer of fully developed flow in curved tubes. In ASME and American Institute of Chemical Engineers, 20th National Heat Transfer Conference. ASME and American Institute of Chemical Engineers, 20th National Heat Transfer Conference; 1981. – volume: 142 start-page: 573 year: 2018 end-page: 596 ident: b0200 article-title: A review on recent heat transfer studies to supercritical pressure water in channels publication-title: Appl Therm Eng – volume: 168 start-page: 611 year: 2018 end-page: 628 ident: b0080 article-title: Design and comparison of direct and indirect cooling system for 25 MW solar power plant operated with supercritical CO publication-title: Energy Convers Manage – volume: 38 start-page: 3077 year: 1995 end-page: 3084 ident: b0275 article-title: Numerical analysis of deterioration phenomena in heat transfer to supercritical water publication-title: Int J Heat Mass Transf – volume: 250 start-page: 573 year: 2012 end-page: 584 ident: b0465 article-title: Experimental heat transfer to supercritical carbon dioxide flowing upward vertical tube with highly conducting surroundings publication-title: Nucl Eng Des – reference: Xu Jinliang, C.Y., Zhang Wei, Sun Dongliang. Turbulent convective heat transfer of CO2 in a helical tube at near-critical pressure. Int J Heat Mass Transfer 2015;80:748–58. – volume: 78 start-page: 551 year: 2014 end-page: 558 ident: b0130 article-title: A supercritical or transcritical Rankine cycle with ejector using low-grade heat publication-title: Energy Convers Manag – volume: 31 start-page: 573 year: 2011 end-page: 581 ident: b0535 article-title: Numerical investigation of diameter effect on heat transfer of supercritical water flows in horizontal round tubes publication-title: Appl Therm Eng – volume: 97 start-page: 53 year: 2016 end-page: 65 ident: b0255 article-title: Supercritical water heat transfer for nuclear reactor applications: A review publication-title: Ann Nucl Energy – reference: Angelino G. Real gas effects in carbon dioxide cycles. In ASME 1969 gas turbine conference and products show, Cleveland, OH. – volume: 199 start-page: 111986 year: 2019 ident: b0115 article-title: Jingwei Chena, Yuanwang Deng, Hao Zhu. Effects of technical progress on performance and application of supercritical carbon dioxide power cycle: A review publication-title: Energy Convers Manage – volume: 42 start-page: 132 year: 2009 end-page: 139 ident: b0095 article-title: Optimum for CO2 transcritical power Rankine cycle using exhaust gas from fishing boat diesel engines publication-title: IFAC Proceedings Volumes – volume: 241 start-page: 1126 year: 2011 end-page: 1136 ident: b0935 article-title: Development of supercritical water heat transfer correlation for vertical bare tubes publication-title: Nucl Eng Des – volume: 53 start-page: 296 year: 2006 end-page: 301 ident: b0970 article-title: Heat transfer under supercritical pressures and heat transfer deterioration boundaries publication-title: Therm Eng – volume: 108 start-page: 1645 year: 2017 end-page: 1655 ident: b1050 article-title: Experimental and numerical investigation on heat transfer characteristics of supercritical CO publication-title: Int J Heat Mass Transf – volume: vol. 182 start-page: 10 year: 1967 ident: b0030 article-title: A reviwe of forced convection heat transfer to fluids at supercritical pressures publication-title: Proceedings of the Institution of Mechanical Engineers, Conference Proceedings – volume: 99 start-page: 112 year: 2015 end-page: 120 ident: b0655 article-title: Numerical investigation on heat transfer of supercritical CO publication-title: J Supercr Fluids – reference: Jackson JD. An Semi-Empirical Model of Turbulent Convective Heat Transfer to Fluids at Supercritical Pressure. In 16th International Conference on Nuclear Engineering. American Society of Mechanical Engineers Digital Collection; 2008, p. 911–21. – reference: Jiang Y, Liang S. China’s first large-scale supercritical carbon dioxide compressor experimental platform completed and put into operation, in Chinese (Septemper 2018). URL < – start-page: 815 year: 1977 end-page: 821 ident: b1035 article-title: Generalized correlations for the local heat-transfer coefficients turbulent flows of water and carbon dioxide at supercritical pressure in a uniform heated circular tube – volume: 78 start-page: 303 year: 2015 end-page: 314 ident: b0615 article-title: Effects of rib geometries and property variations on heat transfer to supercritical water in internally ribbed tubes publication-title: Appl Therm Eng – reference: Hendricks RC, S.R.J., Smith RV. Survey of heat transfer to near-critical fluids. Advances in Cryogenic Engineering. Boston, MA: Springer; 1970, p. 197–237. – volume: 185 start-page: 141 year: 1998 end-page: 151 ident: b1070 article-title: Thermal hydraulic study on a high-temperature gas–gas heat exchanger with helically coiled tube bundles publication-title: Nucl Eng Des – volume: 169 start-page: 542 year: 2019 end-page: 557 ident: b1130 article-title: Heat transfer investigation of supercritical R134a for trans-critical organic Rankine cycle system publication-title: Energy – volume: 27 start-page: 557 year: 2012 end-page: 568 ident: b0090 article-title: On usage of super-critical carbon-dioxide in a geothermal power cycle publication-title: J Fac Eng Architect Gazi Univ – volume: 61 start-page: 236 year: 2013 end-page: 244 ident: b0085 article-title: System thermodynamic performance comparison of CO publication-title: Appl Therm Eng – volume: 108 start-page: 39 year: 2019 end-page: 53 ident: b0720 article-title: Convective heat transfer and flow resistance characteristics of supercritical pressure hydrocarbon fuel in a horizontal rectangular mini-channel publication-title: Exp Therm Fluid Sci – volume: 44 start-page: 285 year: 2007 end-page: 293 ident: b0370 article-title: Heat Transfer Test in a Vertical Tube Using CO publication-title: J Nucl Sci Technol – volume: 129 start-page: 1194 year: 2019 end-page: 1205 ident: b0630 article-title: Experimental comparison of the heat transfer of supercritical R134a in a micro-fin tube and a smooth tube publication-title: Int J Heat Mass Transf – volume: 153 start-page: 655 year: 2019 end-page: 668 ident: b0730 article-title: Numerical investigation on flow and thermal performance of supercritical CO publication-title: Appl Therm Eng – reference: Tanimizu K, Sadr R. Experimental investigation of heat transfer characteristics of pseudocritical carbon dioxide in a circular horizontal tube. In Proceedings of the ASME 2012 Summer Heat Transfer Conference HT2012, 2012, July 8–12. – reference: Lin W, D.Z., Gu A. Analysis on heat transfer correlations of supercritical CO2 cooled in horizontal circular tubes. Heat Mass Transfer 2012;48(4):705–11. – volume: 138 start-page: 154 year: 2018 end-page: 166 ident: b0845 article-title: Investigation of buoyancy-enhanced heat transfer of supercritical CO publication-title: J Supercr Fluids – volume: 116 start-page: 661 year: 2016 end-page: 676 ident: b0640 article-title: A quantitative study on the interaction between curvature and buoyancy effects in helically coiled heat exchangers of supercritical CO publication-title: Energy – volume: 4 start-page: 281 year: 1998 end-page: 301 ident: b0140 article-title: Heat Transfer from Supercritical Carbon Dioxide in Tube Flow: A Critical Review publication-title: HVAC&R Research – volume: 165 start-page: 827 year: 2018 end-page: 839 ident: b0060 article-title: Aerodynamic design optimization of radial-inflow turbine in supercritical CO publication-title: Energy Convers Manage – year: 2001 ident: b0020 article-title: Forced convection heat transfer to turbulent flow of supercritical water in a round horizontal tube – volume: 147 start-page: 1 year: 2018 end-page: 14 ident: b0670 article-title: Heat transfer deterioration in helically coiled heat exchangers in trans-critical CO publication-title: Energy – volume: 150 start-page: 159 year: 2017 end-page: 171 ident: b0540 article-title: Experimental comparison between four CO publication-title: Energy Convers Manage – volume: 140 start-page: 696 year: 2017 end-page: 707 ident: b0545 article-title: Preliminary tests on dynamic characteristics of a CO2 transcritical power cycle using an expansion valve in engine waste heat recovery publication-title: Energy – reference: Kakaç S, S.R.K., Aung W. Handbook of single-phase convective heat transfer; 1987. – start-page: 119074 year: 2019 ident: b0560 article-title: Experimental and numerical comparison of the heat transfer behaviors and buoyancy effects of supercritical CO2 in various heating tubes publication-title: Int J Heat Mass Transfer – volume: 136 start-page: 254 year: 2019 end-page: 266 ident: b0305 article-title: Supercritical “boiling” number, a new parameter to distinguish two regimes of carbon dioxide heat transfer in tubes publication-title: Int J Therm Sci – volume: 113 start-page: 609 year: 2017 end-page: 620 ident: b0565 article-title: Experimental study on the difference of heat transfer characteristics between vertical and horizontal flows of supercritical pressure water publication-title: Appl Therm Eng – volume: 176 start-page: 119 year: 2019 end-page: 130 ident: b0360 article-title: Experimental study on convection heat transfer of supercritical CO publication-title: Energy – volume: 15 start-page: 632 year: 1974 end-page: 637 ident: b1000 article-title: Development of secondary free-convection currents in forced turbulent flow in horizontal tubes publication-title: J Appl Mech Tech Phys – volume: 3 start-page: 465 year: 1969 end-page: 471 ident: b0390 article-title: The effect of swirl, inlet conditions, flow direction, and tube diameter on the heat transfer to fluids at supercritical pressure publication-title: J Heat Transfer – volume: 44 start-page: 164 year: 2008 end-page: 171 ident: b0335 article-title: Heat transfer characteristics of a supercritical fluid flow in a vertical pipe publication-title: J Supercr Fluids – volume: 65 start-page: 599 year: 2013 end-page: 609 ident: b0270 article-title: Conditions for the occurrence of heat transfer deterioration in light hydrocarbons flows publication-title: Int J Heat Mass Transf – volume: 138 start-page: 454 year: 2019 end-page: 467 ident: b1115 article-title: Turbulent heat transfer in channels with irregular roughness publication-title: Int J Heat Mass Transf – volume: 130 start-page: 1272 year: 2019 end-page: 1287 ident: b0620 article-title: Effect of internal helical-rib roughness on mixed convection flow and heat transfer in heated horizontal pipe flow of supercritical water publication-title: Int J Heat Mass Transf – reference: Bazargan, Mohseni MM. The significance of the buffer zone of boundary layer on convective heat transfer to a vertical turbulent flow of a supercritical fluid. J Supercr Fluids 2009;51(2):221–9. – volume: 151 start-page: 376 year: 2018 end-page: 386 ident: b1105 article-title: Thermodynamic optimization of heat transfer process in thermal systems using CO publication-title: Energy – volume: 54 start-page: 27 year: 2014 end-page: 32 ident: b0170 article-title: Diameter effect on supercritical heat transfer publication-title: Int Commun Heat Mass Transfer – volume: 147 start-page: 216 year: 2019 end-page: 230 ident: b0725 article-title: Improvement of heat-transfer correlations for supercritical methane coolant in rectangular channel publication-title: Appl Therm Eng – volume: 1 year: 2015 ident: b0980 article-title: Study on Specifics of Forced-Convective Heat Transfer in Supercritical Carbon Dioxide publication-title: J Nucl Eng Rad Sci – volume: 32 start-page: 176 year: 2011 end-page: 191 ident: b0455 article-title: MH Kim Experimental investigation of heat transfer in vertical upward and downward supercritical CO publication-title: Int J Heat Fluid Flow – volume: 170 start-page: 480 year: 2019 end-page: 496 ident: b0215 article-title: Correlation evaluation on circumferentially average heat transfer for supercritical carbon dioxide in non-uniform heating vertical tubes publication-title: Energy – volume: 45 start-page: 495 year: 2013 end-page: 525 ident: b0160 article-title: The Turbulent Flows of Supercritical Fluids with Heat Transfer publication-title: Annu Rev Fluid Mech – volume: 38 start-page: 339 year: 2006 end-page: 346 ident: b0740 article-title: Experimental investigation of flow resistance and convection heat transfer of CO publication-title: J Supercr Fluids – reference: Aneesh AM, Sharma A, Srivastava A, Chaudhuri P. Thermo-hydraulic performance of zigzag, wavy, and serpentine channel based PCHEs. Fluid Mechanics and Fluid Power–Contemporary Research. New Delhi: Springer; 2017, p. 507–516. – reference: Petukhov BS, Polyakov AF, Launder BE. Heat transfer in turbulent mixed convection; 1988. – start-page: 2 year: 1988 end-page: 15 ident: b0035 article-title: Studies of mixed convection in vertical tubes publication-title: Int. J. Heat and Fluid Flow – volume: 50 start-page: 518 year: 2008 end-page: 525 ident: b0440 article-title: Yoon Yeong Bae. Heat transfer to supercritical pressure carbon dioxide flowing upward through tubes and a narrow annulus passage publication-title: Prog Nucl Energy – volume: 54 start-page: 1950 year: 2011 end-page: 1958 ident: b0285 article-title: Investigation on the characteristics and mechanisms of unusual heat transfer of supercritical pressure water in vertically-upward tubes publication-title: Int J Heat Mass Transf – start-page: 4864 year: 2017 ident: b0055 article-title: Rotating Shaft Thermal Analysis for Supercritical Carbon Dioxide Radial Inflow Turbines publication-title: International Energy Conversion Engineering Conference – volume: 354 start-page: 110207 year: 2019 ident: b0225 article-title: Current status of research on heat transfer in forced convection of fluids at supercritical pressures publication-title: Nucl Eng Des – volume: 264 start-page: 24 year: 2013 end-page: 40 ident: b0805 article-title: Fluid flow and convective heat transfer to fluids at supercritical pressure publication-title: Nucl Eng Des – volume: 98 year: 2016 ident: b0490 article-title: Heat transfer of supercritical carbon dioxide flowing in a rectangular circulation loop publication-title: Appl Therm Eng – volume: 95 start-page: 132 year: 2018 end-page: 138 ident: b0210 article-title: The status of the research on the heat transfer deterioration in supercritical fluids: A review publication-title: Int Commun Heat Mass Transfer – reference: >. – volume: 125 start-page: 799 year: 2017 end-page: 810 ident: b0175 article-title: Supercritical CO publication-title: Appl Therm Eng – volume: 45 start-page: 4333 year: 2002 end-page: 4352 ident: b0870 article-title: Temperature, velocity and mean turbulence structure in strongly heated internal gas flows: comparison of numerical predictions with data publication-title: Int J Heat Mass Transf – reference: Spindler K. A review on heat transfer correlations for supercritical carbon dioxide under cooling conditions. In 7th IIR Gustav Loretzen Conference on Natural Working Fluids, May 28–31, Trondheim, Norway; 2006. – year: 1968 ident: b0295 article-title: The deterioration in heat transfer to fluids at supercritical pressure and high heat fluxes – volume: 45 start-page: 5025 year: 2002 end-page: 5034 ident: b0420 article-title: An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes publication-title: Int J Heat Mass Transf – volume: 148 start-page: 1 year: 2019 end-page: 8 ident: b0735 article-title: Flow and heat transfer of supercritical CO publication-title: J Supercr Fluids – volume: 54 start-page: 1775 year: 2011 end-page: 1781 ident: b1120 article-title: Roughness enhanced mechanism for turbulent convective heat transfer publication-title: Int J Heat Mass Transf – volume: 55 start-page: 3061 year: 2012 end-page: 3075 ident: b0230 article-title: Heat transfer and hydraulic resistance of supercritical-pressure coolants. Part I: Specifics of thermophysical properties of supercritical pressure fluids and turbulent heat transfer under heating conditions in round tubes (state of the art) publication-title: Int J Heat Mass Transf – volume: 130 start-page: 304 year: 2019 end-page: 319 ident: b0595 article-title: Experimental investigation of supercritical carbon dioxide in horizontal microchannels with non-uniform heat flux boundary conditions publication-title: Int J Heat Mass Transf – reference: Petukhov AP, Kuleshohov V, Sheckter YL. Turbulent flow and heat transfer in horizontal tubes with substantial influence of thermo-gravitational forces. In Fifth Int. Heat Transfer Conference; 1974 (3-7). – volume: 18 start-page: 190 year: 1995 end-page: 197 ident: b0005 article-title: The use of natural refrigerants: a complete solution to the CFC/HCFC predicament publication-title: Int J Refrig – volume: 313 start-page: 162 year: 2017 end-page: 176 ident: b0510 article-title: Convective heat transfer in supercritical flows of CO publication-title: Nucl Eng Des – volume: 14 start-page: 116 year: 1967 end-page: 119 ident: b0375 article-title: A study of heat transfer in vertical tubes at supercritical pressures publication-title: Therm Eng – volume: 101 start-page: 36 year: 2015 end-page: 47 ident: b0610 article-title: Heat transfer characteristics of supercritical CO publication-title: J Supercr Fluids – volume: 73 start-page: 250 year: 2014 end-page: 263 ident: b0180 article-title: A state-of-the-art review of recent advances in supercritical natural circulation loops for nuclear applications publication-title: Ann Nucl Energy – volume: 58 start-page: 152 year: 2013 end-page: 167 ident: b0235 article-title: Heat transfer and hydraulic resistance of supercritical-pressure coolants. Part II: Experimental data on hydraulic resistance and averaged turbulent flow structure of supercritical pressure fluids during heating in round tubes under normal and deteriorated heat transfer conditions publication-title: Int J Heat Mass Transf – volume: 77 start-page: 1197 year: 2014 end-page: 1212 ident: b0245 article-title: Heat transfer and hydraulic resistance of supercritical pressure coolants. Part IV: Problems of generalized heat transfer description, methods of predicting deteriorated heat transfer; empirical correlations; deteriorated heat transfer enhancement; dissolved gas effects publication-title: Int J Heat Mass Transf – volume: 261 start-page: 116 year: 2013 end-page: 131 ident: b0470 article-title: Developing empirical heat-transfer correlations for supercritical CO publication-title: Nucl Eng Des – reference: Southwest Research Institute, Swri, gti and ge break ground on $119 million supercritical CO2 pilot power plant (October 2018). URL < – reference: Benra F, Brillert D, Frybort O, Hajek P, Rohde M, Schuster S, et al. A supercritical CO2 low temperature brayton cycle for residual heat removal. In The 5th international symposium - supercritical CO2 power cycles, San Antonio, Texas, USA; 2016. – volume: 15 start-page: 2575 year: 1972 end-page: 2593 ident: b0925 article-title: Forced convective heat transfer to supercritical water flowing in tubes publication-title: Int J Heat Mass Transf – year: 2002 ident: b0840 article-title: Influences of buoyancy and thermal boundary conditions on heat transfer with naturally-induced flow – volume: 105 start-page: 536 year: 1980 end-page: 541 ident: b1060 article-title: Numerical prediction of wall temperatures for near-critical para-hydrogen in turbulent upflow inside vertical tubes publication-title: J Heat Transfer – volume: 120 start-page: 10 year: 2017 end-page: 18 ident: b0530 article-title: Numerical analysis on nonuniform heat transfer of supercritical pressure water in horizontal circular tube publication-title: Appl Therm Eng – volume: 152 start-page: 104560 year: 2019 ident: b0685 article-title: Analysis of coupled heat transfer of supercritical CO publication-title: J Supercr Fluids – reference: Hsieh JC, Lin DTW, Lee BH, Chung MC. Experimental study on heat transfer of supercritical carbon dioxide in a long silica-based porous-media tube. Heat Mass Transfer 2016;53(3):995–1004. – volume: 118 start-page: 1056 year: 2018 end-page: 1068 ident: b0345 article-title: Onset of heat transfer deterioration in vertical pipe flows of CO publication-title: Int J Heat Mass Transf – volume: 32 start-page: 332 year: 1985 end-page: 336 ident: b0880 article-title: Calculation of normal and deteriorated heat-transfer in tubes with turbulent-flow of liquids in the near-critical and vapor region of state publication-title: Therm Eng – volume: 127 start-page: 555 year: 2018 end-page: 567 ident: b0990 article-title: Experimental study of buoyancy effect and its criteria for heat transfer of supercritical R134a in horizontal tubes publication-title: Int J Heat Mass Transf – volume: 82 start-page: 123 year: 2015 end-page: 134 ident: b0645 article-title: On the influence of gravitational and centrifugal buoyancy on laminar flow and heat transfer in curved pipes and coils publication-title: Int J Heat Mass Transf – volume: 106 start-page: 1144 year: 2017 end-page: 1156 ident: b0500 article-title: Improvement of buoyancy and acceleration parameters for forced and mixed convective heat transfer to supercritical fluids flowing in vertical tubes publication-title: Int J Heat Mass Transf – volume: 7 start-page: 1260 year: 2017 ident: b0495 article-title: Experimental and Numerical Investigation of Convective Heat Transfer of Supercritical Carbon Dioxide at Low Mass Fluxes publication-title: Appl Sci – volume: 12 start-page: 2569 year: 2000 ident: b0825 article-title: Stably stratified turbulent channel flows. I. Stratification regimes and turbulence suppression mechanism publication-title: Phys Fluids – volume: 16 start-page: 1267 year: 1973 end-page: 1288 ident: b0025 article-title: Effects of buoyancy and of acceleration owing to thermal expansion on forced turbulent convection in vertical circular tubes—criteria of the effects, velocity and temperature profiles, and reverse transition from turbulent to laminar flow publication-title: Int J Heat Mass Transf – volume: 61 start-page: 914 year: 2014 end-page: 917 ident: b0780 article-title: Experimental Study of the Heat Transfer of Supercritical Carbon Dioxide in Silica-based Porous Media publication-title: Energy Proc – volume: 27 start-page: 55 year: 2018 end-page: 63 ident: b0650 article-title: Turbulent convective heat transfer of methane at supercritical pressure in a helical coiled tube publication-title: J Therm Sci – volume: 145 start-page: 705 year: 2018 end-page: 715 ident: b0625 article-title: Numerical study on the heat transfer enhancement of supercritical CO publication-title: Appl Therm Eng – volume: vol. 19 start-page: 221 year: 1979 end-page: 309 ident: b0855 article-title: Relaminarization of fluid flows publication-title: Advances in applied mechanics – reference: Swenson HS, J.R.C., Kakarala CR. Heat transfer to supercritical water in smooth-bore tube. J Heat Transfer 1965;87(4):477–84. – volume: 127 start-page: 48 year: 2017 end-page: 61 ident: b0660 article-title: Numerical investigation of supercritical water turbulent flow and heat transfer characteristics in vertical helical tubes publication-title: J Supercr Fluids – volume: 289 start-page: 92 year: 2015 end-page: 107 ident: b0485 article-title: Measurements of convective heat transfer to vertical upward flows of CO publication-title: Nucl Eng Des – volume: 227 start-page: 220 year: 2018 end-page: 230 ident: b0430 article-title: Performance evaluation of a low-grade power generation system with CO publication-title: Appl Energy – volume: 157 start-page: 536 year: 2018 end-page: 548 ident: b0515 article-title: Computational investigations of heat transfer to supercritical CO publication-title: Energy Convers Manage – volume: 34 start-page: 1162 year: 2010 end-page: 1171 ident: b0330 article-title: Experimental investigation of convection heat transfer of CO publication-title: Exp Therm Fluid Sci – volume: 36 start-page: 1120 year: 2009 end-page: 1128 ident: b0940 article-title: A simplified method for heat transfer prediction of supercritical fluids in circular tubes publication-title: Ann Nucl Energy – volume: 33 start-page: 329 year: 2009 end-page: 339 ident: b0445 article-title: Convective heat transfer to CO publication-title: Exp Therm Fluid Sci – volume: 106 start-page: 119 year: 2019 end-page: 129 ident: b0795 article-title: Experimental investigation of thermal-hydraulic performance of discontinuous fin printed circuit heat exchangers for supercritical CO publication-title: Exp Therm Fluid Sci – volume: 157 start-page: 113687 year: 2019 ident: b0365 article-title: Experimental investigation on the heat transfer characteristics of supercritical CO publication-title: Appl Therm Eng – reference: Sulzer G. Verfahren zur erzeugung von arbeit aus warme, Swiss Patent; 1950. 269599. – volume: 14 start-page: 897 year: 2010 end-page: 911 ident: b0110 article-title: Heat recovery from a natural gas powered internal combustion engine by CO2 transcritical power cycle publication-title: Therm Sci – volume: 809 start-page: 31 year: 2016 end-page: 71 ident: b0895 article-title: Laminarisation of flow at low Reynolds number due to streamwise body force publication-title: J Fluid Mech – volume: 52 start-page: 713 year: 2015 end-page: 726 ident: b0575 article-title: Experimental investigation of buoyancy effects on convection heat transfer of supercritical CO publication-title: Heat Mass Transf – reference: Kim WS, J.D. Jackson, He S. Computational Investigation into Buoyancy-Aided turbulent flow and heat transfer to air in a vertical tube. ICHMT DIGITAL LIBRARY ONLINE. Begel House Inc.; 2006. – reference: Kim Tae Ho, Park Hyun Sun, Kwon Jin Gyu, Park Joo Hyun, Kim Moo Hwan. Investigation of heat transfer model for horizontal tubes at supercritical pressures of CO2. In The 6th International Supercritical CO2 Power Cycles Symposium March 27–29, 2018, Pittsburgh, Pennsylvania. – volume: 91 start-page: 552 year: 2015 end-page: 561 ident: b0710 article-title: Experimental research on the turbulent convection heat transfer of supercritical pressure CO publication-title: Int J Heat Mass Transf – volume: 19 start-page: 715 year: 1976 end-page: 720 ident: b1030 article-title: Experimental investigation of heat transfer to supercritical pressure carbon dioxide in a horizontal pipe publication-title: Int J Heat Mass Transf – volume: 162 start-page: 494 year: 2016 end-page: 505 ident: b0165 article-title: A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress publication-title: Appl Energy – volume: 50 start-page: 213 year: 2013 end-page: 221 ident: b0520 article-title: Experimental investigation on heat transfer characteristics of supercritical pressure water in a horizontal tube publication-title: Exp Therm Fluid Sci – volume: 140 start-page: 530 year: 2017 end-page: 545 ident: b1125 article-title: Orientation effect in helical coils with smooth and rib-roughened wall: Toward improved gas heaters for supercritical carbon dioxide Rankine cycles publication-title: Energy – volume: 92 start-page: 658 year: 2018 end-page: 675 ident: b0195 article-title: A comprehensive review on heat transfer and pressure drop characteristics and correlations with supercritical CO publication-title: Renew Sustain Energy Rev – reference: Tollefson J. Innovative zero-emissions power plant begins battery of tests; May 2018. < – volume: 28 start-page: 631 year: 1985 end-page: 640 ident: b1080 article-title: Buoyancy in developed laminar curved tube flows publication-title: Int J Heat Mass Transf – volume: 52 start-page: 459 year: 2010 end-page: 465 ident: b9000 article-title: Demonstration test plant of closed cycle gas turbine with supercritical CO publication-title: J Strojarstvo – volume: 230 start-page: 69 year: 2004 end-page: 91 ident: b0145 article-title: Heat transfer to supercritical fluids flowing in channels—empirical correlations (survey) publication-title: Nucl Eng Des – volume: 79 start-page: 90 year: 2014 end-page: 102 ident: b0975 article-title: Numerical study of turbulent flow in heated circular tube using transitional shear stress transport turbulence model publication-title: Int J Therm Sci – volume: 29 start-page: 275 year: 2017 end-page: 295 ident: b0250 article-title: Visualization Study of Supercritical Fluid Convection and Heat Transfer in Weightlessness by Interferometry: A Brief Review publication-title: Microgr Sci Technol – volume: 32 start-page: 244 year: 1962 end-page: 252 ident: b0910 article-title: Correlation of hydrogen heat transfer in boiling and supercritical pressure states publication-title: ARS J – reference: Kim JK, Jeon HK, Yoo JY, Lee JS. Experimental study on heat transfer characteristics of turbulent supercritical flow in vertical circular/non-circular tubes. In Proceedings of the 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH 11), Avignon, France, Oct. 2005, p. 2–6. – volume: 122 start-page: 469 year: 2018 end-page: 482 ident: b0355 article-title: Special heat transfer characteristics of supercritical CO publication-title: Int J Heat Mass Transf – reference: Watts MJ, C.T.C., Mixed convection heat transfer to supercritical pressure water. In 7th Int. Heat Transfer Conf., Munchen, W. Germany, 1982, Sep.6–10, vol. 495. – volume: 10 start-page: 304 year: 1972 end-page: 310 ident: b0985 article-title: Experimental investigation of worsened heat transfer conditions with the turbulent flow of carbon dioxide at supercritical pressure publication-title: High Temp – volume: 125 start-page: 274 year: 2018 end-page: 289 ident: b0665 article-title: The buoyancy force and flow acceleration effects of supercritical CO publication-title: Int J Heat Mass Transf – volume: 127 start-page: 286 year: 2018 end-page: 295 ident: b0350 article-title: Experimental investigation of heat transfer to supercritical R245fa flowing vertically upward in a circular tube publication-title: Int J Heat Mass Transf – volume: 113 start-page: 257 year: 2017 end-page: 267 ident: b0395 article-title: Study on two wall temperature peaks of supercritical fluid mixed convective heat transfer in circular tubes publication-title: Int J Heat Mass Transf – start-page: 1 year: 2006 end-page: 51 ident: b1045 article-title: Combined free and forced convection in passages publication-title: Single-phase convective heat transfer – volume: 30 start-page: 1117 year: 2006 end-page: 1129 ident: b0100 article-title: Study of solar energy powered transcritical cycle using supercritical carbon dioxide publication-title: Int J Energy Res – reference: Petukhov BS. Heat Transfer and Friction in Turbulent Pipe Flow with Variable Physical Properties, vol. 6; 1970, p. 503–64. – reference: Chen Y. Novel cycles using carbon dioxide as working fluid (Ph.D. thesis). Stockholm: Division of Applied Thermo dynamics and Refrigeration, Energy Department, KTH University; 2006. – volume: 117 start-page: 595 year: 2018 end-page: 606 ident: b0900 article-title: Numerical investigation of buoyancy effect on heat transfer to carbon dioxide flow in a tube at supercritical pressures publication-title: Int J Heat Mass Transf – volume: 21 start-page: 81 year: 1983 end-page: 89 ident: b0385 article-title: V.B Ankudinov, Heat transfer and flow resistance in the turbulent pipe flow of a fluid with near-critical state parameters publication-title: High Temp – year: 2007 ident: b0930 article-title: Experimental study on heat transfer to supercritical water flowing in 6-m long vertical tubes publication-title: International Conference on Nuclear Engineering (ICONE-15) – volume: 131 start-page: 977 year: 2018 end-page: 987 ident: b0220 article-title: A brief review on the buoyancy criteria for supercritical fluids publication-title: Appl Therm Eng – volume: 24 start-page: 1255 year: 2004 end-page: 1270 ident: b0605 article-title: Experimental investigation of convection heat transfer of CO publication-title: Appl Therm Eng – reference: Naphon P, Wongwises S. A review of flow and heat transfer characteristics in curved tubes. Renew Sustain Energy Rev 2006;10(5):463–90. – reference: Goldmann K. Heat transfer to supercritical water at 5000 psi flowing at high mass flow rates through round tubes. International Developments in Heat Transfer, Part III. New York: ASME; 1961, p. 561–568. – volume: 134 start-page: 437 year: 2019 end-page: 449 ident: b0690 article-title: Buoyancy effects on coupled heat transfer of supercritical pressure CO publication-title: Int J Heat Mass Transf – volume: 34 start-page: 1295 year: 2010 end-page: 1308 ident: b0315 article-title: Forced and mixed convection heat transfer to supercritical CO publication-title: Exp Therm Fluid Sci – volume: 154 start-page: 335 year: 2017 end-page: 349 ident: b1040 article-title: Heat Transfer in a Supercritical Fluid: Classification of Heat Transfer Regimes publication-title: Nucl Technol – start-page: 134(8) year: 2012 ident: b0680 article-title: Supercritical Carbon Dioxide Heat Transfer in Horizontal Semicircular Channels publication-title: J Heat Transfer – volume: 13 start-page: 1163 year: 1970 end-page: 1175 ident: b0915 article-title: Film boiling and free convection heat transfer to carbon dioxide near the critical state publication-title: Int J Heat Mass Transf – volume: 34 start-page: 6304 year: 2014 end-page: 6310 ident: b0945 article-title: A new criterion for predicting deterioration of heat transfer to supercritical water in smooth tubes Chin publication-title: Soc. Electr. Eng. – volume: 95 start-page: 247 year: 2016 end-page: 254 ident: b0425 article-title: Experimental investigation on the CO publication-title: Energy – volume: 120 start-page: 930 year: 2018 end-page: 943 ident: b0635 article-title: Experimental investigation on heat transfer deterioration of supercritical pressure water in vertically-upward internally-ribbed tubes publication-title: Int J Heat Mass Transf – start-page: 3359 year: 2014 ident: b0480 article-title: Effect of buoyancy on heat transfer characteristics of supercritical carbon dioxide in the heating mode publication-title: 11th AIAA/ASME Joint Thermophysics and Heat Transfer Conference – start-page: 11 year: 2012 end-page: 13 ident: b0890 article-title: Waste heat to power (WH2P) applications using a supercritical CO – volume: 51 start-page: 3052 year: 2008 end-page: 3056 ident: b0450 article-title: Experimental and numerical investigation of convection heat transfer of CO publication-title: Int J Heat Mass Transf – volume: 10 start-page: 1692 year: 2017 ident: b0555 article-title: Ideal point design and operation of CO publication-title: Energies – volume: 29 start-page: 156 year: 2008 end-page: 166 ident: b0715 article-title: Heat transfer to water at suoercritical pressures in a circular and square annular flow geometry publication-title: Int J Heat Fluid Flow – volume: 89 start-page: 177 year: 2018 end-page: 185 ident: b1100 article-title: Experimental investigation of heat transfer of supercritical CO 2 cooled in helically coiled tubes based on exergy analysis publication-title: Int. J. Refrig. – reference: Deev VI, V.S.K., Churkin AN. Analysis and generalization of experimental data on heat transfer to supercritical pressure water flow in annular channels and rod bundles. Therm Eng 2017;64:142–50. – volume: 11 year: 2019 ident: b0590 article-title: Experimental study on forced convective heat transfer of supercritical carbon dioxide in a horizontal circular tube under high heat flux and low mass flux conditions publication-title: Adv Mech Eng – volume: 124 start-page: 1481 year: 2017 end-page: 1491 ident: b0885 article-title: Models of heat transfer to fluids at supercritical pressure with influences of buoyancy and acceleration publication-title: Appl Therm Eng – volume: 136 start-page: 708 year: 2018 end-page: 717 ident: b0435 article-title: Experimental analysis and comparison between CO2 transcritical power cycles and R245fa organic Rankine cycles for low-grade heat power generations publication-title: Appl. Therm. Eng. – volume: 100 start-page: 49 year: 2019 end-page: 61 ident: b0550 article-title: Experimental study of the heat transfer characteristics of supercritical pressure R134a in a horizontal tube publication-title: Exp Therm Fluid Sci – volume: 127 start-page: 257 year: 2018 end-page: 267 ident: b0820 article-title: A modified buoyancy effect correction method on turbulent convection heat transfer of supercritical pressure fluid based on RANS model publication-title: Int J Heat Mass Transf – volume: 116 start-page: 132 year: 2016 end-page: 147 ident: b0185 article-title: State-of-the-art on flow and heat transfer characteristics of supercritical CO publication-title: J Supercr Fluids – volume: 51 start-page: 6283 year: 2008 end-page: 6293 ident: b0745 article-title: Experimental and numerical study of convection heat transfer of CO publication-title: Int J Heat Mass Transf – volume: 780 start-page: 192 year: 2015 end-page: 214 ident: b0875 article-title: Numerical simulation of a spatially developing accelerating boundary layer over roughness publication-title: J Fluid Mech – reference: Jackson JD, Fewster J. Forced convection data for supercritical pressure fluids. Report No. HTFS; 1975, p. 21540. – volume: 50 start-page: 4908 year: 2007 end-page: 4911 ident: b0750 article-title: Wall temperature measurements with turbulent flow in heated vertical circular/non-circular channels of supercritical pressure carbon-dioxide publication-title: Int J Heat Mass Transf – volume: 127 start-page: 897 year: 2005 end-page: 902 ident: b1055 article-title: Effect of buoyancy on heat transfer in supercritical water flow in a horizontal round tube publication-title: J Heat Transfer – reference: Jackson JD, Hall WB. Influences of buoyancy on heat transfer to fluids flowing in vertical tubes under turbulent conditions 1979;2:613–40. – volume: 92 start-page: 222 year: 2018 end-page: 230 ident: b0580 article-title: Experimental investigation on validity of buoyancy parameters to heat transfer of CO publication-title: Exp Therm Fluid Sci – volume: 176 start-page: 765 year: 2019 end-page: 777 ident: b1095 article-title: The heat transfer of supercritical CO publication-title: Energy – volume: 31 start-page: 1301 year: 2008 end-page: 1316 ident: b0205 article-title: Analysis of supercritical CO publication-title: Int J Refrig – year: 2010 ident: b0125 article-title: The conversion of low-grade heat into power using supercritical Rankine cycles – volume: vol. 7 start-page: 1 year: 1971 end-page: 86 ident: b0800 article-title: Heat Transfer near the Critical Point publication-title: Advances in Heat Transfer – volume: 50 start-page: 101 year: 2014 end-page: 111 ident: b0075 article-title: Thermo-economic analysis and comparison of a CO2 transcritical power cycle and an organic Rankine cycle publication-title: Geothermics – volume: 78 start-page: 501 year: 2014 end-page: 512 ident: b0070 article-title: Thermoeconomic analysis & optimization of the combined supercritical CO publication-title: Energy – volume: 59 start-page: 380 year: 2013 end-page: 388 ident: b0525 article-title: Influence of buoyancy on heat transfer to water flowing in horizontal tubes under supercritical pressure publication-title: Appl Therm Eng – reference: Polyakov AF. Heat Transfer under Supercritical Pressures 1991;21:1–53. – volume: 102 start-page: 133 year: 2016 end-page: 141 ident: b0950 article-title: Development of a new empirical correlation for the prediction of the onset of the deterioration of heat transfer to supercritical water in vertical tubes publication-title: Int J Heat Mass Transf – volume: 241 start-page: 3164 year: 2011 end-page: 3177 ident: b0325 article-title: Mixed convection heat transfer to carbon dioxide flowing upward and downward in a vertical tube and an annular channel publication-title: Nucl Eng Des – volume: 110 start-page: 576 year: 2017 end-page: 586 ident: b0505 article-title: Buoyancy effects on turbulent heat transfer of supercritical CO publication-title: Int J Heat Mass Transf – volume: 102 start-page: 133 year: 2016 ident: 10.1016/j.apenergy.2020.114962_b0950 article-title: Development of a new empirical correlation for the prediction of the onset of the deterioration of heat transfer to supercritical water in vertical tubes publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2016.06.007 – volume: 809 start-page: 31 year: 2016 ident: 10.1016/j.apenergy.2020.114962_b0895 article-title: Laminarisation of flow at low Reynolds number due to streamwise body force publication-title: J Fluid Mech doi: 10.1017/jfm.2016.653 – volume: 14 start-page: 116 issue: 9 year: 1967 ident: 10.1016/j.apenergy.2020.114962_b0375 article-title: A study of heat transfer in vertical tubes at supercritical pressures publication-title: Therm Eng – volume: 157 start-page: 113687 year: 2019 ident: 10.1016/j.apenergy.2020.114962_b0365 article-title: Experimental investigation on the heat transfer characteristics of supercritical CO2 at various mass flow rates in heated vertical-flow tube publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2019.04.097 – start-page: 119074 year: 2019 ident: 10.1016/j.apenergy.2020.114962_b0560 article-title: Experimental and numerical comparison of the heat transfer behaviors and buoyancy effects of supercritical CO2 in various heating tubes publication-title: Int J Heat Mass Transfer – volume: 3 start-page: 465 issue: 92 year: 1969 ident: 10.1016/j.apenergy.2020.114962_b0390 article-title: The effect of swirl, inlet conditions, flow direction, and tube diameter on the heat transfer to fluids at supercritical pressure publication-title: J Heat Transfer – ident: 10.1016/j.apenergy.2020.114962_b0785 doi: 10.1007/s00231-016-1874-6 – volume: 313 start-page: 162 year: 2017 ident: 10.1016/j.apenergy.2020.114962_b0510 article-title: Convective heat transfer in supercritical flows of CO2 in tubes with and without flow obstacles publication-title: Nucl Eng Des doi: 10.1016/j.nucengdes.2016.12.016 – volume: 4 start-page: 281 issue: 3 year: 1998 ident: 10.1016/j.apenergy.2020.114962_b0140 article-title: Heat Transfer from Supercritical Carbon Dioxide in Tube Flow: A Critical Review publication-title: HVAC&R Research doi: 10.1080/10789669.1998.10391405 – volume: 30 start-page: 1117 year: 2006 ident: 10.1016/j.apenergy.2020.114962_b0100 article-title: Study of solar energy powered transcritical cycle using supercritical carbon dioxide publication-title: Int J Energy Res doi: 10.1002/er.1201 – volume: 50 start-page: 518 issue: 2–6 year: 2008 ident: 10.1016/j.apenergy.2020.114962_b0440 article-title: Yoon Yeong Bae. Heat transfer to supercritical pressure carbon dioxide flowing upward through tubes and a narrow annulus passage publication-title: Prog Nucl Energy – volume: 42 start-page: 132 issue: 26 year: 2009 ident: 10.1016/j.apenergy.2020.114962_b0095 article-title: Optimum for CO2 transcritical power Rankine cycle using exhaust gas from fishing boat diesel engines publication-title: IFAC Proceedings Volumes doi: 10.3182/20091130-3-FR-4008.00018 – year: 2002 ident: 10.1016/j.apenergy.2020.114962_b0840 – year: 2006 ident: 10.1016/j.apenergy.2020.114962_b0380 – volume: 78 start-page: 303 year: 2015 ident: 10.1016/j.apenergy.2020.114962_b0615 article-title: Effects of rib geometries and property variations on heat transfer to supercritical water in internally ribbed tubes publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2014.12.067 – volume: 124 start-page: 1481 year: 2017 ident: 10.1016/j.apenergy.2020.114962_b0885 article-title: Models of heat transfer to fluids at supercritical pressure with influences of buoyancy and acceleration publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2017.03.146 – ident: 10.1016/j.apenergy.2020.114962_b0015 doi: 10.1115/69-GT-102 – volume: 36 start-page: 1120 issue: 8 year: 2009 ident: 10.1016/j.apenergy.2020.114962_b0940 article-title: A simplified method for heat transfer prediction of supercritical fluids in circular tubes publication-title: Ann Nucl Energy doi: 10.1016/j.anucene.2009.04.016 – volume: 172 start-page: 517 year: 2019 ident: 10.1016/j.apenergy.2020.114962_b0705 article-title: Numerical investigations on serpentine channel for supercritical CO2 recuperator publication-title: Energy doi: 10.1016/j.energy.2019.01.148 – volume: 176 start-page: 765 year: 2019 ident: 10.1016/j.apenergy.2020.114962_b1095 article-title: The heat transfer of supercritical CO2 in helically coiled tube: Trade-off between curvature and buoyancy effect publication-title: Energy doi: 10.1016/j.energy.2019.03.150 – volume: 116 start-page: 661 year: 2016 ident: 10.1016/j.apenergy.2020.114962_b0640 article-title: A quantitative study on the interaction between curvature and buoyancy effects in helically coiled heat exchangers of supercritical CO2 Rankine cycles publication-title: Energy doi: 10.1016/j.energy.2016.10.005 – volume: vol. 2 start-page: 719 year: 1977 ident: 10.1016/j.apenergy.2020.114962_b1010 article-title: Experimental Study of the Effects of Thermogravitation in Horizontal Pipes – volume: 45 start-page: 495 issue: 1 year: 2013 ident: 10.1016/j.apenergy.2020.114962_b0160 article-title: The Turbulent Flows of Supercritical Fluids with Heat Transfer publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev-fluid-120710-101234 – start-page: 134(8) year: 2012 ident: 10.1016/j.apenergy.2020.114962_b0680 article-title: Supercritical Carbon Dioxide Heat Transfer in Horizontal Semicircular Channels publication-title: J Heat Transfer – ident: 10.1016/j.apenergy.2020.114962_b0850 doi: 10.1615/ICHMT.2006.TurbulHeatMassTransf.1080 – volume: 113 start-page: 609 year: 2017 ident: 10.1016/j.apenergy.2020.114962_b0565 article-title: Experimental study on the difference of heat transfer characteristics between vertical and horizontal flows of supercritical pressure water publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.11.051 – ident: 10.1016/j.apenergy.2020.114962_b0310 – volume: 125 start-page: 799 year: 2017 ident: 10.1016/j.apenergy.2020.114962_b0175 article-title: Supercritical CO2 as heat transfer fluid: A review publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2017.07.049 – volume: 136 start-page: 708 year: 2018 ident: 10.1016/j.apenergy.2020.114962_b0435 article-title: Experimental analysis and comparison between CO2 transcritical power cycles and R245fa organic Rankine cycles for low-grade heat power generations publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.03.058 – volume: 138 start-page: 154 year: 2018 ident: 10.1016/j.apenergy.2020.114962_b0845 article-title: Investigation of buoyancy-enhanced heat transfer of supercritical CO2 in upward and downward tube flows publication-title: J Supercr Fluids doi: 10.1016/j.supflu.2018.03.014 – volume: 7 start-page: 1260 issue: 12 year: 2017 ident: 10.1016/j.apenergy.2020.114962_b0495 article-title: Experimental and Numerical Investigation of Convective Heat Transfer of Supercritical Carbon Dioxide at Low Mass Fluxes publication-title: Appl Sci doi: 10.3390/app7121260 – volume: 29 start-page: 156 issue: 1 year: 2008 ident: 10.1016/j.apenergy.2020.114962_b0715 article-title: Heat transfer to water at suoercritical pressures in a circular and square annular flow geometry publication-title: Int J Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2007.09.007 – volume: 61 start-page: 236 issue: 2 year: 2013 ident: 10.1016/j.apenergy.2020.114962_b0085 article-title: System thermodynamic performance comparison of CO2-EGS and water-EGS systems publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2013.08.007 – volume: 78 start-page: 551 year: 2014 ident: 10.1016/j.apenergy.2020.114962_b0130 article-title: A supercritical or transcritical Rankine cycle with ejector using low-grade heat publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2013.11.020 – volume: 52 start-page: 713 issue: 4 year: 2015 ident: 10.1016/j.apenergy.2020.114962_b0575 article-title: Experimental investigation of buoyancy effects on convection heat transfer of supercritical CO2 flow in a horizontal tube publication-title: Heat Mass Transf doi: 10.1007/s00231-015-1580-9 – year: 2007 ident: 10.1016/j.apenergy.2020.114962_b0930 article-title: Experimental study on heat transfer to supercritical water flowing in 6-m long vertical tubes – volume: 32 start-page: 340 issue: 1 year: 2011 ident: 10.1016/j.apenergy.2020.114962_b0755 article-title: Effect of a helical wire on mixed convection heat transfer to carbon dioxide in a vertical circular tube at supercritical pressures publication-title: Int J Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2010.06.013 – volume: 264 start-page: 24 year: 2013 ident: 10.1016/j.apenergy.2020.114962_b0805 article-title: Fluid flow and convective heat transfer to fluids at supercritical pressure publication-title: Nucl Eng Des doi: 10.1016/j.nucengdes.2012.09.040 – volume: vol. 19 start-page: 221 year: 1979 ident: 10.1016/j.apenergy.2020.114962_b0855 article-title: Relaminarization of fluid flows publication-title: Advances in applied mechanics doi: 10.1016/S0065-2156(08)70311-9 – volume: 14 start-page: 5 issue: 6 year: 1967 ident: 10.1016/j.apenergy.2020.114962_b0290 article-title: Problems in the development of designs of supercritical boilers publication-title: Therm Eng – volume: 27 start-page: 1702 issue: 10 year: 2007 ident: 10.1016/j.apenergy.2020.114962_b0065 article-title: High performance printed circuit heat exchanger publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2006.07.007 – volume: 50 start-page: 213 year: 2013 ident: 10.1016/j.apenergy.2020.114962_b0520 article-title: Experimental investigation on heat transfer characteristics of supercritical pressure water in a horizontal tube publication-title: Exp Therm Fluid Sci doi: 10.1016/j.expthermflusci.2013.06.011 – volume: 59 start-page: 380 issue: 1–2 year: 2013 ident: 10.1016/j.apenergy.2020.114962_b0525 article-title: Influence of buoyancy on heat transfer to water flowing in horizontal tubes under supercritical pressure publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2013.05.034 – volume: 34 start-page: 122503 issue: 12 year: 2012 ident: 10.1016/j.apenergy.2020.114962_b0920 article-title: A new analysis of heat transfer deterioration on basis of turbulent viscosity variations of supercritical fluids publication-title: J Heat Transfer doi: 10.1115/1.4007313 – ident: 10.1016/j.apenergy.2020.114962_b0860 doi: 10.1115/ICONE16-48914 – volume: 230 start-page: 69 issue: 1–3 year: 2004 ident: 10.1016/j.apenergy.2020.114962_b0145 article-title: Heat transfer to supercritical fluids flowing in channels—empirical correlations (survey) publication-title: Nucl Eng Des doi: 10.1016/j.nucengdes.2003.10.010 – volume: 92 start-page: 222 year: 2018 ident: 10.1016/j.apenergy.2020.114962_b0580 article-title: Experimental investigation on validity of buoyancy parameters to heat transfer of CO2 at supercritical pressures in a horizontal tube publication-title: Exp Therm Fluid Sci doi: 10.1016/j.expthermflusci.2017.11.024 – volume: 99 start-page: 112 year: 2015 ident: 10.1016/j.apenergy.2020.114962_b0655 article-title: Numerical investigation on heat transfer of supercritical CO2 in heated helically coiled tubes publication-title: J Supercr Fluids doi: 10.1016/j.supflu.2015.02.001 – volume: 117 start-page: 595 year: 2018 ident: 10.1016/j.apenergy.2020.114962_b0900 article-title: Numerical investigation of buoyancy effect on heat transfer to carbon dioxide flow in a tube at supercritical pressures publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.10.037 – volume: 52 start-page: 459 year: 2010 ident: 10.1016/j.apenergy.2020.114962_b9000 article-title: Demonstration test plant of closed cycle gas turbine with supercritical CO2 as working fluid publication-title: J Strojarstvo – volume: 18 start-page: 190 issue: 3 year: 1995 ident: 10.1016/j.apenergy.2020.114962_b0005 article-title: The use of natural refrigerants: a complete solution to the CFC/HCFC predicament publication-title: Int J Refrig doi: 10.1016/0140-7007(94)00001-E – volume: 110 start-page: 576 year: 2017 ident: 10.1016/j.apenergy.2020.114962_b0505 article-title: Buoyancy effects on turbulent heat transfer of supercritical CO2 in a vertical mini-tube based on continuous wall temperature measurements publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.03.063 – volume: 38 start-page: 339 issue: 3 year: 2006 ident: 10.1016/j.apenergy.2020.114962_b0740 article-title: Experimental investigation of flow resistance and convection heat transfer of CO2 at supercritical pressures in a vertical porous tube publication-title: J Supercr Fluids doi: 10.1016/j.supflu.2005.12.004 – volume: 58 start-page: 152 issue: 1–2 year: 2013 ident: 10.1016/j.apenergy.2020.114962_b0235 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2012.10.072 – volume: 31 start-page: 1301 issue: 8 year: 2008 ident: 10.1016/j.apenergy.2020.114962_b0205 article-title: Analysis of supercritical CO2 cooling in macro- and micro-channels publication-title: Int J Refrig doi: 10.1016/j.ijrefrig.2008.01.010 – volume: 77 start-page: 1197 year: 2014 ident: 10.1016/j.apenergy.2020.114962_b0245 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2014.06.014 – volume: 261 start-page: 116 year: 2013 ident: 10.1016/j.apenergy.2020.114962_b0470 article-title: Developing empirical heat-transfer correlations for supercritical CO2 flowing in vertical bare tubes publication-title: Nucl Eng Des doi: 10.1016/j.nucengdes.2013.02.048 – volume: 108 start-page: 1645 year: 2017 ident: 10.1016/j.apenergy.2020.114962_b1050 article-title: Experimental and numerical investigation on heat transfer characteristics of supercritical CO2 in the cooled helically coiled tube publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.01.004 – volume: 79 start-page: 90 year: 2014 ident: 10.1016/j.apenergy.2020.114962_b0975 article-title: Numerical study of turbulent flow in heated circular tube using transitional shear stress transport turbulence model publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2014.01.011 – volume: 265 start-page: 1036 year: 2013 ident: 10.1016/j.apenergy.2020.114962_b0760 article-title: Heat transfer in CO2 at supercritical pressures in an eccentric annular channel publication-title: Nucl Eng Des doi: 10.1016/j.nucengdes.2013.10.005 – volume: 45 start-page: 4333 issue: 21 year: 2002 ident: 10.1016/j.apenergy.2020.114962_b0870 article-title: Temperature, velocity and mean turbulence structure in strongly heated internal gas flows: comparison of numerical predictions with data publication-title: Int J Heat Mass Transf doi: 10.1016/S0017-9310(02)00119-9 – volume: 98 issue: 39–48 year: 2016 ident: 10.1016/j.apenergy.2020.114962_b0490 article-title: Heat transfer of supercritical carbon dioxide flowing in a rectangular circulation loop publication-title: Appl Therm Eng – volume: 44 start-page: 164 issue: 2 year: 2008 ident: 10.1016/j.apenergy.2020.114962_b0335 article-title: Heat transfer characteristics of a supercritical fluid flow in a vertical pipe publication-title: J Supercr Fluids doi: 10.1016/j.supflu.2007.11.013 – volume: 12 start-page: 2569 issue: 10 year: 2000 ident: 10.1016/j.apenergy.2020.114962_b0825 article-title: Stably stratified turbulent channel flows. I. Stratification regimes and turbulence suppression mechanism publication-title: Phys Fluids doi: 10.1063/1.1288608 – ident: 10.1016/j.apenergy.2020.114962_b1065 – ident: 10.1016/j.apenergy.2020.114962_b0120 – volume: 33 start-page: 329 issue: 2 year: 2009 ident: 10.1016/j.apenergy.2020.114962_b0445 article-title: Convective heat transfer to CO2 at a supercritical pressure flowing vertically upward in tubes and an annular channel publication-title: Exp Therm Fluid Sci doi: 10.1016/j.expthermflusci.2008.10.002 – volume: 34 start-page: 1295 issue: 8 year: 2010 ident: 10.1016/j.apenergy.2020.114962_b0315 article-title: Forced and mixed convection heat transfer to supercritical CO2 vertically flowing in a uniformly-heated circular tube publication-title: Exp Therm Fluid Sci doi: 10.1016/j.expthermflusci.2010.06.001 – ident: 10.1016/j.apenergy.2020.114962_b0965 – volume: 54 start-page: 1950 issue: 9–10 year: 2011 ident: 10.1016/j.apenergy.2020.114962_b0285 article-title: Investigation on the characteristics and mechanisms of unusual heat transfer of supercritical pressure water in vertically-upward tubes publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2011.01.008 – volume: 176 start-page: 119 year: 2019 ident: 10.1016/j.apenergy.2020.114962_b0360 article-title: Experimental study on convection heat transfer of supercritical CO2 in small upward channels publication-title: Energy doi: 10.1016/j.energy.2019.03.109 – volume: 14 start-page: 897 issue: 4 year: 2010 ident: 10.1016/j.apenergy.2020.114962_b0110 article-title: Heat recovery from a natural gas powered internal combustion engine by CO2 transcritical power cycle publication-title: Therm Sci doi: 10.2298/TSCI1004897F – ident: 10.1016/j.apenergy.2020.114962_b0135 doi: 10.1007/978-1-4757-0513-3_27 – volume: 138 start-page: 454 year: 2019 ident: 10.1016/j.apenergy.2020.114962_b1115 article-title: Turbulent heat transfer in channels with irregular roughness publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2019.04.013 – ident: 10.1016/j.apenergy.2020.114962_b0155 – volume: 241 start-page: 1126 year: 2011 ident: 10.1016/j.apenergy.2020.114962_b0935 article-title: Development of supercritical water heat transfer correlation for vertical bare tubes publication-title: Nucl Eng Des doi: 10.1016/j.nucengdes.2010.06.012 – volume: 116 start-page: 132 year: 2016 ident: 10.1016/j.apenergy.2020.114962_b0185 article-title: State-of-the-art on flow and heat transfer characteristics of supercritical CO2 in various channels publication-title: J Supercr Fluids doi: 10.1016/j.supflu.2016.05.028 – volume: 21 start-page: 81 issue: 1 year: 1983 ident: 10.1016/j.apenergy.2020.114962_b0385 article-title: V.B Ankudinov, Heat transfer and flow resistance in the turbulent pipe flow of a fluid with near-critical state parameters publication-title: High Temp – volume: 51 start-page: 6283 issue: 25–26 year: 2008 ident: 10.1016/j.apenergy.2020.114962_b0745 article-title: Experimental and numerical study of convection heat transfer of CO2 at supercritical pressures in vertical porous tubes publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2008.05.014 – volume: 120 start-page: 10 year: 2017 ident: 10.1016/j.apenergy.2020.114962_b0530 article-title: Numerical analysis on nonuniform heat transfer of supercritical pressure water in horizontal circular tube publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2017.03.109 – ident: 10.1016/j.apenergy.2020.114962_b0400 doi: 10.1615/IHTC7.2970 – volume: 34 start-page: 6304 issue: 35 year: 2014 ident: 10.1016/j.apenergy.2020.114962_b0945 article-title: A new criterion for predicting deterioration of heat transfer to supercritical water in smooth tubes Chin publication-title: Soc. Electr. Eng. – volume: 44 start-page: 285 issue: 3 year: 2007 ident: 10.1016/j.apenergy.2020.114962_b0370 article-title: Heat Transfer Test in a Vertical Tube Using CO2 at Supercritical Pressures publication-title: J Nucl Sci Technol doi: 10.1080/18811248.2007.9711284 – volume: 34 start-page: 1162 issue: 8 year: 2010 ident: 10.1016/j.apenergy.2020.114962_b0330 article-title: Experimental investigation of convection heat transfer of CO2 at supercritical pressures in a vertical circular tube publication-title: Exp Therm Fluid Sci doi: 10.1016/j.expthermflusci.2010.04.005 – start-page: 2 year: 1988 ident: 10.1016/j.apenergy.2020.114962_b0035 article-title: Studies of mixed convection in vertical tubes publication-title: Int. J. Heat and Fluid Flow – volume: 13 start-page: 1163 issue: 7 year: 1970 ident: 10.1016/j.apenergy.2020.114962_b0915 article-title: Film boiling and free convection heat transfer to carbon dioxide near the critical state publication-title: Int J Heat Mass Transf doi: 10.1016/0017-9310(70)90006-2 – volume: 61 start-page: 914 year: 2014 ident: 10.1016/j.apenergy.2020.114962_b0780 article-title: Experimental Study of the Heat Transfer of Supercritical Carbon Dioxide in Silica-based Porous Media publication-title: Energy Proc doi: 10.1016/j.egypro.2014.11.994 – start-page: 815 year: 1977 ident: 10.1016/j.apenergy.2020.114962_b1035 – volume: 51 start-page: 3052 issue: 11–12 year: 2008 ident: 10.1016/j.apenergy.2020.114962_b0450 article-title: Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical mini-tube publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2007.09.008 – volume: 130 start-page: 304 year: 2019 ident: 10.1016/j.apenergy.2020.114962_b0595 article-title: Experimental investigation of supercritical carbon dioxide in horizontal microchannels with non-uniform heat flux boundary conditions publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2018.10.027 – volume: 27 start-page: 557 issue: 3 year: 2012 ident: 10.1016/j.apenergy.2020.114962_b0090 article-title: On usage of super-critical carbon-dioxide in a geothermal power cycle publication-title: J Fac Eng Architect Gazi Univ – year: 1968 ident: 10.1016/j.apenergy.2020.114962_b0295 – volume: 150 start-page: 159 year: 2017 ident: 10.1016/j.apenergy.2020.114962_b0540 article-title: Experimental comparison between four CO2-based transcritical Rankine cycle (CTRC) systems for engine waste heat recovery publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.08.009 – volume: 140 start-page: 530 year: 2017 ident: 10.1016/j.apenergy.2020.114962_b1125 article-title: Orientation effect in helical coils with smooth and rib-roughened wall: Toward improved gas heaters for supercritical carbon dioxide Rankine cycles publication-title: Energy doi: 10.1016/j.energy.2017.09.010 – volume: 131 start-page: 1117 year: 2019 ident: 10.1016/j.apenergy.2020.114962_b0585 article-title: Heat transfer model for horizontal flows of CO2 at supercritical pressures in terms of mixed convection publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2018.11.075 – volume: 48 start-page: 434 year: 2015 ident: 10.1016/j.apenergy.2020.114962_b0050 article-title: Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.04.039 – volume: 148 start-page: 1 year: 2019 ident: 10.1016/j.apenergy.2020.114962_b0735 article-title: Flow and heat transfer of supercritical CO2 in the honeycomb ultra-compact plate heat exchanger publication-title: J Supercr Fluids doi: 10.1016/j.supflu.2019.02.023 – volume: 89 start-page: 177 year: 2018 ident: 10.1016/j.apenergy.2020.114962_b1100 article-title: Experimental investigation of heat transfer of supercritical CO 2 cooled in helically coiled tubes based on exergy analysis publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2018.03.011 – year: 2001 ident: 10.1016/j.apenergy.2020.114962_b0020 – volume: 118 start-page: 1056 year: 2018 ident: 10.1016/j.apenergy.2020.114962_b0345 article-title: Onset of heat transfer deterioration in vertical pipe flows of CO2 at supercritical pressures publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.11.039 – volume: 32 start-page: 244 issue: 2 year: 1962 ident: 10.1016/j.apenergy.2020.114962_b0910 article-title: Correlation of hydrogen heat transfer in boiling and supercritical pressure states publication-title: ARS J doi: 10.2514/8.5979 – volume: 32 start-page: 332 issue: 6 year: 1985 ident: 10.1016/j.apenergy.2020.114962_b0880 article-title: Calculation of normal and deteriorated heat-transfer in tubes with turbulent-flow of liquids in the near-critical and vapor region of state publication-title: Therm Eng – volume: 147 start-page: 216 year: 2019 ident: 10.1016/j.apenergy.2020.114962_b0725 article-title: Improvement of heat-transfer correlations for supercritical methane coolant in rectangular channel publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2018.10.042 – volume: 106 start-page: 119 year: 2019 ident: 10.1016/j.apenergy.2020.114962_b0795 article-title: Experimental investigation of thermal-hydraulic performance of discontinuous fin printed circuit heat exchangers for supercritical CO2 power cycles publication-title: Exp Therm Fluid Sci doi: 10.1016/j.expthermflusci.2019.04.025 – volume: 31 start-page: 573 issue: 4 year: 2011 ident: 10.1016/j.apenergy.2020.114962_b0535 article-title: Numerical investigation of diameter effect on heat transfer of supercritical water flows in horizontal round tubes publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2010.10.020 – volume: 127 start-page: 257 year: 2018 ident: 10.1016/j.apenergy.2020.114962_b0820 article-title: A modified buoyancy effect correction method on turbulent convection heat transfer of supercritical pressure fluid based on RANS model publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2018.07.042 – start-page: 3359 year: 2014 ident: 10.1016/j.apenergy.2020.114962_b0480 article-title: Effect of buoyancy on heat transfer characteristics of supercritical carbon dioxide in the heating mode – volume: 151 start-page: 376 year: 2018 ident: 10.1016/j.apenergy.2020.114962_b1105 article-title: Thermodynamic optimization of heat transfer process in thermal systems using CO2 as the working fluid based on temperature glide matching publication-title: Energy doi: 10.1016/j.energy.2018.03.009 – ident: 10.1016/j.apenergy.2020.114962_b0830 doi: 10.1016/j.supflu.2009.08.004 – volume: 237 start-page: 1795 issue: 15–17 year: 2007 ident: 10.1016/j.apenergy.2020.114962_b0410 article-title: Wall temperature measurement and heat transfer correlation of turbulent supercritical carbon dioxide flow in vertical circular/non-circular tubes publication-title: Nucl Eng Des doi: 10.1016/j.nucengdes.2007.02.017 – volume: 147 start-page: 1 year: 2018 ident: 10.1016/j.apenergy.2020.114962_b0670 article-title: Heat transfer deterioration in helically coiled heat exchangers in trans-critical CO2 Rankine cycles publication-title: Energy doi: 10.1016/j.energy.2017.12.163 – ident: 10.1016/j.apenergy.2020.114962_b0815 doi: 10.1115/ICONE17-76022 – volume: 154 start-page: 335 issue: 3 year: 2017 ident: 10.1016/j.apenergy.2020.114962_b1040 article-title: Heat Transfer in a Supercritical Fluid: Classification of Heat Transfer Regimes publication-title: Nucl Technol doi: 10.13182/NT06-A3738 – volume: 11 issue: 3 year: 2019 ident: 10.1016/j.apenergy.2020.114962_b0590 article-title: Experimental study on forced convective heat transfer of supercritical carbon dioxide in a horizontal circular tube under high heat flux and low mass flux conditions publication-title: Adv Mech Eng doi: 10.1177/1687814019830804 – volume: 153 start-page: 655 year: 2019 ident: 10.1016/j.apenergy.2020.114962_b0730 article-title: Numerical investigation on flow and thermal performance of supercritical CO2 in horizontal cylindrically concaved tubes publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2019.03.034 – volume: 54 start-page: 27 year: 2014 ident: 10.1016/j.apenergy.2020.114962_b0170 article-title: Diameter effect on supercritical heat transfer publication-title: Int Commun Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2014.02.017 – volume: 152 start-page: 104560 year: 2019 ident: 10.1016/j.apenergy.2020.114962_b0685 article-title: Analysis of coupled heat transfer of supercritical CO2 from the viewpoint of distribution coordination publication-title: J Supercr Fluids doi: 10.1016/j.supflu.2019.104560 – volume: 136 start-page: 254 year: 2019 ident: 10.1016/j.apenergy.2020.114962_b0305 article-title: Supercritical “boiling” number, a new parameter to distinguish two regimes of carbon dioxide heat transfer in tubes publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2018.10.032 – volume: 67 start-page: 535 year: 2013 ident: 10.1016/j.apenergy.2020.114962_b0240 article-title: Heat transfer and hydraulic resistance of supercritical pressure coolants. Part III: Generalized description of SCP fluids normal heat transfer, empirical calculating correlations, integral method of theoretical calculations publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2013.07.056 – ident: 10.1016/j.apenergy.2020.114962_b0265 doi: 10.1115/1.3689139 – ident: 10.1016/j.apenergy.2020.114962_b0280 – volume: 91 start-page: 552 year: 2015 ident: 10.1016/j.apenergy.2020.114962_b0710 article-title: Experimental research on the turbulent convection heat transfer of supercritical pressure CO2 in a serpentine vertical mini tube publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2015.08.001 – volume: 168 start-page: 611 year: 2018 ident: 10.1016/j.apenergy.2020.114962_b0080 article-title: Design and comparison of direct and indirect cooling system for 25 MW solar power plant operated with supercritical CO2 cycle publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.04.072 – volume: 38 start-page: 3077 issue: 16 year: 1995 ident: 10.1016/j.apenergy.2020.114962_b0275 article-title: Numerical analysis of deterioration phenomena in heat transfer to supercritical water publication-title: Int J Heat Mass Transf doi: 10.1016/0017-9310(95)00008-W – volume: 73 start-page: 250 year: 2014 ident: 10.1016/j.apenergy.2020.114962_b0180 article-title: A state-of-the-art review of recent advances in supercritical natural circulation loops for nuclear applications publication-title: Ann Nucl Energy doi: 10.1016/j.anucene.2014.06.035 – volume: 55 start-page: 3061 issue: 11–12 year: 2012 ident: 10.1016/j.apenergy.2020.114962_b0230 article-title: Heat transfer and hydraulic resistance of supercritical-pressure coolants. Part I: Specifics of thermophysical properties of supercritical pressure fluids and turbulent heat transfer under heating conditions in round tubes (state of the art) publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2012.01.031 – volume: 5 start-page: 465 issue: 4 year: 1992 ident: 10.1016/j.apenergy.2020.114962_b0340 article-title: Velocity and enthalpy fields and eddy diffusivities in a heated supercritical fluid flow publication-title: Exp Therm Fluid Sci doi: 10.1016/0894-1777(92)90033-2 – volume: 65 start-page: 599 year: 2013 ident: 10.1016/j.apenergy.2020.114962_b0270 article-title: Conditions for the occurrence of heat transfer deterioration in light hydrocarbons flows publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2013.06.038 – volume: 29 start-page: 275 issue: 4 year: 2017 ident: 10.1016/j.apenergy.2020.114962_b0250 article-title: Visualization Study of Supercritical Fluid Convection and Heat Transfer in Weightlessness by Interferometry: A Brief Review publication-title: Microgr Sci Technol doi: 10.1007/s12217-017-9546-9 – volume: 162 start-page: 494 year: 2016 ident: 10.1016/j.apenergy.2020.114962_b0165 article-title: A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.10.080 – volume: 19 start-page: 715 issue: 7 year: 1976 ident: 10.1016/j.apenergy.2020.114962_b1030 article-title: Experimental investigation of heat transfer to supercritical pressure carbon dioxide in a horizontal pipe publication-title: Int J Heat Mass Transf doi: 10.1016/0017-9310(76)90123-X – volume: 50 start-page: 4908 issue: 23–24 year: 2007 ident: 10.1016/j.apenergy.2020.114962_b0750 article-title: Wall temperature measurements with turbulent flow in heated vertical circular/non-circular channels of supercritical pressure carbon-dioxide publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2007.06.026 – start-page: 6609 year: 2001 ident: 10.1016/j.apenergy.2020.114962_b0260 article-title: Heat Transfer at Supercritical Pressures -Literature Review and Application to an HPLWR publication-title: FZKA – volume: 56 start-page: 741 issue: 1–2 year: 2013 ident: 10.1016/j.apenergy.2020.114962_b0475 article-title: Convection heat transfer of supercritical pressure carbon dioxide in a vertical micro tube from transition to turbulent flow regime publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2012.08.038 – start-page: 11 year: 2012 ident: 10.1016/j.apenergy.2020.114962_b0890 – volume: 235 start-page: 2407 issue: 22 year: 2005 ident: 10.1016/j.apenergy.2020.114962_b0150 article-title: Experimental heat transfer in supercritical water flowing inside channels (survey) publication-title: Nucl Eng Des doi: 10.1016/j.nucengdes.2005.05.034 – volume: 13 issue: 431–433 year: 1970 ident: 10.1016/j.apenergy.2020.114962_b0865 article-title: Relaminarization in tubes publication-title: Int J Heat Mass Transfer – ident: 10.1016/j.apenergy.2020.114962_b0600 – volume: 116 start-page: 500 year: 2017 ident: 10.1016/j.apenergy.2020.114962_b0675 article-title: Numerical study of the effect of buoyancy force and centrifugal force on heat transfer characteristics of supercritical CO2 in helically coiled tube at various inclination angles publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2017.01.103 – volume: 195 start-page: 1402 year: 2019 ident: 10.1016/j.apenergy.2020.114962_b1110 article-title: Design and test of a multi-coil helical evaporator for a high temperature organic Rankine cycle plant driven by biogas waste heat publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.05.053 – volume: 78 start-page: 501 year: 2014 ident: 10.1016/j.apenergy.2020.114962_b0070 article-title: Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle publication-title: Energy doi: 10.1016/j.energy.2014.10.037 – ident: 10.1016/j.apenergy.2020.114962_b0010 – volume: 97 start-page: 53 year: 2016 ident: 10.1016/j.apenergy.2020.114962_b0255 article-title: Supercritical water heat transfer for nuclear reactor applications: A review publication-title: Ann Nucl Energy doi: 10.1016/j.anucene.2016.06.022 – volume: 289 start-page: 92 year: 2015 ident: 10.1016/j.apenergy.2020.114962_b0485 article-title: Measurements of convective heat transfer to vertical upward flows of CO2 in circular tubes at near-critical and supercritical pressures publication-title: Nucl Eng Des doi: 10.1016/j.nucengdes.2015.04.013 – volume: 127 start-page: 897 issue: 8 year: 2005 ident: 10.1016/j.apenergy.2020.114962_b1055 article-title: Effect of buoyancy on heat transfer in supercritical water flow in a horizontal round tube publication-title: J Heat Transfer doi: 10.1115/1.1929787 – volume: 241 start-page: 3164 issue: 8 year: 2011 ident: 10.1016/j.apenergy.2020.114962_b0325 article-title: Mixed convection heat transfer to carbon dioxide flowing upward and downward in a vertical tube and an annular channel publication-title: Nucl Eng Des doi: 10.1016/j.nucengdes.2011.06.016 – volume: 92 start-page: 658 year: 2018 ident: 10.1016/j.apenergy.2020.114962_b0195 article-title: A comprehensive review on heat transfer and pressure drop characteristics and correlations with supercritical CO2 under heating and cooling applications publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.04.106 – ident: 10.1016/j.apenergy.2020.114962_b1025 – volume: 120 start-page: 930 year: 2018 ident: 10.1016/j.apenergy.2020.114962_b0635 article-title: Experimental investigation on heat transfer deterioration of supercritical pressure water in vertically-upward internally-ribbed tubes publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.12.097 – ident: 10.1016/j.apenergy.2020.114962_b1015 doi: 10.1016/S0065-2717(08)70333-2 – volume: 127 start-page: 48 year: 2017 ident: 10.1016/j.apenergy.2020.114962_b0660 article-title: Numerical investigation of supercritical water turbulent flow and heat transfer characteristics in vertical helical tubes publication-title: J Supercr Fluids doi: 10.1016/j.supflu.2017.03.016 – volume: 151 start-page: 66 year: 2019 ident: 10.1016/j.apenergy.2020.114962_b0960 article-title: A new criterion for the onset of heat transfer deterioration to supercritical water in vertically-upward smooth tubes publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2019.01.077 – volume: 157 start-page: 536 year: 2018 ident: 10.1016/j.apenergy.2020.114962_b0515 article-title: Computational investigations of heat transfer to supercritical CO2 in a large horizontal tube publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.12.046 – volume: 178 start-page: 126 year: 2016 ident: 10.1016/j.apenergy.2020.114962_b0790 article-title: Improved gas heaters for supercritical CO2 Rankine cycles: Considerations on forced and mixed convection heat transfer enhancement publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.06.018 – volume: 250 start-page: 573 year: 2012 ident: 10.1016/j.apenergy.2020.114962_b0465 article-title: Experimental heat transfer to supercritical carbon dioxide flowing upward vertical tube with highly conducting surroundings publication-title: Nucl Eng Des doi: 10.1016/j.nucengdes.2012.06.005 – ident: 10.1016/j.apenergy.2020.114962_b0045 – volume: 140 start-page: 696 year: 2017 ident: 10.1016/j.apenergy.2020.114962_b0545 article-title: Preliminary tests on dynamic characteristics of a CO2 transcritical power cycle using an expansion valve in engine waste heat recovery publication-title: Energy doi: 10.1016/j.energy.2017.09.022 – start-page: 1 year: 2006 ident: 10.1016/j.apenergy.2020.114962_b1045 article-title: Combined free and forced convection in passages – volume: 40 start-page: 2187 issue: 9 year: 1997 ident: 10.1016/j.apenergy.2020.114962_b1090 article-title: The dual influence of curvature and buoyancy in fully developed tube flows publication-title: Int J Heat Mass Transf doi: 10.1016/S0017-9310(96)00248-7 – ident: 10.1016/j.apenergy.2020.114962_b0405 – volume: 113 start-page: 257 year: 2017 ident: 10.1016/j.apenergy.2020.114962_b0395 article-title: Study on two wall temperature peaks of supercritical fluid mixed convective heat transfer in circular tubes publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.05.078 – volume: 134 start-page: 437 year: 2019 ident: 10.1016/j.apenergy.2020.114962_b0690 article-title: Buoyancy effects on coupled heat transfer of supercritical pressure CO2 in horizontal semicircular channels publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2019.01.045 – volume: 145 start-page: 705 year: 2018 ident: 10.1016/j.apenergy.2020.114962_b0625 article-title: Numerical study on the heat transfer enhancement of supercritical CO2 in vertical ribbed tubes publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2018.09.081 – volume: 24 start-page: 1255 issue: 8–9 year: 2004 ident: 10.1016/j.apenergy.2020.114962_b0605 article-title: Experimental investigation of convection heat transfer of CO2 at super-critical pressures in vertical mini-tubes and in porous media publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2003.12.024 – volume: 130 start-page: 1272 year: 2019 ident: 10.1016/j.apenergy.2020.114962_b0620 article-title: Effect of internal helical-rib roughness on mixed convection flow and heat transfer in heated horizontal pipe flow of supercritical water publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2018.11.045 – volume: 122 start-page: 469 year: 2018 ident: 10.1016/j.apenergy.2020.114962_b0355 article-title: Special heat transfer characteristics of supercritical CO2 flowing in a vertically-upward tube with low mass flux publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2018.01.112 – ident: 10.1016/j.apenergy.2020.114962_b1075 doi: 10.1016/j.rser.2004.09.014 – volume: 100 start-page: 49 year: 2019 ident: 10.1016/j.apenergy.2020.114962_b0550 article-title: Experimental study of the heat transfer characteristics of supercritical pressure R134a in a horizontal tube publication-title: Exp Therm Fluid Sci doi: 10.1016/j.expthermflusci.2018.08.027 – volume: 131 start-page: 977 year: 2018 ident: 10.1016/j.apenergy.2020.114962_b0220 article-title: A brief review on the buoyancy criteria for supercritical fluids publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2017.12.042 – ident: 10.1016/j.apenergy.2020.114962_b0695 doi: 10.1007/978-81-322-2743-4_49 – volume: 106 start-page: 1144 year: 2017 ident: 10.1016/j.apenergy.2020.114962_b0500 article-title: Improvement of buoyancy and acceleration parameters for forced and mixed convective heat transfer to supercritical fluids flowing in vertical tubes publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2016.10.093 – volume: 28 start-page: 631 issue: 3 year: 1985 ident: 10.1016/j.apenergy.2020.114962_b1080 article-title: Buoyancy in developed laminar curved tube flows publication-title: Int J Heat Mass Transf doi: 10.1016/0017-9310(85)90185-1 – volume: 28 start-page: 1662 issue: 13 year: 2008 ident: 10.1016/j.apenergy.2020.114962_b0810 article-title: A computational study of convective heat transfer to carbon dioxide at a pressure just above the critical value publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2007.11.001 – volume: 10 start-page: 1692 year: 2017 ident: 10.1016/j.apenergy.2020.114962_b0555 article-title: Ideal point design and operation of CO2 based transcritical Rankine cycle (CTRC) system based on high utilization of engine’s waste heats publication-title: Energies doi: 10.3390/en10111692 – volume: 95 start-page: 132 year: 2018 ident: 10.1016/j.apenergy.2020.114962_b0210 article-title: The status of the research on the heat transfer deterioration in supercritical fluids: A review publication-title: Int Commun Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2018.04.006 – ident: 10.1016/j.apenergy.2020.114962_b1020 – volume: 127 start-page: 674 year: 2018 ident: 10.1016/j.apenergy.2020.114962_b0300 article-title: Study on identification method of heat transfer deterioration of supercritical fluids in vertically heated tubes publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2018.07.058 – volume: 82 start-page: 123 year: 2015 ident: 10.1016/j.apenergy.2020.114962_b0645 article-title: On the influence of gravitational and centrifugal buoyancy on laminar flow and heat transfer in curved pipes and coils publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2014.10.074 – volume: 368–370 start-page: 631 year: 2013 ident: 10.1016/j.apenergy.2020.114962_b0765 article-title: Experimental Investigation on Flow Characteristics of Supercritical CO2 in a Helically Coiled Tube publication-title: Applied Mechanics and Materials – volume: 125 start-page: 274 year: 2018 ident: 10.1016/j.apenergy.2020.114962_b0665 article-title: The buoyancy force and flow acceleration effects of supercritical CO2 on the turbulent heat transfer characteristics in heated vertical helically coiled tube publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2018.04.033 – volume: 199 start-page: 111986 year: 2019 ident: 10.1016/j.apenergy.2020.114962_b0115 article-title: Jingwei Chena, Yuanwang Deng, Hao Zhu. Effects of technical progress on performance and application of supercritical carbon dioxide power cycle: A review publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.111986 – volume: 32 start-page: 2617 issue: 15 year: 2007 ident: 10.1016/j.apenergy.2020.114962_b0105 article-title: Experimental study on the performance of solar Rankine system using supercritical CO2 publication-title: Renew Energy doi: 10.1016/j.renene.2007.01.003 – ident: 10.1016/j.apenergy.2020.114962_b0190 doi: 10.1007/s00231-011-0919-0 – volume: vol. 7 start-page: 1 year: 1971 ident: 10.1016/j.apenergy.2020.114962_b0800 article-title: Heat Transfer near the Critical Point publication-title: Advances in Heat Transfer doi: 10.1016/S0065-2717(08)70016-9 – volume: 32 start-page: 176 issue: 1 year: 2011 ident: 10.1016/j.apenergy.2020.114962_b0455 article-title: MH Kim Experimental investigation of heat transfer in vertical upward and downward supercritical CO2 flow in a circular tube publication-title: Int J Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2010.09.001 – ident: 10.1016/j.apenergy.2020.114962_b0700 doi: 10.1016/j.egypro.2017.12.302 – volume: 127 start-page: 286 year: 2018 ident: 10.1016/j.apenergy.2020.114962_b0350 article-title: Experimental investigation of heat transfer to supercritical R245fa flowing vertically upward in a circular tube publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2018.06.126 – volume: vol. 182 start-page: 10 year: 1967 ident: 10.1016/j.apenergy.2020.114962_b0030 article-title: A reviwe of forced convection heat transfer to fluids at supercritical pressures – volume: 108 start-page: 39 year: 2019 ident: 10.1016/j.apenergy.2020.114962_b0720 article-title: Convective heat transfer and flow resistance characteristics of supercritical pressure hydrocarbon fuel in a horizontal rectangular mini-channel publication-title: Exp Therm Fluid Sci doi: 10.1016/j.expthermflusci.2019.06.002 – volume: 105 start-page: 536 issue: 3 year: 1980 ident: 10.1016/j.apenergy.2020.114962_b1060 article-title: Numerical prediction of wall temperatures for near-critical para-hydrogen in turbulent upflow inside vertical tubes publication-title: J Heat Transfer doi: 10.1115/1.3245618 – ident: 10.1016/j.apenergy.2020.114962_b0570 – ident: 10.1016/j.apenergy.2020.114962_b0955 doi: 10.1134/S0040601516110021 – volume: 129 start-page: 1194 year: 2019 ident: 10.1016/j.apenergy.2020.114962_b0630 article-title: Experimental comparison of the heat transfer of supercritical R134a in a micro-fin tube and a smooth tube publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2018.10.052 – year: 2010 ident: 10.1016/j.apenergy.2020.114962_b0125 – volume: 780 start-page: 192 year: 2015 ident: 10.1016/j.apenergy.2020.114962_b0875 article-title: Numerical simulation of a spatially developing accelerating boundary layer over roughness publication-title: J Fluid Mech doi: 10.1017/jfm.2015.437 – volume: 135 issue: 7 year: 2013 ident: 10.1016/j.apenergy.2020.114962_b0835 article-title: Effect of Buoyancy on the Mechanism of Heat Transfer Deterioration of Supercritical Water in Horizontal Tubes publication-title: J Heat Transfer doi: 10.1115/1.4023747 – ident: 10.1016/j.apenergy.2020.114962_b1085 – volume: 50 start-page: 101 year: 2014 ident: 10.1016/j.apenergy.2020.114962_b0075 article-title: Thermo-economic analysis and comparison of a CO2 transcritical power cycle and an organic Rankine cycle publication-title: Geothermics doi: 10.1016/j.geothermics.2013.09.005 – ident: 10.1016/j.apenergy.2020.114962_b0040 doi: 10.1016/S0065-2717(08)70153-9 – volume: 95 start-page: 247 year: 2016 ident: 10.1016/j.apenergy.2020.114962_b0425 article-title: Experimental investigation on the CO2 transcritical power cycle publication-title: Energy doi: 10.1016/j.energy.2015.11.074 – volume: 127 start-page: 555 year: 2018 ident: 10.1016/j.apenergy.2020.114962_b0990 article-title: Experimental study of buoyancy effect and its criteria for heat transfer of supercritical R134a in horizontal tubes publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2018.08.072 – volume: 169 start-page: 542 year: 2019 ident: 10.1016/j.apenergy.2020.114962_b1130 article-title: Heat transfer investigation of supercritical R134a for trans-critical organic Rankine cycle system publication-title: Energy doi: 10.1016/j.energy.2018.12.034 – start-page: 4864 year: 2017 ident: 10.1016/j.apenergy.2020.114962_b0055 article-title: Rotating Shaft Thermal Analysis for Supercritical Carbon Dioxide Radial Inflow Turbines – volume: 54 start-page: 1775 issue: 9–10 year: 2011 ident: 10.1016/j.apenergy.2020.114962_b1120 article-title: Roughness enhanced mechanism for turbulent convective heat transfer publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2010.12.039 – volume: 165 start-page: 827 year: 2018 ident: 10.1016/j.apenergy.2020.114962_b0060 article-title: Aerodynamic design optimization of radial-inflow turbine in supercritical CO2 cycles using a one-dimensional model publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.03.005 – volume: 53 start-page: 296 issue: 4 year: 2006 ident: 10.1016/j.apenergy.2020.114962_b0970 article-title: Heat transfer under supercritical pressures and heat transfer deterioration boundaries publication-title: Therm Eng doi: 10.1134/S0040601506040069 – volume: 15 start-page: 632 issue: 5 year: 1974 ident: 10.1016/j.apenergy.2020.114962_b1000 article-title: Development of secondary free-convection currents in forced turbulent flow in horizontal tubes publication-title: J Appl Mech Tech Phys doi: 10.1007/BF00851521 – ident: 10.1016/j.apenergy.2020.114962_b0905 – ident: 10.1016/j.apenergy.2020.114962_b0775 doi: 10.1016/j.ijheatmasstransfer.2014.09.066 – volume: 1 issue: 1 year: 2015 ident: 10.1016/j.apenergy.2020.114962_b0980 article-title: Study on Specifics of Forced-Convective Heat Transfer in Supercritical Carbon Dioxide publication-title: J Nucl Eng Rad Sci – ident: 10.1016/j.apenergy.2020.114962_b0995 – volume: 185 start-page: 141 issue: 2–3 year: 1998 ident: 10.1016/j.apenergy.2020.114962_b1070 article-title: Thermal hydraulic study on a high-temperature gas–gas heat exchanger with helically coiled tube bundles publication-title: Nucl Eng Des doi: 10.1016/S0029-5493(98)00240-4 – volume: 1 start-page: 237 year: 1963 ident: 10.1016/j.apenergy.2020.114962_b0320 article-title: Impairment of the heat transmission at supercritical pressures publication-title: High Temp – volume: 10 start-page: 304 issue: 2 year: 1972 ident: 10.1016/j.apenergy.2020.114962_b0985 article-title: Experimental investigation of worsened heat transfer conditions with the turbulent flow of carbon dioxide at supercritical pressure publication-title: High Temp – volume: 45 start-page: 5025 issue: 25 year: 2002 ident: 10.1016/j.apenergy.2020.114962_b0420 article-title: An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes publication-title: Int J Heat Mass Transf doi: 10.1016/S0017-9310(02)00206-5 – volume: 27 start-page: 55 issue: 1 year: 2018 ident: 10.1016/j.apenergy.2020.114962_b0650 article-title: Turbulent convective heat transfer of methane at supercritical pressure in a helical coiled tube publication-title: J Therm Sci doi: 10.1007/s11630-018-0984-5 – volume: 240 start-page: 3336 issue: 10 year: 2010 ident: 10.1016/j.apenergy.2020.114962_b0460 article-title: Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube publication-title: Nucl Eng Des doi: 10.1016/j.nucengdes.2010.07.002 – volume: 170 start-page: 480 year: 2019 ident: 10.1016/j.apenergy.2020.114962_b0215 article-title: Correlation evaluation on circumferentially average heat transfer for supercritical carbon dioxide in non-uniform heating vertical tubes publication-title: Energy doi: 10.1016/j.energy.2018.12.151 – volume: 142 start-page: 573 year: 2018 ident: 10.1016/j.apenergy.2020.114962_b0200 article-title: A review on recent heat transfer studies to supercritical pressure water in channels publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2018.07.007 – ident: 10.1016/j.apenergy.2020.114962_b0415 – volume: 354 start-page: 110207 year: 2019 ident: 10.1016/j.apenergy.2020.114962_b0225 article-title: Current status of research on heat transfer in forced convection of fluids at supercritical pressures publication-title: Nucl Eng Des doi: 10.1016/j.nucengdes.2019.110207 – volume: 15 start-page: 2575 year: 1972 ident: 10.1016/j.apenergy.2020.114962_b0925 article-title: Forced convective heat transfer to supercritical water flowing in tubes publication-title: Int J Heat Mass Transf doi: 10.1016/0017-9310(72)90148-2 – volume: 227 start-page: 220 year: 2018 ident: 10.1016/j.apenergy.2020.114962_b0430 article-title: Performance evaluation of a low-grade power generation system with CO2 transcritical power cycles publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.07.086 – volume: 101 start-page: 36 year: 2015 ident: 10.1016/j.apenergy.2020.114962_b0610 article-title: Heat transfer characteristics of supercritical CO2 flow in metal foam tubes publication-title: J Supercr Fluids doi: 10.1016/j.supflu.2015.03.002 – volume: 88 start-page: 61 year: 2015 ident: 10.1016/j.apenergy.2020.114962_b0770 article-title: Mixed convective heat transfer of CO2 at supercritical pressures flowing upward through a vertical helically coiled tube publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2014.10.031 – volume: 16 start-page: 1267 issue: 6 year: 1973 ident: 10.1016/j.apenergy.2020.114962_b0025 article-title: Effects of buoyancy and of acceleration owing to thermal expansion on forced turbulent convection in vertical circular tubes—criteria of the effects, velocity and temperature profiles, and reverse transition from turbulent to laminar flow publication-title: Int J Heat Mass Transf doi: 10.1016/0017-9310(73)90135-X – ident: 10.1016/j.apenergy.2020.114962_b1005 doi: 10.1615/IHTC5.3130 |
| SSID | ssj0002120 |
| Score | 2.5460021 |
| SecondaryResourceType | review_article |
| Snippet | •The experimental tests on supercritical CO2 power cycle are briefly reviewed.•The heat transfer mechanisms present the principles for heat transfer... Trans-critical CO₂ Rankine system is a new technology for low-grade heat utilization which has high energy conversion efficiency and exergo-economic... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 114962 |
| SubjectTerms | carbon dioxide convection energy conversion Evaluation criteria heat exchangers Heat transfer enhancement Heat transfer mechanisms Low-grade heat conversion Trans-critical CO2 Rankine cycle |
| Title | A review on application and heat transfer enhancement of supercritical CO2 in low-grade heat conversion |
| URI | https://dx.doi.org/10.1016/j.apenergy.2020.114962 https://www.proquest.com/docview/2440690353 |
| Volume | 269 |
| WOSCitedRecordID | wos000537619800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbKxgM8IBhMjAEyEuKl8sjvxI_V6ASo6njopDxhObGzpaqSkDZb_3zOiZ0GGNp44KFRdfIlUb-v57PPd4fQe4tz1wHeEi5tQbxAUMJTPyQ04C7lVhpJ0daZnYXzeRTH9Nto9N3kwlyvwqKItlta_VeoQQZgq9TZf4C7vykI4DuADleAHa73An7Sp6MU40F4uo0SKMurukKAryrrsSyuFObmOMC6qWSdmtYHp-eO2gtZlTfksuZCdrrtIfV2h23o1RpXVraJhH_uRV_ly7wnUNwoWZzzcguf_kBQ3ujofy_6pNWVLNEFwvX-BCxGzVnWPi_LCohapw1trhPQcaXqFNPAIbda8m5TYXnCq-7dT9S9tcZu7jLx-vk5O7uYzdhiGi8-VD-I6iqmou-6xcoDtO-EPgWrtz_5Mo2_9nO1owt3mncc5JDf_ui_uS-_TeStd7J4ip7oZQWedHR4hkayOECPB8UmD9DhdJfTCEO1UV8_R5cT3DEGlwUeMAYDY7BCHRvG4AFjcJnhXxiDgTE4L3DPmE53x5gX6OJsujj9THT_DZJ6tr0hDnfCkEo7kaEU4LVkkVSNWRLPouDUBNQVmcepl1gueNmusu0-DIikGySJzz3uHqK9oizkS4RhPqZCCk9EsH4Fk59EThYGQWpnthBuEhwh3_ysLNXF6VWPlBUzpxCXzMDBFBysg-MIfez1qq48y50a1KDGtJPZOY8MmHen7jsDMwMrrEJrvJBls2bgJKuS367vvrrHmGP0aPdPeY32NnUj36CH6fUmX9dvNUd_AlUBq5g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+application+and+heat+transfer+enhancement+of+supercritical+CO2+in+low-grade+heat+conversion&rft.jtitle=Applied+energy&rft.au=Zhang%2C+Shijie&rft.au=Xu%2C+Xiaoxiao&rft.au=Liu%2C+Chao&rft.au=Dang%2C+Chaobin&rft.date=2020-07-01&rft.issn=0306-2619&rft.volume=269+p.114962-&rft_id=info:doi/10.1016%2Fj.apenergy.2020.114962&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |