The genetic structure of SARS‐CoV‐2 does not rule out a laboratory origin SARS‐COV‐2 chimeric structure and furin cleavage site might be the result of genetic manipulation

Severe acute respiratory syndrome‐coronavirus (SARS‐CoV)‐2′s origin is still controversial. Genomic analyses show SARS‐CoV‐2 likely to be chimeric, most of its sequence closest to bat CoV RaTG13, whereas its receptor binding domain (RBD) is almost identical to that of a pangolin CoV. Chimeric viruse...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BioEssays Ročník 43; číslo 3; s. e2000240
Hlavní autoři: Segreto, Rossana, Deigin, Yuri
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Wiley Subscription Services, Inc 01.03.2021
John Wiley and Sons Inc
Témata:
ISSN:0265-9247, 1521-1878, 1521-1878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Severe acute respiratory syndrome‐coronavirus (SARS‐CoV)‐2′s origin is still controversial. Genomic analyses show SARS‐CoV‐2 likely to be chimeric, most of its sequence closest to bat CoV RaTG13, whereas its receptor binding domain (RBD) is almost identical to that of a pangolin CoV. Chimeric viruses can arise via natural recombination or human intervention. The furin cleavage site in the spike protein of SARS‐CoV‐2 confers to the virus the ability to cross species and tissue barriers, but was previously unseen in other SARS‐like CoVs. Might genetic manipulations have been performed in order to evaluate pangolins as possible intermediate hosts for bat‐derived CoVs that were originally unable to bind to human receptors? Both cleavage site and specific RBD could result from site‐directed mutagenesis, a procedure that does not leave a trace. Considering the devastating impact of SARS‐CoV‐2 and importance of preventing future pandemics, researchers have a responsibility to carry out a thorough analysis of all possible SARS‐CoV‐2 origins.
AbstractList Severe acute respiratory syndrome-coronavirus (SARS-CoV)-2's origin is still controversial. Genomic analyses show SARS-CoV-2 likely to be chimeric, most of its sequence closest to bat CoV RaTG13, whereas its receptor binding domain (RBD) is almost identical to that of a pangolin CoV. Chimeric viruses can arise via natural recombination or human intervention. The furin cleavage site in the spike protein of SARS-CoV-2 confers to the virus the ability to cross species and tissue barriers, but was previously unseen in other SARS-like CoVs. Might genetic manipulations have been performed in order to evaluate pangolins as possible intermediate hosts for bat-derived CoVs that were originally unable to bind to human receptors? Both cleavage site and specific RBD could result from site-directed mutagenesis, a procedure that does not leave a trace. Considering the devastating impact of SARS-CoV-2 and importance of preventing future pandemics, researchers have a responsibility to carry out a thorough analysis of all possible SARS-CoV-2 origins.
Severe acute respiratory syndrome‐coronavirus (SARS‐CoV)‐2′s origin is still controversial. Genomic analyses show SARS‐CoV‐2 likely to be chimeric, most of its sequence closest to bat CoV RaTG13, whereas its receptor binding domain (RBD) is almost identical to that of a pangolin CoV. Chimeric viruses can arise via natural recombination or human intervention. The furin cleavage site in the spike protein of SARS‐CoV‐2 confers to the virus the ability to cross species and tissue barriers, but was previously unseen in other SARS‐like CoVs. Might genetic manipulations have been performed in order to evaluate pangolins as possible intermediate hosts for bat‐derived CoVs that were originally unable to bind to human receptors? Both cleavage site and specific RBD could result from site‐directed mutagenesis, a procedure that does not leave a trace. Considering the devastating impact of SARS‐CoV‐2 and importance of preventing future pandemics, researchers have a responsibility to carry out a thorough analysis of all possible SARS‐CoV‐2 origins.
Severe acute respiratory syndrome‐coronavirus (SARS‐CoV)‐2′s origin is still controversial. Genomic analyses show SARS‐CoV‐2 likely to be chimeric, most of its sequence closest to bat CoV RaTG13, whereas its receptor binding domain (RBD) is almost identical to that of a pangolin CoV. Chimeric viruses can arise via natural recombination or human intervention. The furin cleavage site in the spike protein of SARS‐CoV‐2 confers to the virus the ability to cross species and tissue barriers, but was previously unseen in other SARS‐like CoVs. Might genetic manipulations have been performed in order to evaluate pangolins as possible intermediate hosts for bat‐derived CoVs that were originally unable to bind to human receptors? Both cleavage site and specific RBD could result from site‐directed mutagenesis, a procedure that does not leave a trace. Considering the devastating impact of SARS‐CoV‐2 and importance of preventing future pandemics, researchers have a responsibility to carry out a thorough analysis of all possible SARS‐CoV‐2 origins. The perfect binding ability of SARS‐CoV‐2 to human cells and the presence of the furin cleavage site, which is new for SARS‐like coronaviruses, might derive from genetic manipulation performed during evolutionary studies. By combining a bat coronavirus backbone and a receptor binding domain from pangolin coronavirus the resulting chimera would seem completely natural.
Severe acute respiratory syndrome-coronavirus (SARS-CoV)-2's origin is still controversial. Genomic analyses show SARS-CoV-2 likely to be chimeric, most of its sequence closest to bat CoV RaTG13, whereas its receptor binding domain (RBD) is almost identical to that of a pangolin CoV. Chimeric viruses can arise via natural recombination or human intervention. The furin cleavage site in the spike protein of SARS-CoV-2 confers to the virus the ability to cross species and tissue barriers, but was previously unseen in other SARS-like CoVs. Might genetic manipulations have been performed in order to evaluate pangolins as possible intermediate hosts for bat-derived CoVs that were originally unable to bind to human receptors? Both cleavage site and specific RBD could result from site-directed mutagenesis, a procedure that does not leave a trace. Considering the devastating impact of SARS-CoV-2 and importance of preventing future pandemics, researchers have a responsibility to carry out a thorough analysis of all possible SARS-CoV-2 origins.Severe acute respiratory syndrome-coronavirus (SARS-CoV)-2's origin is still controversial. Genomic analyses show SARS-CoV-2 likely to be chimeric, most of its sequence closest to bat CoV RaTG13, whereas its receptor binding domain (RBD) is almost identical to that of a pangolin CoV. Chimeric viruses can arise via natural recombination or human intervention. The furin cleavage site in the spike protein of SARS-CoV-2 confers to the virus the ability to cross species and tissue barriers, but was previously unseen in other SARS-like CoVs. Might genetic manipulations have been performed in order to evaluate pangolins as possible intermediate hosts for bat-derived CoVs that were originally unable to bind to human receptors? Both cleavage site and specific RBD could result from site-directed mutagenesis, a procedure that does not leave a trace. Considering the devastating impact of SARS-CoV-2 and importance of preventing future pandemics, researchers have a responsibility to carry out a thorough analysis of all possible SARS-CoV-2 origins.
Author Segreto, Rossana
Deigin, Yuri
AuthorAffiliation 2 Youthereum Genetics Inc. Toronto Ontario Canada
1 Department of Microbiology University of Innsbruck Innsbruck Austria
AuthorAffiliation_xml – name: 2 Youthereum Genetics Inc. Toronto Ontario Canada
– name: 1 Department of Microbiology University of Innsbruck Innsbruck Austria
Author_xml – sequence: 1
  givenname: Rossana
  orcidid: 0000-0002-2566-7042
  surname: Segreto
  fullname: Segreto, Rossana
  organization: Department of Microbiology University of Innsbruck Innsbruck Austria
– sequence: 2
  givenname: Yuri
  surname: Deigin
  fullname: Deigin, Yuri
  organization: Youthereum Genetics Inc. Toronto Ontario Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33200842$$D View this record in MEDLINE/PubMed
BookMark eNqFkctqVTEUhoNU7Gl16lACTpzsY25752QilIM3qAi2Og25rH2ask9Sk-xCZz5Cn7FPYg69oAVxkkVY3_-z1voP0F5MERB6ScmSEsLe2gBlyQgj7SPIE7SgPaMdXcnVHloQNvSdYkLuo4NSzhujBiaeoX3Om2Al2AJ9OT0DvIEINThcap5dnTPgNOKTo28nN7-u1-lHexn2CQqOqeI8T60_V2zwZGzKpqZ8hVMOmxCfo6ejmQq8uKuH6PuH96frT93x14-f10fHnROU1o46L62llEnvx8FK4rnzXEpljQE_mJXnQEGO3vreO2cFKKUc772SigMf-SF6d-t7MdsteAexZjPpixy2Jl_pZIL-uxPDmd6kSy2lEIqRZvDmziCnnzOUqrehOJgmEyHNRbOeCU6U4v3_UTFQrgYx8Ia-foSepznHdolGKaLoQOmOevXn8A9T34fSAHELuJxKyTBqF6qpIe12CZOmRO-y17vs9UP2TbZ8JLt3_ofgN3pnssE
CitedBy_id crossref_primary_10_1080_13669877_2022_2049623
crossref_primary_10_1080_14760584_2022_2089120
crossref_primary_10_20935_AcadMed7470
crossref_primary_10_1089_omi_2022_0178
crossref_primary_10_1016_j_envres_2021_112173
crossref_primary_10_1016_j_envres_2022_113062
crossref_primary_10_1128_spectrum_00716_22
crossref_primary_10_3748_wjg_v27_i15_1531
crossref_primary_10_1007_s10311_021_01211_0
crossref_primary_10_1016_j_jaip_2022_10_002
crossref_primary_10_1080_19420889_2022_2057010
crossref_primary_10_5812_jjm_122889
crossref_primary_10_1002_jmv_28060
crossref_primary_10_1007_s10441_021_09425_z
crossref_primary_10_2217_fvl_2021_0233
crossref_primary_10_7717_peerj_12434
crossref_primary_10_5802_crbiol_183
crossref_primary_10_3389_fmed_2021_702066
crossref_primary_10_1016_j_envres_2021_112141
crossref_primary_10_1016_j_jaip_2022_06_011
crossref_primary_10_3390_biom11030398
crossref_primary_10_1080_02648725_2022_2115682
crossref_primary_10_3390_v13102006
crossref_primary_10_1136_jcp_2022_208305
crossref_primary_10_3390_microbiolres15030119
crossref_primary_10_1007_s11427_021_1972_1
crossref_primary_10_3390_v14030454
crossref_primary_10_1016_j_envres_2022_114131
crossref_primary_10_3390_microorganisms9122578
crossref_primary_10_1016_j_envres_2022_113047
crossref_primary_10_1371_journal_pone_0270276
crossref_primary_10_3389_fimmu_2021_798389
crossref_primary_10_14512_gaia_30_4_3
crossref_primary_10_1016_j_antiviral_2024_105894
crossref_primary_10_1016_j_cosust_2020_10_005
crossref_primary_10_1016_j_envres_2021_111785
crossref_primary_10_1080_1744666X_2022_2044797
crossref_primary_10_1007_s10311_020_01151_1
crossref_primary_10_1162_posc_a_00636
crossref_primary_10_3390_microorganisms12122622
crossref_primary_10_1016_j_bjid_2023_102808
crossref_primary_10_7717_peerj_13700
crossref_primary_10_1016_j_jaip_2021_06_019
crossref_primary_10_1093_molbev_msab327
crossref_primary_10_3390_v14020440
crossref_primary_10_1016_j_futures_2022_102970
crossref_primary_10_1080_1744666X_2022_2074403
crossref_primary_10_1002_bies_202100194
crossref_primary_10_1371_journal_pone_0276773
crossref_primary_10_1017_S0950268824001110
crossref_primary_10_15252_embr_202152500
crossref_primary_10_1016_j_procs_2023_10_037
crossref_primary_10_52679_tabcj_2021_0012
crossref_primary_10_3389_fphys_2021_748972
crossref_primary_10_1111_tbed_14732
Cites_doi 10.1155/2020/4389089
10.1186/s12985-019-1182-0
10.1016/j.virusres.2014.05.026
10.1038/s41591-020-0820-9
10.1128/JVI.01394-09
10.1038/s41586-020-2313-x
10.3390/v11110979
10.1128/JVI.00948-15
10.1007/s12250-020-00212-7
10.1038/d41586-019-03863-z
10.1080/22221751.2020.1756700
10.1038/s41586-020-2179-y
10.1128/JVI.00411-20
10.1080/17460441.2019.1581171
10.3201/eid2612.201664
10.1128/JVI.74.3.1393-1406.2000
10.3390/v10040185
10.1126/science.abb2507
10.1016/S0140-6736(20)30418-9
10.1371/journal.ppat.1006698
10.1016/j.virol.2017.12.009
10.1007/s12250-016-3713-9
10.1038/ncomms12626
10.1007/978-1-4939-2438-7
10.1073/pnas.1517719113
10.1006/viro.1999.9716
10.3390/v11100972
10.1128/JVI.00127-20
10.3390/v11030210
10.1128/mBio.00221-18
10.1016/j.antiviral.2020.104742
10.1016/j.cub.2020.03.022
10.1038/s41587-019-0225-9
10.1016/j.coviro.2018.12.007
10.1056/NEJMoa032565
10.3201/eid2006.131022
10.1038/nature.2017.21487
10.1038/nature12711
10.1093/nar/gkf469
10.1038/s41426-018-0155-5
10.1128/JVI.03079-15
10.1073/pnas.0808116105
10.1016/j.molcel.2020.04.022
10.1038/s41564-020-0688-y
10.1038/s41586-020-2294-9
10.1016/j.cub.2020.05.023
10.3390/v11040379
10.1128/mBio.00064-14
10.3390/ijms20133193
10.1126/science.369.6503.487
10.1073/pnas.1601512113
10.1038/nm.3985
10.1038/s41586-020-2169-0
10.1038/s41579-018-0118-9
10.1002/jmv.25731
10.1038/s41586-020-2012-7
10.1128/JVI.00790-20
10.1371/journal.pone.0011184
10.1038/d41586-020-00660-x
10.1038/s41422-020-0305-x
10.1080/22221751.2020.1725399
10.1002/bies.202000091
ContentType Journal Article
Copyright 2020 The Authors. BioEssays published by Wiley Periodicals LLC.
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 The Authors. published by Wiley Periodicals LLC
Copyright_xml – notice: 2020 The Authors. BioEssays published by Wiley Periodicals LLC.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 The Authors. published by Wiley Periodicals LLC
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7SS
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1002/bies.202000240
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
CrossRef
Virology and AIDS Abstracts

AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate SEGRETO and DEIGIN
EISSN 1521-1878
ExternalDocumentID PMC7744920
33200842
10_1002_bies_202000240
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACIWK
ACKIV
ACKOT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AETEA
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
C45
CITATION
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KD1
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O8X
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UDS
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
Y6R
YYQ
YZZ
ZGI
ZUP
ZXP
ZY4
ZZTAW
~IA
~KM
~WT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7SS
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c411t-1cd7bb1127ddf6b70d3cd3779baaed6a8d3e1e7fdbd5dccb4e999c35d9793e3f3
ISICitedReferencesCount 66
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000589718700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0265-9247
1521-1878
IngestDate Tue Nov 04 01:50:08 EST 2025
Fri Jul 11 18:24:54 EDT 2025
Sun Nov 09 14:16:40 EST 2025
Fri Jul 25 11:03:49 EDT 2025
Mon Jul 21 05:51:00 EDT 2025
Tue Nov 18 21:50:04 EST 2025
Sat Nov 29 05:24:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords receptor binding domain
SARS-CoV-2
pangolin CoV
furin cleavage site
BtCov/4991
Gain-of-function studies
RaTG13
Language English
License 2020 The Authors. BioEssays published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c411t-1cd7bb1127ddf6b70d3cd3779baaed6a8d3e1e7fdbd5dccb4e999c35d9793e3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Rossana Segreto and Yuri Deigin contributed equally to this study.
No external funding was received for this work.
ORCID 0000-0002-2566-7042
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7744920
PMID 33200842
PQID 2490916113
PQPubID 37030
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7744920
proquest_miscellaneous_2524309935
proquest_miscellaneous_2461396463
proquest_journals_2490916113
pubmed_primary_33200842
crossref_citationtrail_10_1002_bies_202000240
crossref_primary_10_1002_bies_202000240
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
– name: Hoboken
PublicationTitle BioEssays
PublicationTitleAlternate Bioessays
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References e_1_2_13_24_1
e_1_2_13_49_1
e_1_2_13_26_1
e_1_2_13_47_1
e_1_2_13_20_1
e_1_2_13_45_1
e_1_2_13_66_1
e_1_2_13_22_1
e_1_2_13_43_1
e_1_2_13_64_1
e_1_2_13_8_1
e_1_2_13_41_1
e_1_2_13_62_1
e_1_2_13_60_1
e_1_2_13_6_1
Fraguas Bringas C. (e_1_2_13_52_1) 2020
e_1_2_13_17_1
e_1_2_13_19_1
e_1_2_13_13_1
e_1_2_13_36_1
e_1_2_13_59_1
Seyran M. (e_1_2_13_48_1) 2020
e_1_2_13_15_1
e_1_2_13_38_1
e_1_2_13_57_1
e_1_2_13_32_1
e_1_2_13_55_1
e_1_2_13_11_1
e_1_2_13_34_1
e_1_2_13_53_1
e_1_2_13_51_1
e_1_2_13_30_1
e_1_2_13_4_1
e_1_2_13_2_1
e_1_2_13_29_1
e_1_2_13_25_1
e_1_2_13_27_1
e_1_2_13_46_1
e_1_2_13_69_1
e_1_2_13_21_1
e_1_2_13_44_1
e_1_2_13_67_1
e_1_2_13_42_1
e_1_2_13_65_1
Weiss S. (e_1_2_13_23_1) 2015; 17
e_1_2_13_9_1
e_1_2_13_40_1
e_1_2_13_63_1
e_1_2_13_7_1
e_1_2_13_61_1
e_1_2_13_18_1
e_1_2_13_39_1
Cyranoski D. (e_1_2_13_68_1) 2020
e_1_2_13_14_1
e_1_2_13_35_1
e_1_2_13_16_1
e_1_2_13_37_1
e_1_2_13_58_1
e_1_2_13_10_1
e_1_2_13_31_1
e_1_2_13_56_1
e_1_2_13_12_1
e_1_2_13_33_1
e_1_2_13_54_1
e_1_2_13_50_1
e_1_2_13_5_1
e_1_2_13_3_1
e_1_2_13_28_1
33751609 - Bioessays. 2021 May;43(5):e2000325. doi: 10.1002/bies.202000325
References_xml – ident: e_1_2_13_14_1
  doi: 10.1155/2020/4389089
– ident: e_1_2_13_15_1
  doi: 10.1186/s12985-019-1182-0
– ident: e_1_2_13_54_1
  doi: 10.1016/j.virusres.2014.05.026
– ident: e_1_2_13_3_1
  doi: 10.1038/s41591-020-0820-9
– ident: e_1_2_13_19_1
  doi: 10.1128/JVI.01394-09
– ident: e_1_2_13_35_1
  doi: 10.1038/s41586-020-2313-x
– ident: e_1_2_13_13_1
  doi: 10.3390/v11110979
– ident: e_1_2_13_28_1
  doi: 10.1128/JVI.00948-15
– ident: e_1_2_13_39_1
  doi: 10.1007/s12250-020-00212-7
– ident: e_1_2_13_63_1
  doi: 10.1038/d41586-019-03863-z
– ident: e_1_2_13_40_1
  doi: 10.1080/22221751.2020.1756700
– ident: e_1_2_13_61_1
  doi: 10.1038/s41586-020-2179-y
– ident: e_1_2_13_5_1
  doi: 10.1128/JVI.00411-20
– ident: e_1_2_13_27_1
  doi: 10.1080/17460441.2019.1581171
– ident: e_1_2_13_66_1
  doi: 10.3201/eid2612.201664
– year: 2020
  ident: e_1_2_13_68_1
  publication-title: Nature
– ident: e_1_2_13_9_1
– ident: e_1_2_13_29_1
  doi: 10.1128/JVI.74.3.1393-1406.2000
– ident: e_1_2_13_60_1
  doi: 10.3390/v10040185
– ident: e_1_2_13_56_1
  doi: 10.1126/science.abb2507
– ident: e_1_2_13_67_1
  doi: 10.1016/S0140-6736(20)30418-9
– ident: e_1_2_13_16_1
  doi: 10.1371/journal.ppat.1006698
– ident: e_1_2_13_21_1
  doi: 10.1016/j.virol.2017.12.009
– ident: e_1_2_13_6_1
  doi: 10.1007/s12250-016-3713-9
– ident: e_1_2_13_57_1
  doi: 10.1038/ncomms12626
– ident: e_1_2_13_30_1
  doi: 10.1007/978-1-4939-2438-7
– ident: e_1_2_13_32_1
  doi: 10.1073/pnas.1517719113
– ident: e_1_2_13_47_1
  doi: 10.1006/viro.1999.9716
– ident: e_1_2_13_55_1
  doi: 10.3390/v11100972
– volume: 17
  start-page: 269
  year: 2015
  ident: e_1_2_13_23_1
  article-title: Lessons to be learned from recent biosafety incidents in the United States
  publication-title: Isr. Med. Assoc. J.
– ident: e_1_2_13_50_1
  doi: 10.1128/JVI.00127-20
– ident: e_1_2_13_17_1
  doi: 10.3390/v11030210
– ident: e_1_2_13_25_1
  doi: 10.1128/mBio.00221-18
– ident: e_1_2_13_37_1
  doi: 10.1016/j.antiviral.2020.104742
– ident: e_1_2_13_36_1
  doi: 10.1016/j.cub.2020.03.022
– ident: e_1_2_13_58_1
  doi: 10.1038/s41587-019-0225-9
– year: 2020
  ident: e_1_2_13_48_1
  article-title: Questions concerning the proximal origin of SARS‐CoV‐2
  publication-title: J. Med. Virol.
– ident: e_1_2_13_49_1
  doi: 10.1016/j.coviro.2018.12.007
– ident: e_1_2_13_64_1
  doi: 10.1056/NEJMoa032565
– ident: e_1_2_13_7_1
  doi: 10.3201/eid2006.131022
– ident: e_1_2_13_65_1
  doi: 10.1038/nature.2017.21487
– ident: e_1_2_13_18_1
  doi: 10.1038/nature12711
– ident: e_1_2_13_44_1
  doi: 10.1093/nar/gkf469
– ident: e_1_2_13_59_1
  doi: 10.1038/s41426-018-0155-5
– ident: e_1_2_13_43_1
  doi: 10.1128/JVI.03079-15
– ident: e_1_2_13_31_1
  doi: 10.1073/pnas.0808116105
– ident: e_1_2_13_41_1
  doi: 10.1016/j.molcel.2020.04.022
– start-page: 10
  year: 2020
  ident: e_1_2_13_52_1
  article-title: Identification of a SARS‐like bat coronavirus that shares structural features with the spike glycoprotein receptor‐binding domain of SARS‐CoV‐2
  publication-title: Access Microbiol.
– ident: e_1_2_13_8_1
– ident: e_1_2_13_38_1
  doi: 10.1038/s41564-020-0688-y
– ident: e_1_2_13_69_1
  doi: 10.1038/s41586-020-2294-9
– ident: e_1_2_13_46_1
  doi: 10.1016/j.cub.2020.05.023
– ident: e_1_2_13_10_1
  doi: 10.3390/v11040379
– ident: e_1_2_13_24_1
  doi: 10.1128/mBio.00064-14
– ident: e_1_2_13_42_1
  doi: 10.3390/ijms20133193
– ident: e_1_2_13_12_1
  doi: 10.1126/science.369.6503.487
– ident: e_1_2_13_22_1
  doi: 10.1073/pnas.1601512113
– ident: e_1_2_13_20_1
  doi: 10.1038/nm.3985
– ident: e_1_2_13_34_1
  doi: 10.1038/s41586-020-2169-0
– ident: e_1_2_13_51_1
  doi: 10.1038/s41579-018-0118-9
– ident: e_1_2_13_33_1
  doi: 10.1002/jmv.25731
– ident: e_1_2_13_4_1
  doi: 10.1038/s41586-020-2012-7
– ident: e_1_2_13_45_1
  doi: 10.1128/JVI.00790-20
– ident: e_1_2_13_62_1
  doi: 10.1371/journal.pone.0011184
– ident: e_1_2_13_53_1
  doi: 10.1038/d41586-020-00660-x
– ident: e_1_2_13_26_1
  doi: 10.1038/s41422-020-0305-x
– ident: e_1_2_13_11_1
  doi: 10.1080/22221751.2020.1725399
– ident: e_1_2_13_2_1
  doi: 10.1002/bies.202000091
– reference: 33751609 - Bioessays. 2021 May;43(5):e2000325. doi: 10.1002/bies.202000325
SSID ssj0009624
Score 2.599178
Snippet Severe acute respiratory syndrome‐coronavirus (SARS‐CoV)‐2′s origin is still controversial. Genomic analyses show SARS‐CoV‐2 likely to be chimeric, most of its...
Severe acute respiratory syndrome-coronavirus (SARS-CoV)-2's origin is still controversial. Genomic analyses show SARS-CoV-2 likely to be chimeric, most of its...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e2000240
SubjectTerms Angiotensin-Converting Enzyme 2 - genetics
Angiotensin-Converting Enzyme 2 - metabolism
Animals
Base Sequence
China
Chiroptera - virology
Cleavage
Coronaviruses
COVID-19
COVID-19 - pathology
COVID-19 - transmission
COVID-19 - virology
Eutheria - virology
Furin
Furin - metabolism
Genetic Engineering - ethics
Genetic structure
Genomic analysis
genomics
Humans
Mutagenesis, Site-Directed - methods
Pandemics
Pholidota (mammals)
Problems & Paradigms
Protein Binding
Reassortant Viruses - genetics
Reassortant Viruses - metabolism
Reassortant Viruses - pathogenicity
Receptors
Receptors, Virus - genetics
Receptors, Virus - metabolism
Recombination
SARS-CoV-2 - genetics
SARS-CoV-2 - metabolism
SARS-CoV-2 - pathogenicity
Sequence Alignment
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus 2
Site-directed mutagenesis
Spike Glycoprotein, Coronavirus - genetics
Spike Glycoprotein, Coronavirus - metabolism
Spike protein
Viral diseases
viruses
Subtitle SARS‐COV‐2 chimeric structure and furin cleavage site might be the result of genetic manipulation
Title The genetic structure of SARS‐CoV‐2 does not rule out a laboratory origin
URI https://www.ncbi.nlm.nih.gov/pubmed/33200842
https://www.proquest.com/docview/2490916113
https://www.proquest.com/docview/2461396463
https://www.proquest.com/docview/2524309935
https://pubmed.ncbi.nlm.nih.gov/PMC7744920
Volume 43
WOSCitedRecordID wos000589718700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1521-1878
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009624
  issn: 0265-9247
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLWmLUhsEG8CpTISEosoIrETO15WfYgFVGjaotlFju2IkaqkmkfV7voJ_Ua-hOs48UxKQWXBJori64knx7mP-PpchD5wpoQyLI5MJlmUipxFYBZIlFZGGG2ddla1xSb40VE-mYhvo5HfxX9xxus6v7wU5_8VargGYNuts_8At_9RuADnADocAXY43ht4aLSbE0PHDmvXCOzelN3xsc9t2Gu--3MS6sbMw7pZhLOlTTZcLkIZdtOjXYNvq2cN1n-nzcF8Lq-8R35sIHBvSzKFY7C7svbqft_Yzq2qX86m618ZyFqaVaeMCMsiiNWccTSdsgS5JHcleHpt6kiXullD71TSjvS1tF8C4FZxS7O2Mkf9EvwtK-VzBx3PMils_8L330BbhGcC9NrW_vjw9MuKeJm1hY39-Hvizph8Go5g6Jj8Fm3cTppd80JOnqDHXfiAdx3sT9HI1M_QQ1dQ9Oo5-grg4w587MHHTYUt-D-vbwB2OBJsAccAOLaAYwAcS7wCHDvAX6DTw4OTvc9RVzAjUmmSLKJEaV6W4EFzrStW8lhTpS2jZCml0UzmmprE8EqXOtNKlamB8EDRTAvQ0oZW9CXarJvavEaY8CozqVKxpfOXTNi6j0kFVlURXUmZByjqn1ahOjZ5W9TkrLgbnwB99PLnjkflj5Lb_cMvutcKWlMBji1LEhqg974ZNKFd3pK1aZZWBlxTwVL2N5mMpBSCIpoF6JXD0w-HUpsLlJIA8QHSXsAysQ9b6umPlpEdYqhUkPjNvf_kW_Ro9ZZto02YEOYdeqAuFtP5bAdt8Em-083kXz_Kp8Q
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+genetic+structure+of+SARS%E2%80%90CoV%E2%80%902+does+not+rule+out+a+laboratory+origin&rft.jtitle=BioEssays&rft.au=Segreto%2C+Rossana&rft.au=Deigin%2C+Yuri&rft.date=2021-03-01&rft.issn=0265-9247&rft.eissn=1521-1878&rft.volume=43&rft.issue=3&rft_id=info:doi/10.1002%2Fbies.202000240&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_bies_202000240
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0265-9247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0265-9247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0265-9247&client=summon