A comparative study on multiobjective metaheuristics for solving constrained in-core fuel management optimisation problems

In this paper, the topic of constrained multiobjective in-core fuel management optimisation (MICFMO) using metaheuristics is considered. Several modern and state-of-the-art metaheuristics from different classes, including evolutionary algorithms, local search algorithms, swarm intelligence algorithm...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & operations research Ročník 75; s. 174 - 190
Hlavní autoři: Schlünz, E.B., Bokov, P.M., van Vuuren, J.H.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Elsevier Ltd 01.11.2016
Pergamon Press Inc
Témata:
ISSN:0305-0548, 1873-765X, 0305-0548
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, the topic of constrained multiobjective in-core fuel management optimisation (MICFMO) using metaheuristics is considered. Several modern and state-of-the-art metaheuristics from different classes, including evolutionary algorithms, local search algorithms, swarm intelligence algorithms, a probabilistic model-based algorithm and a harmony search algorithm, are compared in order to determine which approach is the most suitable in the context of constrained MICFMO. A test suite of 16 optimisation problem instances, based on the SAFARI-1 nuclear research reactor, has been established for the comparative study. The suite is partitioned into three classes, each consisting of problem instances having a different number of objectives, but subject to the same stringent constraint set. The effectiveness of a multiplicative penalty function constraint handling technique is also compared with the constrained-domination technique from the literature. The different optimisation approaches are compared in a nonparametric statistical analysis. The analysis reveals that multiplicative penalty function constraint handling is a competitive alternative to constrained-domination, and seems to be particularly effective in the context of bi-objective optimisation problems. In terms of the metaheuristic solution comparison, it is found that the nondominated sorting genetic algorithm II (NSGA-II), the Pareto ant colony optimisation (P-ACO) algorithm and the multiobjective optimisation using cross-entropy method (MOOCEM) are generally the best-performing metaheuristics across all three problem classes, along with the multiobjective variable neighbourhood search (MOVNS) in the bi-objective problem class. Furthermore, the practical relevance of the metaheuristic results is demonstrated by comparing the solutions thus obtained to the current SAFARI-1 reload configuration design approach. •Considers the constrained multiobjective ICFMO problem for nuclear research reactor.•Comparative study using eight metaheuristics and two constraint handling techniques.•Nonparametric statistical analyses on results across several problem instances.•New constraint handling technique found to be competitive to the existing technique.•NSGA-II, P-ACO and MOOCEM generally found to be the best-performing metaheuristics.
AbstractList In this paper, the topic of constrained multiobjective in-core fuel management optimisation (MICFMO) using metaheuristics is considered. Several modern and state-of-the-art metaheuristics from different classes, including evolutionary algorithms, local search algorithms, swarm intelligence algorithms, a probabilistic model-based algorithm and a harmony search algorithm, are compared in order to determine which approach is the most suitable in the context of constrained MICFMO. A test suite of 16 optimisation problem instances, based on the SAFARI-1 nuclear research reactor, has been established for the comparative study. The suite is partitioned into three classes, each consisting of problem instances having a different number of objectives, but subject to the same stringent constraint set. The effectiveness of a multiplicative penalty function constraint handling technique is also compared with the constrained-domination technique from the literature. The different optimisation approaches are compared in a nonparametric statistical analysis. The analysis reveals that multiplicative penalty function constraint handling is a competitive alternative to constrained-domination, and seems to be particularly effective in the context of bi-objective optimisation problems. In terms of the metaheuristic solution comparison, it is found that the nondominated sorting genetic algorithm II (NSGA-II), the Pareto ant colony optimisation (P-ACO) algorithm and the multiobjective optimisation using cross-entropy method (MOOCEM) are generally the best-performing metaheuristics across all three problem classes, along with the multiobjective variable neighbourhood search (MOVNS) in the bi-objective problem class. Furthermore, the practical relevance of the metaheuristic results is demonstrated by comparing the solutions thus obtained to the current SAFARI-1 reload configuration design approach.
In this paper, the topic of constrained multiobjective in-core fuel management optimisation (MICFMO) using metaheuristics is considered. Several modern and state-of-the-art metaheuristics from different classes, including evolutionary algorithms, local search algorithms, swarm intelligence algorithms, a probabilistic model-based algorithm and a harmony search algorithm, are compared in order to determine which approach is the most suitable in the context of constrained MICFMO. A test suite of 16 optimisation problem instances, based on the SAFARI-1 nuclear research reactor, has been established for the comparative study. The suite is partitioned into three classes, each consisting of problem instances having a different number of objectives, but subject to the same stringent constraint set. The effectiveness of a multiplicative penalty function constraint handling technique is also compared with the constrained-domination technique from the literature. The different optimisation approaches are compared in a nonparametric statistical analysis. The analysis reveals that multiplicative penalty function constraint handling is a competitive alternative to constrained-domination, and seems to be particularly effective in the context of bi-objective optimisation problems. In terms of the metaheuristic solution comparison, it is found that the nondominated sorting genetic algorithm II (NSGA-II), the Pareto ant colony optimisation (P-ACO) algorithm and the multiobjective optimisation using cross-entropy method (MOOCEM) are generally the best-performing metaheuristics across all three problem classes, along with the multiobjective variable neighbourhood search (MOVNS) in the bi-objective problem class. Furthermore, the practical relevance of the metaheuristic results is demonstrated by comparing the solutions thus obtained to the current SAFARI-1 reload configuration design approach. •Considers the constrained multiobjective ICFMO problem for nuclear research reactor.•Comparative study using eight metaheuristics and two constraint handling techniques.•Nonparametric statistical analyses on results across several problem instances.•New constraint handling technique found to be competitive to the existing technique.•NSGA-II, P-ACO and MOOCEM generally found to be the best-performing metaheuristics.
Author Schlünz, E.B.
van Vuuren, J.H.
Bokov, P.M.
Author_xml – sequence: 1
  givenname: E.B.
  surname: Schlünz
  fullname: Schlünz, E.B.
  email: bernard.schlunz@necsa.co.za
  organization: Radiation and Reactor Theory, The South African Nuclear Energy Corporation SOC Ltd, PO Box 582, Pretoria 0001, South Africa
– sequence: 2
  givenname: P.M.
  surname: Bokov
  fullname: Bokov, P.M.
  email: pavel.bokov@necsa.co.za
  organization: Radiation and Reactor Theory, The South African Nuclear Energy Corporation SOC Ltd, PO Box 582, Pretoria 0001, South Africa
– sequence: 3
  givenname: J.H.
  surname: van Vuuren
  fullname: van Vuuren, J.H.
  email: vuuren@sun.ac.za
  organization: Stellenbosch Unit for Operations Research in Engineering, Department of Industrial Engineering, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
BookMark eNp9kcFq3DAQhkVJoZs0D5CboJdevNHYlrWmpxDaJhDopYXehCyPUhlb2kryQvr0nc3mlEPEgIT4v5l_Zs7ZWYgBGbsCsQUB3fW0tTFta3puBYWAd2wDO9VUqpO_z9hGNEJWQra7D-w850nQUTVs2L8bbuOyN8kUf0Ceyzo-8Rj4ss7Fx2FC-_y_YDF_cE0-F28zdzHxHOeDD4-Eh1yS8QFH7kNFNpC7FWe-mGAeccFQeNwXv_hMNSj1PsVhxiV_ZO-dmTNevtwX7Ne3rz9v76qHH9_vb28eKtsClKom6_Uox2Z0KFtwDlDUyoJyXQ1Ni4PqBgCEQSjZd7uhBgXO9k4gtdwQd8E-n_JS4b8r5qLJisV5NgHjmjXsGin7XqqWpJ9eSae4pkDuSAWi6eqmF6RSJ5VNMeeETltfnns7zmHWIPRxJ3rSNAx93IkWFAKIhFfkPvnFpKc3mS8nBmlGB49JZ-sxWBx9ou3oMfo36P-tKqi1
CODEN CMORAP
CitedBy_id crossref_primary_10_1016_j_nucengdes_2022_111950
crossref_primary_10_1016_j_asoc_2020_106722
crossref_primary_10_1016_j_nucengdes_2020_110541
crossref_primary_10_1016_j_anucene_2023_109813
crossref_primary_10_1016_j_anucene_2021_108685
crossref_primary_10_1016_j_swevo_2018_02_019
crossref_primary_10_1016_j_anucene_2017_09_008
crossref_primary_10_1016_j_cor_2023_106489
crossref_primary_10_1080_00295639_2025_2488702
crossref_primary_10_1016_j_anucene_2023_110089
crossref_primary_10_1016_j_asoc_2023_110126
crossref_primary_10_1016_j_nucengdes_2025_113980
crossref_primary_10_1016_j_ijepes_2018_02_018
crossref_primary_10_1016_j_pnucene_2021_103856
crossref_primary_10_1007_s10489_023_05013_5
crossref_primary_10_1016_j_anucene_2024_110582
crossref_primary_10_1016_j_eswa_2018_03_034
Cites_doi 10.1007/978-0-387-98149-9_10
10.13182/NSE96-A24233
10.1109/4235.996017
10.1080/03052150008940911
10.1007/BF02430363
10.1016/j.anucene.2012.08.007
10.1023/B:ANOR.0000039513.99038.c6
10.1109/TEVC.2007.900837
10.1016/j.anucene.2015.09.023
10.1016/j.ejor.2010.10.028
10.1016/j.amc.2006.09.024
10.1016/j.anucene.2011.08.029
10.1016/j.anucene.2012.04.022
10.1016/j.cor.2012.07.014
10.1016/j.anucene.2013.01.043
10.1109/4235.797969
10.13182/NT05-A3626
10.1016/j.pnucene.2008.07.002
10.1002/9781119196037
10.1016/j.rcim.2012.04.015
10.1016/j.nucengdes.2009.08.027
10.1016/j.ijepes.2010.12.031
10.1007/978-3-540-31880-4_35
10.13182/NSE162-134
10.1016/S0149-1970(04)90014-5
10.1023/A:1006529012972
10.1016/j.anucene.2011.12.002
10.1287/ijoc.6.2.154
10.1007/978-3-540-88908-3
10.1016/j.swevo.2011.02.002
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright Pergamon Press Inc. Nov 2016
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Copyright Pergamon Press Inc. Nov 2016
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.cor.2016.06.001
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1873-765X
0305-0548
EndPage 190
ExternalDocumentID 4142724351
10_1016_j_cor_2016_06_001
S0305054816301332
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
186
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABMMH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
AEBSH
AEFWE
AEHXG
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ARUGR
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
H~9
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSO
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
UAO
UPT
VH1
WUQ
XFK
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c411t-20302d5d3dfe541ff1e027c17f62134eb76b11e1b075968b2171fc9f0e30535d3
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000380600000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-0548
IngestDate Sun Nov 09 09:54:26 EST 2025
Sun Nov 09 07:02:15 EST 2025
Tue Nov 18 21:05:09 EST 2025
Sat Nov 29 03:23:39 EST 2025
Fri Feb 23 02:33:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Constraint handling
In-core fuel management optimisation
Metaheuristics
Multiobjective optimisation
Nuclear reactor
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c411t-20302d5d3dfe541ff1e027c17f62134eb76b11e1b075968b2171fc9f0e30535d3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1810362390
PQPubID 45870
PageCount 17
ParticipantIDs proquest_miscellaneous_1835599574
proquest_journals_1810362390
crossref_citationtrail_10_1016_j_cor_2016_06_001
crossref_primary_10_1016_j_cor_2016_06_001
elsevier_sciencedirect_doi_10_1016_j_cor_2016_06_001
PublicationCentury 2000
PublicationDate 2016-11-01
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Computers & operations research
PublicationYear 2016
Publisher Elsevier Ltd
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Pergamon Press Inc
References Lin, Lin (bib45) 2012; 43
Larrañaga, Kuijpers, Murga, Inza, Dizdarevic (bib37) 1999; 13
Bandyopadhyay, Saha, Maulik, Deb (bib10) 2008; 12
Mirvakili, Faghihi, Khalafi (bib5) 2012; 50
Bekker, Aldrich (bib12) 2011; 211
Stander G, Prinsloo RH, Müller E, Tomašević DI. OSCAR-4 code system application to the SAFARI-1 reactor. In: Proceedings of the international conference on reactor physics (PHYSOR 2008). Interlaken, Switzerland; September 14–19, 2008.
Poursalehi, Zolfaghari, Minuchehr (bib21) 2013; 57
Engrand P. A multi-objective optimization approach based on simulated annealing and its application to nuclear fuel management. Technical report 98NB00037. Electricité de France; 1998.
Suppapitnarm, Seffen, Parks, Clarkson (bib25) 2000; 33
Reyes Sierra M, Coello Coello CA. Improved PSO-based multi-objective optimization using crowding distance, mutation and
Mazrou, Hamadouche (bib4) 2004; 44
Zitzler E, Laumanns M, Thiele L. SPEA2: improving the strength Pareto evolutionary algorithm. Technical report 103. Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH). Zurich; 2001.
Derrac, García, Molina, Herrera (bib49) 2011; 1
Geiger MJ. Randomised variable neighbourhood search for multi objective optimisation. In: Proceedings of the EU/ME workshop: design and evaluation of advanced hybrid meta-heuristics. Nottingham, UK; November 4–5, 2004. p. 34–42.
.
Hu X, Eberhart RC, Shi Y. Swarm intelligence for permutation optimization: a case study of
Doerner, Gutjahr, Hartl, Strauss, Stummer (bib9) 2004; 131
The MathWorks Inc. Neural network toolbox release 2014a. Natick, MA. URL
Hochberg, Tamhane (bib18) 1987
Hedayat, Davilu, Barfrosh, Sepanloo (bib29) 2009; 239
2014.
Foresee FD, Hagan MT. Gauss–Newton approximation to Bayesian learning. In: Proceedings of the international conference on neural networks. Houston, TX: IEEE; 1997. p. 1930–5.
queens problem. In: Proceedings of the IEEE swarm intelligence symposium (SIS'03). Indianapolis, IN; April 24–26, 2003. p. 243–6.
dominance. In: Proceedings of the international conference on evolutionary multi-criterion optimization (EMO 2005). Guanajuato, Mexico; March 9–11, 2005. p. 505–19.
Gong, Wang, Yao (bib19) 2011; 38
Bean (bib40) 1994; 6
Hansen MP, Jaszkiewicz A. Evaluating the quality of approximations to the non-dominated set. Technical report IMM-REP-1998-7. Institute of Mathematical Modelling, Technical University of Denmark; 1998.
Liang, Chuang (bib43) 2013; 29
Liu, Cai (bib20) 2012; 50
Keller PM. FORMOSA-P constrained multiobjective simulated methodology. In: Proceedings of the international meeting on mathematical methods for nuclear applications (M& C 2001). Salt Lake City, UT, USA; September 2001.
Sivasubramani, Swarup (bib13) 2011; 33
The MathWorks Inc, MATLAB Release 2014a. Natick, MA. URL
Barr, Golden, Kelly, Resende, Stewart (bib15) 1995; 1
Li, Du (bib36) 2013; 40
Do, Nguyen (bib27) 2007; 187
Turinsky PJ. Core isotopic depletion and fuel management. In: Cacuci DG, editor. Handbook of nuclear engineering. New York, NY: Springer; 2010. p. 1241–312.
Schlünz EB, Bokov, PM, van Vuuren JH. Application of artificial neural networks for predicting core parameters for the SAFARI-1 nuclear research reactor. In: Proceedings of the annual conference of the Operations Research Society of South Africa (ORSSA 2015). Hartbeespoort, South Africa; September 13–16, 2015. p. 12–22.
Turinsky (bib2) 2005; 151
Parks (bib23) 1996; 124
Schlünz, Bokov, Prinsloo, van Vuuren (bib30) 2016; 87
Jain, Dubes (bib42) 1988
Deb, Pratap, Agarwal, Meyarivan (bib6) 2002; 6
Miettinen (bib22) 1999
Meneses, Machado, Schirru (bib44) 2009; 51
Branke J, Deb K, Miettinen K, Slowinski R, editors. Multiobjective optimization: interactive and evolutionary approaches. Berlin: Springer; 2008.
Durillo JJ, García-Nieto J, Nebro AJ, Coello Coello CA, Luna F, Alba E. Multi-objective particle swarm optimizers: an experimental comparison. In: Proceedings of the international conference on evolutionary multi-criterion optimization (EMO 2009). Nantes, France; April 7–10, 2009. p. 495–509.
Coello Coello, Lamont, van Velduizen (bib46) 2007
Zitzler, Thiele (bib47) 1999; 3
Schlünz EB, Bokov PM, van Vuuren JH. Research reactor in-core fuel management optimisation using the multiobjective cross-entropy method. In: Proceedings of the international conference on reactor physics (PHYSOR 2014). Kyoto, Japan; September 28–October 3, 2014.
Park, Joo, Kim, Lee (bib28) 2009; 162
Hollander M, Wolfe DA, Chicken E. Nonparametric statistical methods, 3rd ed. Hoboken, NJ: John Wiley & Sons; 2014.
Soni, Kumar (bib38) 2014; 5
Meneses AAM, de Lima AMM, Schirru R. Artificial intelligence methods applied to the in-core fuel management optimization. In: Tsvetkov P, editor. Nuclear power. Sciyo; 2010. p. 63–77. Available online. URL
Mazrou (10.1016/j.cor.2016.06.001_bib4) 2004; 44
Bandyopadhyay (10.1016/j.cor.2016.06.001_bib10) 2008; 12
Miettinen (10.1016/j.cor.2016.06.001_bib22) 1999
Meneses (10.1016/j.cor.2016.06.001_bib44) 2009; 51
10.1016/j.cor.2016.06.001_bib41
10.1016/j.cor.2016.06.001_bib48
Barr (10.1016/j.cor.2016.06.001_bib15) 1995; 1
Soni (10.1016/j.cor.2016.06.001_bib38) 2014; 5
Poursalehi (10.1016/j.cor.2016.06.001_bib21) 2013; 57
Coello Coello (10.1016/j.cor.2016.06.001_bib46) 2007
Gong (10.1016/j.cor.2016.06.001_bib19) 2011; 38
Parks (10.1016/j.cor.2016.06.001_bib23) 1996; 124
10.1016/j.cor.2016.06.001_bib32
10.1016/j.cor.2016.06.001_bib31
Turinsky (10.1016/j.cor.2016.06.001_bib2) 2005; 151
Derrac (10.1016/j.cor.2016.06.001_bib49) 2011; 1
10.1016/j.cor.2016.06.001_bib39
Suppapitnarm (10.1016/j.cor.2016.06.001_bib25) 2000; 33
10.1016/j.cor.2016.06.001_bib34
10.1016/j.cor.2016.06.001_bib33
Bean (10.1016/j.cor.2016.06.001_bib40) 1994; 6
Park (10.1016/j.cor.2016.06.001_bib28) 2009; 162
10.1016/j.cor.2016.06.001_bib35
10.1016/j.cor.2016.06.001_bib8
Mirvakili (10.1016/j.cor.2016.06.001_bib5) 2012; 50
Sivasubramani (10.1016/j.cor.2016.06.001_bib13) 2011; 33
Zitzler (10.1016/j.cor.2016.06.001_bib47) 1999; 3
Jain (10.1016/j.cor.2016.06.001_bib42) 1988
Liu (10.1016/j.cor.2016.06.001_bib20) 2012; 50
Do (10.1016/j.cor.2016.06.001_bib27) 2007; 187
10.1016/j.cor.2016.06.001_bib1
Deb (10.1016/j.cor.2016.06.001_bib6) 2002; 6
Hochberg (10.1016/j.cor.2016.06.001_bib18) 1987
10.1016/j.cor.2016.06.001_bib26
10.1016/j.cor.2016.06.001_bib3
Lin (10.1016/j.cor.2016.06.001_bib45) 2012; 43
10.1016/j.cor.2016.06.001_bib7
10.1016/j.cor.2016.06.001_bib24
Bekker (10.1016/j.cor.2016.06.001_bib12) 2011; 211
Larrañaga (10.1016/j.cor.2016.06.001_bib37) 1999; 13
Doerner (10.1016/j.cor.2016.06.001_bib9) 2004; 131
Hedayat (10.1016/j.cor.2016.06.001_bib29) 2009; 239
Liang (10.1016/j.cor.2016.06.001_bib43) 2013; 29
10.1016/j.cor.2016.06.001_bib16
Schlünz (10.1016/j.cor.2016.06.001_bib30) 2016; 87
10.1016/j.cor.2016.06.001_bib17
10.1016/j.cor.2016.06.001_bib11
Li (10.1016/j.cor.2016.06.001_bib36) 2013; 40
10.1016/j.cor.2016.06.001_bib14
References_xml – volume: 50
  start-page: 117
  year: 2012
  end-page: 125
  ident: bib20
  article-title: Studies of fuel loading pattern optimization for a typical pressurized water reactor (PWR) using improved pivot particle swarm method
  publication-title: Ann Nucl Energy
– volume: 151
  start-page: 3
  year: 2005
  end-page: 8
  ident: bib2
  article-title: Nuclear fuel management optimization
  publication-title: Nucl Technol
– year: 1988
  ident: bib42
  article-title: Algorithms for clustering data
– reference: Branke J, Deb K, Miettinen K, Slowinski R, editors. Multiobjective optimization: interactive and evolutionary approaches. Berlin: Springer; 2008.
– volume: 3
  start-page: 257
  year: 1999
  end-page: 271
  ident: bib47
  article-title: Multiobjective evolutionary algorithms
  publication-title: IEEE Trans Evol Comput
– volume: 87
  start-page: 659
  year: 2016
  end-page: 670
  ident: bib30
  article-title: A unified methodology for single- and multiobjective in-core fuel management optimisation based on augmented Chebyshev scalarisation and a harmony search algorithm
  publication-title: Ann Nucl Energy
– volume: 12
  start-page: 269
  year: 2008
  end-page: 283
  ident: bib10
  article-title: A simulated annealing-based multiobjective optimization algorithm
  publication-title: IEEE Trans Evol Comput
– reference: -dominance. In: Proceedings of the international conference on evolutionary multi-criterion optimization (EMO 2005). Guanajuato, Mexico; March 9–11, 2005. p. 505–19.
– reference: The MathWorks Inc, MATLAB Release 2014a. Natick, MA. URL 〈
– volume: 43
  start-page: 91
  year: 2012
  end-page: 98
  ident: bib45
  article-title: Automatic pressurized water reactor loading pattern design using ant colony algorithms
  publication-title: Ann Nucl Energy
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: bib49
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol Comput
– reference: Hollander M, Wolfe DA, Chicken E. Nonparametric statistical methods, 3rd ed. Hoboken, NJ: John Wiley & Sons; 2014.
– volume: 131
  start-page: 79
  year: 2004
  end-page: 99
  ident: bib9
  article-title: Pareto ant colony optimization
  publication-title: Ann Oper Res
– volume: 13
  start-page: 129
  year: 1999
  end-page: 170
  ident: bib37
  article-title: Genetic algorithms for the travelling salesman problem
  publication-title: Artif Intell Rev
– reference: 〉.
– reference: Hansen MP, Jaszkiewicz A. Evaluating the quality of approximations to the non-dominated set. Technical report IMM-REP-1998-7. Institute of Mathematical Modelling, Technical University of Denmark; 1998.
– volume: 239
  start-page: 2786
  year: 2009
  end-page: 2799
  ident: bib29
  article-title: Optimization of the core configuration design using a hybrid artificial intelligence algorithm for research reactors
  publication-title: Nucl Eng Des
– volume: 51
  start-page: 319
  year: 2009
  end-page: 326
  ident: bib44
  article-title: Particle swarm optimization applied to the nuclear reload problem of a pressurized water reactor
  publication-title: Progr Nucl Energy
– reference: Reyes Sierra M, Coello Coello CA. Improved PSO-based multi-objective optimization using crowding distance, mutation and
– reference: Durillo JJ, García-Nieto J, Nebro AJ, Coello Coello CA, Luna F, Alba E. Multi-objective particle swarm optimizers: an experimental comparison. In: Proceedings of the international conference on evolutionary multi-criterion optimization (EMO 2009). Nantes, France; April 7–10, 2009. p. 495–509.
– reference: The MathWorks Inc. Neural network toolbox release 2014a. Natick, MA. URL 〈
– year: 2007
  ident: bib46
  article-title: Evolutionary algorithms for solving multi-objective problems
– volume: 33
  start-page: 745
  year: 2011
  end-page: 752
  ident: bib13
  article-title: Multi-objective harmony search algorithm for optimal power flow problem
  publication-title: Electr Power Energy Syst
– reference: Turinsky PJ. Core isotopic depletion and fuel management. In: Cacuci DG, editor. Handbook of nuclear engineering. New York, NY: Springer; 2010. p. 1241–312.
– reference: Engrand P. A multi-objective optimization approach based on simulated annealing and its application to nuclear fuel management. Technical report 98NB00037. Electricité de France; 1998.
– volume: 33
  start-page: 59
  year: 2000
  end-page: 85
  ident: bib25
  article-title: A simulated annealing algorithm for multiobjective optimization
  publication-title: Eng Optim
– volume: 29
  start-page: 73
  year: 2013
  end-page: 78
  ident: bib43
  article-title: Variable neighborhood search for multi-objective resource allocation problems
  publication-title: Robot Comput-Integr Manuf
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib6
  article-title: A fast and elitist multiobjective genetic algorithm
  publication-title: IEEE Trans Evol Comput
– reference: Schlünz EB, Bokov, PM, van Vuuren JH. Application of artificial neural networks for predicting core parameters for the SAFARI-1 nuclear research reactor. In: Proceedings of the annual conference of the Operations Research Society of South Africa (ORSSA 2015). Hartbeespoort, South Africa; September 13–16, 2015. p. 12–22.
– reference: 〉; 2014.
– volume: 50
  start-page: 82
  year: 2012
  end-page: 93
  ident: bib5
  article-title: Developing a computational tool for predicting physical parameters of a typical VVER-1000 core based on artificial neural networks
  publication-title: Ann Nucl Energy
– reference: -queens problem. In: Proceedings of the IEEE swarm intelligence symposium (SIS'03). Indianapolis, IN; April 24–26, 2003. p. 243–6.
– volume: 211
  start-page: 112
  year: 2011
  end-page: 121
  ident: bib12
  article-title: The cross-entropy method in multi-objective optimisation
  publication-title: Eur J Oper Res
– reference: Foresee FD, Hagan MT. Gauss–Newton approximation to Bayesian learning. In: Proceedings of the international conference on neural networks. Houston, TX: IEEE; 1997. p. 1930–5.
– reference: Geiger MJ. Randomised variable neighbourhood search for multi objective optimisation. In: Proceedings of the EU/ME workshop: design and evaluation of advanced hybrid meta-heuristics. Nottingham, UK; November 4–5, 2004. p. 34–42.
– volume: 57
  start-page: 151
  year: 2013
  end-page: 163
  ident: bib21
  article-title: Multi-objective loading pattern enhancement of PWR based on the discrete firefly algorithm
  publication-title: Ann Nucl Energy
– volume: 5
  start-page: 4519
  year: 2014
  end-page: 4521
  ident: bib38
  article-title: Study of various mutation operators in genetic algorithms
  publication-title: Int J Comput Sci Inf Technol
– year: 1987
  ident: bib18
  article-title: Multiple comparison procedures
– reference: Zitzler E, Laumanns M, Thiele L. SPEA2: improving the strength Pareto evolutionary algorithm. Technical report 103. Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH). Zurich; 2001.
– reference: Stander G, Prinsloo RH, Müller E, Tomašević DI. OSCAR-4 code system application to the SAFARI-1 reactor. In: Proceedings of the international conference on reactor physics (PHYSOR 2008). Interlaken, Switzerland; September 14–19, 2008.
– year: 1999
  ident: bib22
  article-title: Nonlinear multiobjective optimization
– volume: 6
  start-page: 154
  year: 1994
  end-page: 160
  ident: bib40
  article-title: Genetic algorithms and random keys for sequencing and optimization
  publication-title: ORSA J Comput
– reference: Keller PM. FORMOSA-P constrained multiobjective simulated methodology. In: Proceedings of the international meeting on mathematical methods for nuclear applications (M& C 2001). Salt Lake City, UT, USA; September 2001.
– volume: 40
  start-page: 282
  year: 2013
  end-page: 302
  ident: bib36
  article-title: BSTBGA
  publication-title: Comput Oper Res
– reference: Hu X, Eberhart RC, Shi Y. Swarm intelligence for permutation optimization: a case study of
– volume: 162
  start-page: 134
  year: 2009
  end-page: 147
  ident: bib28
  article-title: Multiobjective loading pattern optimization by simulated annealing employing discontinuous penalty function and screening technique
  publication-title: Nucl Sci Eng
– volume: 1
  start-page: 3
  year: 1995
  end-page: 32
  ident: bib15
  article-title: Designing and reporting on computational experiments with heuristic methods
  publication-title: J Heuristics
– reference: Meneses AAM, de Lima AMM, Schirru R. Artificial intelligence methods applied to the in-core fuel management optimization. In: Tsvetkov P, editor. Nuclear power. Sciyo; 2010. p. 63–77. Available online. URL 〈
– volume: 38
  start-page: 2787
  year: 2011
  end-page: 2796
  ident: bib19
  article-title: An interval bound algorithm of optimizing reactor core loading pattern by using reactivity interval schema
  publication-title: Ann Nucl Energy
– volume: 124
  start-page: 178
  year: 1996
  end-page: 187
  ident: bib23
  article-title: Multiobjective pressurized water reactor reload core design by nondominated genetic algorithm search
  publication-title: Nucl Sci Eng
– volume: 44
  start-page: 263
  year: 2004
  end-page: 275
  ident: bib4
  article-title: Application of artificial neural network for safety core parameters prediction in LWRRs
  publication-title: Progr Nucl Energy
– volume: 187
  start-page: 977
  year: 2007
  end-page: 988
  ident: bib27
  article-title: Application of a genetic algorithm to the fuel reload optimization for a research reactor
  publication-title: Appl Math Comput
– reference: Schlünz EB, Bokov PM, van Vuuren JH. Research reactor in-core fuel management optimisation using the multiobjective cross-entropy method. In: Proceedings of the international conference on reactor physics (PHYSOR 2014). Kyoto, Japan; September 28–October 3, 2014.
– ident: 10.1016/j.cor.2016.06.001_bib3
  doi: 10.1007/978-0-387-98149-9_10
– year: 2007
  ident: 10.1016/j.cor.2016.06.001_bib46
– ident: 10.1016/j.cor.2016.06.001_bib14
– volume: 124
  start-page: 178
  year: 1996
  ident: 10.1016/j.cor.2016.06.001_bib23
  article-title: Multiobjective pressurized water reactor reload core design by nondominated genetic algorithm search
  publication-title: Nucl Sci Eng
  doi: 10.13182/NSE96-A24233
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.cor.2016.06.001_bib6
  article-title: A fast and elitist multiobjective genetic algorithm
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– volume: 33
  start-page: 59
  year: 2000
  ident: 10.1016/j.cor.2016.06.001_bib25
  article-title: A simulated annealing algorithm for multiobjective optimization
  publication-title: Eng Optim
  doi: 10.1080/03052150008940911
– volume: 1
  start-page: 3
  year: 1995
  ident: 10.1016/j.cor.2016.06.001_bib15
  article-title: Designing and reporting on computational experiments with heuristic methods
  publication-title: J Heuristics
  doi: 10.1007/BF02430363
– volume: 50
  start-page: 117
  year: 2012
  ident: 10.1016/j.cor.2016.06.001_bib20
  article-title: Studies of fuel loading pattern optimization for a typical pressurized water reactor (PWR) using improved pivot particle swarm method
  publication-title: Ann Nucl Energy
  doi: 10.1016/j.anucene.2012.08.007
– ident: 10.1016/j.cor.2016.06.001_bib33
– volume: 131
  start-page: 79
  year: 2004
  ident: 10.1016/j.cor.2016.06.001_bib9
  article-title: Pareto ant colony optimization
  publication-title: Ann Oper Res
  doi: 10.1023/B:ANOR.0000039513.99038.c6
– volume: 12
  start-page: 269
  issue: 3
  year: 2008
  ident: 10.1016/j.cor.2016.06.001_bib10
  article-title: A simulated annealing-based multiobjective optimization algorithm
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2007.900837
– volume: 87
  start-page: 659
  year: 2016
  ident: 10.1016/j.cor.2016.06.001_bib30
  article-title: A unified methodology for single- and multiobjective in-core fuel management optimisation based on augmented Chebyshev scalarisation and a harmony search algorithm
  publication-title: Ann Nucl Energy
  doi: 10.1016/j.anucene.2015.09.023
– volume: 211
  start-page: 112
  year: 2011
  ident: 10.1016/j.cor.2016.06.001_bib12
  article-title: The cross-entropy method in multi-objective optimisation
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2010.10.028
– volume: 187
  start-page: 977
  year: 2007
  ident: 10.1016/j.cor.2016.06.001_bib27
  article-title: Application of a genetic algorithm to the fuel reload optimization for a research reactor
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2006.09.024
– volume: 38
  start-page: 2787
  year: 2011
  ident: 10.1016/j.cor.2016.06.001_bib19
  article-title: An interval bound algorithm of optimizing reactor core loading pattern by using reactivity interval schema
  publication-title: Ann Nucl Energy
  doi: 10.1016/j.anucene.2011.08.029
– volume: 50
  start-page: 82
  year: 2012
  ident: 10.1016/j.cor.2016.06.001_bib5
  article-title: Developing a computational tool for predicting physical parameters of a typical VVER-1000 core based on artificial neural networks
  publication-title: Ann Nucl Energy
  doi: 10.1016/j.anucene.2012.04.022
– ident: 10.1016/j.cor.2016.06.001_bib24
– volume: 40
  start-page: 282
  year: 2013
  ident: 10.1016/j.cor.2016.06.001_bib36
  article-title: BSTBGA
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2012.07.014
– volume: 57
  start-page: 151
  year: 2013
  ident: 10.1016/j.cor.2016.06.001_bib21
  article-title: Multi-objective loading pattern enhancement of PWR based on the discrete firefly algorithm
  publication-title: Ann Nucl Energy
  doi: 10.1016/j.anucene.2013.01.043
– volume: 3
  start-page: 257
  issue: 4
  year: 1999
  ident: 10.1016/j.cor.2016.06.001_bib47
  article-title: Multiobjective evolutionary algorithms
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.797969
– volume: 151
  start-page: 3
  year: 2005
  ident: 10.1016/j.cor.2016.06.001_bib2
  article-title: Nuclear fuel management optimization
  publication-title: Nucl Technol
  doi: 10.13182/NT05-A3626
– volume: 51
  start-page: 319
  year: 2009
  ident: 10.1016/j.cor.2016.06.001_bib44
  article-title: Particle swarm optimization applied to the nuclear reload problem of a pressurized water reactor
  publication-title: Progr Nucl Energy
  doi: 10.1016/j.pnucene.2008.07.002
– ident: 10.1016/j.cor.2016.06.001_bib17
  doi: 10.1002/9781119196037
– ident: 10.1016/j.cor.2016.06.001_bib41
– volume: 29
  start-page: 73
  year: 2013
  ident: 10.1016/j.cor.2016.06.001_bib43
  article-title: Variable neighborhood search for multi-objective resource allocation problems
  publication-title: Robot Comput-Integr Manuf
  doi: 10.1016/j.rcim.2012.04.015
– ident: 10.1016/j.cor.2016.06.001_bib34
– volume: 239
  start-page: 2786
  year: 2009
  ident: 10.1016/j.cor.2016.06.001_bib29
  article-title: Optimization of the core configuration design using a hybrid artificial intelligence algorithm for research reactors
  publication-title: Nucl Eng Des
  doi: 10.1016/j.nucengdes.2009.08.027
– volume: 33
  start-page: 745
  year: 2011
  ident: 10.1016/j.cor.2016.06.001_bib13
  article-title: Multi-objective harmony search algorithm for optimal power flow problem
  publication-title: Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2010.12.031
– year: 1999
  ident: 10.1016/j.cor.2016.06.001_bib22
– ident: 10.1016/j.cor.2016.06.001_bib7
– ident: 10.1016/j.cor.2016.06.001_bib8
  doi: 10.1007/978-3-540-31880-4_35
– volume: 162
  start-page: 134
  year: 2009
  ident: 10.1016/j.cor.2016.06.001_bib28
  article-title: Multiobjective loading pattern optimization by simulated annealing employing discontinuous penalty function and screening technique
  publication-title: Nucl Sci Eng
  doi: 10.13182/NSE162-134
– ident: 10.1016/j.cor.2016.06.001_bib48
– volume: 44
  start-page: 263
  issue: 2
  year: 2004
  ident: 10.1016/j.cor.2016.06.001_bib4
  article-title: Application of artificial neural network for safety core parameters prediction in LWRRs
  publication-title: Progr Nucl Energy
  doi: 10.1016/S0149-1970(04)90014-5
– year: 1988
  ident: 10.1016/j.cor.2016.06.001_bib42
– ident: 10.1016/j.cor.2016.06.001_bib31
– volume: 13
  start-page: 129
  year: 1999
  ident: 10.1016/j.cor.2016.06.001_bib37
  article-title: Genetic algorithms for the travelling salesman problem
  publication-title: Artif Intell Rev
  doi: 10.1023/A:1006529012972
– ident: 10.1016/j.cor.2016.06.001_bib35
– ident: 10.1016/j.cor.2016.06.001_bib39
– ident: 10.1016/j.cor.2016.06.001_bib26
– volume: 43
  start-page: 91
  year: 2012
  ident: 10.1016/j.cor.2016.06.001_bib45
  article-title: Automatic pressurized water reactor loading pattern design using ant colony algorithms
  publication-title: Ann Nucl Energy
  doi: 10.1016/j.anucene.2011.12.002
– volume: 6
  start-page: 154
  issue: 2
  year: 1994
  ident: 10.1016/j.cor.2016.06.001_bib40
  article-title: Genetic algorithms and random keys for sequencing and optimization
  publication-title: ORSA J Comput
  doi: 10.1287/ijoc.6.2.154
– ident: 10.1016/j.cor.2016.06.001_bib16
  doi: 10.1007/978-3-540-88908-3
– year: 1987
  ident: 10.1016/j.cor.2016.06.001_bib18
– volume: 1
  start-page: 3
  year: 2011
  ident: 10.1016/j.cor.2016.06.001_bib49
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2011.02.002
– ident: 10.1016/j.cor.2016.06.001_bib1
– ident: 10.1016/j.cor.2016.06.001_bib11
– volume: 5
  start-page: 4519
  issue: 3
  year: 2014
  ident: 10.1016/j.cor.2016.06.001_bib38
  article-title: Study of various mutation operators in genetic algorithms
  publication-title: Int J Comput Sci Inf Technol
– ident: 10.1016/j.cor.2016.06.001_bib32
SSID ssj0000721
Score 2.2812696
Snippet In this paper, the topic of constrained multiobjective in-core fuel management optimisation (MICFMO) using metaheuristics is considered. Several modern and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 174
SubjectTerms Algorithms
Comparative studies
Constraint handling
Constraints
Genetic algorithms
Handling
Heuristic
Heuristic methods
In-core fuel management optimisation
Mathematical models
Metaheuristics
Multiobjective optimisation
Nuclear reactor
Nuclear reactors
Optimization
Penalty function
Problem solving
Search algorithms
Statistical analysis
Title A comparative study on multiobjective metaheuristics for solving constrained in-core fuel management optimisation problems
URI https://dx.doi.org/10.1016/j.cor.2016.06.001
https://www.proquest.com/docview/1810362390
https://www.proquest.com/docview/1835599574
Volume 75
WOSCitedRecordID wos000380600000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-765X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000721
  issn: 0305-0548
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbKhhAc-FFAFAYyErswBdVxfh4LtBqoKkh0U29W4jgapSSlbaqJE38678V2kw0xjQOXqE2dNMn78vzZfu97hLxCr8gjGQBziwNMyXGdxE0iJ4gz301d35X1csHpOJxMotks_tzp_LK5MNtFWBTR-Xm8_K-mhn1gbEyd_Qdz704KO-AzGB22YHbYXsvwAxNXrhW911o0utCRg2U61w4OK0cnZ6qyOs0YbAiXtdUpuKgqmwD9RF0mB3Uuj_JKLUykq44eAE_z3UQCHZmiNOs20bXVItY1tsqlWpmYO6MutJuF_iLPsEpKPY89bGpAvy2_ldua4jbztZhqdVpVK5NPctyesWCBSd1rHBvHgEFfK2xaLxz6LTfKdOUe0yObb384ez3vMAdbobArC97ohaWmZ7Or-ZNPYnQyHovpcDY95KPlDwerjuHq_CF_rxFwg-y7oR-DX9wffBjOPja9eVjn7u2u2a6M1zGCl_75b9zmUi9fU5fpfXLXjDnoQGPlAemooktu2ZSHLrlnjUWNp--SOy2dyofk54C2MEVrTNGyoBcxRS9iigKmqMEUbWGKGkxRxBRtMEXbmKIWU4_IyWg4fXfsmKIdjvQY28CryPtu5mc8y5XvsTxnqu-GkoV5gOKBKg2DlDHFUuCqcRClMCRmuYzzvuIoNZTxx2SvKAv1hFAP5yuSKEuB5HrczVIYbqeZkh6XwL1C2SN9-7iFNIr2eCsLYUMX5wLuR6CFhA7f7JHXu0OWWs7lqsaetaEwfFTzTAEIvOqwA2tvYfzCWgCRRq7I436PvNz9DA8V1-eSQpUVtuG1_l_oPb1Gm2fkdvNyHZC9zapSz8lNud18Xa9eGBj_BhNYxIo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+study+on+multiobjective+metaheuristics+for+solving+constrained+in-core+fuel+management+optimisation+problems&rft.jtitle=Computers+%26+operations+research&rft.au=Schluenz%2C+E+B&rft.au=Bokov%2C+P+M&rft.au=van+Vuuren%2C+JH&rft.date=2016-11-01&rft.issn=0305-0548&rft.volume=75&rft.spage=174&rft.epage=174&rft_id=info:doi/10.1016%2Fj.cor.2016.06.001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0548&client=summon