The genetic structure of SARS‐CoV‐2 does not rule out a laboratory origin SARS‐COV‐2 chimeric structure and furin cleavage site might be the result of genetic manipulation
Severe acute respiratory syndrome‐coronavirus (SARS‐CoV)‐2′s origin is still controversial. Genomic analyses show SARS‐CoV‐2 likely to be chimeric, most of its sequence closest to bat CoV RaTG13, whereas its receptor binding domain (RBD) is almost identical to that of a pangolin CoV. Chimeric viruse...
Uloženo v:
| Vydáno v: | BioEssays Ročník 43; číslo 3; s. e2000240 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Wiley Subscription Services, Inc
01.03.2021
John Wiley and Sons Inc |
| Témata: | |
| ISSN: | 0265-9247, 1521-1878, 1521-1878 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Severe acute respiratory syndrome‐coronavirus (SARS‐CoV)‐2′s origin is still controversial. Genomic analyses show SARS‐CoV‐2 likely to be chimeric, most of its sequence closest to bat CoV RaTG13, whereas its receptor binding domain (RBD) is almost identical to that of a pangolin CoV. Chimeric viruses can arise
via
natural recombination or human intervention. The furin cleavage site in the spike protein of SARS‐CoV‐2 confers to the virus the ability to cross species and tissue barriers, but was previously unseen in other SARS‐like CoVs. Might genetic manipulations have been performed in order to evaluate pangolins as possible intermediate hosts for bat‐derived CoVs that were originally unable to bind to human receptors? Both cleavage site and specific RBD could result from site‐directed mutagenesis, a procedure that does not leave a trace. Considering the devastating impact of SARS‐CoV‐2 and importance of preventing future pandemics, researchers have a responsibility to carry out a thorough analysis of all possible SARS‐CoV‐2 origins. |
|---|---|
| AbstractList | Severe acute respiratory syndrome-coronavirus (SARS-CoV)-2's origin is still controversial. Genomic analyses show SARS-CoV-2 likely to be chimeric, most of its sequence closest to bat CoV RaTG13, whereas its receptor binding domain (RBD) is almost identical to that of a pangolin CoV. Chimeric viruses can arise via natural recombination or human intervention. The furin cleavage site in the spike protein of SARS-CoV-2 confers to the virus the ability to cross species and tissue barriers, but was previously unseen in other SARS-like CoVs. Might genetic manipulations have been performed in order to evaluate pangolins as possible intermediate hosts for bat-derived CoVs that were originally unable to bind to human receptors? Both cleavage site and specific RBD could result from site-directed mutagenesis, a procedure that does not leave a trace. Considering the devastating impact of SARS-CoV-2 and importance of preventing future pandemics, researchers have a responsibility to carry out a thorough analysis of all possible SARS-CoV-2 origins. Severe acute respiratory syndrome‐coronavirus (SARS‐CoV)‐2′s origin is still controversial. Genomic analyses show SARS‐CoV‐2 likely to be chimeric, most of its sequence closest to bat CoV RaTG13, whereas its receptor binding domain (RBD) is almost identical to that of a pangolin CoV. Chimeric viruses can arise via natural recombination or human intervention. The furin cleavage site in the spike protein of SARS‐CoV‐2 confers to the virus the ability to cross species and tissue barriers, but was previously unseen in other SARS‐like CoVs. Might genetic manipulations have been performed in order to evaluate pangolins as possible intermediate hosts for bat‐derived CoVs that were originally unable to bind to human receptors? Both cleavage site and specific RBD could result from site‐directed mutagenesis, a procedure that does not leave a trace. Considering the devastating impact of SARS‐CoV‐2 and importance of preventing future pandemics, researchers have a responsibility to carry out a thorough analysis of all possible SARS‐CoV‐2 origins. Severe acute respiratory syndrome‐coronavirus (SARS‐CoV)‐2′s origin is still controversial. Genomic analyses show SARS‐CoV‐2 likely to be chimeric, most of its sequence closest to bat CoV RaTG13, whereas its receptor binding domain (RBD) is almost identical to that of a pangolin CoV. Chimeric viruses can arise via natural recombination or human intervention. The furin cleavage site in the spike protein of SARS‐CoV‐2 confers to the virus the ability to cross species and tissue barriers, but was previously unseen in other SARS‐like CoVs. Might genetic manipulations have been performed in order to evaluate pangolins as possible intermediate hosts for bat‐derived CoVs that were originally unable to bind to human receptors? Both cleavage site and specific RBD could result from site‐directed mutagenesis, a procedure that does not leave a trace. Considering the devastating impact of SARS‐CoV‐2 and importance of preventing future pandemics, researchers have a responsibility to carry out a thorough analysis of all possible SARS‐CoV‐2 origins. The perfect binding ability of SARS‐CoV‐2 to human cells and the presence of the furin cleavage site, which is new for SARS‐like coronaviruses, might derive from genetic manipulation performed during evolutionary studies. By combining a bat coronavirus backbone and a receptor binding domain from pangolin coronavirus the resulting chimera would seem completely natural. Severe acute respiratory syndrome-coronavirus (SARS-CoV)-2's origin is still controversial. Genomic analyses show SARS-CoV-2 likely to be chimeric, most of its sequence closest to bat CoV RaTG13, whereas its receptor binding domain (RBD) is almost identical to that of a pangolin CoV. Chimeric viruses can arise via natural recombination or human intervention. The furin cleavage site in the spike protein of SARS-CoV-2 confers to the virus the ability to cross species and tissue barriers, but was previously unseen in other SARS-like CoVs. Might genetic manipulations have been performed in order to evaluate pangolins as possible intermediate hosts for bat-derived CoVs that were originally unable to bind to human receptors? Both cleavage site and specific RBD could result from site-directed mutagenesis, a procedure that does not leave a trace. Considering the devastating impact of SARS-CoV-2 and importance of preventing future pandemics, researchers have a responsibility to carry out a thorough analysis of all possible SARS-CoV-2 origins.Severe acute respiratory syndrome-coronavirus (SARS-CoV)-2's origin is still controversial. Genomic analyses show SARS-CoV-2 likely to be chimeric, most of its sequence closest to bat CoV RaTG13, whereas its receptor binding domain (RBD) is almost identical to that of a pangolin CoV. Chimeric viruses can arise via natural recombination or human intervention. The furin cleavage site in the spike protein of SARS-CoV-2 confers to the virus the ability to cross species and tissue barriers, but was previously unseen in other SARS-like CoVs. Might genetic manipulations have been performed in order to evaluate pangolins as possible intermediate hosts for bat-derived CoVs that were originally unable to bind to human receptors? Both cleavage site and specific RBD could result from site-directed mutagenesis, a procedure that does not leave a trace. Considering the devastating impact of SARS-CoV-2 and importance of preventing future pandemics, researchers have a responsibility to carry out a thorough analysis of all possible SARS-CoV-2 origins. |
| Author | Segreto, Rossana Deigin, Yuri |
| AuthorAffiliation | 2 Youthereum Genetics Inc. Toronto Ontario Canada 1 Department of Microbiology University of Innsbruck Innsbruck Austria |
| AuthorAffiliation_xml | – name: 2 Youthereum Genetics Inc. Toronto Ontario Canada – name: 1 Department of Microbiology University of Innsbruck Innsbruck Austria |
| Author_xml | – sequence: 1 givenname: Rossana orcidid: 0000-0002-2566-7042 surname: Segreto fullname: Segreto, Rossana organization: Department of Microbiology University of Innsbruck Innsbruck Austria – sequence: 2 givenname: Yuri surname: Deigin fullname: Deigin, Yuri organization: Youthereum Genetics Inc. Toronto Ontario Canada |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33200842$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkctqVTEUhoNU7Gl16lACTpzsY25752QilIM3qAi2Og25rH2ask9Sk-xCZz5Cn7FPYg69oAVxkkVY3_-z1voP0F5MERB6ScmSEsLe2gBlyQgj7SPIE7SgPaMdXcnVHloQNvSdYkLuo4NSzhujBiaeoX3Om2Al2AJ9OT0DvIEINThcap5dnTPgNOKTo28nN7-u1-lHexn2CQqOqeI8T60_V2zwZGzKpqZ8hVMOmxCfo6ejmQq8uKuH6PuH96frT93x14-f10fHnROU1o46L62llEnvx8FK4rnzXEpljQE_mJXnQEGO3vreO2cFKKUc772SigMf-SF6d-t7MdsteAexZjPpixy2Jl_pZIL-uxPDmd6kSy2lEIqRZvDmziCnnzOUqrehOJgmEyHNRbOeCU6U4v3_UTFQrgYx8Ia-foSepznHdolGKaLoQOmOevXn8A9T34fSAHELuJxKyTBqF6qpIe12CZOmRO-y17vs9UP2TbZ8JLt3_ofgN3pnssE |
| CitedBy_id | crossref_primary_10_1080_13669877_2022_2049623 crossref_primary_10_1080_14760584_2022_2089120 crossref_primary_10_20935_AcadMed7470 crossref_primary_10_1089_omi_2022_0178 crossref_primary_10_1016_j_envres_2021_112173 crossref_primary_10_1016_j_envres_2022_113062 crossref_primary_10_1128_spectrum_00716_22 crossref_primary_10_3748_wjg_v27_i15_1531 crossref_primary_10_1007_s10311_021_01211_0 crossref_primary_10_1016_j_jaip_2022_10_002 crossref_primary_10_1080_19420889_2022_2057010 crossref_primary_10_5812_jjm_122889 crossref_primary_10_1002_jmv_28060 crossref_primary_10_1007_s10441_021_09425_z crossref_primary_10_2217_fvl_2021_0233 crossref_primary_10_7717_peerj_12434 crossref_primary_10_5802_crbiol_183 crossref_primary_10_3389_fmed_2021_702066 crossref_primary_10_1016_j_envres_2021_112141 crossref_primary_10_1016_j_jaip_2022_06_011 crossref_primary_10_3390_biom11030398 crossref_primary_10_1080_02648725_2022_2115682 crossref_primary_10_3390_v13102006 crossref_primary_10_1136_jcp_2022_208305 crossref_primary_10_3390_microbiolres15030119 crossref_primary_10_1007_s11427_021_1972_1 crossref_primary_10_3390_v14030454 crossref_primary_10_1016_j_envres_2022_114131 crossref_primary_10_3390_microorganisms9122578 crossref_primary_10_1016_j_envres_2022_113047 crossref_primary_10_1371_journal_pone_0270276 crossref_primary_10_3389_fimmu_2021_798389 crossref_primary_10_14512_gaia_30_4_3 crossref_primary_10_1016_j_antiviral_2024_105894 crossref_primary_10_1016_j_cosust_2020_10_005 crossref_primary_10_1016_j_envres_2021_111785 crossref_primary_10_1080_1744666X_2022_2044797 crossref_primary_10_1007_s10311_020_01151_1 crossref_primary_10_1162_posc_a_00636 crossref_primary_10_3390_microorganisms12122622 crossref_primary_10_1016_j_bjid_2023_102808 crossref_primary_10_7717_peerj_13700 crossref_primary_10_1016_j_jaip_2021_06_019 crossref_primary_10_1093_molbev_msab327 crossref_primary_10_3390_v14020440 crossref_primary_10_1016_j_futures_2022_102970 crossref_primary_10_1080_1744666X_2022_2074403 crossref_primary_10_1002_bies_202100194 crossref_primary_10_1371_journal_pone_0276773 crossref_primary_10_1017_S0950268824001110 crossref_primary_10_15252_embr_202152500 crossref_primary_10_1016_j_procs_2023_10_037 crossref_primary_10_52679_tabcj_2021_0012 crossref_primary_10_3389_fphys_2021_748972 crossref_primary_10_1111_tbed_14732 |
| Cites_doi | 10.1155/2020/4389089 10.1186/s12985-019-1182-0 10.1016/j.virusres.2014.05.026 10.1038/s41591-020-0820-9 10.1128/JVI.01394-09 10.1038/s41586-020-2313-x 10.3390/v11110979 10.1128/JVI.00948-15 10.1007/s12250-020-00212-7 10.1038/d41586-019-03863-z 10.1080/22221751.2020.1756700 10.1038/s41586-020-2179-y 10.1128/JVI.00411-20 10.1080/17460441.2019.1581171 10.3201/eid2612.201664 10.1128/JVI.74.3.1393-1406.2000 10.3390/v10040185 10.1126/science.abb2507 10.1016/S0140-6736(20)30418-9 10.1371/journal.ppat.1006698 10.1016/j.virol.2017.12.009 10.1007/s12250-016-3713-9 10.1038/ncomms12626 10.1007/978-1-4939-2438-7 10.1073/pnas.1517719113 10.1006/viro.1999.9716 10.3390/v11100972 10.1128/JVI.00127-20 10.3390/v11030210 10.1128/mBio.00221-18 10.1016/j.antiviral.2020.104742 10.1016/j.cub.2020.03.022 10.1038/s41587-019-0225-9 10.1016/j.coviro.2018.12.007 10.1056/NEJMoa032565 10.3201/eid2006.131022 10.1038/nature.2017.21487 10.1038/nature12711 10.1093/nar/gkf469 10.1038/s41426-018-0155-5 10.1128/JVI.03079-15 10.1073/pnas.0808116105 10.1016/j.molcel.2020.04.022 10.1038/s41564-020-0688-y 10.1038/s41586-020-2294-9 10.1016/j.cub.2020.05.023 10.3390/v11040379 10.1128/mBio.00064-14 10.3390/ijms20133193 10.1126/science.369.6503.487 10.1073/pnas.1601512113 10.1038/nm.3985 10.1038/s41586-020-2169-0 10.1038/s41579-018-0118-9 10.1002/jmv.25731 10.1038/s41586-020-2012-7 10.1128/JVI.00790-20 10.1371/journal.pone.0011184 10.1038/d41586-020-00660-x 10.1038/s41422-020-0305-x 10.1080/22221751.2020.1725399 10.1002/bies.202000091 |
| ContentType | Journal Article |
| Copyright | 2020 The Authors. BioEssays published by Wiley Periodicals LLC. 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 The Authors. published by Wiley Periodicals LLC |
| Copyright_xml | – notice: 2020 The Authors. BioEssays published by Wiley Periodicals LLC. – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 The Authors. published by Wiley Periodicals LLC |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7QP 7QR 7SS 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
| DOI | 10.1002/bies.202000240 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE CrossRef Virology and AIDS Abstracts AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| DocumentTitleAlternate | SEGRETO and DEIGIN |
| EISSN | 1521-1878 |
| ExternalDocumentID | PMC7744920 33200842 10_1002_bies_202000240 |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEFU ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACIWK ACKIV ACKOT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AETEA AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BY8 C45 CITATION CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KD1 KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O8X O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UDS V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WXSBR WYISQ XG1 XV2 Y6R YYQ YZZ ZGI ZUP ZXP ZY4 ZZTAW ~IA ~KM ~WT CGR CUY CVF ECM EIF NPM 7QL 7QO 7QP 7QR 7SS 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c411t-1cd7bb1127ddf6b70d3cd3779baaed6a8d3e1e7fdbd5dccb4e999c35d9793e3f3 |
| ISICitedReferencesCount | 66 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000589718700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0265-9247 1521-1878 |
| IngestDate | Tue Nov 04 01:50:08 EST 2025 Fri Jul 11 18:24:54 EDT 2025 Sun Nov 09 14:16:40 EST 2025 Fri Jul 25 11:03:49 EDT 2025 Mon Jul 21 05:51:00 EDT 2025 Tue Nov 18 21:50:04 EST 2025 Sat Nov 29 05:24:46 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | receptor binding domain SARS-CoV-2 pangolin CoV furin cleavage site BtCov/4991 Gain-of-function studies RaTG13 |
| Language | English |
| License | 2020 The Authors. BioEssays published by Wiley Periodicals LLC. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c411t-1cd7bb1127ddf6b70d3cd3779baaed6a8d3e1e7fdbd5dccb4e999c35d9793e3f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Rossana Segreto and Yuri Deigin contributed equally to this study. No external funding was received for this work. |
| ORCID | 0000-0002-2566-7042 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7744920 |
| PMID | 33200842 |
| PQID | 2490916113 |
| PQPubID | 37030 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7744920 proquest_miscellaneous_2524309935 proquest_miscellaneous_2461396463 proquest_journals_2490916113 pubmed_primary_33200842 crossref_citationtrail_10_1002_bies_202000240 crossref_primary_10_1002_bies_202000240 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-01 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Cambridge – name: Hoboken |
| PublicationTitle | BioEssays |
| PublicationTitleAlternate | Bioessays |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
| References | e_1_2_13_24_1 e_1_2_13_49_1 e_1_2_13_26_1 e_1_2_13_47_1 e_1_2_13_20_1 e_1_2_13_45_1 e_1_2_13_66_1 e_1_2_13_22_1 e_1_2_13_43_1 e_1_2_13_64_1 e_1_2_13_8_1 e_1_2_13_41_1 e_1_2_13_62_1 e_1_2_13_60_1 e_1_2_13_6_1 Fraguas Bringas C. (e_1_2_13_52_1) 2020 e_1_2_13_17_1 e_1_2_13_19_1 e_1_2_13_13_1 e_1_2_13_36_1 e_1_2_13_59_1 Seyran M. (e_1_2_13_48_1) 2020 e_1_2_13_15_1 e_1_2_13_38_1 e_1_2_13_57_1 e_1_2_13_32_1 e_1_2_13_55_1 e_1_2_13_11_1 e_1_2_13_34_1 e_1_2_13_53_1 e_1_2_13_51_1 e_1_2_13_30_1 e_1_2_13_4_1 e_1_2_13_2_1 e_1_2_13_29_1 e_1_2_13_25_1 e_1_2_13_27_1 e_1_2_13_46_1 e_1_2_13_69_1 e_1_2_13_21_1 e_1_2_13_44_1 e_1_2_13_67_1 e_1_2_13_42_1 e_1_2_13_65_1 Weiss S. (e_1_2_13_23_1) 2015; 17 e_1_2_13_9_1 e_1_2_13_40_1 e_1_2_13_63_1 e_1_2_13_7_1 e_1_2_13_61_1 e_1_2_13_18_1 e_1_2_13_39_1 Cyranoski D. (e_1_2_13_68_1) 2020 e_1_2_13_14_1 e_1_2_13_35_1 e_1_2_13_16_1 e_1_2_13_37_1 e_1_2_13_58_1 e_1_2_13_10_1 e_1_2_13_31_1 e_1_2_13_56_1 e_1_2_13_12_1 e_1_2_13_33_1 e_1_2_13_54_1 e_1_2_13_50_1 e_1_2_13_5_1 e_1_2_13_3_1 e_1_2_13_28_1 33751609 - Bioessays. 2021 May;43(5):e2000325. doi: 10.1002/bies.202000325 |
| References_xml | – ident: e_1_2_13_14_1 doi: 10.1155/2020/4389089 – ident: e_1_2_13_15_1 doi: 10.1186/s12985-019-1182-0 – ident: e_1_2_13_54_1 doi: 10.1016/j.virusres.2014.05.026 – ident: e_1_2_13_3_1 doi: 10.1038/s41591-020-0820-9 – ident: e_1_2_13_19_1 doi: 10.1128/JVI.01394-09 – ident: e_1_2_13_35_1 doi: 10.1038/s41586-020-2313-x – ident: e_1_2_13_13_1 doi: 10.3390/v11110979 – ident: e_1_2_13_28_1 doi: 10.1128/JVI.00948-15 – ident: e_1_2_13_39_1 doi: 10.1007/s12250-020-00212-7 – ident: e_1_2_13_63_1 doi: 10.1038/d41586-019-03863-z – ident: e_1_2_13_40_1 doi: 10.1080/22221751.2020.1756700 – ident: e_1_2_13_61_1 doi: 10.1038/s41586-020-2179-y – ident: e_1_2_13_5_1 doi: 10.1128/JVI.00411-20 – ident: e_1_2_13_27_1 doi: 10.1080/17460441.2019.1581171 – ident: e_1_2_13_66_1 doi: 10.3201/eid2612.201664 – year: 2020 ident: e_1_2_13_68_1 publication-title: Nature – ident: e_1_2_13_9_1 – ident: e_1_2_13_29_1 doi: 10.1128/JVI.74.3.1393-1406.2000 – ident: e_1_2_13_60_1 doi: 10.3390/v10040185 – ident: e_1_2_13_56_1 doi: 10.1126/science.abb2507 – ident: e_1_2_13_67_1 doi: 10.1016/S0140-6736(20)30418-9 – ident: e_1_2_13_16_1 doi: 10.1371/journal.ppat.1006698 – ident: e_1_2_13_21_1 doi: 10.1016/j.virol.2017.12.009 – ident: e_1_2_13_6_1 doi: 10.1007/s12250-016-3713-9 – ident: e_1_2_13_57_1 doi: 10.1038/ncomms12626 – ident: e_1_2_13_30_1 doi: 10.1007/978-1-4939-2438-7 – ident: e_1_2_13_32_1 doi: 10.1073/pnas.1517719113 – ident: e_1_2_13_47_1 doi: 10.1006/viro.1999.9716 – ident: e_1_2_13_55_1 doi: 10.3390/v11100972 – volume: 17 start-page: 269 year: 2015 ident: e_1_2_13_23_1 article-title: Lessons to be learned from recent biosafety incidents in the United States publication-title: Isr. Med. Assoc. J. – ident: e_1_2_13_50_1 doi: 10.1128/JVI.00127-20 – ident: e_1_2_13_17_1 doi: 10.3390/v11030210 – ident: e_1_2_13_25_1 doi: 10.1128/mBio.00221-18 – ident: e_1_2_13_37_1 doi: 10.1016/j.antiviral.2020.104742 – ident: e_1_2_13_36_1 doi: 10.1016/j.cub.2020.03.022 – ident: e_1_2_13_58_1 doi: 10.1038/s41587-019-0225-9 – year: 2020 ident: e_1_2_13_48_1 article-title: Questions concerning the proximal origin of SARS‐CoV‐2 publication-title: J. Med. Virol. – ident: e_1_2_13_49_1 doi: 10.1016/j.coviro.2018.12.007 – ident: e_1_2_13_64_1 doi: 10.1056/NEJMoa032565 – ident: e_1_2_13_7_1 doi: 10.3201/eid2006.131022 – ident: e_1_2_13_65_1 doi: 10.1038/nature.2017.21487 – ident: e_1_2_13_18_1 doi: 10.1038/nature12711 – ident: e_1_2_13_44_1 doi: 10.1093/nar/gkf469 – ident: e_1_2_13_59_1 doi: 10.1038/s41426-018-0155-5 – ident: e_1_2_13_43_1 doi: 10.1128/JVI.03079-15 – ident: e_1_2_13_31_1 doi: 10.1073/pnas.0808116105 – ident: e_1_2_13_41_1 doi: 10.1016/j.molcel.2020.04.022 – start-page: 10 year: 2020 ident: e_1_2_13_52_1 article-title: Identification of a SARS‐like bat coronavirus that shares structural features with the spike glycoprotein receptor‐binding domain of SARS‐CoV‐2 publication-title: Access Microbiol. – ident: e_1_2_13_8_1 – ident: e_1_2_13_38_1 doi: 10.1038/s41564-020-0688-y – ident: e_1_2_13_69_1 doi: 10.1038/s41586-020-2294-9 – ident: e_1_2_13_46_1 doi: 10.1016/j.cub.2020.05.023 – ident: e_1_2_13_10_1 doi: 10.3390/v11040379 – ident: e_1_2_13_24_1 doi: 10.1128/mBio.00064-14 – ident: e_1_2_13_42_1 doi: 10.3390/ijms20133193 – ident: e_1_2_13_12_1 doi: 10.1126/science.369.6503.487 – ident: e_1_2_13_22_1 doi: 10.1073/pnas.1601512113 – ident: e_1_2_13_20_1 doi: 10.1038/nm.3985 – ident: e_1_2_13_34_1 doi: 10.1038/s41586-020-2169-0 – ident: e_1_2_13_51_1 doi: 10.1038/s41579-018-0118-9 – ident: e_1_2_13_33_1 doi: 10.1002/jmv.25731 – ident: e_1_2_13_4_1 doi: 10.1038/s41586-020-2012-7 – ident: e_1_2_13_45_1 doi: 10.1128/JVI.00790-20 – ident: e_1_2_13_62_1 doi: 10.1371/journal.pone.0011184 – ident: e_1_2_13_53_1 doi: 10.1038/d41586-020-00660-x – ident: e_1_2_13_26_1 doi: 10.1038/s41422-020-0305-x – ident: e_1_2_13_11_1 doi: 10.1080/22221751.2020.1725399 – ident: e_1_2_13_2_1 doi: 10.1002/bies.202000091 – reference: 33751609 - Bioessays. 2021 May;43(5):e2000325. doi: 10.1002/bies.202000325 |
| SSID | ssj0009624 |
| Score | 2.599178 |
| Snippet | Severe acute respiratory syndrome‐coronavirus (SARS‐CoV)‐2′s origin is still controversial. Genomic analyses show SARS‐CoV‐2 likely to be chimeric, most of its... Severe acute respiratory syndrome-coronavirus (SARS-CoV)-2's origin is still controversial. Genomic analyses show SARS-CoV-2 likely to be chimeric, most of its... |
| SourceID | pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e2000240 |
| SubjectTerms | Angiotensin-Converting Enzyme 2 - genetics Angiotensin-Converting Enzyme 2 - metabolism Animals Base Sequence China Chiroptera - virology Cleavage Coronaviruses COVID-19 COVID-19 - pathology COVID-19 - transmission COVID-19 - virology Eutheria - virology Furin Furin - metabolism Genetic Engineering - ethics Genetic structure Genomic analysis genomics Humans Mutagenesis, Site-Directed - methods Pandemics Pholidota (mammals) Problems & Paradigms Protein Binding Reassortant Viruses - genetics Reassortant Viruses - metabolism Reassortant Viruses - pathogenicity Receptors Receptors, Virus - genetics Receptors, Virus - metabolism Recombination SARS-CoV-2 - genetics SARS-CoV-2 - metabolism SARS-CoV-2 - pathogenicity Sequence Alignment Severe acute respiratory syndrome Severe acute respiratory syndrome coronavirus 2 Site-directed mutagenesis Spike Glycoprotein, Coronavirus - genetics Spike Glycoprotein, Coronavirus - metabolism Spike protein Viral diseases viruses |
| Subtitle | SARS‐COV‐2 chimeric structure and furin cleavage site might be the result of genetic manipulation |
| Title | The genetic structure of SARS‐CoV‐2 does not rule out a laboratory origin |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33200842 https://www.proquest.com/docview/2490916113 https://www.proquest.com/docview/2461396463 https://www.proquest.com/docview/2524309935 https://pubmed.ncbi.nlm.nih.gov/PMC7744920 |
| Volume | 43 |
| WOSCitedRecordID | wos000589718700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1521-1878 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009624 issn: 0265-9247 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLWmLUhsEG8CpTISEosoIrETO15WfYgFVGjaotlFju2IkaqkmkfV7voJ_Ua-hOs48UxKQWXBJori64knx7mP-PpchD5wpoQyLI5MJlmUipxFYBZIlFZGGG2ddla1xSb40VE-mYhvo5HfxX9xxus6v7wU5_8VargGYNuts_8At_9RuADnADocAXY43ht4aLSbE0PHDmvXCOzelN3xsc9t2Gu--3MS6sbMw7pZhLOlTTZcLkIZdtOjXYNvq2cN1n-nzcF8Lq-8R35sIHBvSzKFY7C7svbqft_Yzq2qX86m618ZyFqaVaeMCMsiiNWccTSdsgS5JHcleHpt6kiXullD71TSjvS1tF8C4FZxS7O2Mkf9EvwtK-VzBx3PMils_8L330BbhGcC9NrW_vjw9MuKeJm1hY39-Hvizph8Go5g6Jj8Fm3cTppd80JOnqDHXfiAdx3sT9HI1M_QQ1dQ9Oo5-grg4w587MHHTYUt-D-vbwB2OBJsAccAOLaAYwAcS7wCHDvAX6DTw4OTvc9RVzAjUmmSLKJEaV6W4EFzrStW8lhTpS2jZCml0UzmmprE8EqXOtNKlamB8EDRTAvQ0oZW9CXarJvavEaY8CozqVKxpfOXTNi6j0kFVlURXUmZByjqn1ahOjZ5W9TkrLgbnwB99PLnjkflj5Lb_cMvutcKWlMBji1LEhqg974ZNKFd3pK1aZZWBlxTwVL2N5mMpBSCIpoF6JXD0w-HUpsLlJIA8QHSXsAysQ9b6umPlpEdYqhUkPjNvf_kW_Ro9ZZto02YEOYdeqAuFtP5bAdt8Em-083kXz_Kp8Q |
| linkProvider | Wiley-Blackwell |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+genetic+structure+of+SARS%E2%80%90CoV%E2%80%902+does+not+rule+out+a+laboratory+origin&rft.jtitle=BioEssays&rft.au=Segreto%2C+Rossana&rft.au=Deigin%2C+Yuri&rft.date=2021-03-01&rft.issn=0265-9247&rft.eissn=1521-1878&rft.volume=43&rft.issue=3&rft_id=info:doi/10.1002%2Fbies.202000240&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_bies_202000240 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0265-9247&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0265-9247&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0265-9247&client=summon |