A review on application and heat transfer enhancement of supercritical CO2 in low-grade heat conversion

•The experimental tests on supercritical CO2 power cycle are briefly reviewed.•The heat transfer mechanisms present the principles for heat transfer optimization;•The various approaches of heat transfer enhancement are reviewed and discussed;•Buoyancy criteria provide guidance for the selection of e...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied energy Ročník 269; s. 114962
Hlavní autoři: Zhang, Shijie, Xu, Xiaoxiao, Liu, Chao, Dang, Chaobin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.07.2020
Témata:
ISSN:0306-2619, 1872-9118
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •The experimental tests on supercritical CO2 power cycle are briefly reviewed.•The heat transfer mechanisms present the principles for heat transfer optimization;•The various approaches of heat transfer enhancement are reviewed and discussed;•Buoyancy criteria provide guidance for the selection of enhancement approaches. Trans-critical CO2 Rankine system is a new technology for low-grade heat utilization which has high energy conversion efficiency and exergo-economic efficiency. The gas heater is one of the most important components in trans-critical CO2 Rankine system, which is a crucial challenge for its practical application because of high pressure and abrupt change in thermo-physical properties of supercritical CO2.The aim of this paper is to provide basic background knowledge on trans-critical CO2 Rankine cycle in low-grade heat conversion and present a review of experimental tests and demonstrations on supercritical CO2 operation considering heat-to-power systems. Since the heat transfer criteria and enhancement of supercritical CO2 is vital for its application in the real-scale compact heat exchanger design and system operation, this review further discusses the turbulent convective heat transfer and its enhancement approaches of supercritical CO2 in heating system. A comprehensive summary of the heat transfer mechanisms and criteria as well as their derivation and evaluation methods is conducted to provide some references for the system operation, heat exchanger design and heat transfer enhancement. Some of the shortcomings of the existing research are pointed out. Based on the above discussion, this review presents the basic ideas and approaches of heat transfer enhancement and discus the application of heat transfer criteria in heat transfer enhancements. Finally, the authors bring forward the way of latter researching of supercritical heat transfer and enhanced measures.
AbstractList Trans-critical CO₂ Rankine system is a new technology for low-grade heat utilization which has high energy conversion efficiency and exergo-economic efficiency. The gas heater is one of the most important components in trans-critical CO₂ Rankine system, which is a crucial challenge for its practical application because of high pressure and abrupt change in thermo-physical properties of supercritical CO₂.The aim of this paper is to provide basic background knowledge on trans-critical CO₂ Rankine cycle in low-grade heat conversion and present a review of experimental tests and demonstrations on supercritical CO₂ operation considering heat-to-power systems. Since the heat transfer criteria and enhancement of supercritical CO₂ is vital for its application in the real-scale compact heat exchanger design and system operation, this review further discusses the turbulent convective heat transfer and its enhancement approaches of supercritical CO₂ in heating system. A comprehensive summary of the heat transfer mechanisms and criteria as well as their derivation and evaluation methods is conducted to provide some references for the system operation, heat exchanger design and heat transfer enhancement. Some of the shortcomings of the existing research are pointed out. Based on the above discussion, this review presents the basic ideas and approaches of heat transfer enhancement and discus the application of heat transfer criteria in heat transfer enhancements. Finally, the authors bring forward the way of latter researching of supercritical heat transfer and enhanced measures.
•The experimental tests on supercritical CO2 power cycle are briefly reviewed.•The heat transfer mechanisms present the principles for heat transfer optimization;•The various approaches of heat transfer enhancement are reviewed and discussed;•Buoyancy criteria provide guidance for the selection of enhancement approaches. Trans-critical CO2 Rankine system is a new technology for low-grade heat utilization which has high energy conversion efficiency and exergo-economic efficiency. The gas heater is one of the most important components in trans-critical CO2 Rankine system, which is a crucial challenge for its practical application because of high pressure and abrupt change in thermo-physical properties of supercritical CO2.The aim of this paper is to provide basic background knowledge on trans-critical CO2 Rankine cycle in low-grade heat conversion and present a review of experimental tests and demonstrations on supercritical CO2 operation considering heat-to-power systems. Since the heat transfer criteria and enhancement of supercritical CO2 is vital for its application in the real-scale compact heat exchanger design and system operation, this review further discusses the turbulent convective heat transfer and its enhancement approaches of supercritical CO2 in heating system. A comprehensive summary of the heat transfer mechanisms and criteria as well as their derivation and evaluation methods is conducted to provide some references for the system operation, heat exchanger design and heat transfer enhancement. Some of the shortcomings of the existing research are pointed out. Based on the above discussion, this review presents the basic ideas and approaches of heat transfer enhancement and discus the application of heat transfer criteria in heat transfer enhancements. Finally, the authors bring forward the way of latter researching of supercritical heat transfer and enhanced measures.
ArticleNumber 114962
Author Zhang, Shijie
Dang, Chaobin
Liu, Chao
Xu, Xiaoxiao
Author_xml – sequence: 1
  givenname: Shijie
  surname: Zhang
  fullname: Zhang, Shijie
  organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, No. 174 Shazhengjie, Shapingba, Chongqing 400044, PR China
– sequence: 2
  givenname: Xiaoxiao
  surname: Xu
  fullname: Xu, Xiaoxiao
  email: xuxiaoxiao@cqu.edu.cn
  organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, No. 174 Shazhengjie, Shapingba, Chongqing 400044, PR China
– sequence: 3
  givenname: Chao
  surname: Liu
  fullname: Liu, Chao
  organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, No. 174 Shazhengjie, Shapingba, Chongqing 400044, PR China
– sequence: 4
  givenname: Chaobin
  surname: Dang
  fullname: Dang, Chaobin
  organization: Department of Human and Engineered Environmental Studies, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8563, Japan
BookMark eNqFkE1LAzEQhoNUsFb_guToZWu-ursBD5biFwhe9Byy2dk2ZZusSar4701dvXjxNMPwPi_Mc4omzjtA6IKSOSW0vNrO9QAOwvpzzgjLRypkyY7QlNYVKySl9QRNCSdlwUoqT9BpjFtCCKOMTNF6iQO8W_jA3mE9DL01OtnD7lq8AZ1wCtrFDgIGt9HOwA5cwr7DcT9AMMGmTPR49cywdbj3H8U66BZG1nj3DiHmvjN03Ok-wvnPnKHXu9uX1UPx9Hz_uFo-FUZQmgqmWVVJoA1U0EpJuhoEq-pGEMlqUUredkJL0RBec8nz-9UiB2rgZdMstNB8hi7H3iH4tz3EpHY2Guh77cDvo2JCkFISvuA5Wo5RE3yMATo1BLvT4VNRog5m1Vb9mlUHs2o0m8HrP6Cx6dtadmX7__GbEYfsIasPKhoL2WxrA5ikWm__q_gCT56bcA
CitedBy_id crossref_primary_10_1016_j_energy_2025_134896
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122510
crossref_primary_10_1016_j_applthermaleng_2022_119922
crossref_primary_10_1016_j_enconman_2024_118850
crossref_primary_10_3390_math13020293
crossref_primary_10_3390_en15228358
crossref_primary_10_1016_j_nucengdes_2023_112184
crossref_primary_10_3389_fenrg_2023_1249849
crossref_primary_10_1016_j_pmatsci_2023_101107
crossref_primary_10_1016_j_applthermaleng_2025_128436
crossref_primary_10_1016_j_tsep_2024_102442
crossref_primary_10_1016_j_applthermaleng_2020_116139
crossref_primary_10_1016_j_surfcoat_2025_132597
crossref_primary_10_1016_j_applthermaleng_2023_120198
crossref_primary_10_1016_j_applthermaleng_2022_119727
crossref_primary_10_1016_j_ijheatmasstransfer_2025_127206
crossref_primary_10_1016_j_energy_2024_132588
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123258
crossref_primary_10_1017_jfm_2025_10563
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124563
crossref_primary_10_1016_j_egyr_2021_06_089
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125598
crossref_primary_10_1016_j_ijft_2024_100798
crossref_primary_10_1016_j_ecmx_2025_100988
crossref_primary_10_1016_j_enconman_2022_115993
crossref_primary_10_1016_j_apenergy_2023_121666
crossref_primary_10_1016_j_applthermaleng_2021_117839
crossref_primary_10_1016_j_applthermaleng_2025_126380
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124647
crossref_primary_10_1016_j_supflu_2022_105738
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124797
crossref_primary_10_1063_5_0254925
crossref_primary_10_1016_j_icheatmasstransfer_2024_107766
crossref_primary_10_1016_j_apt_2023_104104
crossref_primary_10_1016_j_applthermaleng_2022_118372
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126252
crossref_primary_10_1016_j_applthermaleng_2024_123165
crossref_primary_10_1016_j_icheatmasstransfer_2025_109275
crossref_primary_10_1016_j_enconman_2021_114994
crossref_primary_10_1080_10407782_2023_2257382
crossref_primary_10_1016_j_applthermaleng_2024_122630
crossref_primary_10_1016_j_energy_2021_122168
crossref_primary_10_1016_j_ijrefrig_2025_07_017
crossref_primary_10_1016_j_jclepro_2022_131029
crossref_primary_10_3389_fenrg_2023_1286376
crossref_primary_10_1016_j_enconman_2021_115040
crossref_primary_10_1016_j_tsep_2022_101533
crossref_primary_10_1007_s11630_023_1889_5
crossref_primary_10_1016_j_supflu_2022_105644
crossref_primary_10_1016_j_applthermaleng_2021_116684
crossref_primary_10_1016_j_icheatmasstransfer_2021_105532
crossref_primary_10_1016_j_rser_2024_115267
crossref_primary_10_1063_5_0261473
crossref_primary_10_1016_j_jobe_2022_105091
crossref_primary_10_1016_j_applthermaleng_2024_124925
crossref_primary_10_1016_j_egyr_2022_01_222
crossref_primary_10_1016_j_ijthermalsci_2022_107884
crossref_primary_10_1016_j_energy_2022_125444
crossref_primary_10_1002_metm_70017
crossref_primary_10_1016_j_applthermaleng_2025_127453
crossref_primary_10_1016_j_applthermaleng_2025_126321
crossref_primary_10_1016_j_enconman_2025_119592
crossref_primary_10_1016_j_energy_2024_132251
crossref_primary_10_1016_j_icheatmasstransfer_2025_108654
Cites_doi 10.1016/j.ijheatmasstransfer.2016.06.007
10.1017/jfm.2016.653
10.1016/j.applthermaleng.2019.04.097
10.1007/s00231-016-1874-6
10.1016/j.nucengdes.2016.12.016
10.1080/10789669.1998.10391405
10.1002/er.1201
10.3182/20091130-3-FR-4008.00018
10.1016/j.applthermaleng.2014.12.067
10.1016/j.applthermaleng.2017.03.146
10.1115/69-GT-102
10.1016/j.anucene.2009.04.016
10.1016/j.energy.2019.01.148
10.1016/j.energy.2019.03.150
10.1016/j.energy.2016.10.005
10.1146/annurev-fluid-120710-101234
10.1615/ICHMT.2006.TurbulHeatMassTransf.1080
10.1016/j.applthermaleng.2016.11.051
10.1016/j.applthermaleng.2017.07.049
10.1016/j.applthermaleng.2018.03.058
10.1016/j.supflu.2018.03.014
10.3390/app7121260
10.1016/j.ijheatfluidflow.2007.09.007
10.1016/j.applthermaleng.2013.08.007
10.1016/j.enconman.2013.11.020
10.1007/s00231-015-1580-9
10.1016/j.ijheatfluidflow.2010.06.013
10.1016/j.nucengdes.2012.09.040
10.1016/S0065-2156(08)70311-9
10.1016/j.applthermaleng.2006.07.007
10.1016/j.expthermflusci.2013.06.011
10.1016/j.applthermaleng.2013.05.034
10.1115/1.4007313
10.1115/ICONE16-48914
10.1016/j.nucengdes.2003.10.010
10.1016/j.expthermflusci.2017.11.024
10.1016/j.supflu.2015.02.001
10.1016/j.ijheatmasstransfer.2017.10.037
10.1016/0140-7007(94)00001-E
10.1016/j.ijheatmasstransfer.2017.03.063
10.1016/j.supflu.2005.12.004
10.1016/j.ijheatmasstransfer.2012.10.072
10.1016/j.ijrefrig.2008.01.010
10.1016/j.ijheatmasstransfer.2014.06.014
10.1016/j.nucengdes.2013.02.048
10.1016/j.ijheatmasstransfer.2017.01.004
10.1016/j.ijthermalsci.2014.01.011
10.1016/j.nucengdes.2013.10.005
10.1016/S0017-9310(02)00119-9
10.1016/j.supflu.2007.11.013
10.1063/1.1288608
10.1016/j.expthermflusci.2008.10.002
10.1016/j.expthermflusci.2010.06.001
10.1016/j.ijheatmasstransfer.2011.01.008
10.1016/j.energy.2019.03.109
10.2298/TSCI1004897F
10.1007/978-1-4757-0513-3_27
10.1016/j.ijheatmasstransfer.2019.04.013
10.1016/j.nucengdes.2010.06.012
10.1016/j.supflu.2016.05.028
10.1016/j.ijheatmasstransfer.2008.05.014
10.1016/j.applthermaleng.2017.03.109
10.1615/IHTC7.2970
10.1080/18811248.2007.9711284
10.1016/j.expthermflusci.2010.04.005
10.1016/0017-9310(70)90006-2
10.1016/j.egypro.2014.11.994
10.1016/j.ijheatmasstransfer.2007.09.008
10.1016/j.ijheatmasstransfer.2018.10.027
10.1016/j.enconman.2017.08.009
10.1016/j.energy.2017.09.010
10.1016/j.ijheatmasstransfer.2018.11.075
10.1016/j.rser.2015.04.039
10.1016/j.supflu.2019.02.023
10.1016/j.ijrefrig.2018.03.011
10.1016/j.ijheatmasstransfer.2017.11.039
10.2514/8.5979
10.1016/j.applthermaleng.2018.10.042
10.1016/j.expthermflusci.2019.04.025
10.1016/j.applthermaleng.2010.10.020
10.1016/j.ijheatmasstransfer.2018.07.042
10.1016/j.energy.2018.03.009
10.1016/j.supflu.2009.08.004
10.1016/j.nucengdes.2007.02.017
10.1016/j.energy.2017.12.163
10.1115/ICONE17-76022
10.13182/NT06-A3738
10.1177/1687814019830804
10.1016/j.applthermaleng.2019.03.034
10.1016/j.icheatmasstransfer.2014.02.017
10.1016/j.supflu.2019.104560
10.1016/j.ijthermalsci.2018.10.032
10.1016/j.ijheatmasstransfer.2013.07.056
10.1115/1.3689139
10.1016/j.ijheatmasstransfer.2015.08.001
10.1016/j.enconman.2018.04.072
10.1016/0017-9310(95)00008-W
10.1016/j.anucene.2014.06.035
10.1016/j.ijheatmasstransfer.2012.01.031
10.1016/0894-1777(92)90033-2
10.1016/j.ijheatmasstransfer.2013.06.038
10.1007/s12217-017-9546-9
10.1016/j.apenergy.2015.10.080
10.1016/0017-9310(76)90123-X
10.1016/j.ijheatmasstransfer.2007.06.026
10.1016/j.ijheatmasstransfer.2012.08.038
10.1016/j.nucengdes.2005.05.034
10.1016/j.applthermaleng.2017.01.103
10.1016/j.enconman.2019.05.053
10.1016/j.energy.2014.10.037
10.1016/j.anucene.2016.06.022
10.1016/j.nucengdes.2015.04.013
10.1115/1.1929787
10.1016/j.nucengdes.2011.06.016
10.1016/j.rser.2018.04.106
10.1016/j.ijheatmasstransfer.2017.12.097
10.1016/S0065-2717(08)70333-2
10.1016/j.supflu.2017.03.016
10.1016/j.applthermaleng.2019.01.077
10.1016/j.enconman.2017.12.046
10.1016/j.apenergy.2016.06.018
10.1016/j.nucengdes.2012.06.005
10.1016/j.energy.2017.09.022
10.1016/S0017-9310(96)00248-7
10.1016/j.ijheatmasstransfer.2017.05.078
10.1016/j.ijheatmasstransfer.2019.01.045
10.1016/j.applthermaleng.2018.09.081
10.1016/j.applthermaleng.2003.12.024
10.1016/j.ijheatmasstransfer.2018.11.045
10.1016/j.ijheatmasstransfer.2018.01.112
10.1016/j.rser.2004.09.014
10.1016/j.expthermflusci.2018.08.027
10.1016/j.applthermaleng.2017.12.042
10.1007/978-81-322-2743-4_49
10.1016/j.ijheatmasstransfer.2016.10.093
10.1016/0017-9310(85)90185-1
10.1016/j.applthermaleng.2007.11.001
10.3390/en10111692
10.1016/j.icheatmasstransfer.2018.04.006
10.1016/j.ijheatmasstransfer.2018.07.058
10.1016/j.ijheatmasstransfer.2014.10.074
10.1016/j.ijheatmasstransfer.2018.04.033
10.1016/j.enconman.2019.111986
10.1016/j.renene.2007.01.003
10.1007/s00231-011-0919-0
10.1016/S0065-2717(08)70016-9
10.1016/j.ijheatfluidflow.2010.09.001
10.1016/j.egypro.2017.12.302
10.1016/j.ijheatmasstransfer.2018.06.126
10.1016/j.expthermflusci.2019.06.002
10.1115/1.3245618
10.1134/S0040601516110021
10.1016/j.ijheatmasstransfer.2018.10.052
10.1017/jfm.2015.437
10.1115/1.4023747
10.1016/j.geothermics.2013.09.005
10.1016/S0065-2717(08)70153-9
10.1016/j.energy.2015.11.074
10.1016/j.ijheatmasstransfer.2018.08.072
10.1016/j.energy.2018.12.034
10.1016/j.ijheatmasstransfer.2010.12.039
10.1016/j.enconman.2018.03.005
10.1134/S0040601506040069
10.1007/BF00851521
10.1016/j.ijheatmasstransfer.2014.09.066
10.1016/S0029-5493(98)00240-4
10.1016/S0017-9310(02)00206-5
10.1007/s11630-018-0984-5
10.1016/j.nucengdes.2010.07.002
10.1016/j.energy.2018.12.151
10.1016/j.applthermaleng.2018.07.007
10.1016/j.nucengdes.2019.110207
10.1016/0017-9310(72)90148-2
10.1016/j.apenergy.2017.07.086
10.1016/j.supflu.2015.03.002
10.1016/j.applthermaleng.2014.10.031
10.1016/0017-9310(73)90135-X
10.1615/IHTC5.3130
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2020.114962
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2020_114962
S0306261920304748
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c411t-2a2779e1be7ed990f8e4278b409284693df4a94b03839310175e428e36bb5a4a3
ISICitedReferencesCount 68
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000537619800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Sat Sep 27 17:07:35 EDT 2025
Tue Nov 18 22:30:43 EST 2025
Sat Nov 29 07:24:00 EST 2025
Fri Feb 23 02:47:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Heat transfer enhancement
Heat transfer mechanisms
Trans-critical CO2 Rankine cycle
Evaluation criteria
Low-grade heat conversion
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c411t-2a2779e1be7ed990f8e4278b409284693df4a94b03839310175e428e36bb5a4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2440690353
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2440690353
crossref_primary_10_1016_j_apenergy_2020_114962
crossref_citationtrail_10_1016_j_apenergy_2020_114962
elsevier_sciencedirect_doi_10_1016_j_apenergy_2020_114962
PublicationCentury 2000
PublicationDate 2020-07-01
2020-07-00
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bae (b0760) 2013; 265
Yildiz, Groeneveld (b0170) 2014; 54
Yang, Chen, Chyu (b0625) 2018; 145
Hall, Jackson (b0030) 1967; vol. 182
Kline, Feuerstein, Tavoularis (b0345) 2018; 118
Shi, Shu, Tian, Huang, Chen, Li (b0540) 2017; 150
Zhao, Liu, Zhang, Jiang, Bo (b0845) 2018; 138
Pioro, Khartabil, Duffey (b0145) 2004; 230
Peeters, Sandham (b1115) 2019; 138
Li, Huang, Zhao (b0130) 2014; 78
Pioro, Duffey (b0380) 2006
Li, Meng, Li (b1120) 2011; 54
Zhang, Xu, Liu, Liu, Dang (b0365) 2019; 157
Hsieh, Lee, Lin, Chung (b0780) 2014; 61
.
Tollefson J. Innovative zero-emissions power plant begins battery of tests; May 2018.
Wang, Guo, Yan, Zhu, Luo (b0590) 2019; 11
Jiang, Liu, Zhao, Luo (b0475) 2013; 56
Petukhov, Protopopov, Silin (b0985) 1972; 10
Liao, Liu, Jiaqiang, Zhang (b0115) 2019; 199
Mokry, Pioro, Farah, King, Gupta, Peiman (b0935) 2011; 241
Bazargan (b0020) 2001
Naphon P, Wongwises S. A review of flow and heat transfer characteristics in curved tubes. Renew Sustain Energy Rev 2006;10(5):463–90.
Jackson (b1045) 2006
Lee, Simon, Chow (b1080) 1985; 28
Kim JK, Jeon HK, Yoo JY, Lee JS. Experimental study on heat transfer characteristics of turbulent supercritical flow in vertical circular/non-circular tubes. In Proceedings of the 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH 11), Avignon, France, Oct. 2005, p. 2–6.
Hsieh JC, Lin DTW, Lee BH, Chung MC. Experimental study on heat transfer of supercritical carbon dioxide in a long silica-based porous-media tube. Heat Mass Transfer 2016;53(3):995–1004.
Kurganov, Zeigarnik, Maslakova (b0245) 2014; 77
Gupta, Saltanov, Mokry, Pioro, Trevani (b0470) 2013; 261
Tian, Wang, Zhang, Ma, Li, Shi (b0550) 2019; 100
Li, Zhai, Li, Wang, Lu (b0640) 2016; 116
Bazargan, Fraser, Chatoorgan (b1055) 2005; 127
Bae, Kim, Yoo (b0755) 2011; 32
He, Dang, Hihara (b0350) 2018; 127
Huang, Li (b0220) 2018; 131
Tian, Zhang, Ma, Li, Shi (b0990) 2018; 127
Jackson JD. An Semi-Empirical Model of Turbulent Convective Heat Transfer to Fluids at Supercritical Pressure. In 16th International Conference on Nuclear Engineering. American Society of Mechanical Engineers Digital Collection; 2008, p. 911–21.
Goldmann K. Heat transfer to supercritical water at 5000 psi flowing at high mass flow rates through round tubes. International Developments in Heat Transfer, Part III. New York: ASME; 1961, p. 561–568.
Ehsan, Guan, Klimenko, Wang (b0080) 2018; 168
Li, Zhai, Bi, Li, Wang, Junfu (b1125) 2017; 140
Li, Ge, Luo, Tassou (b0435) 2018; 136
Pioro (b0225) 2019; 354
Petukhov, Kurganov (b0385) 1983; 21
Zhang, Li, Kong, Liu, Lei (b0355) 2018; 122
Kurganov, Zeigarnik, Maslakova (b0235) 2013; 58
Jiang, Shi, Xu, He, Jackson (b0740) 2006; 38
Zhang, Jiang, Xu (b0085) 2013; 61
Sarkar (b0050) 2015; 48
Pizzarelli (b0210) 2018; 95
Huang, Wu, Sunden, Li (b0165) 2016; 162
Cheng, Yang, Huang (b0940) 2009; 36
Farzaneh-Gord, Mirmohammadi, Behi, Yahyaie (b0110) 2010; 14
Xu, Luo, Jiang (b0710) 2015; 91
Lei, Li, Zhang, Zhang (b0835) 2013; 135
Shiralkar, Griffith (b0295) 1968
Zhang, Xu, Liu, Liu, Zhipeng, Dang (b0560) 2019
Gao, Bai (b0530) 2017; 120
Watts MJ, C.T.C., Mixed convection heat transfer to supercritical pressure water. In 7th Int. Heat Transfer Conf., Munchen, W. Germany, 1982, Sep.6–10, vol. 495.
Bae, Kim (b0445) 2009; 33
Zhang, Xu, Liu, Zhang, Dang (b0665) 2018; 125
Shenghui Liu, Liu, Wang, Leung (b0500) 2017; 106
Kacludis, Lyons, Nadav, Zdankiewicz (b0890) 2012
Gabaraev, Kuznetsov, Pioro, Duffey (b0930) 2007
Kurganov, Zeigarnik, Maslakova (b0230) 2012; 55
Kim, Kim (b0460) 2010; 240
Song, Kim, Kim, Bae (b0335) 2008; 44
MatthiasLinnemanna, Herres, Wolff, Vrabec (b1110) 2019; 195
Jackson, Li (b0840) 2002
Wang, Guan, Gurgenci, Hooman (b0515) 2018; 157
Kim (b0455) 2011; 32
Bellmore, Reid (b1060) 1980; 105
Inagaki, Koiso, Takumi, Ioka, Miyamoto (b1070) 1998; 185
Cui, Xiang, Guo, Huai, Zhang, Cheng (b0685) 2019; 152
Shome (b0975) 2014; 79
Urbano, Nasuti (b0270) 2013; 65
Seo, Kim, Anderson, Corradini (b1040) 2017; 154
Spindler K. A review on heat transfer correlations for supercritical carbon dioxide under cooling conditions. In 7th IIR Gustav Loretzen Conference on Natural Working Fluids, May 28–31, Trondheim, Norway; 2006.
Zhang, Yamaguchi, Fujima, Enomoto, Sawada (b0100) 2006; 30
Yu, Li, Lei, Feng, Zhang, He (b0525) 2013; 59
Aneesh AM, Sharma A, Srivastava A, Chaudhuri P. Thermo-hydraulic performance of zigzag, wavy, and serpentine channel based PCHEs. Fluid Mechanics and Fluid Power–Contemporary Research. New Delhi: Springer; 2017, p. 507–516.
Li, Wang, Li, Wang, He (b0075) 2014; 50
Lei, Li, Zhang, Dinh, Guo, Yu (b0565) 2017; 113
Wang, Xu, Wu, Liu, Dang (b0655) 2015; 99
Tanimizu K, Sadr R. Experimental investigation of heat transfer characteristics of pseudocritical carbon dioxide in a circular horizontal tube. In Proceedings of the ASME 2012 Summer Heat Transfer Conference HT2012, 2012, July 8–12.
Chen Y. Novel cycles using carbon dioxide as working fluid (Ph.D. thesis). Stockholm: Division of Applied Thermo dynamics and Refrigeration, Energy Department, KTH University; 2006.
Petukhov BS, Polyakov AF, Launder BE. Heat transfer in turbulent mixed convection; 1988.
Liu, Huang, Wang, Leung (b0900) 2018; 117
Zhang, Li, Lei, Zhang, Kong (b0300) 2018; 127
Liu, He, Li, Qu, Tao (b0610) 2015; 101
Ehsan, Guan, Klimenko (b0195) 2018; 92
Liu, Xu, Liu, Bai, Dang (b0670) 2018; 147
Shitsman (b0320) 1963; 1
Yamagata, Nishikawa, Hasegawa, Fujii, Yoshida (b0925) 1972; 15
Kakaç S, S.R.K., Aung W. Handbook of single-phase convective heat transfer; 1987.
Rao, Oumer, Jamaludin (b0185) 2016; 116
Hyungrae Kim, Song (b0440) 2008; 50
Polyakov AF. Heat Transfer under Supercritical Pressures 1991;21:1–53.
Kim, Kwon, Kim, Park (b0580) 2018; 92
Kim WS, J.D. Jackson, He S. Computational Investigation into Buoyancy-Aided turbulent flow and heat transfer to air in a vertical tube. ICHMT DIGITAL LIBRARY ONLINE. Begel House Inc.; 2006.
Jackson (b0885) 2017; 124
He, He, Seddighi (b0895) 2016; 809
Wang, Zhang, Xu (b0765) 2013; 368–370
Kurganov, Kaptil'Ny (b0340) 1992; 5
Tanimizu, Sadr (b0575) 2015; 52
Zahlan, Groeneveld, Tavoularis (b0485) 2015; 289
Cui, Guo, Huai, Zhang, Cheng, Zhou (b0705) 2019; 172
Goering, Humphrey, Greif (b1090) 1997; 40
Cheng, Ribatski, Thome (b0205) 2008; 31
Shiralkar, Griffith (b0390) 1969; 3
Wang, Xu, Liu, Bai, Dang (b1050) 2017; 108
Zhang, Xu, Liu, Liu, Zhang, Dang (b1095) 2019; 176
Liu, Huang, Wang, Leung (b0490) 2016; 98
Petukhov AP, Kuleshohov V, Sheckter YL. Turbulent flow and heat transfer in horizontal tubes with substantial influence of thermo-gravitational forces. In Fifth Int. Heat Transfer Conference; 1974 (3-7).
Ma Ting, U.P., Chen Yitung, W Qiuwangang. Numerical study on thermal-hydraulic performance of a two-sided etched zigzag-type high-temperature printed circuit heat exchanger. In 9th International Conference on Applied Energy, ICAE2017, 21–24 August 2017. 142(3950–3955).
Utamura, Hasuike, Yamamoto (b9000) 2010; 52
Shi, Shu, Tian, Huang, Chang, Chen (b0555) 2017; 10
Pioro, Duffey (b0150) 2005; 235
Kim, Jeon, Lee (b0750) 2007; 50
Lokshin V, S.I., Vikhrev YV. Calculating temperature conditions of radiant heating surfaces in supercritical boilers. Therm Eng 1968;15(9):34–39.
Ge, Li, Luo, Tassou (b0430) 2018; 227
Fan, Tang, Li, Yang, Wang (b0215) 2019; 170
Petukhov, Polyakov, Shekhter, Kuleshov (b1010) 1977; vol. 2
Bazargan, Mohseni MM. The significance of the buffer zone of boundary layer on convective heat transfer to a vertical turbulent flow of a supercritical fluid. J Supercr Fluids 2009;51(2):221–9.
Jiang, Zhang, Shi (b0450) 2008; 51
Xu, Luo, Jiang (b0505) 2017; 110
Shang, Chen (b0535) 2011; 31
McEligot, Coon, Perkins (b0865) 1970; 13
Jiang, Shi, Zhao, Xu (b0745) 2008; 51
Akbari, Mahmoudi (b0070) 2014; 78
Jackson, Cotton, Axcell (b0035) 1988
Jajja, Zada, Fronk (b0595) 2019; 130
Kim, Kim, Song, Cho (b0370) 2007; 44
Kurganov, Ankudinov (b0880) 1985; 32
Bae, Kim, Kang (b0315) 2010; 34
Wang, Sun, Lin, He, You, Yu (b0650) 2018; 27
Polyakov (b1000) 1974; 15
Zhang, Zhu, Li, Jiang (b1105) 2018; 151
Cheng, Zhao, Rowinski (b0395) 2017; 113
Li, Shu, Tian, Shi, Huang, Chen (b0545) 2017; 140
Grabezhnaya, Kirillov (b0970) 2006; 53
Zhu, Xu, Wu, Xie, Li (b0305) 2019; 136
Vikhrev, Barulin, Kon'Kov (b0375) 1967; 14
Prusa J, Yao LS. Heat transfer of fully developed flow in curved tubes. In ASME and American Institute of Chemical Engineers, 20th National Heat Transfer Conference. ASME and American Institute of Chemical Engineers, 20th National Heat Transfer Conference; 1981.
Mikielewicz, Shehata, Jackson, McEligot (b0870) 2002; 45
Wang, Tian, Zhang, Li, Ma, Shi (b1130) 2019; 169
Swann, Russell, Jahn (b0055) 2017
Zhang, Guo, Huai, Cui, Cheng (b0690) 2019; 134
Kim, Kwon, Park, Park, Kim (b0585) 2019; 131
Licht, Anderson, Corradini (b0715) 2008; 29
Li, Sun, Xie, Sunden, Qin (b0730) 2019; 153
Hall, Jackson (b0800) 1971; vol. 7
Bae (b0325) 2011; 241
Zhao, Li, Wu (b0660) 2017; 127
Zhang, Yamaguchi, Uneno (b0105) 2007; 32
Yoo (b0160) 2013; 45
Sarkar, Tilak, Basu (b0180) 2014; 73
Hendricks, Graham, Hsu, Medeiros (b0910) 1962; 32
Liao, Zhao (b0420) 2002; 45
Kim, Jeon, Lee (b0410) 2007; 237
Xu, Zhang, Liu, Zhang, Dang (b1100) 2018; 89
Southwest Research Institute, Swri, gti and ge break ground on $119 million supercritical CO2 pilot power plant (October 2018). URL
Kong, Li, Zhang, Guo, Luo, Lei (b0960) 2019; 151
Kurganov, Zeigarnik, Maslakova (b0240) 2013; 67
Mohseni, Bazargan (b0920) 2012; 34
Ciofalo, Arini, Di Liberto (b0645) 2015; 82
Pidaparti, Umrigar, McFarland, Anderson (b0480) 2014
Pidaparti, Anderson, Ranjan (b0795) 2019; 106
Lorentzen (b0005) 1995; 18
Protopopov (b1035) 1977
Wang, Leung, Wang, Bi (b0200) 2018; 142
Yu, Li, Lei, Feng, Zhang, He (b0520) 2013; 50
Zhang, Wang, Li, Xu (b0770) 2015; 88
Yuan, Piomelli (b0875) 2015; 780
Abadzic, Goldstein (b0915) 1970; 13
Deev VI, V.S.K., Churkin AN. Analysis and generalization of experimental data on heat transfer to supercritical pressure water flow in annular channels and rod bundles. Therm Eng 2017;64:142–50.
Xu Jinliang, C.Y., Zhang Wei, Sun Dongliang. Turbulent convective heat transfer of CO2 in a helical tube at near-critical pressure.
Licht (10.1016/j.apenergy.2020.114962_b0715) 2008; 29
Shiralkar (10.1016/j.apenergy.2020.114962_b0295) 1968
Shang (10.1016/j.apenergy.2020.114962_b0535) 2011; 31
Wang (10.1016/j.apenergy.2020.114962_b1130) 2019; 169
Tian (10.1016/j.apenergy.2020.114962_b0990) 2018; 127
Gupta (10.1016/j.apenergy.2020.114962_b0470) 2013; 261
10.1016/j.apenergy.2020.114962_b0905
Jiang (10.1016/j.apenergy.2020.114962_b0475) 2013; 56
Wang (10.1016/j.apenergy.2020.114962_b0515) 2018; 157
Cheng (10.1016/j.apenergy.2020.114962_b0395) 2017; 113
Yang (10.1016/j.apenergy.2020.114962_b0625) 2018; 145
Swann (10.1016/j.apenergy.2020.114962_b0055) 2017
Pioro (10.1016/j.apenergy.2020.114962_b0380) 2006
MatthiasLinnemanna (10.1016/j.apenergy.2020.114962_b1110) 2019; 195
10.1016/j.apenergy.2020.114962_b0695
Zhang (10.1016/j.apenergy.2020.114962_b0365) 2019; 157
Bae (10.1016/j.apenergy.2020.114962_b0325) 2011; 241
Petukhov (10.1016/j.apenergy.2020.114962_b0385) 1983; 21
Tsuzuki (10.1016/j.apenergy.2020.114962_b0065) 2007; 27
Pizzarelli (10.1016/j.apenergy.2020.114962_b0210) 2018; 95
Zhang (10.1016/j.apenergy.2020.114962_b0560) 2019
Lv (10.1016/j.apenergy.2020.114962_b0060) 2018; 165
Pioro (10.1016/j.apenergy.2020.114962_b0145) 2004; 230
10.1016/j.apenergy.2020.114962_b0010
He (10.1016/j.apenergy.2020.114962_b0810) 2008; 28
Eter (10.1016/j.apenergy.2020.114962_b0510) 2017; 313
Fan (10.1016/j.apenergy.2020.114962_b0215) 2019; 170
Petukhov (10.1016/j.apenergy.2020.114962_b0985) 1972; 10
Akbari (10.1016/j.apenergy.2020.114962_b0070) 2014; 78
Wang (10.1016/j.apenergy.2020.114962_b0650) 2018; 27
Narasimha (10.1016/j.apenergy.2020.114962_b0855) 1979; vol. 19
Huang (10.1016/j.apenergy.2020.114962_b0165) 2016; 162
Hall (10.1016/j.apenergy.2020.114962_b0800) 1971; vol. 7
Zhang (10.1016/j.apenergy.2020.114962_b0100) 2006; 30
Wang (10.1016/j.apenergy.2020.114962_b0200) 2018; 142
Kruizenga (10.1016/j.apenergy.2020.114962_b0680) 2012
Bellmore (10.1016/j.apenergy.2020.114962_b1060) 1980; 105
Vikhrev (10.1016/j.apenergy.2020.114962_b0375) 1967; 14
Lorentzen (10.1016/j.apenergy.2020.114962_b0005) 1995; 18
Zhang (10.1016/j.apenergy.2020.114962_b0665) 2018; 125
Tanimizu (10.1016/j.apenergy.2020.114962_b0575) 2015; 52
10.1016/j.apenergy.2020.114962_b0120
Zhang (10.1016/j.apenergy.2020.114962_b1105) 2018; 151
Lei (10.1016/j.apenergy.2020.114962_b0835) 2013; 135
Zhang (10.1016/j.apenergy.2020.114962_b0770) 2015; 88
Zhang (10.1016/j.apenergy.2020.114962_b0635) 2018; 120
Li (10.1016/j.apenergy.2020.114962_b0545) 2017; 140
Kim (10.1016/j.apenergy.2020.114962_b0580) 2018; 92
Wang (10.1016/j.apenergy.2020.114962_b0630) 2019; 129
Jiang (10.1016/j.apenergy.2020.114962_b0450) 2008; 51
Yu (10.1016/j.apenergy.2020.114962_b0525) 2013; 59
Kim (10.1016/j.apenergy.2020.114962_b0750) 2007; 50
Kurganov (10.1016/j.apenergy.2020.114962_b0880) 1985; 32
Li (10.1016/j.apenergy.2020.114962_b1120) 2011; 54
Zhang (10.1016/j.apenergy.2020.114962_b0300) 2018; 127
Shi (10.1016/j.apenergy.2020.114962_b0555) 2017; 10
10.1016/j.apenergy.2020.114962_b0265
Liu (10.1016/j.apenergy.2020.114962_b0670) 2018; 147
Kong (10.1016/j.apenergy.2020.114962_b0960) 2019; 151
Autier (10.1016/j.apenergy.2020.114962_b0095) 2009; 42
Song (10.1016/j.apenergy.2020.114962_b0335) 2008; 44
10.1016/j.apenergy.2020.114962_b0700
Son (10.1016/j.apenergy.2020.114962_b0465) 2012; 250
Xu (10.1016/j.apenergy.2020.114962_b0710) 2015; 91
Jiang (10.1016/j.apenergy.2020.114962_b0820) 2018; 127
Mokry (10.1016/j.apenergy.2020.114962_b0935) 2011; 241
Cheng (10.1016/j.apenergy.2020.114962_b0205) 2008; 31
Protopopov (10.1016/j.apenergy.2020.114962_b1035) 1977
Yalcinkaya (10.1016/j.apenergy.2020.114962_b0090) 2012; 27
Wang (10.1016/j.apenergy.2020.114962_b1050) 2017; 108
Shenghui Liu (10.1016/j.apenergy.2020.114962_b0500) 2017; 106
Wang (10.1016/j.apenergy.2020.114962_b0590) 2019; 11
Cui (10.1016/j.apenergy.2020.114962_b0705) 2019; 172
Rao (10.1016/j.apenergy.2020.114962_b0185) 2016; 116
Saltanov (10.1016/j.apenergy.2020.114962_b0980) 2015; 1
10.1016/j.apenergy.2020.114962_b0015
Zahlan (10.1016/j.apenergy.2020.114962_b0485) 2015; 289
10.1016/j.apenergy.2020.114962_b0135
Ciofalo (10.1016/j.apenergy.2020.114962_b0645) 2015; 82
Koshizuka (10.1016/j.apenergy.2020.114962_b0275) 1995; 38
Zhao (10.1016/j.apenergy.2020.114962_b0845) 2018; 138
Goering (10.1016/j.apenergy.2020.114962_b1090) 1997; 40
10.1016/j.apenergy.2020.114962_b0815
Kim (10.1016/j.apenergy.2020.114962_b0460) 2010; 240
Liu (10.1016/j.apenergy.2020.114962_b0675) 2017; 116
Yamagata (10.1016/j.apenergy.2020.114962_b0925) 1972; 15
Li (10.1016/j.apenergy.2020.114962_b0330) 2010; 34
Lei (10.1016/j.apenergy.2020.114962_b0360) 2019; 176
Kim (10.1016/j.apenergy.2020.114962_b0370) 2007; 44
Kurganov (10.1016/j.apenergy.2020.114962_b0240) 2013; 67
Kim (10.1016/j.apenergy.2020.114962_b0585) 2019; 131
Jiang (10.1016/j.apenergy.2020.114962_b0605) 2004; 24
Inagaki (10.1016/j.apenergy.2020.114962_b1070) 1998; 185
10.1016/j.apenergy.2020.114962_b1020
10.1016/j.apenergy.2020.114962_b0045
10.1016/j.apenergy.2020.114962_b1015
10.1016/j.apenergy.2020.114962_b0600
Cheng (10.1016/j.apenergy.2020.114962_b0260) 2001
10.1016/j.apenergy.2020.114962_b0965
Kim (10.1016/j.apenergy.2020.114962_b0455) 2011; 32
Kurganov (10.1016/j.apenergy.2020.114962_b0245) 2014; 77
Liu (10.1016/j.apenergy.2020.114962_b0490) 2016; 98
Jiang (10.1016/j.apenergy.2020.114962_b0745) 2008; 51
Liu (10.1016/j.apenergy.2020.114962_b0610) 2015; 101
Hendricks (10.1016/j.apenergy.2020.114962_b0910) 1962; 32
10.1016/j.apenergy.2020.114962_b0280
10.1016/j.apenergy.2020.114962_b0040
Liao (10.1016/j.apenergy.2020.114962_b0420) 2002; 45
Ehsan (10.1016/j.apenergy.2020.114962_b0080) 2018; 168
Zhang (10.1016/j.apenergy.2020.114962_b0355) 2018; 122
Kacludis (10.1016/j.apenergy.2020.114962_b0890) 2012
Li (10.1016/j.apenergy.2020.114962_b0730) 2019; 153
Pidaparti (10.1016/j.apenergy.2020.114962_b0795) 2019; 106
10.1016/j.apenergy.2020.114962_b0155
McEligot (10.1016/j.apenergy.2020.114962_b0865) 1970; 13
10.1016/j.apenergy.2020.114962_b1005
Gabaraev (10.1016/j.apenergy.2020.114962_b0930) 2007
10.1016/j.apenergy.2020.114962_b0830
10.1016/j.apenergy.2020.114962_b0955
Wang (10.1016/j.apenergy.2020.114962_b0655) 2015; 99
Li (10.1016/j.apenergy.2020.114962_b0640) 2016; 116
Shome (10.1016/j.apenergy.2020.114962_b0975) 2014; 79
Yildiz (10.1016/j.apenergy.2020.114962_b0170) 2014; 54
10.1016/j.apenergy.2020.114962_b0190
Styrikovich (10.1016/j.apenergy.2020.114962_b0290) 1967; 14
Shi (10.1016/j.apenergy.2020.114962_b0540) 2017; 150
Pioro (10.1016/j.apenergy.2020.114962_b0225) 2019; 354
10.1016/j.apenergy.2020.114962_b0860
Lei (10.1016/j.apenergy.2020.114962_b0495) 2017; 7
Jackson (10.1016/j.apenergy.2020.114962_b0805) 2013; 264
Kurganov (10.1016/j.apenergy.2020.114962_b0340) 1992; 5
Li (10.1016/j.apenergy.2020.114962_b0620) 2019; 130
Rahman (10.1016/j.apenergy.2020.114962_b0255) 2016; 97
Yu (10.1016/j.apenergy.2020.114962_b0520) 2013; 50
10.1016/j.apenergy.2020.114962_b1025
10.1016/j.apenergy.2020.114962_b0850
Abadzic (10.1016/j.apenergy.2020.114962_b0915) 1970; 13
Sarkar (10.1016/j.apenergy.2020.114962_b0050) 2015; 48
Zhang (10.1016/j.apenergy.2020.114962_b0690) 2019; 134
Huang (10.1016/j.apenergy.2020.114962_b0220) 2018; 131
Hiroaki (10.1016/j.apenergy.2020.114962_b0025) 1973; 16
Li (10.1016/j.apenergy.2020.114962_b0435) 2018; 136
Shokri (10.1016/j.apenergy.2020.114962_b0725) 2019; 147
Chen (10.1016/j.apenergy.2020.114962_b0125) 2010
Utamura (10.1016/j.apenergy.2020.114962_b9000) 2010; 52
Sarkar (10.1016/j.apenergy.2020.114962_b0180) 2014; 73
Cui (10.1016/j.apenergy.2020.114962_b0685) 2019; 152
Pioro (10.1016/j.apenergy.2020.114962_b0150) 2005; 235
Mikielewicz (10.1016/j.apenergy.2020.114962_b0870) 2002; 45
Cabeza (10.1016/j.apenergy.2020.114962_b0175) 2017; 125
10.1016/j.apenergy.2020.114962_b1065
Farzaneh-Gord (10.1016/j.apenergy.2020.114962_b0110) 2010; 14
10.1016/j.apenergy.2020.114962_b0400
Jiang (10.1016/j.apenergy.2020.114962_b0740) 2006; 38
Li (10.1016/j.apenergy.2020.114962_b0075) 2014; 50
10.1016/j.apenergy.2020.114962_b0405
Garg (10.1016/j.apenergy.2020.114962_b0825) 2000; 12
Li (10.1016/j.apenergy.2020.114962_b1125) 2017; 140
Bazargan (10.1016/j.apenergy.2020.114962_b1055) 2005; 127
Mohseni (10.1016/j.apenergy.2020.114962_b0920) 2012; 34
Wang (10.1016/j.apenergy.2020.114962_b0285) 2011; 54
Urbano (10.1016/j.apenergy.2020.114962_b0270) 2013; 65
Bazargan (10.1016/j.apenergy.2020.114962_b0020) 2001
Pidaparti (10.1016/j.apenergy.2020.114962_b0480) 2014
Li (10.1016/j.apenergy.2020.114962_b0130) 2014; 78
10.1016/j.apenergy.2020.114962_b0995
Peeters (10.1016/j.apenergy.2020.114962_b1115) 2019; 138
Shiralkar (10.1016/j.apenergy.2020.114962_b0390) 1969; 3
Adebiyi (10.1016/j.apenergy.2020.114962_b1030) 1976; 19
Liu (10.1016/j.apenergy.2020.114962_b0900) 2018; 117
Kurganov (10.1016/j.apenergy.2020.114962_b0230) 2012; 55
Bae (10.1016/j.apenergy.2020.114962_b0760) 2013; 265
Xu (10.1016/j.apenergy.2020.114962_b0505) 2017; 110
10.1016/j.apenergy.2020.114962_b1085
Bae (10.1016/j.apenergy.2020.114962_b0445) 2009; 33
Jackson (10.1016/j.apenergy.2020.114962_b0885) 2017; 124
Lei (10.1016/j.apenergy.2020.114962_b0565) 2017; 113
10.1016/j.apenergy.2020.114962_b0785
Hyungrae Kim (10.1016/j.apenergy.2020.114962_b0440) 2008; 50
Bae (10.1016/j.apenergy.2020.114962_b0755) 2011; 32
Shitsman (10.1016/j.apenergy.2020.114962_b0320) 1963; 1
Li (10.1016/j.apenergy.2020.114962_b0945) 2014; 34
Petukhov (10.1016/j.apenergy.2020.114962_b1010) 1977; vol. 2
Kline (10.1016/j.apenergy.2020.114962_b0345) 2018; 118
Zhang (10.1016/j.apenergy.2020.114962_b0105) 2007; 32
Gao (10.1016/j.apenergy.2020.114962_b0530) 2017; 120
Li (10.1016/j.apenergy.2020.114962_b0615) 2015; 78
Jackson (10.1016/j.apenergy.2020.114962_b0840) 2002
Jajja (10.1016/j.apenergy.2020.114962_b0595) 2019; 130
Li (10.1016/j.apenergy.2020.114962_b0790) 2016; 178
10.1016/j.apenergy.2020.114962_b1075
Zhu (10.1016/j.apenergy.2020.114962_b0305) 2019; 136
10.1016/j.apenergy.2020.114962_b0775
10.1016/j.apenergy.2020.114962_b0415
Liao (10.1016/j.apenergy.2020.114962_b0115) 2019; 199
Zhang (10.1016/j.apenergy.2020.114962_b0085) 2013; 61
Bae (10.1016/j.apenergy.2020.114962_b0315) 2010; 34
Zhang (10.1016/j.apenergy.2020.114962_b
References_xml – year: 2006
  ident: b0380
  article-title: Heat transfer and Hydraulic Resistance at supercritical pressures in power-engineering applications
– volume: 172
  start-page: 517
  year: 2019
  end-page: 530
  ident: b0705
  article-title: Numerical investigations on serpentine channel for supercritical CO
  publication-title: Energy
– volume: 265
  start-page: 1036
  year: 2013
  end-page: 1044
  ident: b0760
  article-title: Heat transfer in CO
  publication-title: Nucl Eng Des
– volume: 5
  start-page: 465
  year: 1992
  end-page: 478
  ident: b0340
  article-title: Velocity and enthalpy fields and eddy diffusivities in a heated supercritical fluid flow
  publication-title: Exp Therm Fluid Sci
– volume: 237
  start-page: 1795
  year: 2007
  end-page: 1802
  ident: b0410
  article-title: Wall temperature measurement and heat transfer correlation of turbulent supercritical carbon dioxide flow in vertical circular/non-circular tubes
  publication-title: Nucl Eng Des
– volume: 127
  start-page: 674
  year: 2018
  end-page: 686
  ident: b0300
  article-title: Study on identification method of heat transfer deterioration of supercritical fluids in vertically heated tubes
  publication-title: Int J Heat Mass Transf
– reference: Ma Ting, U.P., Chen Yitung, W Qiuwangang. Numerical study on thermal-hydraulic performance of a two-sided etched zigzag-type high-temperature printed circuit heat exchanger. In 9th International Conference on Applied Energy, ICAE2017, 21–24 August 2017. 142(3950–3955).
– reference: Jackson JD. Progress in developing an improved empirical heat transfer equation for use in connection with advanced nuclear reactors cooled by water at supercritical pressure. In 17th International Conference on Nuclear Engineering. American Society of Mechanical Engineers Digital Collection; 2009, p. 807–819.
– volume: 34
  start-page: 122503
  year: 2012
  ident: b0920
  article-title: A new analysis of heat transfer deterioration on basis of turbulent viscosity variations of supercritical fluids
  publication-title: J Heat Transfer
– volume: 151
  start-page: 66
  year: 2019
  end-page: 76
  ident: b0960
  article-title: A new criterion for the onset of heat transfer deterioration to supercritical water in vertically-upward smooth tubes
  publication-title: Appl Therm Eng
– volume: 67
  start-page: 535
  year: 2013
  end-page: 547
  ident: b0240
  article-title: Heat transfer and hydraulic resistance of supercritical pressure coolants. Part III: Generalized description of SCP fluids normal heat transfer, empirical calculating correlations, integral method of theoretical calculations
  publication-title: Int J Heat Mass Transf
– reference: Lokshin V, S.I., Vikhrev YV. Calculating temperature conditions of radiant heating surfaces in supercritical boilers. Therm Eng 1968;15(9):34–39.
– volume: 56
  start-page: 741
  year: 2013
  end-page: 749
  ident: b0475
  article-title: Convection heat transfer of supercritical pressure carbon dioxide in a vertical micro tube from transition to turbulent flow regime
  publication-title: Int J Heat Mass Transf
– volume: 195
  start-page: 1402
  year: 2019
  end-page: 1414
  ident: b1110
  article-title: Design and test of a multi-coil helical evaporator for a high temperature organic Rankine cycle plant driven by biogas waste heat
  publication-title: Energy Convers Manage
– volume: 14
  start-page: 5
  year: 1967
  end-page: 9
  ident: b0290
  article-title: Problems in the development of designs of supercritical boilers
  publication-title: Therm Eng
– volume: 28
  start-page: 1662
  year: 2008
  end-page: 1675
  ident: b0810
  article-title: A computational study of convective heat transfer to carbon dioxide at a pressure just above the critical value
  publication-title: Appl Therm Eng
– volume: 116
  start-page: 500
  year: 2017
  end-page: 515
  ident: b0675
  article-title: Numerical study of the effect of buoyancy force and centrifugal force on heat transfer characteristics of supercritical CO
  publication-title: Appl Therm Eng
– volume: vol. 2
  start-page: 719
  year: 1977
  end-page: 727
  ident: b1010
  article-title: Experimental Study of the Effects of Thermogravitation in Horizontal Pipes
  publication-title: Heat Transfer and Turbulent Buoyant Convection Proc. ICHMT Conf. Dubrovnik, Yogoslavia
– volume: 131
  start-page: 1117
  year: 2019
  end-page: 1128
  ident: b0585
  article-title: Heat transfer model for horizontal flows of CO
  publication-title: Int J Heat Mass Transf
– volume: 1
  start-page: 237
  year: 1963
  end-page: 244
  ident: b0320
  article-title: Impairment of the heat transmission at supercritical pressures
  publication-title: High Temp
– volume: 178
  start-page: 126
  year: 2016
  end-page: 141
  ident: b0790
  article-title: Improved gas heaters for supercritical CO
  publication-title: Appl Energy
– start-page: 6609
  year: 2001
  ident: b0260
  article-title: Heat Transfer at Supercritical Pressures -Literature Review and Application to an HPLWR
  publication-title: FZKA
– volume: 135
  year: 2013
  ident: b0835
  article-title: Effect of Buoyancy on the Mechanism of Heat Transfer Deterioration of Supercritical Water in Horizontal Tubes
  publication-title: J Heat Transfer
– volume: 32
  start-page: 340
  year: 2011
  end-page: 351
  ident: b0755
  article-title: Effect of a helical wire on mixed convection heat transfer to carbon dioxide in a vertical circular tube at supercritical pressures
  publication-title: Int J Heat Fluid Flow
– volume: 27
  start-page: 1702
  year: 2007
  end-page: 1707
  ident: b0065
  article-title: High performance printed circuit heat exchanger
  publication-title: Appl Therm Eng
– volume: 240
  start-page: 3336
  year: 2010
  end-page: 3349
  ident: b0460
  article-title: Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube
  publication-title: Nucl Eng Des
– volume: 368–370
  start-page: 631
  year: 2013
  end-page: 635
  ident: b0765
  article-title: Experimental Investigation on Flow Characteristics of Supercritical CO
  publication-title: Applied Mechanics and Materials
– volume: 88
  start-page: 61
  year: 2015
  end-page: 70
  ident: b0770
  article-title: Mixed convective heat transfer of CO2 at supercritical pressures flowing upward through a vertical helically coiled tube
  publication-title: Appl Therm Eng
– volume: 48
  start-page: 434
  year: 2015
  end-page: 451
  ident: b0050
  article-title: Review and future trends of supercritical CO
  publication-title: Renew Sustain Energy Rev
– volume: 32
  start-page: 2617
  year: 2007
  end-page: 2628
  ident: b0105
  article-title: Experimental study on the performance of solar Rankine system using supercritical CO
  publication-title: Renew Energy
– volume: 40
  start-page: 2187
  year: 1997
  end-page: 2199
  ident: b1090
  article-title: The dual influence of curvature and buoyancy in fully developed tube flows
  publication-title: Int J Heat Mass Transf
– volume: 235
  start-page: 2407
  year: 2005
  end-page: 2430
  ident: b0150
  article-title: Experimental heat transfer in supercritical water flowing inside channels (survey)
  publication-title: Nucl Eng Des
– volume: 13
  year: 1970
  ident: b0865
  article-title: Relaminarization in tubes
  publication-title: Int J Heat Mass Transfer
– reference: Prusa J, Yao LS. Heat transfer of fully developed flow in curved tubes. In ASME and American Institute of Chemical Engineers, 20th National Heat Transfer Conference. ASME and American Institute of Chemical Engineers, 20th National Heat Transfer Conference; 1981.
– volume: 142
  start-page: 573
  year: 2018
  end-page: 596
  ident: b0200
  article-title: A review on recent heat transfer studies to supercritical pressure water in channels
  publication-title: Appl Therm Eng
– volume: 168
  start-page: 611
  year: 2018
  end-page: 628
  ident: b0080
  article-title: Design and comparison of direct and indirect cooling system for 25 MW solar power plant operated with supercritical CO
  publication-title: Energy Convers Manage
– volume: 38
  start-page: 3077
  year: 1995
  end-page: 3084
  ident: b0275
  article-title: Numerical analysis of deterioration phenomena in heat transfer to supercritical water
  publication-title: Int J Heat Mass Transf
– volume: 250
  start-page: 573
  year: 2012
  end-page: 584
  ident: b0465
  article-title: Experimental heat transfer to supercritical carbon dioxide flowing upward vertical tube with highly conducting surroundings
  publication-title: Nucl Eng Des
– reference: Xu Jinliang, C.Y., Zhang Wei, Sun Dongliang. Turbulent convective heat transfer of CO2 in a helical tube at near-critical pressure. Int J Heat Mass Transfer 2015;80:748–58.
– volume: 78
  start-page: 551
  year: 2014
  end-page: 558
  ident: b0130
  article-title: A supercritical or transcritical Rankine cycle with ejector using low-grade heat
  publication-title: Energy Convers Manag
– volume: 31
  start-page: 573
  year: 2011
  end-page: 581
  ident: b0535
  article-title: Numerical investigation of diameter effect on heat transfer of supercritical water flows in horizontal round tubes
  publication-title: Appl Therm Eng
– volume: 97
  start-page: 53
  year: 2016
  end-page: 65
  ident: b0255
  article-title: Supercritical water heat transfer for nuclear reactor applications: A review
  publication-title: Ann Nucl Energy
– reference: Angelino G. Real gas effects in carbon dioxide cycles. In ASME 1969 gas turbine conference and products show, Cleveland, OH.
– volume: 199
  start-page: 111986
  year: 2019
  ident: b0115
  article-title: Jingwei Chena, Yuanwang Deng, Hao Zhu. Effects of technical progress on performance and application of supercritical carbon dioxide power cycle: A review
  publication-title: Energy Convers Manage
– volume: 42
  start-page: 132
  year: 2009
  end-page: 139
  ident: b0095
  article-title: Optimum for CO2 transcritical power Rankine cycle using exhaust gas from fishing boat diesel engines
  publication-title: IFAC Proceedings Volumes
– volume: 241
  start-page: 1126
  year: 2011
  end-page: 1136
  ident: b0935
  article-title: Development of supercritical water heat transfer correlation for vertical bare tubes
  publication-title: Nucl Eng Des
– volume: 53
  start-page: 296
  year: 2006
  end-page: 301
  ident: b0970
  article-title: Heat transfer under supercritical pressures and heat transfer deterioration boundaries
  publication-title: Therm Eng
– volume: 108
  start-page: 1645
  year: 2017
  end-page: 1655
  ident: b1050
  article-title: Experimental and numerical investigation on heat transfer characteristics of supercritical CO
  publication-title: Int J Heat Mass Transf
– volume: vol. 182
  start-page: 10
  year: 1967
  ident: b0030
  article-title: A reviwe of forced convection heat transfer to fluids at supercritical pressures
  publication-title: Proceedings of the Institution of Mechanical Engineers, Conference Proceedings
– volume: 99
  start-page: 112
  year: 2015
  end-page: 120
  ident: b0655
  article-title: Numerical investigation on heat transfer of supercritical CO
  publication-title: J Supercr Fluids
– reference: Jackson JD. An Semi-Empirical Model of Turbulent Convective Heat Transfer to Fluids at Supercritical Pressure. In 16th International Conference on Nuclear Engineering. American Society of Mechanical Engineers Digital Collection; 2008, p. 911–21.
– reference: Jiang Y, Liang S. China’s first large-scale supercritical carbon dioxide compressor experimental platform completed and put into operation, in Chinese (Septemper 2018). URL <
– start-page: 815
  year: 1977
  end-page: 821
  ident: b1035
  article-title: Generalized correlations for the local heat-transfer coefficients turbulent flows of water and carbon dioxide at supercritical pressure in a uniform heated circular tube
– volume: 78
  start-page: 303
  year: 2015
  end-page: 314
  ident: b0615
  article-title: Effects of rib geometries and property variations on heat transfer to supercritical water in internally ribbed tubes
  publication-title: Appl Therm Eng
– reference: Hendricks RC, S.R.J., Smith RV. Survey of heat transfer to near-critical fluids. Advances in Cryogenic Engineering. Boston, MA: Springer; 1970, p. 197–237.
– volume: 185
  start-page: 141
  year: 1998
  end-page: 151
  ident: b1070
  article-title: Thermal hydraulic study on a high-temperature gas–gas heat exchanger with helically coiled tube bundles
  publication-title: Nucl Eng Des
– volume: 169
  start-page: 542
  year: 2019
  end-page: 557
  ident: b1130
  article-title: Heat transfer investigation of supercritical R134a for trans-critical organic Rankine cycle system
  publication-title: Energy
– volume: 27
  start-page: 557
  year: 2012
  end-page: 568
  ident: b0090
  article-title: On usage of super-critical carbon-dioxide in a geothermal power cycle
  publication-title: J Fac Eng Architect Gazi Univ
– volume: 61
  start-page: 236
  year: 2013
  end-page: 244
  ident: b0085
  article-title: System thermodynamic performance comparison of CO
  publication-title: Appl Therm Eng
– volume: 108
  start-page: 39
  year: 2019
  end-page: 53
  ident: b0720
  article-title: Convective heat transfer and flow resistance characteristics of supercritical pressure hydrocarbon fuel in a horizontal rectangular mini-channel
  publication-title: Exp Therm Fluid Sci
– volume: 44
  start-page: 285
  year: 2007
  end-page: 293
  ident: b0370
  article-title: Heat Transfer Test in a Vertical Tube Using CO
  publication-title: J Nucl Sci Technol
– volume: 129
  start-page: 1194
  year: 2019
  end-page: 1205
  ident: b0630
  article-title: Experimental comparison of the heat transfer of supercritical R134a in a micro-fin tube and a smooth tube
  publication-title: Int J Heat Mass Transf
– volume: 153
  start-page: 655
  year: 2019
  end-page: 668
  ident: b0730
  article-title: Numerical investigation on flow and thermal performance of supercritical CO
  publication-title: Appl Therm Eng
– reference: Tanimizu K, Sadr R. Experimental investigation of heat transfer characteristics of pseudocritical carbon dioxide in a circular horizontal tube. In Proceedings of the ASME 2012 Summer Heat Transfer Conference HT2012, 2012, July 8–12.
– reference: Lin W, D.Z., Gu A. Analysis on heat transfer correlations of supercritical CO2 cooled in horizontal circular tubes. Heat Mass Transfer 2012;48(4):705–11.
– volume: 138
  start-page: 154
  year: 2018
  end-page: 166
  ident: b0845
  article-title: Investigation of buoyancy-enhanced heat transfer of supercritical CO
  publication-title: J Supercr Fluids
– volume: 116
  start-page: 661
  year: 2016
  end-page: 676
  ident: b0640
  article-title: A quantitative study on the interaction between curvature and buoyancy effects in helically coiled heat exchangers of supercritical CO
  publication-title: Energy
– volume: 4
  start-page: 281
  year: 1998
  end-page: 301
  ident: b0140
  article-title: Heat Transfer from Supercritical Carbon Dioxide in Tube Flow: A Critical Review
  publication-title: HVAC&R Research
– volume: 165
  start-page: 827
  year: 2018
  end-page: 839
  ident: b0060
  article-title: Aerodynamic design optimization of radial-inflow turbine in supercritical CO
  publication-title: Energy Convers Manage
– year: 2001
  ident: b0020
  article-title: Forced convection heat transfer to turbulent flow of supercritical water in a round horizontal tube
– volume: 147
  start-page: 1
  year: 2018
  end-page: 14
  ident: b0670
  article-title: Heat transfer deterioration in helically coiled heat exchangers in trans-critical CO
  publication-title: Energy
– volume: 150
  start-page: 159
  year: 2017
  end-page: 171
  ident: b0540
  article-title: Experimental comparison between four CO
  publication-title: Energy Convers Manage
– volume: 140
  start-page: 696
  year: 2017
  end-page: 707
  ident: b0545
  article-title: Preliminary tests on dynamic characteristics of a CO2 transcritical power cycle using an expansion valve in engine waste heat recovery
  publication-title: Energy
– reference: Kakaç S, S.R.K., Aung W. Handbook of single-phase convective heat transfer; 1987.
– start-page: 119074
  year: 2019
  ident: b0560
  article-title: Experimental and numerical comparison of the heat transfer behaviors and buoyancy effects of supercritical CO2 in various heating tubes
  publication-title: Int J Heat Mass Transfer
– volume: 136
  start-page: 254
  year: 2019
  end-page: 266
  ident: b0305
  article-title: Supercritical “boiling” number, a new parameter to distinguish two regimes of carbon dioxide heat transfer in tubes
  publication-title: Int J Therm Sci
– volume: 113
  start-page: 609
  year: 2017
  end-page: 620
  ident: b0565
  article-title: Experimental study on the difference of heat transfer characteristics between vertical and horizontal flows of supercritical pressure water
  publication-title: Appl Therm Eng
– volume: 176
  start-page: 119
  year: 2019
  end-page: 130
  ident: b0360
  article-title: Experimental study on convection heat transfer of supercritical CO
  publication-title: Energy
– volume: 15
  start-page: 632
  year: 1974
  end-page: 637
  ident: b1000
  article-title: Development of secondary free-convection currents in forced turbulent flow in horizontal tubes
  publication-title: J Appl Mech Tech Phys
– volume: 3
  start-page: 465
  year: 1969
  end-page: 471
  ident: b0390
  article-title: The effect of swirl, inlet conditions, flow direction, and tube diameter on the heat transfer to fluids at supercritical pressure
  publication-title: J Heat Transfer
– volume: 44
  start-page: 164
  year: 2008
  end-page: 171
  ident: b0335
  article-title: Heat transfer characteristics of a supercritical fluid flow in a vertical pipe
  publication-title: J Supercr Fluids
– volume: 65
  start-page: 599
  year: 2013
  end-page: 609
  ident: b0270
  article-title: Conditions for the occurrence of heat transfer deterioration in light hydrocarbons flows
  publication-title: Int J Heat Mass Transf
– volume: 138
  start-page: 454
  year: 2019
  end-page: 467
  ident: b1115
  article-title: Turbulent heat transfer in channels with irregular roughness
  publication-title: Int J Heat Mass Transf
– volume: 130
  start-page: 1272
  year: 2019
  end-page: 1287
  ident: b0620
  article-title: Effect of internal helical-rib roughness on mixed convection flow and heat transfer in heated horizontal pipe flow of supercritical water
  publication-title: Int J Heat Mass Transf
– reference: Bazargan, Mohseni MM. The significance of the buffer zone of boundary layer on convective heat transfer to a vertical turbulent flow of a supercritical fluid. J Supercr Fluids 2009;51(2):221–9.
– volume: 151
  start-page: 376
  year: 2018
  end-page: 386
  ident: b1105
  article-title: Thermodynamic optimization of heat transfer process in thermal systems using CO
  publication-title: Energy
– volume: 54
  start-page: 27
  year: 2014
  end-page: 32
  ident: b0170
  article-title: Diameter effect on supercritical heat transfer
  publication-title: Int Commun Heat Mass Transfer
– volume: 147
  start-page: 216
  year: 2019
  end-page: 230
  ident: b0725
  article-title: Improvement of heat-transfer correlations for supercritical methane coolant in rectangular channel
  publication-title: Appl Therm Eng
– volume: 1
  year: 2015
  ident: b0980
  article-title: Study on Specifics of Forced-Convective Heat Transfer in Supercritical Carbon Dioxide
  publication-title: J Nucl Eng Rad Sci
– volume: 32
  start-page: 176
  year: 2011
  end-page: 191
  ident: b0455
  article-title: MH Kim Experimental investigation of heat transfer in vertical upward and downward supercritical CO
  publication-title: Int J Heat Fluid Flow
– volume: 170
  start-page: 480
  year: 2019
  end-page: 496
  ident: b0215
  article-title: Correlation evaluation on circumferentially average heat transfer for supercritical carbon dioxide in non-uniform heating vertical tubes
  publication-title: Energy
– volume: 45
  start-page: 495
  year: 2013
  end-page: 525
  ident: b0160
  article-title: The Turbulent Flows of Supercritical Fluids with Heat Transfer
  publication-title: Annu Rev Fluid Mech
– volume: 38
  start-page: 339
  year: 2006
  end-page: 346
  ident: b0740
  article-title: Experimental investigation of flow resistance and convection heat transfer of CO
  publication-title: J Supercr Fluids
– reference: Aneesh AM, Sharma A, Srivastava A, Chaudhuri P. Thermo-hydraulic performance of zigzag, wavy, and serpentine channel based PCHEs. Fluid Mechanics and Fluid Power–Contemporary Research. New Delhi: Springer; 2017, p. 507–516.
– reference: Petukhov BS, Polyakov AF, Launder BE. Heat transfer in turbulent mixed convection; 1988.
– start-page: 2
  year: 1988
  end-page: 15
  ident: b0035
  article-title: Studies of mixed convection in vertical tubes
  publication-title: Int. J. Heat and Fluid Flow
– volume: 50
  start-page: 518
  year: 2008
  end-page: 525
  ident: b0440
  article-title: Yoon Yeong Bae. Heat transfer to supercritical pressure carbon dioxide flowing upward through tubes and a narrow annulus passage
  publication-title: Prog Nucl Energy
– volume: 54
  start-page: 1950
  year: 2011
  end-page: 1958
  ident: b0285
  article-title: Investigation on the characteristics and mechanisms of unusual heat transfer of supercritical pressure water in vertically-upward tubes
  publication-title: Int J Heat Mass Transf
– start-page: 4864
  year: 2017
  ident: b0055
  article-title: Rotating Shaft Thermal Analysis for Supercritical Carbon Dioxide Radial Inflow Turbines
  publication-title: International Energy Conversion Engineering Conference
– volume: 354
  start-page: 110207
  year: 2019
  ident: b0225
  article-title: Current status of research on heat transfer in forced convection of fluids at supercritical pressures
  publication-title: Nucl Eng Des
– volume: 264
  start-page: 24
  year: 2013
  end-page: 40
  ident: b0805
  article-title: Fluid flow and convective heat transfer to fluids at supercritical pressure
  publication-title: Nucl Eng Des
– volume: 98
  year: 2016
  ident: b0490
  article-title: Heat transfer of supercritical carbon dioxide flowing in a rectangular circulation loop
  publication-title: Appl Therm Eng
– volume: 95
  start-page: 132
  year: 2018
  end-page: 138
  ident: b0210
  article-title: The status of the research on the heat transfer deterioration in supercritical fluids: A review
  publication-title: Int Commun Heat Mass Transfer
– reference: >.
– volume: 125
  start-page: 799
  year: 2017
  end-page: 810
  ident: b0175
  article-title: Supercritical CO
  publication-title: Appl Therm Eng
– volume: 45
  start-page: 4333
  year: 2002
  end-page: 4352
  ident: b0870
  article-title: Temperature, velocity and mean turbulence structure in strongly heated internal gas flows: comparison of numerical predictions with data
  publication-title: Int J Heat Mass Transf
– reference: Spindler K. A review on heat transfer correlations for supercritical carbon dioxide under cooling conditions. In 7th IIR Gustav Loretzen Conference on Natural Working Fluids, May 28–31, Trondheim, Norway; 2006.
– year: 1968
  ident: b0295
  article-title: The deterioration in heat transfer to fluids at supercritical pressure and high heat fluxes
– volume: 45
  start-page: 5025
  year: 2002
  end-page: 5034
  ident: b0420
  article-title: An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes
  publication-title: Int J Heat Mass Transf
– volume: 148
  start-page: 1
  year: 2019
  end-page: 8
  ident: b0735
  article-title: Flow and heat transfer of supercritical CO
  publication-title: J Supercr Fluids
– volume: 54
  start-page: 1775
  year: 2011
  end-page: 1781
  ident: b1120
  article-title: Roughness enhanced mechanism for turbulent convective heat transfer
  publication-title: Int J Heat Mass Transf
– volume: 55
  start-page: 3061
  year: 2012
  end-page: 3075
  ident: b0230
  article-title: Heat transfer and hydraulic resistance of supercritical-pressure coolants. Part I: Specifics of thermophysical properties of supercritical pressure fluids and turbulent heat transfer under heating conditions in round tubes (state of the art)
  publication-title: Int J Heat Mass Transf
– volume: 130
  start-page: 304
  year: 2019
  end-page: 319
  ident: b0595
  article-title: Experimental investigation of supercritical carbon dioxide in horizontal microchannels with non-uniform heat flux boundary conditions
  publication-title: Int J Heat Mass Transf
– reference: Petukhov AP, Kuleshohov V, Sheckter YL. Turbulent flow and heat transfer in horizontal tubes with substantial influence of thermo-gravitational forces. In Fifth Int. Heat Transfer Conference; 1974 (3-7).
– volume: 18
  start-page: 190
  year: 1995
  end-page: 197
  ident: b0005
  article-title: The use of natural refrigerants: a complete solution to the CFC/HCFC predicament
  publication-title: Int J Refrig
– volume: 313
  start-page: 162
  year: 2017
  end-page: 176
  ident: b0510
  article-title: Convective heat transfer in supercritical flows of CO
  publication-title: Nucl Eng Des
– volume: 14
  start-page: 116
  year: 1967
  end-page: 119
  ident: b0375
  article-title: A study of heat transfer in vertical tubes at supercritical pressures
  publication-title: Therm Eng
– volume: 101
  start-page: 36
  year: 2015
  end-page: 47
  ident: b0610
  article-title: Heat transfer characteristics of supercritical CO
  publication-title: J Supercr Fluids
– volume: 73
  start-page: 250
  year: 2014
  end-page: 263
  ident: b0180
  article-title: A state-of-the-art review of recent advances in supercritical natural circulation loops for nuclear applications
  publication-title: Ann Nucl Energy
– volume: 58
  start-page: 152
  year: 2013
  end-page: 167
  ident: b0235
  article-title: Heat transfer and hydraulic resistance of supercritical-pressure coolants. Part II: Experimental data on hydraulic resistance and averaged turbulent flow structure of supercritical pressure fluids during heating in round tubes under normal and deteriorated heat transfer conditions
  publication-title: Int J Heat Mass Transf
– volume: 77
  start-page: 1197
  year: 2014
  end-page: 1212
  ident: b0245
  article-title: Heat transfer and hydraulic resistance of supercritical pressure coolants. Part IV: Problems of generalized heat transfer description, methods of predicting deteriorated heat transfer; empirical correlations; deteriorated heat transfer enhancement; dissolved gas effects
  publication-title: Int J Heat Mass Transf
– volume: 261
  start-page: 116
  year: 2013
  end-page: 131
  ident: b0470
  article-title: Developing empirical heat-transfer correlations for supercritical CO
  publication-title: Nucl Eng Des
– reference: Southwest Research Institute, Swri, gti and ge break ground on $119 million supercritical CO2 pilot power plant (October 2018). URL <
– reference: Benra F, Brillert D, Frybort O, Hajek P, Rohde M, Schuster S, et al. A supercritical CO2 low temperature brayton cycle for residual heat removal. In The 5th international symposium - supercritical CO2 power cycles, San Antonio, Texas, USA; 2016.
– volume: 15
  start-page: 2575
  year: 1972
  end-page: 2593
  ident: b0925
  article-title: Forced convective heat transfer to supercritical water flowing in tubes
  publication-title: Int J Heat Mass Transf
– year: 2002
  ident: b0840
  article-title: Influences of buoyancy and thermal boundary conditions on heat transfer with naturally-induced flow
– volume: 105
  start-page: 536
  year: 1980
  end-page: 541
  ident: b1060
  article-title: Numerical prediction of wall temperatures for near-critical para-hydrogen in turbulent upflow inside vertical tubes
  publication-title: J Heat Transfer
– volume: 120
  start-page: 10
  year: 2017
  end-page: 18
  ident: b0530
  article-title: Numerical analysis on nonuniform heat transfer of supercritical pressure water in horizontal circular tube
  publication-title: Appl Therm Eng
– volume: 152
  start-page: 104560
  year: 2019
  ident: b0685
  article-title: Analysis of coupled heat transfer of supercritical CO
  publication-title: J Supercr Fluids
– reference: Hsieh JC, Lin DTW, Lee BH, Chung MC. Experimental study on heat transfer of supercritical carbon dioxide in a long silica-based porous-media tube. Heat Mass Transfer 2016;53(3):995–1004.
– volume: 118
  start-page: 1056
  year: 2018
  end-page: 1068
  ident: b0345
  article-title: Onset of heat transfer deterioration in vertical pipe flows of CO
  publication-title: Int J Heat Mass Transf
– volume: 32
  start-page: 332
  year: 1985
  end-page: 336
  ident: b0880
  article-title: Calculation of normal and deteriorated heat-transfer in tubes with turbulent-flow of liquids in the near-critical and vapor region of state
  publication-title: Therm Eng
– volume: 127
  start-page: 555
  year: 2018
  end-page: 567
  ident: b0990
  article-title: Experimental study of buoyancy effect and its criteria for heat transfer of supercritical R134a in horizontal tubes
  publication-title: Int J Heat Mass Transf
– volume: 82
  start-page: 123
  year: 2015
  end-page: 134
  ident: b0645
  article-title: On the influence of gravitational and centrifugal buoyancy on laminar flow and heat transfer in curved pipes and coils
  publication-title: Int J Heat Mass Transf
– volume: 106
  start-page: 1144
  year: 2017
  end-page: 1156
  ident: b0500
  article-title: Improvement of buoyancy and acceleration parameters for forced and mixed convective heat transfer to supercritical fluids flowing in vertical tubes
  publication-title: Int J Heat Mass Transf
– volume: 7
  start-page: 1260
  year: 2017
  ident: b0495
  article-title: Experimental and Numerical Investigation of Convective Heat Transfer of Supercritical Carbon Dioxide at Low Mass Fluxes
  publication-title: Appl Sci
– volume: 12
  start-page: 2569
  year: 2000
  ident: b0825
  article-title: Stably stratified turbulent channel flows. I. Stratification regimes and turbulence suppression mechanism
  publication-title: Phys Fluids
– volume: 16
  start-page: 1267
  year: 1973
  end-page: 1288
  ident: b0025
  article-title: Effects of buoyancy and of acceleration owing to thermal expansion on forced turbulent convection in vertical circular tubes—criteria of the effects, velocity and temperature profiles, and reverse transition from turbulent to laminar flow
  publication-title: Int J Heat Mass Transf
– volume: 61
  start-page: 914
  year: 2014
  end-page: 917
  ident: b0780
  article-title: Experimental Study of the Heat Transfer of Supercritical Carbon Dioxide in Silica-based Porous Media
  publication-title: Energy Proc
– volume: 27
  start-page: 55
  year: 2018
  end-page: 63
  ident: b0650
  article-title: Turbulent convective heat transfer of methane at supercritical pressure in a helical coiled tube
  publication-title: J Therm Sci
– volume: 145
  start-page: 705
  year: 2018
  end-page: 715
  ident: b0625
  article-title: Numerical study on the heat transfer enhancement of supercritical CO
  publication-title: Appl Therm Eng
– volume: vol. 19
  start-page: 221
  year: 1979
  end-page: 309
  ident: b0855
  article-title: Relaminarization of fluid flows
  publication-title: Advances in applied mechanics
– reference: Swenson HS, J.R.C., Kakarala CR. Heat transfer to supercritical water in smooth-bore tube. J Heat Transfer 1965;87(4):477–84.
– volume: 127
  start-page: 48
  year: 2017
  end-page: 61
  ident: b0660
  article-title: Numerical investigation of supercritical water turbulent flow and heat transfer characteristics in vertical helical tubes
  publication-title: J Supercr Fluids
– volume: 289
  start-page: 92
  year: 2015
  end-page: 107
  ident: b0485
  article-title: Measurements of convective heat transfer to vertical upward flows of CO
  publication-title: Nucl Eng Des
– volume: 227
  start-page: 220
  year: 2018
  end-page: 230
  ident: b0430
  article-title: Performance evaluation of a low-grade power generation system with CO
  publication-title: Appl Energy
– volume: 157
  start-page: 536
  year: 2018
  end-page: 548
  ident: b0515
  article-title: Computational investigations of heat transfer to supercritical CO
  publication-title: Energy Convers Manage
– volume: 34
  start-page: 1162
  year: 2010
  end-page: 1171
  ident: b0330
  article-title: Experimental investigation of convection heat transfer of CO
  publication-title: Exp Therm Fluid Sci
– volume: 36
  start-page: 1120
  year: 2009
  end-page: 1128
  ident: b0940
  article-title: A simplified method for heat transfer prediction of supercritical fluids in circular tubes
  publication-title: Ann Nucl Energy
– volume: 33
  start-page: 329
  year: 2009
  end-page: 339
  ident: b0445
  article-title: Convective heat transfer to CO
  publication-title: Exp Therm Fluid Sci
– volume: 106
  start-page: 119
  year: 2019
  end-page: 129
  ident: b0795
  article-title: Experimental investigation of thermal-hydraulic performance of discontinuous fin printed circuit heat exchangers for supercritical CO
  publication-title: Exp Therm Fluid Sci
– volume: 157
  start-page: 113687
  year: 2019
  ident: b0365
  article-title: Experimental investigation on the heat transfer characteristics of supercritical CO
  publication-title: Appl Therm Eng
– reference: Sulzer G. Verfahren zur erzeugung von arbeit aus warme, Swiss Patent; 1950. 269599.
– volume: 14
  start-page: 897
  year: 2010
  end-page: 911
  ident: b0110
  article-title: Heat recovery from a natural gas powered internal combustion engine by CO2 transcritical power cycle
  publication-title: Therm Sci
– volume: 809
  start-page: 31
  year: 2016
  end-page: 71
  ident: b0895
  article-title: Laminarisation of flow at low Reynolds number due to streamwise body force
  publication-title: J Fluid Mech
– volume: 52
  start-page: 713
  year: 2015
  end-page: 726
  ident: b0575
  article-title: Experimental investigation of buoyancy effects on convection heat transfer of supercritical CO
  publication-title: Heat Mass Transf
– reference: Kim WS, J.D. Jackson, He S. Computational Investigation into Buoyancy-Aided turbulent flow and heat transfer to air in a vertical tube. ICHMT DIGITAL LIBRARY ONLINE. Begel House Inc.; 2006.
– reference: Kim Tae Ho, Park Hyun Sun, Kwon Jin Gyu, Park Joo Hyun, Kim Moo Hwan. Investigation of heat transfer model for horizontal tubes at supercritical pressures of CO2. In The 6th International Supercritical CO2 Power Cycles Symposium March 27–29, 2018, Pittsburgh, Pennsylvania.
– volume: 91
  start-page: 552
  year: 2015
  end-page: 561
  ident: b0710
  article-title: Experimental research on the turbulent convection heat transfer of supercritical pressure CO
  publication-title: Int J Heat Mass Transf
– volume: 19
  start-page: 715
  year: 1976
  end-page: 720
  ident: b1030
  article-title: Experimental investigation of heat transfer to supercritical pressure carbon dioxide in a horizontal pipe
  publication-title: Int J Heat Mass Transf
– volume: 162
  start-page: 494
  year: 2016
  end-page: 505
  ident: b0165
  article-title: A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress
  publication-title: Appl Energy
– volume: 50
  start-page: 213
  year: 2013
  end-page: 221
  ident: b0520
  article-title: Experimental investigation on heat transfer characteristics of supercritical pressure water in a horizontal tube
  publication-title: Exp Therm Fluid Sci
– volume: 140
  start-page: 530
  year: 2017
  end-page: 545
  ident: b1125
  article-title: Orientation effect in helical coils with smooth and rib-roughened wall: Toward improved gas heaters for supercritical carbon dioxide Rankine cycles
  publication-title: Energy
– volume: 92
  start-page: 658
  year: 2018
  end-page: 675
  ident: b0195
  article-title: A comprehensive review on heat transfer and pressure drop characteristics and correlations with supercritical CO
  publication-title: Renew Sustain Energy Rev
– reference: Tollefson J. Innovative zero-emissions power plant begins battery of tests; May 2018. <
– volume: 28
  start-page: 631
  year: 1985
  end-page: 640
  ident: b1080
  article-title: Buoyancy in developed laminar curved tube flows
  publication-title: Int J Heat Mass Transf
– volume: 52
  start-page: 459
  year: 2010
  end-page: 465
  ident: b9000
  article-title: Demonstration test plant of closed cycle gas turbine with supercritical CO
  publication-title: J Strojarstvo
– volume: 230
  start-page: 69
  year: 2004
  end-page: 91
  ident: b0145
  article-title: Heat transfer to supercritical fluids flowing in channels—empirical correlations (survey)
  publication-title: Nucl Eng Des
– volume: 79
  start-page: 90
  year: 2014
  end-page: 102
  ident: b0975
  article-title: Numerical study of turbulent flow in heated circular tube using transitional shear stress transport turbulence model
  publication-title: Int J Therm Sci
– volume: 29
  start-page: 275
  year: 2017
  end-page: 295
  ident: b0250
  article-title: Visualization Study of Supercritical Fluid Convection and Heat Transfer in Weightlessness by Interferometry: A Brief Review
  publication-title: Microgr Sci Technol
– volume: 32
  start-page: 244
  year: 1962
  end-page: 252
  ident: b0910
  article-title: Correlation of hydrogen heat transfer in boiling and supercritical pressure states
  publication-title: ARS J
– reference: Kim JK, Jeon HK, Yoo JY, Lee JS. Experimental study on heat transfer characteristics of turbulent supercritical flow in vertical circular/non-circular tubes. In Proceedings of the 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH 11), Avignon, France, Oct. 2005, p. 2–6.
– volume: 122
  start-page: 469
  year: 2018
  end-page: 482
  ident: b0355
  article-title: Special heat transfer characteristics of supercritical CO
  publication-title: Int J Heat Mass Transf
– reference: Watts MJ, C.T.C., Mixed convection heat transfer to supercritical pressure water. In 7th Int. Heat Transfer Conf., Munchen, W. Germany, 1982, Sep.6–10, vol. 495.
– volume: 10
  start-page: 304
  year: 1972
  end-page: 310
  ident: b0985
  article-title: Experimental investigation of worsened heat transfer conditions with the turbulent flow of carbon dioxide at supercritical pressure
  publication-title: High Temp
– volume: 125
  start-page: 274
  year: 2018
  end-page: 289
  ident: b0665
  article-title: The buoyancy force and flow acceleration effects of supercritical CO
  publication-title: Int J Heat Mass Transf
– volume: 127
  start-page: 286
  year: 2018
  end-page: 295
  ident: b0350
  article-title: Experimental investigation of heat transfer to supercritical R245fa flowing vertically upward in a circular tube
  publication-title: Int J Heat Mass Transf
– volume: 113
  start-page: 257
  year: 2017
  end-page: 267
  ident: b0395
  article-title: Study on two wall temperature peaks of supercritical fluid mixed convective heat transfer in circular tubes
  publication-title: Int J Heat Mass Transf
– start-page: 1
  year: 2006
  end-page: 51
  ident: b1045
  article-title: Combined free and forced convection in passages
  publication-title: Single-phase convective heat transfer
– volume: 30
  start-page: 1117
  year: 2006
  end-page: 1129
  ident: b0100
  article-title: Study of solar energy powered transcritical cycle using supercritical carbon dioxide
  publication-title: Int J Energy Res
– reference: Petukhov BS. Heat Transfer and Friction in Turbulent Pipe Flow with Variable Physical Properties, vol. 6; 1970, p. 503–64.
– reference: Chen Y. Novel cycles using carbon dioxide as working fluid (Ph.D. thesis). Stockholm: Division of Applied Thermo dynamics and Refrigeration, Energy Department, KTH University; 2006.
– volume: 117
  start-page: 595
  year: 2018
  end-page: 606
  ident: b0900
  article-title: Numerical investigation of buoyancy effect on heat transfer to carbon dioxide flow in a tube at supercritical pressures
  publication-title: Int J Heat Mass Transf
– volume: 21
  start-page: 81
  year: 1983
  end-page: 89
  ident: b0385
  article-title: V.B Ankudinov, Heat transfer and flow resistance in the turbulent pipe flow of a fluid with near-critical state parameters
  publication-title: High Temp
– year: 2007
  ident: b0930
  article-title: Experimental study on heat transfer to supercritical water flowing in 6-m long vertical tubes
  publication-title: International Conference on Nuclear Engineering (ICONE-15)
– volume: 131
  start-page: 977
  year: 2018
  end-page: 987
  ident: b0220
  article-title: A brief review on the buoyancy criteria for supercritical fluids
  publication-title: Appl Therm Eng
– volume: 24
  start-page: 1255
  year: 2004
  end-page: 1270
  ident: b0605
  article-title: Experimental investigation of convection heat transfer of CO
  publication-title: Appl Therm Eng
– reference: Naphon P, Wongwises S. A review of flow and heat transfer characteristics in curved tubes. Renew Sustain Energy Rev 2006;10(5):463–90.
– reference: Goldmann K. Heat transfer to supercritical water at 5000 psi flowing at high mass flow rates through round tubes. International Developments in Heat Transfer, Part III. New York: ASME; 1961, p. 561–568.
– volume: 134
  start-page: 437
  year: 2019
  end-page: 449
  ident: b0690
  article-title: Buoyancy effects on coupled heat transfer of supercritical pressure CO
  publication-title: Int J Heat Mass Transf
– volume: 34
  start-page: 1295
  year: 2010
  end-page: 1308
  ident: b0315
  article-title: Forced and mixed convection heat transfer to supercritical CO
  publication-title: Exp Therm Fluid Sci
– volume: 154
  start-page: 335
  year: 2017
  end-page: 349
  ident: b1040
  article-title: Heat Transfer in a Supercritical Fluid: Classification of Heat Transfer Regimes
  publication-title: Nucl Technol
– start-page: 134(8)
  year: 2012
  ident: b0680
  article-title: Supercritical Carbon Dioxide Heat Transfer in Horizontal Semicircular Channels
  publication-title: J Heat Transfer
– volume: 13
  start-page: 1163
  year: 1970
  end-page: 1175
  ident: b0915
  article-title: Film boiling and free convection heat transfer to carbon dioxide near the critical state
  publication-title: Int J Heat Mass Transf
– volume: 34
  start-page: 6304
  year: 2014
  end-page: 6310
  ident: b0945
  article-title: A new criterion for predicting deterioration of heat transfer to supercritical water in smooth tubes Chin
  publication-title: Soc. Electr. Eng.
– volume: 95
  start-page: 247
  year: 2016
  end-page: 254
  ident: b0425
  article-title: Experimental investigation on the CO
  publication-title: Energy
– volume: 120
  start-page: 930
  year: 2018
  end-page: 943
  ident: b0635
  article-title: Experimental investigation on heat transfer deterioration of supercritical pressure water in vertically-upward internally-ribbed tubes
  publication-title: Int J Heat Mass Transf
– start-page: 3359
  year: 2014
  ident: b0480
  article-title: Effect of buoyancy on heat transfer characteristics of supercritical carbon dioxide in the heating mode
  publication-title: 11th AIAA/ASME Joint Thermophysics and Heat Transfer Conference
– start-page: 11
  year: 2012
  end-page: 13
  ident: b0890
  article-title: Waste heat to power (WH2P) applications using a supercritical CO
– volume: 51
  start-page: 3052
  year: 2008
  end-page: 3056
  ident: b0450
  article-title: Experimental and numerical investigation of convection heat transfer of CO
  publication-title: Int J Heat Mass Transf
– volume: 10
  start-page: 1692
  year: 2017
  ident: b0555
  article-title: Ideal point design and operation of CO
  publication-title: Energies
– volume: 29
  start-page: 156
  year: 2008
  end-page: 166
  ident: b0715
  article-title: Heat transfer to water at suoercritical pressures in a circular and square annular flow geometry
  publication-title: Int J Heat Fluid Flow
– volume: 89
  start-page: 177
  year: 2018
  end-page: 185
  ident: b1100
  article-title: Experimental investigation of heat transfer of supercritical CO 2 cooled in helically coiled tubes based on exergy analysis
  publication-title: Int. J. Refrig.
– reference: Deev VI, V.S.K., Churkin AN. Analysis and generalization of experimental data on heat transfer to supercritical pressure water flow in annular channels and rod bundles. Therm Eng 2017;64:142–50.
– volume: 11
  year: 2019
  ident: b0590
  article-title: Experimental study on forced convective heat transfer of supercritical carbon dioxide in a horizontal circular tube under high heat flux and low mass flux conditions
  publication-title: Adv Mech Eng
– volume: 124
  start-page: 1481
  year: 2017
  end-page: 1491
  ident: b0885
  article-title: Models of heat transfer to fluids at supercritical pressure with influences of buoyancy and acceleration
  publication-title: Appl Therm Eng
– volume: 136
  start-page: 708
  year: 2018
  end-page: 717
  ident: b0435
  article-title: Experimental analysis and comparison between CO2 transcritical power cycles and R245fa organic Rankine cycles for low-grade heat power generations
  publication-title: Appl. Therm. Eng.
– volume: 100
  start-page: 49
  year: 2019
  end-page: 61
  ident: b0550
  article-title: Experimental study of the heat transfer characteristics of supercritical pressure R134a in a horizontal tube
  publication-title: Exp Therm Fluid Sci
– volume: 127
  start-page: 257
  year: 2018
  end-page: 267
  ident: b0820
  article-title: A modified buoyancy effect correction method on turbulent convection heat transfer of supercritical pressure fluid based on RANS model
  publication-title: Int J Heat Mass Transf
– volume: 116
  start-page: 132
  year: 2016
  end-page: 147
  ident: b0185
  article-title: State-of-the-art on flow and heat transfer characteristics of supercritical CO
  publication-title: J Supercr Fluids
– volume: 51
  start-page: 6283
  year: 2008
  end-page: 6293
  ident: b0745
  article-title: Experimental and numerical study of convection heat transfer of CO
  publication-title: Int J Heat Mass Transf
– volume: 780
  start-page: 192
  year: 2015
  end-page: 214
  ident: b0875
  article-title: Numerical simulation of a spatially developing accelerating boundary layer over roughness
  publication-title: J Fluid Mech
– reference: Jackson JD, Fewster J. Forced convection data for supercritical pressure fluids. Report No. HTFS; 1975, p. 21540.
– volume: 50
  start-page: 4908
  year: 2007
  end-page: 4911
  ident: b0750
  article-title: Wall temperature measurements with turbulent flow in heated vertical circular/non-circular channels of supercritical pressure carbon-dioxide
  publication-title: Int J Heat Mass Transf
– volume: 127
  start-page: 897
  year: 2005
  end-page: 902
  ident: b1055
  article-title: Effect of buoyancy on heat transfer in supercritical water flow in a horizontal round tube
  publication-title: J Heat Transfer
– reference: Jackson JD, Hall WB. Influences of buoyancy on heat transfer to fluids flowing in vertical tubes under turbulent conditions 1979;2:613–40.
– volume: 92
  start-page: 222
  year: 2018
  end-page: 230
  ident: b0580
  article-title: Experimental investigation on validity of buoyancy parameters to heat transfer of CO
  publication-title: Exp Therm Fluid Sci
– volume: 176
  start-page: 765
  year: 2019
  end-page: 777
  ident: b1095
  article-title: The heat transfer of supercritical CO
  publication-title: Energy
– volume: 31
  start-page: 1301
  year: 2008
  end-page: 1316
  ident: b0205
  article-title: Analysis of supercritical CO
  publication-title: Int J Refrig
– year: 2010
  ident: b0125
  article-title: The conversion of low-grade heat into power using supercritical Rankine cycles
– volume: vol. 7
  start-page: 1
  year: 1971
  end-page: 86
  ident: b0800
  article-title: Heat Transfer near the Critical Point
  publication-title: Advances in Heat Transfer
– volume: 50
  start-page: 101
  year: 2014
  end-page: 111
  ident: b0075
  article-title: Thermo-economic analysis and comparison of a CO2 transcritical power cycle and an organic Rankine cycle
  publication-title: Geothermics
– volume: 78
  start-page: 501
  year: 2014
  end-page: 512
  ident: b0070
  article-title: Thermoeconomic analysis & optimization of the combined supercritical CO
  publication-title: Energy
– volume: 59
  start-page: 380
  year: 2013
  end-page: 388
  ident: b0525
  article-title: Influence of buoyancy on heat transfer to water flowing in horizontal tubes under supercritical pressure
  publication-title: Appl Therm Eng
– reference: Polyakov AF. Heat Transfer under Supercritical Pressures 1991;21:1–53.
– volume: 102
  start-page: 133
  year: 2016
  end-page: 141
  ident: b0950
  article-title: Development of a new empirical correlation for the prediction of the onset of the deterioration of heat transfer to supercritical water in vertical tubes
  publication-title: Int J Heat Mass Transf
– volume: 241
  start-page: 3164
  year: 2011
  end-page: 3177
  ident: b0325
  article-title: Mixed convection heat transfer to carbon dioxide flowing upward and downward in a vertical tube and an annular channel
  publication-title: Nucl Eng Des
– volume: 110
  start-page: 576
  year: 2017
  end-page: 586
  ident: b0505
  article-title: Buoyancy effects on turbulent heat transfer of supercritical CO
  publication-title: Int J Heat Mass Transf
– volume: 102
  start-page: 133
  year: 2016
  ident: 10.1016/j.apenergy.2020.114962_b0950
  article-title: Development of a new empirical correlation for the prediction of the onset of the deterioration of heat transfer to supercritical water in vertical tubes
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2016.06.007
– volume: 809
  start-page: 31
  year: 2016
  ident: 10.1016/j.apenergy.2020.114962_b0895
  article-title: Laminarisation of flow at low Reynolds number due to streamwise body force
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2016.653
– volume: 14
  start-page: 116
  issue: 9
  year: 1967
  ident: 10.1016/j.apenergy.2020.114962_b0375
  article-title: A study of heat transfer in vertical tubes at supercritical pressures
  publication-title: Therm Eng
– volume: 157
  start-page: 113687
  year: 2019
  ident: 10.1016/j.apenergy.2020.114962_b0365
  article-title: Experimental investigation on the heat transfer characteristics of supercritical CO2 at various mass flow rates in heated vertical-flow tube
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2019.04.097
– start-page: 119074
  year: 2019
  ident: 10.1016/j.apenergy.2020.114962_b0560
  article-title: Experimental and numerical comparison of the heat transfer behaviors and buoyancy effects of supercritical CO2 in various heating tubes
  publication-title: Int J Heat Mass Transfer
– volume: 3
  start-page: 465
  issue: 92
  year: 1969
  ident: 10.1016/j.apenergy.2020.114962_b0390
  article-title: The effect of swirl, inlet conditions, flow direction, and tube diameter on the heat transfer to fluids at supercritical pressure
  publication-title: J Heat Transfer
– ident: 10.1016/j.apenergy.2020.114962_b0785
  doi: 10.1007/s00231-016-1874-6
– volume: 313
  start-page: 162
  year: 2017
  ident: 10.1016/j.apenergy.2020.114962_b0510
  article-title: Convective heat transfer in supercritical flows of CO2 in tubes with and without flow obstacles
  publication-title: Nucl Eng Des
  doi: 10.1016/j.nucengdes.2016.12.016
– volume: 4
  start-page: 281
  issue: 3
  year: 1998
  ident: 10.1016/j.apenergy.2020.114962_b0140
  article-title: Heat Transfer from Supercritical Carbon Dioxide in Tube Flow: A Critical Review
  publication-title: HVAC&R Research
  doi: 10.1080/10789669.1998.10391405
– volume: 30
  start-page: 1117
  year: 2006
  ident: 10.1016/j.apenergy.2020.114962_b0100
  article-title: Study of solar energy powered transcritical cycle using supercritical carbon dioxide
  publication-title: Int J Energy Res
  doi: 10.1002/er.1201
– volume: 50
  start-page: 518
  issue: 2–6
  year: 2008
  ident: 10.1016/j.apenergy.2020.114962_b0440
  article-title: Yoon Yeong Bae. Heat transfer to supercritical pressure carbon dioxide flowing upward through tubes and a narrow annulus passage
  publication-title: Prog Nucl Energy
– volume: 42
  start-page: 132
  issue: 26
  year: 2009
  ident: 10.1016/j.apenergy.2020.114962_b0095
  article-title: Optimum for CO2 transcritical power Rankine cycle using exhaust gas from fishing boat diesel engines
  publication-title: IFAC Proceedings Volumes
  doi: 10.3182/20091130-3-FR-4008.00018
– year: 2002
  ident: 10.1016/j.apenergy.2020.114962_b0840
– year: 2006
  ident: 10.1016/j.apenergy.2020.114962_b0380
– volume: 78
  start-page: 303
  year: 2015
  ident: 10.1016/j.apenergy.2020.114962_b0615
  article-title: Effects of rib geometries and property variations on heat transfer to supercritical water in internally ribbed tubes
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2014.12.067
– volume: 124
  start-page: 1481
  year: 2017
  ident: 10.1016/j.apenergy.2020.114962_b0885
  article-title: Models of heat transfer to fluids at supercritical pressure with influences of buoyancy and acceleration
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2017.03.146
– ident: 10.1016/j.apenergy.2020.114962_b0015
  doi: 10.1115/69-GT-102
– volume: 36
  start-page: 1120
  issue: 8
  year: 2009
  ident: 10.1016/j.apenergy.2020.114962_b0940
  article-title: A simplified method for heat transfer prediction of supercritical fluids in circular tubes
  publication-title: Ann Nucl Energy
  doi: 10.1016/j.anucene.2009.04.016
– volume: 172
  start-page: 517
  year: 2019
  ident: 10.1016/j.apenergy.2020.114962_b0705
  article-title: Numerical investigations on serpentine channel for supercritical CO2 recuperator
  publication-title: Energy
  doi: 10.1016/j.energy.2019.01.148
– volume: 176
  start-page: 765
  year: 2019
  ident: 10.1016/j.apenergy.2020.114962_b1095
  article-title: The heat transfer of supercritical CO2 in helically coiled tube: Trade-off between curvature and buoyancy effect
  publication-title: Energy
  doi: 10.1016/j.energy.2019.03.150
– volume: 116
  start-page: 661
  year: 2016
  ident: 10.1016/j.apenergy.2020.114962_b0640
  article-title: A quantitative study on the interaction between curvature and buoyancy effects in helically coiled heat exchangers of supercritical CO2 Rankine cycles
  publication-title: Energy
  doi: 10.1016/j.energy.2016.10.005
– volume: vol. 2
  start-page: 719
  year: 1977
  ident: 10.1016/j.apenergy.2020.114962_b1010
  article-title: Experimental Study of the Effects of Thermogravitation in Horizontal Pipes
– volume: 45
  start-page: 495
  issue: 1
  year: 2013
  ident: 10.1016/j.apenergy.2020.114962_b0160
  article-title: The Turbulent Flows of Supercritical Fluids with Heat Transfer
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev-fluid-120710-101234
– start-page: 134(8)
  year: 2012
  ident: 10.1016/j.apenergy.2020.114962_b0680
  article-title: Supercritical Carbon Dioxide Heat Transfer in Horizontal Semicircular Channels
  publication-title: J Heat Transfer
– ident: 10.1016/j.apenergy.2020.114962_b0850
  doi: 10.1615/ICHMT.2006.TurbulHeatMassTransf.1080
– volume: 113
  start-page: 609
  year: 2017
  ident: 10.1016/j.apenergy.2020.114962_b0565
  article-title: Experimental study on the difference of heat transfer characteristics between vertical and horizontal flows of supercritical pressure water
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.11.051
– ident: 10.1016/j.apenergy.2020.114962_b0310
– volume: 125
  start-page: 799
  year: 2017
  ident: 10.1016/j.apenergy.2020.114962_b0175
  article-title: Supercritical CO2 as heat transfer fluid: A review
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2017.07.049
– volume: 136
  start-page: 708
  year: 2018
  ident: 10.1016/j.apenergy.2020.114962_b0435
  article-title: Experimental analysis and comparison between CO2 transcritical power cycles and R245fa organic Rankine cycles for low-grade heat power generations
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.03.058
– volume: 138
  start-page: 154
  year: 2018
  ident: 10.1016/j.apenergy.2020.114962_b0845
  article-title: Investigation of buoyancy-enhanced heat transfer of supercritical CO2 in upward and downward tube flows
  publication-title: J Supercr Fluids
  doi: 10.1016/j.supflu.2018.03.014
– volume: 7
  start-page: 1260
  issue: 12
  year: 2017
  ident: 10.1016/j.apenergy.2020.114962_b0495
  article-title: Experimental and Numerical Investigation of Convective Heat Transfer of Supercritical Carbon Dioxide at Low Mass Fluxes
  publication-title: Appl Sci
  doi: 10.3390/app7121260
– volume: 29
  start-page: 156
  issue: 1
  year: 2008
  ident: 10.1016/j.apenergy.2020.114962_b0715
  article-title: Heat transfer to water at suoercritical pressures in a circular and square annular flow geometry
  publication-title: Int J Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2007.09.007
– volume: 61
  start-page: 236
  issue: 2
  year: 2013
  ident: 10.1016/j.apenergy.2020.114962_b0085
  article-title: System thermodynamic performance comparison of CO2-EGS and water-EGS systems
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2013.08.007
– volume: 78
  start-page: 551
  year: 2014
  ident: 10.1016/j.apenergy.2020.114962_b0130
  article-title: A supercritical or transcritical Rankine cycle with ejector using low-grade heat
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2013.11.020
– volume: 52
  start-page: 713
  issue: 4
  year: 2015
  ident: 10.1016/j.apenergy.2020.114962_b0575
  article-title: Experimental investigation of buoyancy effects on convection heat transfer of supercritical CO2 flow in a horizontal tube
  publication-title: Heat Mass Transf
  doi: 10.1007/s00231-015-1580-9
– year: 2007
  ident: 10.1016/j.apenergy.2020.114962_b0930
  article-title: Experimental study on heat transfer to supercritical water flowing in 6-m long vertical tubes
– volume: 32
  start-page: 340
  issue: 1
  year: 2011
  ident: 10.1016/j.apenergy.2020.114962_b0755
  article-title: Effect of a helical wire on mixed convection heat transfer to carbon dioxide in a vertical circular tube at supercritical pressures
  publication-title: Int J Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2010.06.013
– volume: 264
  start-page: 24
  year: 2013
  ident: 10.1016/j.apenergy.2020.114962_b0805
  article-title: Fluid flow and convective heat transfer to fluids at supercritical pressure
  publication-title: Nucl Eng Des
  doi: 10.1016/j.nucengdes.2012.09.040
– volume: vol. 19
  start-page: 221
  year: 1979
  ident: 10.1016/j.apenergy.2020.114962_b0855
  article-title: Relaminarization of fluid flows
  publication-title: Advances in applied mechanics
  doi: 10.1016/S0065-2156(08)70311-9
– volume: 14
  start-page: 5
  issue: 6
  year: 1967
  ident: 10.1016/j.apenergy.2020.114962_b0290
  article-title: Problems in the development of designs of supercritical boilers
  publication-title: Therm Eng
– volume: 27
  start-page: 1702
  issue: 10
  year: 2007
  ident: 10.1016/j.apenergy.2020.114962_b0065
  article-title: High performance printed circuit heat exchanger
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2006.07.007
– volume: 50
  start-page: 213
  year: 2013
  ident: 10.1016/j.apenergy.2020.114962_b0520
  article-title: Experimental investigation on heat transfer characteristics of supercritical pressure water in a horizontal tube
  publication-title: Exp Therm Fluid Sci
  doi: 10.1016/j.expthermflusci.2013.06.011
– volume: 59
  start-page: 380
  issue: 1–2
  year: 2013
  ident: 10.1016/j.apenergy.2020.114962_b0525
  article-title: Influence of buoyancy on heat transfer to water flowing in horizontal tubes under supercritical pressure
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2013.05.034
– volume: 34
  start-page: 122503
  issue: 12
  year: 2012
  ident: 10.1016/j.apenergy.2020.114962_b0920
  article-title: A new analysis of heat transfer deterioration on basis of turbulent viscosity variations of supercritical fluids
  publication-title: J Heat Transfer
  doi: 10.1115/1.4007313
– ident: 10.1016/j.apenergy.2020.114962_b0860
  doi: 10.1115/ICONE16-48914
– volume: 230
  start-page: 69
  issue: 1–3
  year: 2004
  ident: 10.1016/j.apenergy.2020.114962_b0145
  article-title: Heat transfer to supercritical fluids flowing in channels—empirical correlations (survey)
  publication-title: Nucl Eng Des
  doi: 10.1016/j.nucengdes.2003.10.010
– volume: 92
  start-page: 222
  year: 2018
  ident: 10.1016/j.apenergy.2020.114962_b0580
  article-title: Experimental investigation on validity of buoyancy parameters to heat transfer of CO2 at supercritical pressures in a horizontal tube
  publication-title: Exp Therm Fluid Sci
  doi: 10.1016/j.expthermflusci.2017.11.024
– volume: 99
  start-page: 112
  year: 2015
  ident: 10.1016/j.apenergy.2020.114962_b0655
  article-title: Numerical investigation on heat transfer of supercritical CO2 in heated helically coiled tubes
  publication-title: J Supercr Fluids
  doi: 10.1016/j.supflu.2015.02.001
– volume: 117
  start-page: 595
  year: 2018
  ident: 10.1016/j.apenergy.2020.114962_b0900
  article-title: Numerical investigation of buoyancy effect on heat transfer to carbon dioxide flow in a tube at supercritical pressures
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2017.10.037
– volume: 52
  start-page: 459
  year: 2010
  ident: 10.1016/j.apenergy.2020.114962_b9000
  article-title: Demonstration test plant of closed cycle gas turbine with supercritical CO2 as working fluid
  publication-title: J Strojarstvo
– volume: 18
  start-page: 190
  issue: 3
  year: 1995
  ident: 10.1016/j.apenergy.2020.114962_b0005
  article-title: The use of natural refrigerants: a complete solution to the CFC/HCFC predicament
  publication-title: Int J Refrig
  doi: 10.1016/0140-7007(94)00001-E
– volume: 110
  start-page: 576
  year: 2017
  ident: 10.1016/j.apenergy.2020.114962_b0505
  article-title: Buoyancy effects on turbulent heat transfer of supercritical CO2 in a vertical mini-tube based on continuous wall temperature measurements
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2017.03.063
– volume: 38
  start-page: 339
  issue: 3
  year: 2006
  ident: 10.1016/j.apenergy.2020.114962_b0740
  article-title: Experimental investigation of flow resistance and convection heat transfer of CO2 at supercritical pressures in a vertical porous tube
  publication-title: J Supercr Fluids
  doi: 10.1016/j.supflu.2005.12.004
– volume: 58
  start-page: 152
  issue: 1–2
  year: 2013
  ident: 10.1016/j.apenergy.2020.114962_b0235
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2012.10.072
– volume: 31
  start-page: 1301
  issue: 8
  year: 2008
  ident: 10.1016/j.apenergy.2020.114962_b0205
  article-title: Analysis of supercritical CO2 cooling in macro- and micro-channels
  publication-title: Int J Refrig
  doi: 10.1016/j.ijrefrig.2008.01.010
– volume: 77
  start-page: 1197
  year: 2014
  ident: 10.1016/j.apenergy.2020.114962_b0245
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2014.06.014
– volume: 261
  start-page: 116
  year: 2013
  ident: 10.1016/j.apenergy.2020.114962_b0470
  article-title: Developing empirical heat-transfer correlations for supercritical CO2 flowing in vertical bare tubes
  publication-title: Nucl Eng Des
  doi: 10.1016/j.nucengdes.2013.02.048
– volume: 108
  start-page: 1645
  year: 2017
  ident: 10.1016/j.apenergy.2020.114962_b1050
  article-title: Experimental and numerical investigation on heat transfer characteristics of supercritical CO2 in the cooled helically coiled tube
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2017.01.004
– volume: 79
  start-page: 90
  year: 2014
  ident: 10.1016/j.apenergy.2020.114962_b0975
  article-title: Numerical study of turbulent flow in heated circular tube using transitional shear stress transport turbulence model
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2014.01.011
– volume: 265
  start-page: 1036
  year: 2013
  ident: 10.1016/j.apenergy.2020.114962_b0760
  article-title: Heat transfer in CO2 at supercritical pressures in an eccentric annular channel
  publication-title: Nucl Eng Des
  doi: 10.1016/j.nucengdes.2013.10.005
– volume: 45
  start-page: 4333
  issue: 21
  year: 2002
  ident: 10.1016/j.apenergy.2020.114962_b0870
  article-title: Temperature, velocity and mean turbulence structure in strongly heated internal gas flows: comparison of numerical predictions with data
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/S0017-9310(02)00119-9
– volume: 98
  issue: 39–48
  year: 2016
  ident: 10.1016/j.apenergy.2020.114962_b0490
  article-title: Heat transfer of supercritical carbon dioxide flowing in a rectangular circulation loop
  publication-title: Appl Therm Eng
– volume: 44
  start-page: 164
  issue: 2
  year: 2008
  ident: 10.1016/j.apenergy.2020.114962_b0335
  article-title: Heat transfer characteristics of a supercritical fluid flow in a vertical pipe
  publication-title: J Supercr Fluids
  doi: 10.1016/j.supflu.2007.11.013
– volume: 12
  start-page: 2569
  issue: 10
  year: 2000
  ident: 10.1016/j.apenergy.2020.114962_b0825
  article-title: Stably stratified turbulent channel flows. I. Stratification regimes and turbulence suppression mechanism
  publication-title: Phys Fluids
  doi: 10.1063/1.1288608
– ident: 10.1016/j.apenergy.2020.114962_b1065
– ident: 10.1016/j.apenergy.2020.114962_b0120
– volume: 33
  start-page: 329
  issue: 2
  year: 2009
  ident: 10.1016/j.apenergy.2020.114962_b0445
  article-title: Convective heat transfer to CO2 at a supercritical pressure flowing vertically upward in tubes and an annular channel
  publication-title: Exp Therm Fluid Sci
  doi: 10.1016/j.expthermflusci.2008.10.002
– volume: 34
  start-page: 1295
  issue: 8
  year: 2010
  ident: 10.1016/j.apenergy.2020.114962_b0315
  article-title: Forced and mixed convection heat transfer to supercritical CO2 vertically flowing in a uniformly-heated circular tube
  publication-title: Exp Therm Fluid Sci
  doi: 10.1016/j.expthermflusci.2010.06.001
– ident: 10.1016/j.apenergy.2020.114962_b0965
– volume: 54
  start-page: 1950
  issue: 9–10
  year: 2011
  ident: 10.1016/j.apenergy.2020.114962_b0285
  article-title: Investigation on the characteristics and mechanisms of unusual heat transfer of supercritical pressure water in vertically-upward tubes
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2011.01.008
– volume: 176
  start-page: 119
  year: 2019
  ident: 10.1016/j.apenergy.2020.114962_b0360
  article-title: Experimental study on convection heat transfer of supercritical CO2 in small upward channels
  publication-title: Energy
  doi: 10.1016/j.energy.2019.03.109
– volume: 14
  start-page: 897
  issue: 4
  year: 2010
  ident: 10.1016/j.apenergy.2020.114962_b0110
  article-title: Heat recovery from a natural gas powered internal combustion engine by CO2 transcritical power cycle
  publication-title: Therm Sci
  doi: 10.2298/TSCI1004897F
– ident: 10.1016/j.apenergy.2020.114962_b0135
  doi: 10.1007/978-1-4757-0513-3_27
– volume: 138
  start-page: 454
  year: 2019
  ident: 10.1016/j.apenergy.2020.114962_b1115
  article-title: Turbulent heat transfer in channels with irregular roughness
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2019.04.013
– ident: 10.1016/j.apenergy.2020.114962_b0155
– volume: 241
  start-page: 1126
  year: 2011
  ident: 10.1016/j.apenergy.2020.114962_b0935
  article-title: Development of supercritical water heat transfer correlation for vertical bare tubes
  publication-title: Nucl Eng Des
  doi: 10.1016/j.nucengdes.2010.06.012
– volume: 116
  start-page: 132
  year: 2016
  ident: 10.1016/j.apenergy.2020.114962_b0185
  article-title: State-of-the-art on flow and heat transfer characteristics of supercritical CO2 in various channels
  publication-title: J Supercr Fluids
  doi: 10.1016/j.supflu.2016.05.028
– volume: 21
  start-page: 81
  issue: 1
  year: 1983
  ident: 10.1016/j.apenergy.2020.114962_b0385
  article-title: V.B Ankudinov, Heat transfer and flow resistance in the turbulent pipe flow of a fluid with near-critical state parameters
  publication-title: High Temp
– volume: 51
  start-page: 6283
  issue: 25–26
  year: 2008
  ident: 10.1016/j.apenergy.2020.114962_b0745
  article-title: Experimental and numerical study of convection heat transfer of CO2 at supercritical pressures in vertical porous tubes
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2008.05.014
– volume: 120
  start-page: 10
  year: 2017
  ident: 10.1016/j.apenergy.2020.114962_b0530
  article-title: Numerical analysis on nonuniform heat transfer of supercritical pressure water in horizontal circular tube
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2017.03.109
– ident: 10.1016/j.apenergy.2020.114962_b0400
  doi: 10.1615/IHTC7.2970
– volume: 34
  start-page: 6304
  issue: 35
  year: 2014
  ident: 10.1016/j.apenergy.2020.114962_b0945
  article-title: A new criterion for predicting deterioration of heat transfer to supercritical water in smooth tubes Chin
  publication-title: Soc. Electr. Eng.
– volume: 44
  start-page: 285
  issue: 3
  year: 2007
  ident: 10.1016/j.apenergy.2020.114962_b0370
  article-title: Heat Transfer Test in a Vertical Tube Using CO2 at Supercritical Pressures
  publication-title: J Nucl Sci Technol
  doi: 10.1080/18811248.2007.9711284
– volume: 34
  start-page: 1162
  issue: 8
  year: 2010
  ident: 10.1016/j.apenergy.2020.114962_b0330
  article-title: Experimental investigation of convection heat transfer of CO2 at supercritical pressures in a vertical circular tube
  publication-title: Exp Therm Fluid Sci
  doi: 10.1016/j.expthermflusci.2010.04.005
– start-page: 2
  year: 1988
  ident: 10.1016/j.apenergy.2020.114962_b0035
  article-title: Studies of mixed convection in vertical tubes
  publication-title: Int. J. Heat and Fluid Flow
– volume: 13
  start-page: 1163
  issue: 7
  year: 1970
  ident: 10.1016/j.apenergy.2020.114962_b0915
  article-title: Film boiling and free convection heat transfer to carbon dioxide near the critical state
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/0017-9310(70)90006-2
– volume: 61
  start-page: 914
  year: 2014
  ident: 10.1016/j.apenergy.2020.114962_b0780
  article-title: Experimental Study of the Heat Transfer of Supercritical Carbon Dioxide in Silica-based Porous Media
  publication-title: Energy Proc
  doi: 10.1016/j.egypro.2014.11.994
– start-page: 815
  year: 1977
  ident: 10.1016/j.apenergy.2020.114962_b1035
– volume: 51
  start-page: 3052
  issue: 11–12
  year: 2008
  ident: 10.1016/j.apenergy.2020.114962_b0450
  article-title: Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical mini-tube
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2007.09.008
– volume: 130
  start-page: 304
  year: 2019
  ident: 10.1016/j.apenergy.2020.114962_b0595
  article-title: Experimental investigation of supercritical carbon dioxide in horizontal microchannels with non-uniform heat flux boundary conditions
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2018.10.027
– volume: 27
  start-page: 557
  issue: 3
  year: 2012
  ident: 10.1016/j.apenergy.2020.114962_b0090
  article-title: On usage of super-critical carbon-dioxide in a geothermal power cycle
  publication-title: J Fac Eng Architect Gazi Univ
– year: 1968
  ident: 10.1016/j.apenergy.2020.114962_b0295
– volume: 150
  start-page: 159
  year: 2017
  ident: 10.1016/j.apenergy.2020.114962_b0540
  article-title: Experimental comparison between four CO2-based transcritical Rankine cycle (CTRC) systems for engine waste heat recovery
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.08.009
– volume: 140
  start-page: 530
  year: 2017
  ident: 10.1016/j.apenergy.2020.114962_b1125
  article-title: Orientation effect in helical coils with smooth and rib-roughened wall: Toward improved gas heaters for supercritical carbon dioxide Rankine cycles
  publication-title: Energy
  doi: 10.1016/j.energy.2017.09.010
– volume: 131
  start-page: 1117
  year: 2019
  ident: 10.1016/j.apenergy.2020.114962_b0585
  article-title: Heat transfer model for horizontal flows of CO2 at supercritical pressures in terms of mixed convection
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2018.11.075
– volume: 48
  start-page: 434
  year: 2015
  ident: 10.1016/j.apenergy.2020.114962_b0050
  article-title: Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.04.039
– volume: 148
  start-page: 1
  year: 2019
  ident: 10.1016/j.apenergy.2020.114962_b0735
  article-title: Flow and heat transfer of supercritical CO2 in the honeycomb ultra-compact plate heat exchanger
  publication-title: J Supercr Fluids
  doi: 10.1016/j.supflu.2019.02.023
– volume: 89
  start-page: 177
  year: 2018
  ident: 10.1016/j.apenergy.2020.114962_b1100
  article-title: Experimental investigation of heat transfer of supercritical CO 2 cooled in helically coiled tubes based on exergy analysis
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2018.03.011
– year: 2001
  ident: 10.1016/j.apenergy.2020.114962_b0020
– volume: 118
  start-page: 1056
  year: 2018
  ident: 10.1016/j.apenergy.2020.114962_b0345
  article-title: Onset of heat transfer deterioration in vertical pipe flows of CO2 at supercritical pressures
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2017.11.039
– volume: 32
  start-page: 244
  issue: 2
  year: 1962
  ident: 10.1016/j.apenergy.2020.114962_b0910
  article-title: Correlation of hydrogen heat transfer in boiling and supercritical pressure states
  publication-title: ARS J
  doi: 10.2514/8.5979
– volume: 32
  start-page: 332
  issue: 6
  year: 1985
  ident: 10.1016/j.apenergy.2020.114962_b0880
  article-title: Calculation of normal and deteriorated heat-transfer in tubes with turbulent-flow of liquids in the near-critical and vapor region of state
  publication-title: Therm Eng
– volume: 147
  start-page: 216
  year: 2019
  ident: 10.1016/j.apenergy.2020.114962_b0725
  article-title: Improvement of heat-transfer correlations for supercritical methane coolant in rectangular channel
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2018.10.042
– volume: 106
  start-page: 119
  year: 2019
  ident: 10.1016/j.apenergy.2020.114962_b0795
  article-title: Experimental investigation of thermal-hydraulic performance of discontinuous fin printed circuit heat exchangers for supercritical CO2 power cycles
  publication-title: Exp Therm Fluid Sci
  doi: 10.1016/j.expthermflusci.2019.04.025
– volume: 31
  start-page: 573
  issue: 4
  year: 2011
  ident: 10.1016/j.apenergy.2020.114962_b0535
  article-title: Numerical investigation of diameter effect on heat transfer of supercritical water flows in horizontal round tubes
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2010.10.020
– volume: 127
  start-page: 257
  year: 2018
  ident: 10.1016/j.apenergy.2020.114962_b0820
  article-title: A modified buoyancy effect correction method on turbulent convection heat transfer of supercritical pressure fluid based on RANS model
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2018.07.042
– start-page: 3359
  year: 2014
  ident: 10.1016/j.apenergy.2020.114962_b0480
  article-title: Effect of buoyancy on heat transfer characteristics of supercritical carbon dioxide in the heating mode
– volume: 151
  start-page: 376
  year: 2018
  ident: 10.1016/j.apenergy.2020.114962_b1105
  article-title: Thermodynamic optimization of heat transfer process in thermal systems using CO2 as the working fluid based on temperature glide matching
  publication-title: Energy
  doi: 10.1016/j.energy.2018.03.009
– ident: 10.1016/j.apenergy.2020.114962_b0830
  doi: 10.1016/j.supflu.2009.08.004
– volume: 237
  start-page: 1795
  issue: 15–17
  year: 2007
  ident: 10.1016/j.apenergy.2020.114962_b0410
  article-title: Wall temperature measurement and heat transfer correlation of turbulent supercritical carbon dioxide flow in vertical circular/non-circular tubes
  publication-title: Nucl Eng Des
  doi: 10.1016/j.nucengdes.2007.02.017
– volume: 147
  start-page: 1
  year: 2018
  ident: 10.1016/j.apenergy.2020.114962_b0670
  article-title: Heat transfer deterioration in helically coiled heat exchangers in trans-critical CO2 Rankine cycles
  publication-title: Energy
  doi: 10.1016/j.energy.2017.12.163
– ident: 10.1016/j.apenergy.2020.114962_b0815
  doi: 10.1115/ICONE17-76022
– volume: 154
  start-page: 335
  issue: 3
  year: 2017
  ident: 10.1016/j.apenergy.2020.114962_b1040
  article-title: Heat Transfer in a Supercritical Fluid: Classification of Heat Transfer Regimes
  publication-title: Nucl Technol
  doi: 10.13182/NT06-A3738
– volume: 11
  issue: 3
  year: 2019
  ident: 10.1016/j.apenergy.2020.114962_b0590
  article-title: Experimental study on forced convective heat transfer of supercritical carbon dioxide in a horizontal circular tube under high heat flux and low mass flux conditions
  publication-title: Adv Mech Eng
  doi: 10.1177/1687814019830804
– volume: 153
  start-page: 655
  year: 2019
  ident: 10.1016/j.apenergy.2020.114962_b0730
  article-title: Numerical investigation on flow and thermal performance of supercritical CO2 in horizontal cylindrically concaved tubes
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2019.03.034
– volume: 54
  start-page: 27
  year: 2014
  ident: 10.1016/j.apenergy.2020.114962_b0170
  article-title: Diameter effect on supercritical heat transfer
  publication-title: Int Commun Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2014.02.017
– volume: 152
  start-page: 104560
  year: 2019
  ident: 10.1016/j.apenergy.2020.114962_b0685
  article-title: Analysis of coupled heat transfer of supercritical CO2 from the viewpoint of distribution coordination
  publication-title: J Supercr Fluids
  doi: 10.1016/j.supflu.2019.104560
– volume: 136
  start-page: 254
  year: 2019
  ident: 10.1016/j.apenergy.2020.114962_b0305
  article-title: Supercritical “boiling” number, a new parameter to distinguish two regimes of carbon dioxide heat transfer in tubes
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2018.10.032
– volume: 67
  start-page: 535
  year: 2013
  ident: 10.1016/j.apenergy.2020.114962_b0240
  article-title: Heat transfer and hydraulic resistance of supercritical pressure coolants. Part III: Generalized description of SCP fluids normal heat transfer, empirical calculating correlations, integral method of theoretical calculations
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2013.07.056
– ident: 10.1016/j.apenergy.2020.114962_b0265
  doi: 10.1115/1.3689139
– ident: 10.1016/j.apenergy.2020.114962_b0280
– volume: 91
  start-page: 552
  year: 2015
  ident: 10.1016/j.apenergy.2020.114962_b0710
  article-title: Experimental research on the turbulent convection heat transfer of supercritical pressure CO2 in a serpentine vertical mini tube
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2015.08.001
– volume: 168
  start-page: 611
  year: 2018
  ident: 10.1016/j.apenergy.2020.114962_b0080
  article-title: Design and comparison of direct and indirect cooling system for 25 MW solar power plant operated with supercritical CO2 cycle
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.04.072
– volume: 38
  start-page: 3077
  issue: 16
  year: 1995
  ident: 10.1016/j.apenergy.2020.114962_b0275
  article-title: Numerical analysis of deterioration phenomena in heat transfer to supercritical water
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/0017-9310(95)00008-W
– volume: 73
  start-page: 250
  year: 2014
  ident: 10.1016/j.apenergy.2020.114962_b0180
  article-title: A state-of-the-art review of recent advances in supercritical natural circulation loops for nuclear applications
  publication-title: Ann Nucl Energy
  doi: 10.1016/j.anucene.2014.06.035
– volume: 55
  start-page: 3061
  issue: 11–12
  year: 2012
  ident: 10.1016/j.apenergy.2020.114962_b0230
  article-title: Heat transfer and hydraulic resistance of supercritical-pressure coolants. Part I: Specifics of thermophysical properties of supercritical pressure fluids and turbulent heat transfer under heating conditions in round tubes (state of the art)
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2012.01.031
– volume: 5
  start-page: 465
  issue: 4
  year: 1992
  ident: 10.1016/j.apenergy.2020.114962_b0340
  article-title: Velocity and enthalpy fields and eddy diffusivities in a heated supercritical fluid flow
  publication-title: Exp Therm Fluid Sci
  doi: 10.1016/0894-1777(92)90033-2
– volume: 65
  start-page: 599
  year: 2013
  ident: 10.1016/j.apenergy.2020.114962_b0270
  article-title: Conditions for the occurrence of heat transfer deterioration in light hydrocarbons flows
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2013.06.038
– volume: 29
  start-page: 275
  issue: 4
  year: 2017
  ident: 10.1016/j.apenergy.2020.114962_b0250
  article-title: Visualization Study of Supercritical Fluid Convection and Heat Transfer in Weightlessness by Interferometry: A Brief Review
  publication-title: Microgr Sci Technol
  doi: 10.1007/s12217-017-9546-9
– volume: 162
  start-page: 494
  year: 2016
  ident: 10.1016/j.apenergy.2020.114962_b0165
  article-title: A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.10.080
– volume: 19
  start-page: 715
  issue: 7
  year: 1976
  ident: 10.1016/j.apenergy.2020.114962_b1030
  article-title: Experimental investigation of heat transfer to supercritical pressure carbon dioxide in a horizontal pipe
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/0017-9310(76)90123-X
– volume: 50
  start-page: 4908
  issue: 23–24
  year: 2007
  ident: 10.1016/j.apenergy.2020.114962_b0750
  article-title: Wall temperature measurements with turbulent flow in heated vertical circular/non-circular channels of supercritical pressure carbon-dioxide
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2007.06.026
– start-page: 6609
  year: 2001
  ident: 10.1016/j.apenergy.2020.114962_b0260
  article-title: Heat Transfer at Supercritical Pressures -Literature Review and Application to an HPLWR
  publication-title: FZKA
– volume: 56
  start-page: 741
  issue: 1–2
  year: 2013
  ident: 10.1016/j.apenergy.2020.114962_b0475
  article-title: Convection heat transfer of supercritical pressure carbon dioxide in a vertical micro tube from transition to turbulent flow regime
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2012.08.038
– start-page: 11
  year: 2012
  ident: 10.1016/j.apenergy.2020.114962_b0890
– volume: 235
  start-page: 2407
  issue: 22
  year: 2005
  ident: 10.1016/j.apenergy.2020.114962_b0150
  article-title: Experimental heat transfer in supercritical water flowing inside channels (survey)
  publication-title: Nucl Eng Des
  doi: 10.1016/j.nucengdes.2005.05.034
– volume: 13
  issue: 431–433
  year: 1970
  ident: 10.1016/j.apenergy.2020.114962_b0865
  article-title: Relaminarization in tubes
  publication-title: Int J Heat Mass Transfer
– ident: 10.1016/j.apenergy.2020.114962_b0600
– volume: 116
  start-page: 500
  year: 2017
  ident: 10.1016/j.apenergy.2020.114962_b0675
  article-title: Numerical study of the effect of buoyancy force and centrifugal force on heat transfer characteristics of supercritical CO2 in helically coiled tube at various inclination angles
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2017.01.103
– volume: 195
  start-page: 1402
  year: 2019
  ident: 10.1016/j.apenergy.2020.114962_b1110
  article-title: Design and test of a multi-coil helical evaporator for a high temperature organic Rankine cycle plant driven by biogas waste heat
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.05.053
– volume: 78
  start-page: 501
  year: 2014
  ident: 10.1016/j.apenergy.2020.114962_b0070
  article-title: Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle
  publication-title: Energy
  doi: 10.1016/j.energy.2014.10.037
– ident: 10.1016/j.apenergy.2020.114962_b0010
– volume: 97
  start-page: 53
  year: 2016
  ident: 10.1016/j.apenergy.2020.114962_b0255
  article-title: Supercritical water heat transfer for nuclear reactor applications: A review
  publication-title: Ann Nucl Energy
  doi: 10.1016/j.anucene.2016.06.022
– volume: 289
  start-page: 92
  year: 2015
  ident: 10.1016/j.apenergy.2020.114962_b0485
  article-title: Measurements of convective heat transfer to vertical upward flows of CO2 in circular tubes at near-critical and supercritical pressures
  publication-title: Nucl Eng Des
  doi: 10.1016/j.nucengdes.2015.04.013
– volume: 127
  start-page: 897
  issue: 8
  year: 2005
  ident: 10.1016/j.apenergy.2020.114962_b1055
  article-title: Effect of buoyancy on heat transfer in supercritical water flow in a horizontal round tube
  publication-title: J Heat Transfer
  doi: 10.1115/1.1929787
– volume: 241
  start-page: 3164
  issue: 8
  year: 2011
  ident: 10.1016/j.apenergy.2020.114962_b0325
  article-title: Mixed convection heat transfer to carbon dioxide flowing upward and downward in a vertical tube and an annular channel
  publication-title: Nucl Eng Des
  doi: 10.1016/j.nucengdes.2011.06.016
– volume: 92
  start-page: 658
  year: 2018
  ident: 10.1016/j.apenergy.2020.114962_b0195
  article-title: A comprehensive review on heat transfer and pressure drop characteristics and correlations with supercritical CO2 under heating and cooling applications
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2018.04.106
– ident: 10.1016/j.apenergy.2020.114962_b1025
– volume: 120
  start-page: 930
  year: 2018
  ident: 10.1016/j.apenergy.2020.114962_b0635
  article-title: Experimental investigation on heat transfer deterioration of supercritical pressure water in vertically-upward internally-ribbed tubes
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2017.12.097
– ident: 10.1016/j.apenergy.2020.114962_b1015
  doi: 10.1016/S0065-2717(08)70333-2
– volume: 127
  start-page: 48
  year: 2017
  ident: 10.1016/j.apenergy.2020.114962_b0660
  article-title: Numerical investigation of supercritical water turbulent flow and heat transfer characteristics in vertical helical tubes
  publication-title: J Supercr Fluids
  doi: 10.1016/j.supflu.2017.03.016
– volume: 151
  start-page: 66
  year: 2019
  ident: 10.1016/j.apenergy.2020.114962_b0960
  article-title: A new criterion for the onset of heat transfer deterioration to supercritical water in vertically-upward smooth tubes
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2019.01.077
– volume: 157
  start-page: 536
  year: 2018
  ident: 10.1016/j.apenergy.2020.114962_b0515
  article-title: Computational investigations of heat transfer to supercritical CO2 in a large horizontal tube
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.12.046
– volume: 178
  start-page: 126
  year: 2016
  ident: 10.1016/j.apenergy.2020.114962_b0790
  article-title: Improved gas heaters for supercritical CO2 Rankine cycles: Considerations on forced and mixed convection heat transfer enhancement
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.06.018
– volume: 250
  start-page: 573
  year: 2012
  ident: 10.1016/j.apenergy.2020.114962_b0465
  article-title: Experimental heat transfer to supercritical carbon dioxide flowing upward vertical tube with highly conducting surroundings
  publication-title: Nucl Eng Des
  doi: 10.1016/j.nucengdes.2012.06.005
– ident: 10.1016/j.apenergy.2020.114962_b0045
– volume: 140
  start-page: 696
  year: 2017
  ident: 10.1016/j.apenergy.2020.114962_b0545
  article-title: Preliminary tests on dynamic characteristics of a CO2 transcritical power cycle using an expansion valve in engine waste heat recovery
  publication-title: Energy
  doi: 10.1016/j.energy.2017.09.022
– start-page: 1
  year: 2006
  ident: 10.1016/j.apenergy.2020.114962_b1045
  article-title: Combined free and forced convection in passages
– volume: 40
  start-page: 2187
  issue: 9
  year: 1997
  ident: 10.1016/j.apenergy.2020.114962_b1090
  article-title: The dual influence of curvature and buoyancy in fully developed tube flows
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/S0017-9310(96)00248-7
– ident: 10.1016/j.apenergy.2020.114962_b0405
– volume: 113
  start-page: 257
  year: 2017
  ident: 10.1016/j.apenergy.2020.114962_b0395
  article-title: Study on two wall temperature peaks of supercritical fluid mixed convective heat transfer in circular tubes
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2017.05.078
– volume: 134
  start-page: 437
  year: 2019
  ident: 10.1016/j.apenergy.2020.114962_b0690
  article-title: Buoyancy effects on coupled heat transfer of supercritical pressure CO2 in horizontal semicircular channels
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2019.01.045
– volume: 145
  start-page: 705
  year: 2018
  ident: 10.1016/j.apenergy.2020.114962_b0625
  article-title: Numerical study on the heat transfer enhancement of supercritical CO2 in vertical ribbed tubes
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2018.09.081
– volume: 24
  start-page: 1255
  issue: 8–9
  year: 2004
  ident: 10.1016/j.apenergy.2020.114962_b0605
  article-title: Experimental investigation of convection heat transfer of CO2 at super-critical pressures in vertical mini-tubes and in porous media
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2003.12.024
– volume: 130
  start-page: 1272
  year: 2019
  ident: 10.1016/j.apenergy.2020.114962_b0620
  article-title: Effect of internal helical-rib roughness on mixed convection flow and heat transfer in heated horizontal pipe flow of supercritical water
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2018.11.045
– volume: 122
  start-page: 469
  year: 2018
  ident: 10.1016/j.apenergy.2020.114962_b0355
  article-title: Special heat transfer characteristics of supercritical CO2 flowing in a vertically-upward tube with low mass flux
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2018.01.112
– ident: 10.1016/j.apenergy.2020.114962_b1075
  doi: 10.1016/j.rser.2004.09.014
– volume: 100
  start-page: 49
  year: 2019
  ident: 10.1016/j.apenergy.2020.114962_b0550
  article-title: Experimental study of the heat transfer characteristics of supercritical pressure R134a in a horizontal tube
  publication-title: Exp Therm Fluid Sci
  doi: 10.1016/j.expthermflusci.2018.08.027
– volume: 131
  start-page: 977
  year: 2018
  ident: 10.1016/j.apenergy.2020.114962_b0220
  article-title: A brief review on the buoyancy criteria for supercritical fluids
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2017.12.042
– ident: 10.1016/j.apenergy.2020.114962_b0695
  doi: 10.1007/978-81-322-2743-4_49
– volume: 106
  start-page: 1144
  year: 2017
  ident: 10.1016/j.apenergy.2020.114962_b0500
  article-title: Improvement of buoyancy and acceleration parameters for forced and mixed convective heat transfer to supercritical fluids flowing in vertical tubes
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2016.10.093
– volume: 28
  start-page: 631
  issue: 3
  year: 1985
  ident: 10.1016/j.apenergy.2020.114962_b1080
  article-title: Buoyancy in developed laminar curved tube flows
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/0017-9310(85)90185-1
– volume: 28
  start-page: 1662
  issue: 13
  year: 2008
  ident: 10.1016/j.apenergy.2020.114962_b0810
  article-title: A computational study of convective heat transfer to carbon dioxide at a pressure just above the critical value
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2007.11.001
– volume: 10
  start-page: 1692
  year: 2017
  ident: 10.1016/j.apenergy.2020.114962_b0555
  article-title: Ideal point design and operation of CO2 based transcritical Rankine cycle (CTRC) system based on high utilization of engine’s waste heats
  publication-title: Energies
  doi: 10.3390/en10111692
– volume: 95
  start-page: 132
  year: 2018
  ident: 10.1016/j.apenergy.2020.114962_b0210
  article-title: The status of the research on the heat transfer deterioration in supercritical fluids: A review
  publication-title: Int Commun Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2018.04.006
– ident: 10.1016/j.apenergy.2020.114962_b1020
– volume: 127
  start-page: 674
  year: 2018
  ident: 10.1016/j.apenergy.2020.114962_b0300
  article-title: Study on identification method of heat transfer deterioration of supercritical fluids in vertically heated tubes
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2018.07.058
– volume: 82
  start-page: 123
  year: 2015
  ident: 10.1016/j.apenergy.2020.114962_b0645
  article-title: On the influence of gravitational and centrifugal buoyancy on laminar flow and heat transfer in curved pipes and coils
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2014.10.074
– volume: 368–370
  start-page: 631
  year: 2013
  ident: 10.1016/j.apenergy.2020.114962_b0765
  article-title: Experimental Investigation on Flow Characteristics of Supercritical CO2 in a Helically Coiled Tube
  publication-title: Applied Mechanics and Materials
– volume: 125
  start-page: 274
  year: 2018
  ident: 10.1016/j.apenergy.2020.114962_b0665
  article-title: The buoyancy force and flow acceleration effects of supercritical CO2 on the turbulent heat transfer characteristics in heated vertical helically coiled tube
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2018.04.033
– volume: 199
  start-page: 111986
  year: 2019
  ident: 10.1016/j.apenergy.2020.114962_b0115
  article-title: Jingwei Chena, Yuanwang Deng, Hao Zhu. Effects of technical progress on performance and application of supercritical carbon dioxide power cycle: A review
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.111986
– volume: 32
  start-page: 2617
  issue: 15
  year: 2007
  ident: 10.1016/j.apenergy.2020.114962_b0105
  article-title: Experimental study on the performance of solar Rankine system using supercritical CO2
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2007.01.003
– ident: 10.1016/j.apenergy.2020.114962_b0190
  doi: 10.1007/s00231-011-0919-0
– volume: vol. 7
  start-page: 1
  year: 1971
  ident: 10.1016/j.apenergy.2020.114962_b0800
  article-title: Heat Transfer near the Critical Point
  publication-title: Advances in Heat Transfer
  doi: 10.1016/S0065-2717(08)70016-9
– volume: 32
  start-page: 176
  issue: 1
  year: 2011
  ident: 10.1016/j.apenergy.2020.114962_b0455
  article-title: MH Kim Experimental investigation of heat transfer in vertical upward and downward supercritical CO2 flow in a circular tube
  publication-title: Int J Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2010.09.001
– ident: 10.1016/j.apenergy.2020.114962_b0700
  doi: 10.1016/j.egypro.2017.12.302
– volume: 127
  start-page: 286
  year: 2018
  ident: 10.1016/j.apenergy.2020.114962_b0350
  article-title: Experimental investigation of heat transfer to supercritical R245fa flowing vertically upward in a circular tube
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2018.06.126
– volume: vol. 182
  start-page: 10
  year: 1967
  ident: 10.1016/j.apenergy.2020.114962_b0030
  article-title: A reviwe of forced convection heat transfer to fluids at supercritical pressures
– volume: 108
  start-page: 39
  year: 2019
  ident: 10.1016/j.apenergy.2020.114962_b0720
  article-title: Convective heat transfer and flow resistance characteristics of supercritical pressure hydrocarbon fuel in a horizontal rectangular mini-channel
  publication-title: Exp Therm Fluid Sci
  doi: 10.1016/j.expthermflusci.2019.06.002
– volume: 105
  start-page: 536
  issue: 3
  year: 1980
  ident: 10.1016/j.apenergy.2020.114962_b1060
  article-title: Numerical prediction of wall temperatures for near-critical para-hydrogen in turbulent upflow inside vertical tubes
  publication-title: J Heat Transfer
  doi: 10.1115/1.3245618
– ident: 10.1016/j.apenergy.2020.114962_b0570
– ident: 10.1016/j.apenergy.2020.114962_b0955
  doi: 10.1134/S0040601516110021
– volume: 129
  start-page: 1194
  year: 2019
  ident: 10.1016/j.apenergy.2020.114962_b0630
  article-title: Experimental comparison of the heat transfer of supercritical R134a in a micro-fin tube and a smooth tube
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2018.10.052
– year: 2010
  ident: 10.1016/j.apenergy.2020.114962_b0125
– volume: 780
  start-page: 192
  year: 2015
  ident: 10.1016/j.apenergy.2020.114962_b0875
  article-title: Numerical simulation of a spatially developing accelerating boundary layer over roughness
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2015.437
– volume: 135
  issue: 7
  year: 2013
  ident: 10.1016/j.apenergy.2020.114962_b0835
  article-title: Effect of Buoyancy on the Mechanism of Heat Transfer Deterioration of Supercritical Water in Horizontal Tubes
  publication-title: J Heat Transfer
  doi: 10.1115/1.4023747
– ident: 10.1016/j.apenergy.2020.114962_b1085
– volume: 50
  start-page: 101
  year: 2014
  ident: 10.1016/j.apenergy.2020.114962_b0075
  article-title: Thermo-economic analysis and comparison of a CO2 transcritical power cycle and an organic Rankine cycle
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2013.09.005
– ident: 10.1016/j.apenergy.2020.114962_b0040
  doi: 10.1016/S0065-2717(08)70153-9
– volume: 95
  start-page: 247
  year: 2016
  ident: 10.1016/j.apenergy.2020.114962_b0425
  article-title: Experimental investigation on the CO2 transcritical power cycle
  publication-title: Energy
  doi: 10.1016/j.energy.2015.11.074
– volume: 127
  start-page: 555
  year: 2018
  ident: 10.1016/j.apenergy.2020.114962_b0990
  article-title: Experimental study of buoyancy effect and its criteria for heat transfer of supercritical R134a in horizontal tubes
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2018.08.072
– volume: 169
  start-page: 542
  year: 2019
  ident: 10.1016/j.apenergy.2020.114962_b1130
  article-title: Heat transfer investigation of supercritical R134a for trans-critical organic Rankine cycle system
  publication-title: Energy
  doi: 10.1016/j.energy.2018.12.034
– start-page: 4864
  year: 2017
  ident: 10.1016/j.apenergy.2020.114962_b0055
  article-title: Rotating Shaft Thermal Analysis for Supercritical Carbon Dioxide Radial Inflow Turbines
– volume: 54
  start-page: 1775
  issue: 9–10
  year: 2011
  ident: 10.1016/j.apenergy.2020.114962_b1120
  article-title: Roughness enhanced mechanism for turbulent convective heat transfer
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2010.12.039
– volume: 165
  start-page: 827
  year: 2018
  ident: 10.1016/j.apenergy.2020.114962_b0060
  article-title: Aerodynamic design optimization of radial-inflow turbine in supercritical CO2 cycles using a one-dimensional model
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.03.005
– volume: 53
  start-page: 296
  issue: 4
  year: 2006
  ident: 10.1016/j.apenergy.2020.114962_b0970
  article-title: Heat transfer under supercritical pressures and heat transfer deterioration boundaries
  publication-title: Therm Eng
  doi: 10.1134/S0040601506040069
– volume: 15
  start-page: 632
  issue: 5
  year: 1974
  ident: 10.1016/j.apenergy.2020.114962_b1000
  article-title: Development of secondary free-convection currents in forced turbulent flow in horizontal tubes
  publication-title: J Appl Mech Tech Phys
  doi: 10.1007/BF00851521
– ident: 10.1016/j.apenergy.2020.114962_b0905
– ident: 10.1016/j.apenergy.2020.114962_b0775
  doi: 10.1016/j.ijheatmasstransfer.2014.09.066
– volume: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.apenergy.2020.114962_b0980
  article-title: Study on Specifics of Forced-Convective Heat Transfer in Supercritical Carbon Dioxide
  publication-title: J Nucl Eng Rad Sci
– ident: 10.1016/j.apenergy.2020.114962_b0995
– volume: 185
  start-page: 141
  issue: 2–3
  year: 1998
  ident: 10.1016/j.apenergy.2020.114962_b1070
  article-title: Thermal hydraulic study on a high-temperature gas–gas heat exchanger with helically coiled tube bundles
  publication-title: Nucl Eng Des
  doi: 10.1016/S0029-5493(98)00240-4
– volume: 1
  start-page: 237
  year: 1963
  ident: 10.1016/j.apenergy.2020.114962_b0320
  article-title: Impairment of the heat transmission at supercritical pressures
  publication-title: High Temp
– volume: 10
  start-page: 304
  issue: 2
  year: 1972
  ident: 10.1016/j.apenergy.2020.114962_b0985
  article-title: Experimental investigation of worsened heat transfer conditions with the turbulent flow of carbon dioxide at supercritical pressure
  publication-title: High Temp
– volume: 45
  start-page: 5025
  issue: 25
  year: 2002
  ident: 10.1016/j.apenergy.2020.114962_b0420
  article-title: An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/S0017-9310(02)00206-5
– volume: 27
  start-page: 55
  issue: 1
  year: 2018
  ident: 10.1016/j.apenergy.2020.114962_b0650
  article-title: Turbulent convective heat transfer of methane at supercritical pressure in a helical coiled tube
  publication-title: J Therm Sci
  doi: 10.1007/s11630-018-0984-5
– volume: 240
  start-page: 3336
  issue: 10
  year: 2010
  ident: 10.1016/j.apenergy.2020.114962_b0460
  article-title: Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube
  publication-title: Nucl Eng Des
  doi: 10.1016/j.nucengdes.2010.07.002
– volume: 170
  start-page: 480
  year: 2019
  ident: 10.1016/j.apenergy.2020.114962_b0215
  article-title: Correlation evaluation on circumferentially average heat transfer for supercritical carbon dioxide in non-uniform heating vertical tubes
  publication-title: Energy
  doi: 10.1016/j.energy.2018.12.151
– volume: 142
  start-page: 573
  year: 2018
  ident: 10.1016/j.apenergy.2020.114962_b0200
  article-title: A review on recent heat transfer studies to supercritical pressure water in channels
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2018.07.007
– ident: 10.1016/j.apenergy.2020.114962_b0415
– volume: 354
  start-page: 110207
  year: 2019
  ident: 10.1016/j.apenergy.2020.114962_b0225
  article-title: Current status of research on heat transfer in forced convection of fluids at supercritical pressures
  publication-title: Nucl Eng Des
  doi: 10.1016/j.nucengdes.2019.110207
– volume: 15
  start-page: 2575
  year: 1972
  ident: 10.1016/j.apenergy.2020.114962_b0925
  article-title: Forced convective heat transfer to supercritical water flowing in tubes
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/0017-9310(72)90148-2
– volume: 227
  start-page: 220
  year: 2018
  ident: 10.1016/j.apenergy.2020.114962_b0430
  article-title: Performance evaluation of a low-grade power generation system with CO2 transcritical power cycles
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.07.086
– volume: 101
  start-page: 36
  year: 2015
  ident: 10.1016/j.apenergy.2020.114962_b0610
  article-title: Heat transfer characteristics of supercritical CO2 flow in metal foam tubes
  publication-title: J Supercr Fluids
  doi: 10.1016/j.supflu.2015.03.002
– volume: 88
  start-page: 61
  year: 2015
  ident: 10.1016/j.apenergy.2020.114962_b0770
  article-title: Mixed convective heat transfer of CO2 at supercritical pressures flowing upward through a vertical helically coiled tube
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2014.10.031
– volume: 16
  start-page: 1267
  issue: 6
  year: 1973
  ident: 10.1016/j.apenergy.2020.114962_b0025
  article-title: Effects of buoyancy and of acceleration owing to thermal expansion on forced turbulent convection in vertical circular tubes—criteria of the effects, velocity and temperature profiles, and reverse transition from turbulent to laminar flow
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/0017-9310(73)90135-X
– ident: 10.1016/j.apenergy.2020.114962_b1005
  doi: 10.1615/IHTC5.3130
SSID ssj0002120
Score 2.5460021
SecondaryResourceType review_article
Snippet •The experimental tests on supercritical CO2 power cycle are briefly reviewed.•The heat transfer mechanisms present the principles for heat transfer...
Trans-critical CO₂ Rankine system is a new technology for low-grade heat utilization which has high energy conversion efficiency and exergo-economic...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114962
SubjectTerms carbon dioxide
convection
energy conversion
Evaluation criteria
heat exchangers
Heat transfer enhancement
Heat transfer mechanisms
Low-grade heat conversion
Trans-critical CO2 Rankine cycle
Title A review on application and heat transfer enhancement of supercritical CO2 in low-grade heat conversion
URI https://dx.doi.org/10.1016/j.apenergy.2020.114962
https://www.proquest.com/docview/2440690353
Volume 269
WOSCitedRecordID wos000537619800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKxgM8IBhMjC8ZCfFSZTTf8WM1OgGaOh46KU9YduJsqaokpM3on89dYqcBhjYeeGhUnXxp1N8v57PPd0fIuyxLVKpsZfkiCTDMmFiSKdtKEqkYlqqWUrbNJsL5PIpj9nU0-mZyYa5XYVFE2y2r_ivUIAOwMXX2H-DubwoC-A6gwxVgh-udgJ_26SjFeBCebqMEaHmxKwT4qqoeq-IKMTfHAdZNperEtD44OXdwL2RV_rAua5GqTrc9pN7usA29WuPKqjaR8M-96Kt8mfcEihuUxbkot_DpDwTljY7-96KPWh1lUhcI1_sTsBg1Z1n7vKxJYOE6bWhznYCNK6xTzALHutGSd5sKy2NRdc9-jPfWGru5y8Tr5-f89OLsjC9m8eJ99d3CrmIYfdctVu6RfSf0GVi9_ennWfyln6sdXbjTPOMgh_zmn_6b-_LbRN56J4vH5JFeVtBpR4cnZKSKA_JwUGzygBzOdjmNMFQb9fVTcjmlHWNoWdABYygwhiLq1DCGDhhDy4z-whgKjKF5QXvGdLo7xjwjF6ezxcknS_ffsBLPtjeWI5wwhBdXqlCl4LVkkcLGLNKbMHBqAuammSeYJycueNku2nYfBkTKDaT0hSfcQ7JXlIV6TqjLRIABbteLJl4o0ihLYSnMZGgntsiy8Ij45m_liS5Ojz1SVtycQlxyAwdHOHgHxxH50OtVXXmWWzWYQY1rJ7NzHjkw71bdtwZmDlYYQ2uiUGWz5uAkY8lv13df3GHMS_Jg96a8InubulGvyf3kepOv6zeaoz8ByCGsdQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+application+and+heat+transfer+enhancement+of+supercritical+CO2+in+low-grade+heat+conversion&rft.jtitle=Applied+energy&rft.au=Zhang%2C+Shijie&rft.au=Xu%2C+Xiaoxiao&rft.au=Liu%2C+Chao&rft.au=Dang%2C+Chaobin&rft.date=2020-07-01&rft.issn=0306-2619&rft.volume=269+p.114962-&rft_id=info:doi/10.1016%2Fj.apenergy.2020.114962&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon