Coordinated load frequency control of multi-area integrated energy system using multi-agent deep reinforcement learning

•A novel coordinated automatic generation control algorithm framework is proposed.•A deep reinforcement learning algorithm is introduced to obtains better performance.•Controllers can realize the coordinated control of multiple areas.•The proposed method can maximize control performance and minimize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied energy Jg. 306; S. 117900
Hauptverfasser: Li, Jiawen, Yu, Tao, Zhang, Xiaoshun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 15.01.2022
Schlagworte:
ISSN:0306-2619, 1872-9118
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A novel coordinated automatic generation control algorithm framework is proposed.•A deep reinforcement learning algorithm is introduced to obtains better performance.•Controllers can realize the coordinated control of multiple areas.•The proposed method can maximize control performance and minimize payment. To dynamically balance multiple energy fluctuations in a multi-area integrated energy system (IES), a coordinated power control framework, named distributed intelligent coordinated automatic generation control (DIC-AGC), is constructed among different areas during load frequency control (LFC). Furthermore, an evolutionary imitation curriculum multi-agent deep deterministic policy gradient (EIC-MADDPG) algorithm is proposed as a novel deep reinforcement learning algorithm to realize coordinated control and improve the performance of DIC-AGC in the performance-based frequency regulation market. EIC-MADDPG, which combines imitation learning and curriculum learning, can adaptively derive the optimal coordinated control strategies for multiple areas of LFC controllers through centralized learning and decentralized implementation. The simulation of a four-area LFC-IES model on the China Southern Grid (CSG) demonstrates the effectiveness of the proposed method in maximizing control performance while minimizing regulation mileage payment in every area against stochastic load and renewable power fluctuations.
AbstractList •A novel coordinated automatic generation control algorithm framework is proposed.•A deep reinforcement learning algorithm is introduced to obtains better performance.•Controllers can realize the coordinated control of multiple areas.•The proposed method can maximize control performance and minimize payment. To dynamically balance multiple energy fluctuations in a multi-area integrated energy system (IES), a coordinated power control framework, named distributed intelligent coordinated automatic generation control (DIC-AGC), is constructed among different areas during load frequency control (LFC). Furthermore, an evolutionary imitation curriculum multi-agent deep deterministic policy gradient (EIC-MADDPG) algorithm is proposed as a novel deep reinforcement learning algorithm to realize coordinated control and improve the performance of DIC-AGC in the performance-based frequency regulation market. EIC-MADDPG, which combines imitation learning and curriculum learning, can adaptively derive the optimal coordinated control strategies for multiple areas of LFC controllers through centralized learning and decentralized implementation. The simulation of a four-area LFC-IES model on the China Southern Grid (CSG) demonstrates the effectiveness of the proposed method in maximizing control performance while minimizing regulation mileage payment in every area against stochastic load and renewable power fluctuations.
To dynamically balance multiple energy fluctuations in a multi-area integrated energy system (IES), a coordinated power control framework, named distributed intelligent coordinated automatic generation control (DIC-AGC), is constructed among different areas during load frequency control (LFC). Furthermore, an evolutionary imitation curriculum multi-agent deep deterministic policy gradient (EIC-MADDPG) algorithm is proposed as a novel deep reinforcement learning algorithm to realize coordinated control and improve the performance of DIC-AGC in the performance-based frequency regulation market. EIC-MADDPG, which combines imitation learning and curriculum learning, can adaptively derive the optimal coordinated control strategies for multiple areas of LFC controllers through centralized learning and decentralized implementation. The simulation of a four-area LFC-IES model on the China Southern Grid (CSG) demonstrates the effectiveness of the proposed method in maximizing control performance while minimizing regulation mileage payment in every area against stochastic load and renewable power fluctuations.
ArticleNumber 117900
Author Li, Jiawen
Zhang, Xiaoshun
Yu, Tao
Author_xml – sequence: 1
  givenname: Jiawen
  surname: Li
  fullname: Li, Jiawen
  organization: College of Electric Power, South China University of Technology, 510640 Guangzhou, China
– sequence: 2
  givenname: Tao
  surname: Yu
  fullname: Yu, Tao
  email: taoyu1@scut.edu.cn
  organization: College of Electric Power, South China University of Technology, 510640 Guangzhou, China
– sequence: 3
  givenname: Xiaoshun
  surname: Zhang
  fullname: Zhang, Xiaoshun
  organization: College of Engineering, Shantou University, 515063 Shantou, China
BookMark eNqFkU1LJDEQhoMoOH78BcnRS4-pdDrdDR6UYXcVBC96DjGpDBm6kzHJ7DL_fntsvXjxVFA8bxX11Bk5DjEgIVfAlsBA3myWeosB03q_5IzDEqDtGTsiC-haXvUA3TFZsJrJikvoT8lZzhvGJpKzBfm3ijFZH3RBS4eoLXUJ33cYzJ6aGEqKA42Ojruh-Eon1NSHguv0wc9bad7ngiPdZR_WX-QaQ6EWcUsT-uBiMjgeWgPqFCbugpw4PWS8_Kzn5PX3r5fVQ_X0_Odxdf9UGQFQKmhaJ6QQHbcctdCoay0cmr7pbCNsZ9FZw1tXG4ENayyChLe-49L2un4DV5-T63nuNsXprFzU6LPBYdAB4y4rLmsp2rZjMKG3M2pSzDmhU8YXXfzBgvaDAqYOvtVGfflWB99q9j3F5bf4NvlRp_3Pwbs5iJOHvx6TysZPD0DrE5qibPQ_jfgP3bOkjg
CitedBy_id crossref_primary_10_1016_j_measurement_2025_117732
crossref_primary_10_1177_15501329221090469
crossref_primary_10_1016_j_seta_2022_102045
crossref_primary_10_1016_j_enconman_2022_116116
crossref_primary_10_1016_j_apenergy_2024_123870
crossref_primary_10_3390_math11092080
crossref_primary_10_1016_j_engappai_2024_109485
crossref_primary_10_2478_amns_2023_2_00792
crossref_primary_10_1049_hve2_12195
crossref_primary_10_1016_j_apenergy_2024_123998
crossref_primary_10_1016_j_energy_2023_129732
crossref_primary_10_1109_TIE_2023_3325582
crossref_primary_10_3389_fenrg_2024_1377465
crossref_primary_10_1016_j_egyr_2021_11_250
crossref_primary_10_3390_en18102666
crossref_primary_10_1007_s10489_022_03550_z
crossref_primary_10_1109_TCSI_2024_3522952
crossref_primary_10_1109_JPROC_2023_3303358
crossref_primary_10_1016_j_energy_2024_133431
crossref_primary_10_1016_j_apenergy_2023_121181
crossref_primary_10_1016_j_tsep_2024_102482
crossref_primary_10_1016_j_prime_2023_100135
crossref_primary_10_1109_TII_2024_3353934
crossref_primary_10_1016_j_asoc_2024_112203
crossref_primary_10_1016_j_energy_2025_138472
crossref_primary_10_3390_en16104143
crossref_primary_10_1016_j_apenergy_2023_121866
crossref_primary_10_3390_en16052323
crossref_primary_10_1016_j_energy_2024_133163
crossref_primary_10_1016_j_apenergy_2023_121627
crossref_primary_10_3389_fenrg_2023_1280724
crossref_primary_10_1016_j_apenergy_2021_118266
crossref_primary_10_1007_s00202_024_02857_z
crossref_primary_10_3389_fenrg_2021_834283
crossref_primary_10_1016_j_renene_2023_119274
crossref_primary_10_1049_rpg2_12310
crossref_primary_10_1109_TPWRS_2023_3296738
crossref_primary_10_1016_j_ijepes_2025_110749
crossref_primary_10_3389_fenrg_2024_1391813
crossref_primary_10_1016_j_seta_2023_103283
crossref_primary_10_1016_j_apenergy_2022_120265
crossref_primary_10_1016_j_enconman_2023_116888
crossref_primary_10_1016_j_apenergy_2022_120021
crossref_primary_10_3389_fenrg_2024_1517861
crossref_primary_10_1016_j_apenergy_2022_119151
crossref_primary_10_1016_j_apenergy_2024_124773
crossref_primary_10_1016_j_apenergy_2025_126733
crossref_primary_10_1016_j_oceaneng_2025_121121
crossref_primary_10_1080_15325008_2023_2253804
crossref_primary_10_1016_j_apenergy_2024_123849
crossref_primary_10_3390_sym17060853
crossref_primary_10_1016_j_apenergy_2024_123209
crossref_primary_10_1016_j_engappai_2025_111623
crossref_primary_10_1016_j_egyr_2021_11_260
crossref_primary_10_1049_rpg2_12725
crossref_primary_10_1049_rpg2_12323
crossref_primary_10_3389_fenrg_2024_1366009
crossref_primary_10_1016_j_asoc_2022_109804
crossref_primary_10_1049_rpg2_12688
crossref_primary_10_1016_j_seta_2022_102887
crossref_primary_10_1016_j_jclepro_2025_145410
crossref_primary_10_1109_TASE_2025_3543578
crossref_primary_10_1016_j_est_2023_109183
crossref_primary_10_1109_TASE_2023_3263005
crossref_primary_10_1016_j_apenergy_2022_119163
crossref_primary_10_1016_j_apenergy_2023_121256
crossref_primary_10_1007_s00202_024_02648_6
crossref_primary_10_1016_j_ref_2022_09_006
crossref_primary_10_1063_5_0240774
crossref_primary_10_1016_j_apenergy_2024_122628
crossref_primary_10_3389_fenrg_2024_1361869
crossref_primary_10_1016_j_renene_2023_119335
crossref_primary_10_3390_en18071809
crossref_primary_10_1016_j_conengprac_2023_105480
crossref_primary_10_1109_TASE_2024_3359219
crossref_primary_10_1016_j_rser_2023_114013
crossref_primary_10_1016_j_apenergy_2022_119734
crossref_primary_10_4028_p_Lv4H7u
crossref_primary_10_1177_09544070231193187
crossref_primary_10_1016_j_energy_2024_133912
crossref_primary_10_1109_TPWRS_2022_3218583
crossref_primary_10_1016_j_est_2025_115802
crossref_primary_10_1016_j_ijhydene_2022_06_274
crossref_primary_10_1049_esi2_12145
crossref_primary_10_1016_j_isatra_2023_04_005
crossref_primary_10_1109_TII_2023_3316253
crossref_primary_10_1049_gtd2_13250
crossref_primary_10_1016_j_ijepes_2023_109429
crossref_primary_10_1016_j_engappai_2022_104769
crossref_primary_10_3389_fenrg_2022_848966
crossref_primary_10_1007_s00521_024_10635_y
crossref_primary_10_1109_ACCESS_2023_3252574
crossref_primary_10_1016_j_compeleceng_2024_109778
crossref_primary_10_1016_j_engappai_2023_107640
crossref_primary_10_1016_j_scs_2023_104917
crossref_primary_10_1109_ACCESS_2025_3549462
crossref_primary_10_1109_ACCESS_2025_3532516
crossref_primary_10_1016_j_apenergy_2024_124906
crossref_primary_10_1016_j_jclepro_2022_131264
crossref_primary_10_1109_TASE_2025_3570620
crossref_primary_10_1109_TWC_2024_3372694
crossref_primary_10_1016_j_heliyon_2023_e19199
crossref_primary_10_1109_TII_2024_3367003
crossref_primary_10_1016_j_egyr_2022_12_039
crossref_primary_10_1016_j_apenergy_2025_126377
crossref_primary_10_1080_15567036_2022_2091693
crossref_primary_10_1109_TSTE_2024_3488062
crossref_primary_10_1109_ACCESS_2023_3309150
crossref_primary_10_1109_ACCESS_2024_3422411
crossref_primary_10_3389_fenrg_2023_1136379
crossref_primary_10_1016_j_segan_2025_101821
crossref_primary_10_1016_j_energy_2023_128536
crossref_primary_10_3390_en16052226
crossref_primary_10_1016_j_neucom_2024_129068
crossref_primary_10_1016_j_rineng_2024_102442
crossref_primary_10_1016_j_energy_2025_136075
crossref_primary_10_1016_j_ijepes_2022_108142
Cites_doi 10.1016/j.apenergy.2020.116386
10.1016/j.ijepes.2013.04.003
10.1016/S0378-7796(98)00125-4
10.1016/j.ijepes.2013.06.029
10.1016/j.apenergy.2021.117541
10.1109/TII.2020.2986883
10.1016/S0142-0615(97)00020-3
10.1016/j.ijepes.2012.10.039
10.1109/TPWRS.2017.2654453
10.1049/iet-gtd.2016.1552
10.1109/TPWRS.2013.2277131
10.1061/(ASCE)EY.1943-7897.0000275
10.1016/S0378-7796(96)01199-6
10.1016/j.asoc.2013.07.021
10.1016/j.apenergy.2018.07.065
10.1109/AIEEPAS.1953.4498667
10.1016/j.conengprac.2017.02.001
10.1109/TSTE.2017.2686009
10.1016/j.ijepes.2012.04.024
10.1016/j.ijepes.2015.07.025
10.1007/s00202-009-0145-7
10.1109/TPWRS.2009.2036463
10.1109/TCST.2014.2346996
10.1109/TSTE.2018.2833545
10.1016/j.asoc.2014.12.032
10.1109/TSTE.2019.2958361
10.1109/IECON.2017.8216042
10.1016/j.egyr.2021.02.043
10.1109/PSCE.2009.4840262
10.1016/j.enconman.2010.09.016
10.1016/j.enconman.2011.01.010
10.1016/S0196-8904(99)00040-0
10.1016/j.jclepro.2021.128929
10.1109/TPWRS.2013.2257882
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2021.117900
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2021_117900
S0306261921012137
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c411t-157f464482d2ea4aea3a4fec958d54d8defdc27f3c4e505de161b9826d9a3b1f3
ISICitedReferencesCount 143
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000707875300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Sat Sep 27 18:56:58 EDT 2025
Tue Nov 18 22:32:22 EST 2025
Sat Nov 29 07:20:44 EST 2025
Fri Feb 23 02:41:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Performance-based frequency regulation market
Evolutionary imitation curriculum multi-agent double delayed deep deterministic policy gradient algorithm (EIC-MADDPG)
Distributed intelligent coordinated automatic generation control (DIC-AGC)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c411t-157f464482d2ea4aea3a4fec958d54d8defdc27f3c4e505de161b9826d9a3b1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2636477801
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2636477801
crossref_citationtrail_10_1016_j_apenergy_2021_117900
crossref_primary_10_1016_j_apenergy_2021_117900
elsevier_sciencedirect_doi_10_1016_j_apenergy_2021_117900
PublicationCentury 2000
PublicationDate 2022-01-15
PublicationDateYYYYMMDD 2022-01-15
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Djukanovic, Dobrijevic, Calovic, Novicevic, Sobajic (b0090) 1997; 19
Li, Wang, Wang, Fu, Yu, Wang (b0030) 2017; 11
Yu, Xi, Yang, Xu, Jiang (b0175) 2016; 142
Horgan D, Quan J, Budden D, Barth-Maron G, Hessel M, Hasselt HV, et al. Distributed Prioritized Experience Replay. arXiv:180300933, 2018.
Prasad, Purwar, Kishor (b0145) 2017; 61
Ojaghi, Rahmani (b0160) 2017; 32
Xi, Yu, Xu, Wang, Chen (b0180) 2020; 11
Anderson, Fouad (b0045) 2008
Sekhar, Sahu, Baliarsingh, Panda (b0055) 2016; 74
Mohamed, Bevrani, Hassan, Hiyama (b0150) 2011; 52
V Lowe R, Wu Y, Tamar A, Harb J, Abbeel P, Mordatch I. Multi-agent actor-critic for mixed cooperative-competitive environments. In: Conference Multi-agent actor-critic for mixed cooperative-competitive environments, CA, USA. Long Beach, 2017. p. 6379–90.
Mi, Fu, Wang, Wang (b0140) 2013; 28
Zeng G, Xie X, Zhang Z, Yan Z, Sun J, Wu L, et al. Distributed fractional-order PID control of multi-area interconnected power systems by population based extremal optimization. In: IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China. IEEE, 2017. p. 227–32.
Ji, Wang, Li, Ding, Wu (b0025) 2018; 10
Golpira, Bevrani, Golptra (b0065) 2011; 52
Chang, Fu (b0095) 1997; 42
Li, Yu, Yang (b0190) 2021; 304
Van Hasselt H, Guez A, Silver D. Deep reinforcement learning with double q-learning. CS. 2015:2094–2100. doi: 10.5555/3016100.301619.
Li, Yu, Zhang, Li, Lin, Zhu (b0035) 2021; 285
Panda, Yegireddy (b0080) 2013; 53
Lim, Wang, Zhou (b0130) 1996; 143
Pan, Das (b0110) 2015; 29
Fujimoto S, Hoof HV, Meger D. Addressing function approximation error in actor-critic methods In: K JDA editor. In: Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden. PMLR, 2018. p. 1587–96.
Chen, Ye, Wang, Lu (b0060) 2015; 23
Li, Yu (b0210) 2021; 321
Ray, Prasad, Prasad (b0125) 1999; 51
Alomoush (b0105) 2010; 91
Wang, Zhou, Wen (b0135) 1994; 141
Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller M. Playing atari with deep reinforcement learning. CS. 2013. doi: 10.1.1.463.4059.s.
Zhou, Zhang, Chan, Li, Lu, Bu (b0010) 2021; 17
Li, Ji, Wang, Zhao, Song, Ding (b0020) 2017; 8
Guo, Liu, Si, He, Harley, Mei (b0165) 2015; 27
Panda, Mohanty, Hota (b0070) 2013; 13
Azzam (b0120) 1999; 40
Li, Yu (b0205) 2021; 7
Ji, Wang, Li, Zhao, Song, Ding (b0015) 2018; 228
Concordia, Kirchmayer (b0040) 1953; 72
Shiroei, Toulabi, Ranjbar (b0155) 2013; 46
Mallesham G, Mishra S, Jha AN. Maiden application of Ziegler-Nichols method to AGC of Distributed Generation System. In: Conference Maiden application of Ziegler-Nichols method to AGC of Distributed Generation System, Seattle, WA, USA. IEEE, 2009. p. 1–7.
Variani, Tomsovic (b0170) 2013; 28
Tan (b0100) 2010; 25
Daneshfar, Bevrani (b0075) 2012; 42
Mohanty, Panda, Hota (b0050) 2014; 54
Zhang, Zhou, Or, Li, Chung, Voropai (b0005) 2021; 1
Wang (10.1016/j.apenergy.2021.117900_b0135) 1994; 141
Li (10.1016/j.apenergy.2021.117900_b0030) 2017; 11
Panda (10.1016/j.apenergy.2021.117900_b0070) 2013; 13
Lim (10.1016/j.apenergy.2021.117900_b0130) 1996; 143
Li (10.1016/j.apenergy.2021.117900_b0205) 2021; 7
10.1016/j.apenergy.2021.117900_b0220
10.1016/j.apenergy.2021.117900_b0185
Golpira (10.1016/j.apenergy.2021.117900_b0065) 2011; 52
10.1016/j.apenergy.2021.117900_b0085
Mi (10.1016/j.apenergy.2021.117900_b0140) 2013; 28
Sekhar (10.1016/j.apenergy.2021.117900_b0055) 2016; 74
Daneshfar (10.1016/j.apenergy.2021.117900_b0075) 2012; 42
Chang (10.1016/j.apenergy.2021.117900_b0095) 1997; 42
Variani (10.1016/j.apenergy.2021.117900_b0170) 2013; 28
10.1016/j.apenergy.2021.117900_b0215
Pan (10.1016/j.apenergy.2021.117900_b0110) 2015; 29
10.1016/j.apenergy.2021.117900_b0115
Ji (10.1016/j.apenergy.2021.117900_b0015) 2018; 228
Yu (10.1016/j.apenergy.2021.117900_b0175) 2016; 142
Li (10.1016/j.apenergy.2021.117900_b0035) 2021; 285
Zhang (10.1016/j.apenergy.2021.117900_b0005) 2021; 1
Ojaghi (10.1016/j.apenergy.2021.117900_b0160) 2017; 32
Djukanovic (10.1016/j.apenergy.2021.117900_b0090) 1997; 19
Li (10.1016/j.apenergy.2021.117900_b0190) 2021; 304
Concordia (10.1016/j.apenergy.2021.117900_b0040) 1953; 72
Mohanty (10.1016/j.apenergy.2021.117900_b0050) 2014; 54
Ji (10.1016/j.apenergy.2021.117900_b0025) 2018; 10
Tan (10.1016/j.apenergy.2021.117900_b0100) 2010; 25
10.1016/j.apenergy.2021.117900_b0195
Ray (10.1016/j.apenergy.2021.117900_b0125) 1999; 51
Mohamed (10.1016/j.apenergy.2021.117900_b0150) 2011; 52
Shiroei (10.1016/j.apenergy.2021.117900_b0155) 2013; 46
Xi (10.1016/j.apenergy.2021.117900_b0180) 2020; 11
Prasad (10.1016/j.apenergy.2021.117900_b0145) 2017; 61
Li (10.1016/j.apenergy.2021.117900_b0020) 2017; 8
Li (10.1016/j.apenergy.2021.117900_b0210) 2021; 321
Anderson (10.1016/j.apenergy.2021.117900_b0045) 2008
Zhou (10.1016/j.apenergy.2021.117900_b0010) 2021; 17
10.1016/j.apenergy.2021.117900_b0200
Guo (10.1016/j.apenergy.2021.117900_b0165) 2015; 27
Panda (10.1016/j.apenergy.2021.117900_b0080) 2013; 53
Chen (10.1016/j.apenergy.2021.117900_b0060) 2015; 23
Alomoush (10.1016/j.apenergy.2021.117900_b0105) 2010; 91
Azzam (10.1016/j.apenergy.2021.117900_b0120) 1999; 40
References_xml – volume: 10
  start-page: 280
  year: 2018
  end-page: 289
  ident: b0025
  article-title: Robust operation of soft open points in active distribution networks with high penetration of photovoltaic integration
  publication-title: IEEE Trans Sustain Energ
– volume: 23
  start-page: 882
  year: 2015
  end-page: 897
  ident: b0060
  article-title: Cooperative Control of Power System Load and Frequency by Using Differential Games
  publication-title: IEEE Trans Control Syst Technol
– volume: 142
  start-page: 04015012
  year: 2016
  ident: b0175
  article-title: Multiagent Stochastic Dynamic Game for Smart Generation Control
  publication-title: J Energ Eng
– reference: Zeng G, Xie X, Zhang Z, Yan Z, Sun J, Wu L, et al. Distributed fractional-order PID control of multi-area interconnected power systems by population based extremal optimization. In: IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China. IEEE, 2017. p. 227–32.
– volume: 304
  start-page: 117541
  year: 2021
  ident: b0190
  article-title: A data-driven output voltage control of solid oxide fuel cell using multi-agent deep reinforcement learning
  publication-title: Appl Energy
– volume: 8
  start-page: 1430
  year: 2017
  end-page: 1442
  ident: b0020
  article-title: Coordinated control method of voltage and reactive power for active distribution networks based on soft open point
  publication-title: IEEE Trans Sustain Energ
– reference: Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller M. Playing atari with deep reinforcement learning. CS. 2013. doi: 10.1.1.463.4059.s.
– volume: 42
  start-page: 145
  year: 1997
  end-page: 152
  ident: b0095
  article-title: Area load frequency control using fuzzy gain scheduling of PI controllers
  publication-title: Electr Power Syst Res
– volume: 11
  start-page: 2417
  year: 2020
  end-page: 2426
  ident: b0180
  article-title: A novel multi-agent ddqn-ad method-based distributed strategy for automatic generation control of integrated energy systems
  publication-title: IEEE Trans Sustain Energ
– volume: 143
  start-page: 377
  year: 1996
  end-page: 386
  ident: b0130
  article-title: Robust decentralised load-frequency control of multi-area power systems
  publication-title: IEP P-Gener Transm D
– volume: 28
  start-page: 4301
  year: 2013
  end-page: 4309
  ident: b0140
  article-title: Decentralized Sliding Mode Load Frequency Control for Multi-Area Power Systems
  publication-title: IEEE Trans Power Syst
– volume: 321
  start-page: 128929
  year: 2021
  ident: b0210
  article-title: A novel data-driven controller for solid oxide fuel cell via deep reinforcement learning
  publication-title: J Clean Prod
– reference: Horgan D, Quan J, Budden D, Barth-Maron G, Hessel M, Hasselt HV, et al. Distributed Prioritized Experience Replay. arXiv:180300933, 2018.
– volume: 52
  start-page: 1208
  year: 2011
  end-page: 1214
  ident: b0150
  article-title: Decentralized model predictive based load frequency control in an interconnected power system
  publication-title: Energ Convers Manage
– volume: 32
  start-page: 4091
  year: 2017
  end-page: 4100
  ident: b0160
  article-title: LMI-Based Robust Predictive Load Frequency Control for Power Systems With Communication Delays
  publication-title: IEEE Trans Power Syst
– volume: 52
  start-page: 2247
  year: 2011
  end-page: 2255
  ident: b0065
  article-title: Application of GA optimization for automatic generation control design in an interconnected power system
  publication-title: Energ Convers Manage
– volume: 13
  start-page: 4718
  year: 2013
  end-page: 4730
  ident: b0070
  article-title: Hybrid BFOA–PSO algorithm for automatic generation control of linear and nonlinear interconnected power systems
  publication-title: Appl Soft Comput
– volume: 61
  start-page: 81
  year: 2017
  end-page: 92
  ident: b0145
  article-title: Non-linear sliding mode load frequency control in multi-area power system
  publication-title: Control Eng Pract
– volume: 74
  start-page: 195
  year: 2016
  end-page: 211
  ident: b0055
  article-title: Load frequency control of power system under deregulated environment using optimal firefly algorithm
  publication-title: Int J Elec Power
– reference: Mallesham G, Mishra S, Jha AN. Maiden application of Ziegler-Nichols method to AGC of Distributed Generation System. In: Conference Maiden application of Ziegler-Nichols method to AGC of Distributed Generation System, Seattle, WA, USA. IEEE, 2009. p. 1–7.
– volume: 228
  start-page: 2024
  year: 2018
  end-page: 2036
  ident: b0015
  article-title: A centralized-based method to determine the local voltage control strategies of distributed generator operation in active distribution networks
  publication-title: Appl Energy
– volume: 91
  start-page: 357
  year: 2010
  end-page: 368
  ident: b0105
  article-title: Load frequency control and automatic generation control using fractional-order controllers
  publication-title: Electr Eng
– reference: V Lowe R, Wu Y, Tamar A, Harb J, Abbeel P, Mordatch I. Multi-agent actor-critic for mixed cooperative-competitive environments. In: Conference Multi-agent actor-critic for mixed cooperative-competitive environments, CA, USA. Long Beach, 2017. p. 6379–90.
– volume: 7
  start-page: 1267
  year: 2021
  end-page: 1279
  ident: b0205
  article-title: A new adaptive controller based on distributed deep reinforcement learning for PEMFC air supply system
  publication-title: Energy Rep
– volume: 141
  start-page: 184
  year: 1994
  end-page: 190
  ident: b0135
  article-title: New robust adaptive load-frequency control with system parametric uncertainties
  publication-title: IET P-Gener Transm D
– volume: 27
  start-page: 1748
  year: 2015
  end-page: 1761
  ident: b0165
  article-title: Online supplementary ADP learning controller design and application to power system frequency control with large-scale wind energy integration
  publication-title: IEEE Trans Neural Networ
– reference: Van Hasselt H, Guez A, Silver D. Deep reinforcement learning with double q-learning. CS. 2015:2094–2100. doi: 10.5555/3016100.301619.
– volume: 25
  start-page: 341
  year: 2010
  end-page: 350
  ident: b0100
  article-title: Unified Tuning of PID Load Frequency Controller for Power Systems via IMC
  publication-title: IEEE Trans Power Syst
– reference: Fujimoto S, Hoof HV, Meger D. Addressing function approximation error in actor-critic methods In: K JDA editor. In: Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden. PMLR, 2018. p. 1587–96.
– volume: 285
  year: 2021
  ident: b0035
  article-title: Efficient experience replay based deep deterministic policy gradient for AGC dispatch in integrated energy system
  publication-title: Appl Energy
– volume: 53
  start-page: 54
  year: 2013
  end-page: 63
  ident: b0080
  article-title: Automatic generation control of multi-area power system using multi-objective non-dominated sorting genetic algorithm-II
  publication-title: Int J Elec Power
– volume: 42
  start-page: 257
  year: 2012
  end-page: 263
  ident: b0075
  article-title: Multiobjective design of load frequency control using genetic algorithms-ScienceDirect
  publication-title: Int J Elec Power
– volume: 29
  start-page: 328
  year: 2015
  end-page: 344
  ident: b0110
  article-title: Fractional-order load-frequency control of interconnected power systems using chaotic multi-objective optimization
  publication-title: Appl Soft Comput
– volume: 19
  start-page: 489
  year: 1997
  end-page: 499
  ident: b0090
  article-title: Coordinated stabilizing control for the exciter and governor loops using fuzzy set theory and neural nets
  publication-title: Int J Elec Power
– volume: 17
  start-page: 450
  year: 2021
  end-page: 462
  ident: b0010
  article-title: Optimal Coordination of Electric Vehicles for Virtual Power Plants With Dynamic Communication Spectrum Allocation
  publication-title: IEEE Trans Ind Inform
– volume: 51
  start-page: 13
  year: 1999
  end-page: 22
  ident: b0125
  article-title: A new approach to the design of robust load-frequency controller for large scale power systems
  publication-title: Electr Power Syst Res
– volume: 40
  start-page: 1413
  year: 1999
  end-page: 1421
  ident: b0120
  article-title: Robust automatic generation control
  publication-title: Energ Convers Manage
– volume: 46
  start-page: 405
  year: 2013
  end-page: 413
  ident: b0155
  article-title: Robust multivariable predictive based load frequency control considering generation rate constraint
  publication-title: Int J Elec Power
– volume: 11
  start-page: 3088
  year: 2017
  end-page: 3096
  ident: b0030
  article-title: Synchronisation mechanism and interfaces design of multi-FPGA-based real-time simulator for microgrids
  publication-title: IET Gener Transm Dis
– volume: 1
  year: 2021
  ident: b0005
  article-title: Optimal Coordinated Control of Multi-Renewable-to-Hydrogen Production System for Hydrogen Fueling Stations
  publication-title: IEEE Trans Ind Appl
– volume: 72
  start-page: 562
  year: 1953
  end-page: 572
  ident: b0040
  article-title: Tie-line power and frequency control of electric power systems
  publication-title: IEEE Trans Power App Syst
– year: 2008
  ident: b0045
  article-title: Power System Control and Stability
– volume: 54
  start-page: 77
  year: 2014
  end-page: 85
  ident: b0050
  article-title: Controller parameters tuning of differential evolution algorithm and its application to load frequency control of multi-source power system
  publication-title: Int J Elec Power
– volume: 28
  start-page: 3002
  year: 2013
  end-page: 3009
  ident: b0170
  article-title: Distributed Automatic Generation Control Using Flatness-Based Approach for High Penetration of Wind Generation
  publication-title: IEEE Trans Power Syst
– volume: 285
  year: 2021
  ident: 10.1016/j.apenergy.2021.117900_b0035
  article-title: Efficient experience replay based deep deterministic policy gradient for AGC dispatch in integrated energy system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.116386
– volume: 53
  start-page: 54
  issue: 1
  year: 2013
  ident: 10.1016/j.apenergy.2021.117900_b0080
  article-title: Automatic generation control of multi-area power system using multi-objective non-dominated sorting genetic algorithm-II
  publication-title: Int J Elec Power
  doi: 10.1016/j.ijepes.2013.04.003
– volume: 51
  start-page: 13
  issue: 1
  year: 1999
  ident: 10.1016/j.apenergy.2021.117900_b0125
  article-title: A new approach to the design of robust load-frequency controller for large scale power systems
  publication-title: Electr Power Syst Res
  doi: 10.1016/S0378-7796(98)00125-4
– ident: 10.1016/j.apenergy.2021.117900_b0185
– volume: 54
  start-page: 77
  year: 2014
  ident: 10.1016/j.apenergy.2021.117900_b0050
  article-title: Controller parameters tuning of differential evolution algorithm and its application to load frequency control of multi-source power system
  publication-title: Int J Elec Power
  doi: 10.1016/j.ijepes.2013.06.029
– volume: 143
  start-page: 377
  issue: 5
  year: 1996
  ident: 10.1016/j.apenergy.2021.117900_b0130
  article-title: Robust decentralised load-frequency control of multi-area power systems
  publication-title: IEP P-Gener Transm D
– volume: 304
  start-page: 117541
  year: 2021
  ident: 10.1016/j.apenergy.2021.117900_b0190
  article-title: A data-driven output voltage control of solid oxide fuel cell using multi-agent deep reinforcement learning
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.117541
– volume: 17
  start-page: 450
  year: 2021
  ident: 10.1016/j.apenergy.2021.117900_b0010
  article-title: Optimal Coordination of Electric Vehicles for Virtual Power Plants With Dynamic Communication Spectrum Allocation
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2020.2986883
– volume: 19
  start-page: 489
  issue: 8
  year: 1997
  ident: 10.1016/j.apenergy.2021.117900_b0090
  article-title: Coordinated stabilizing control for the exciter and governor loops using fuzzy set theory and neural nets
  publication-title: Int J Elec Power
  doi: 10.1016/S0142-0615(97)00020-3
– volume: 46
  start-page: 405
  issue: 1
  year: 2013
  ident: 10.1016/j.apenergy.2021.117900_b0155
  article-title: Robust multivariable predictive based load frequency control considering generation rate constraint
  publication-title: Int J Elec Power
  doi: 10.1016/j.ijepes.2012.10.039
– volume: 27
  start-page: 1748
  issue: 8
  year: 2015
  ident: 10.1016/j.apenergy.2021.117900_b0165
  article-title: Online supplementary ADP learning controller design and application to power system frequency control with large-scale wind energy integration
  publication-title: IEEE Trans Neural Networ
– ident: 10.1016/j.apenergy.2021.117900_b0215
– volume: 32
  start-page: 4091
  issue: 5
  year: 2017
  ident: 10.1016/j.apenergy.2021.117900_b0160
  article-title: LMI-Based Robust Predictive Load Frequency Control for Power Systems With Communication Delays
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2017.2654453
– volume: 11
  start-page: 3088
  year: 2017
  ident: 10.1016/j.apenergy.2021.117900_b0030
  article-title: Synchronisation mechanism and interfaces design of multi-FPGA-based real-time simulator for microgrids
  publication-title: IET Gener Transm Dis
  doi: 10.1049/iet-gtd.2016.1552
– volume: 28
  start-page: 4301
  issue: 4
  year: 2013
  ident: 10.1016/j.apenergy.2021.117900_b0140
  article-title: Decentralized Sliding Mode Load Frequency Control for Multi-Area Power Systems
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2013.2277131
– volume: 142
  start-page: 04015012
  issue: 1
  year: 2016
  ident: 10.1016/j.apenergy.2021.117900_b0175
  article-title: Multiagent Stochastic Dynamic Game for Smart Generation Control
  publication-title: J Energ Eng
  doi: 10.1061/(ASCE)EY.1943-7897.0000275
– volume: 42
  start-page: 145
  issue: 2
  year: 1997
  ident: 10.1016/j.apenergy.2021.117900_b0095
  article-title: Area load frequency control using fuzzy gain scheduling of PI controllers
  publication-title: Electr Power Syst Res
  doi: 10.1016/S0378-7796(96)01199-6
– volume: 13
  start-page: 4718
  issue: 12
  year: 2013
  ident: 10.1016/j.apenergy.2021.117900_b0070
  article-title: Hybrid BFOA–PSO algorithm for automatic generation control of linear and nonlinear interconnected power systems
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2013.07.021
– ident: 10.1016/j.apenergy.2021.117900_b0200
– volume: 228
  start-page: 2024
  year: 2018
  ident: 10.1016/j.apenergy.2021.117900_b0015
  article-title: A centralized-based method to determine the local voltage control strategies of distributed generator operation in active distribution networks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.07.065
– volume: 72
  start-page: 562
  issue: 3
  year: 1953
  ident: 10.1016/j.apenergy.2021.117900_b0040
  article-title: Tie-line power and frequency control of electric power systems
  publication-title: IEEE Trans Power App Syst
  doi: 10.1109/AIEEPAS.1953.4498667
– volume: 61
  start-page: 81
  year: 2017
  ident: 10.1016/j.apenergy.2021.117900_b0145
  article-title: Non-linear sliding mode load frequency control in multi-area power system
  publication-title: Control Eng Pract
  doi: 10.1016/j.conengprac.2017.02.001
– volume: 8
  start-page: 1430
  issue: 4
  year: 2017
  ident: 10.1016/j.apenergy.2021.117900_b0020
  article-title: Coordinated control method of voltage and reactive power for active distribution networks based on soft open point
  publication-title: IEEE Trans Sustain Energ
  doi: 10.1109/TSTE.2017.2686009
– volume: 42
  start-page: 257
  issue: 1
  year: 2012
  ident: 10.1016/j.apenergy.2021.117900_b0075
  article-title: Multiobjective design of load frequency control using genetic algorithms-ScienceDirect
  publication-title: Int J Elec Power
  doi: 10.1016/j.ijepes.2012.04.024
– volume: 74
  start-page: 195
  year: 2016
  ident: 10.1016/j.apenergy.2021.117900_b0055
  article-title: Load frequency control of power system under deregulated environment using optimal firefly algorithm
  publication-title: Int J Elec Power
  doi: 10.1016/j.ijepes.2015.07.025
– volume: 91
  start-page: 357
  issue: 7
  year: 2010
  ident: 10.1016/j.apenergy.2021.117900_b0105
  article-title: Load frequency control and automatic generation control using fractional-order controllers
  publication-title: Electr Eng
  doi: 10.1007/s00202-009-0145-7
– volume: 141
  start-page: 184
  issue: 3
  year: 1994
  ident: 10.1016/j.apenergy.2021.117900_b0135
  article-title: New robust adaptive load-frequency control with system parametric uncertainties
  publication-title: IET P-Gener Transm D
– volume: 25
  start-page: 341
  year: 2010
  ident: 10.1016/j.apenergy.2021.117900_b0100
  article-title: Unified Tuning of PID Load Frequency Controller for Power Systems via IMC
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2009.2036463
– volume: 1
  year: 2021
  ident: 10.1016/j.apenergy.2021.117900_b0005
  article-title: Optimal Coordinated Control of Multi-Renewable-to-Hydrogen Production System for Hydrogen Fueling Stations
  publication-title: IEEE Trans Ind Appl
– volume: 23
  start-page: 882
  issue: 3
  year: 2015
  ident: 10.1016/j.apenergy.2021.117900_b0060
  article-title: Cooperative Control of Power System Load and Frequency by Using Differential Games
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2014.2346996
– volume: 10
  start-page: 280
  issue: 1
  year: 2018
  ident: 10.1016/j.apenergy.2021.117900_b0025
  article-title: Robust operation of soft open points in active distribution networks with high penetration of photovoltaic integration
  publication-title: IEEE Trans Sustain Energ
  doi: 10.1109/TSTE.2018.2833545
– volume: 29
  start-page: 328
  year: 2015
  ident: 10.1016/j.apenergy.2021.117900_b0110
  article-title: Fractional-order load-frequency control of interconnected power systems using chaotic multi-objective optimization
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.12.032
– volume: 11
  start-page: 2417
  issue: 4
  year: 2020
  ident: 10.1016/j.apenergy.2021.117900_b0180
  article-title: A novel multi-agent ddqn-ad method-based distributed strategy for automatic generation control of integrated energy systems
  publication-title: IEEE Trans Sustain Energ
  doi: 10.1109/TSTE.2019.2958361
– year: 2008
  ident: 10.1016/j.apenergy.2021.117900_b0045
– ident: 10.1016/j.apenergy.2021.117900_b0195
– ident: 10.1016/j.apenergy.2021.117900_b0115
  doi: 10.1109/IECON.2017.8216042
– volume: 7
  start-page: 1267
  year: 2021
  ident: 10.1016/j.apenergy.2021.117900_b0205
  article-title: A new adaptive controller based on distributed deep reinforcement learning for PEMFC air supply system
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2021.02.043
– ident: 10.1016/j.apenergy.2021.117900_b0085
  doi: 10.1109/PSCE.2009.4840262
– volume: 52
  start-page: 1208
  issue: 2
  year: 2011
  ident: 10.1016/j.apenergy.2021.117900_b0150
  article-title: Decentralized model predictive based load frequency control in an interconnected power system
  publication-title: Energ Convers Manage
  doi: 10.1016/j.enconman.2010.09.016
– volume: 52
  start-page: 2247
  issue: 5
  year: 2011
  ident: 10.1016/j.apenergy.2021.117900_b0065
  article-title: Application of GA optimization for automatic generation control design in an interconnected power system
  publication-title: Energ Convers Manage
  doi: 10.1016/j.enconman.2011.01.010
– volume: 40
  start-page: 1413
  issue: 13
  year: 1999
  ident: 10.1016/j.apenergy.2021.117900_b0120
  article-title: Robust automatic generation control
  publication-title: Energ Convers Manage
  doi: 10.1016/S0196-8904(99)00040-0
– volume: 321
  start-page: 128929
  year: 2021
  ident: 10.1016/j.apenergy.2021.117900_b0210
  article-title: A novel data-driven controller for solid oxide fuel cell via deep reinforcement learning
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2021.128929
– ident: 10.1016/j.apenergy.2021.117900_b0220
– volume: 28
  start-page: 3002
  issue: 3
  year: 2013
  ident: 10.1016/j.apenergy.2021.117900_b0170
  article-title: Distributed Automatic Generation Control Using Flatness-Based Approach for High Penetration of Wind Generation
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2013.2257882
SSID ssj0002120
Score 2.6540604
Snippet •A novel coordinated automatic generation control algorithm framework is proposed.•A deep reinforcement learning algorithm is introduced to obtains better...
To dynamically balance multiple energy fluctuations in a multi-area integrated energy system (IES), a coordinated power control framework, named distributed...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 117900
SubjectTerms algorithms
China
curriculum
Distributed intelligent coordinated automatic generation control (DIC-AGC)
energy
Evolutionary imitation curriculum multi-agent double delayed deep deterministic policy gradient algorithm (EIC-MADDPG)
issues and policy
markets
Performance-based frequency regulation market
Title Coordinated load frequency control of multi-area integrated energy system using multi-agent deep reinforcement learning
URI https://dx.doi.org/10.1016/j.apenergy.2021.117900
https://www.proquest.com/docview/2636477801
Volume 306
WOSCitedRecordID wos000707875300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5BywEOCApVWx5aJG6WS-LX7h6rKggqVHEoKJyszT4gVWVHdkzbf8_sy3ZboPTAxYos72iT-TL7zXgeCL0tdCo1ZyQmxSKNM0azmBYTEWckF7TQE0FtfcXXT-T4mM7n7LOPKrV2nACpKnpxwVb_VdVwD5RtSmfvoO5eKNyAz6B0uILa4fpPij-swZ9cVtxQybOay0g3Ll36ss9LN-_UTSJhzBtTKBk6RshIuUpA19456mwcwT9pSrAiqdQqapTttipsYDGMnfg-ZrmB2jpxfc6PTRw4WvLzofzsW2cBw-sbAez5ktftj64ahyUSk98Ru8LMUI41KWLjno1NbToZG0vTjc62Kb1px11I4XSfr9xOwZFPpvvDgquNs68daH2aYchgOy2DnNLIKZ2c-2gzITkDU7h58HE2P-oP8MR38wzfYFRY_vsd_YnTXDvdLWU5eYIee18DHziMPEX3VLWFHo06UG6h7dlQ6AiPekvfPkPnIxhhAyPcwwh7GOFa4wFGeIARdnvHDkbYwgiPYIQNjPAVGOEAo-foy_vZyeGH2A_piEU2na5B50RnxslPZKJ4xhVPeaaVYDmVeSapVFqKhOhUZArYtlTgYiwYOLWS8XQx1ek22qjqSu0grESeGgdaceCcKqecTbgmhaBkAbQ017soDz9zKXwHezNI5az8u6J30bt-3cr1cLl1BQtaLD0TdQyzBIDeuvZNUHsJptq8f-OVqru2TAozrIEAJ9y7845eoIfDv-wl2lg3nXqFHoif62XbvPYI_gXvHMAK
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coordinated+load+frequency+control+of+multi-area+integrated+energy+system+using+multi-agent+deep+reinforcement+learning&rft.jtitle=Applied+energy&rft.au=Li%2C+Jiawen&rft.au=Yu%2C+Tao&rft.au=Zhang%2C+Xiaoshun&rft.date=2022-01-15&rft.issn=0306-2619&rft.volume=306&rft.spage=117900&rft_id=info:doi/10.1016%2Fj.apenergy.2021.117900&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2021_117900
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon