New criteria for configuration of cellular manufacturing considering product mix variation

•Mathematical model for clustering workers and machines in product mix variation case.•The mutual interest between workers is introduced for the first time.•Comparing two different MOP solution techniques to the proposed problem. This paper deals with configuring manufacturing cells when product mix...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & industrial engineering Ročník 98; s. 413 - 426
Hlavní autoři: Bootaki, Behrang, Mahdavi, Iraj, Paydar, Mohammad Mahdi
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Elsevier Ltd 01.08.2016
Pergamon Press Inc
Témata:
ISSN:0360-8352, 1879-0550
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Mathematical model for clustering workers and machines in product mix variation case.•The mutual interest between workers is introduced for the first time.•Comparing two different MOP solution techniques to the proposed problem. This paper deals with configuring manufacturing cells when product mix variation occurs. Most of researches have addressed the cell formation problem when part-machine incidence matrix is constant even for dynamic/stochastic case. But to the nature of CMS in manufacturing products in mid-variety and mid-volume, the product mix variation is not too far-fetched. Product mix variation causes the part-machine incidence matrix to change. To formulate the proposed problem two different criteria are considered which one relates to worker experts and another to worker relations. The first object considers the maximizing the expert levels in manufacturing cells. While the second object tries to maximize the interest levels in manufacturing cells. To make these concepts practical, a mathematical formulation which minimizes the voids of both worker-machine and worker-worker incidence matrices is developed. Due to the non-homogenous nature of the objective functions and possible conflicts, a bi-objective programming approach is applied. To find the Pareto-optimal front, the augmented ε-constraint method (AUGMECON) is applied. Since AUGMECON may not provide non-dominated set in a reasonable time, especially for large-size instances, NSGAII algorithm is customized and applied to produce optimal/near optimal Pareto solutions. To assess the performance of the proposed NSGAII algorithm, several randomly generated test problems were solved for a set of well-known multi-objective performance metrics.
AbstractList •Mathematical model for clustering workers and machines in product mix variation case.•The mutual interest between workers is introduced for the first time.•Comparing two different MOP solution techniques to the proposed problem. This paper deals with configuring manufacturing cells when product mix variation occurs. Most of researches have addressed the cell formation problem when part-machine incidence matrix is constant even for dynamic/stochastic case. But to the nature of CMS in manufacturing products in mid-variety and mid-volume, the product mix variation is not too far-fetched. Product mix variation causes the part-machine incidence matrix to change. To formulate the proposed problem two different criteria are considered which one relates to worker experts and another to worker relations. The first object considers the maximizing the expert levels in manufacturing cells. While the second object tries to maximize the interest levels in manufacturing cells. To make these concepts practical, a mathematical formulation which minimizes the voids of both worker-machine and worker-worker incidence matrices is developed. Due to the non-homogenous nature of the objective functions and possible conflicts, a bi-objective programming approach is applied. To find the Pareto-optimal front, the augmented ε-constraint method (AUGMECON) is applied. Since AUGMECON may not provide non-dominated set in a reasonable time, especially for large-size instances, NSGAII algorithm is customized and applied to produce optimal/near optimal Pareto solutions. To assess the performance of the proposed NSGAII algorithm, several randomly generated test problems were solved for a set of well-known multi-objective performance metrics.
This paper deals with configuring manufacturing cells when product mix variation occurs. Most of researches have addressed the cell formation problem when part-machine incidence matrix is constant even for dynamic/stochastic case. But to the nature of CMS in manufacturing products in mid-variety and mid-volume, the product mix variation is not too far-fetched. Product mix variation causes the part-machine incidence matrix to change. To formulate the proposed problem two different criteria are considered which one relates to worker experts and another to worker relations. The first object considers the maximizing the expert levels in manufacturing cells. While the second object tries to maximize the interest levels in manufacturing cells. To make these concepts practical, a mathematical formulation which minimizes the voids of both worker-machine and worker-worker incidence matrices is developed. Due to the non-homogenous nature of the objective functions and possible conflicts, a bi-objective programming approach is applied. To find the Pareto-optimal front, the augmented epsilon -constraint method (AUGMECON) is applied. Since AUGMECON may not provide non-dominated set in a reasonable time, especially for large-size instances, NSGAII algorithm is customized and applied to produce optimal/near optimal Pareto solutions. To assess the performance of the proposed NSGAII algorithm, several randomly generated test problems were solved for a set of well-known multi-objective performance metrics.
This paper deals with configuring manufacturing cells when product mix variation occurs. Most of researches have addressed the cell formation problem when part-machine incidence matrix is constant even for dynamic/stochastic case. But to the nature of CMS in manufacturing products in mid-variety and mid-volume, the product mix variation is not too far-fetched. Product mix variation causes the part-machine incidence matrix to change. To formulate the proposed problem two different criteria are considered which one relates to worker experts and another to worker relations. The first object considers the maximizing the expert levels in manufacturing cells. While the second object tries to maximize the interest levels in manufacturing cells. To make these concepts practical, a mathematical formulation which minimizes the voids of both worker-machine and worker-worker incidence matrices is developed. Due to the non-homogenous nature of the objective functions and possible conflicts, a bi-objective programming approach is applied. To find the Pareto-optimal front, the augmented ε-constraint method (AUGMECON) is applied. Since AUGMECON may not provide non-dominated set in a reasonable time, especially for large-size instances, NSGAII algorithm is customized and applied to produce optimal/near optimal Pareto solutions. To assess the performance of the proposed NSGAII algorithm, several randomly generated test problems were solved for a set of well-known multi-objective performance metrics.
Author Bootaki, Behrang
Mahdavi, Iraj
Paydar, Mohammad Mahdi
Author_xml – sequence: 1
  givenname: Behrang
  surname: Bootaki
  fullname: Bootaki, Behrang
  organization: Department of Industrial Engineering, Mazandaran University of Science and Technology, Babol, Iran
– sequence: 2
  givenname: Iraj
  surname: Mahdavi
  fullname: Mahdavi, Iraj
  email: irajarash@rediffmail.com
  organization: Department of Industrial Engineering, Mazandaran University of Science and Technology, Babol, Iran
– sequence: 3
  givenname: Mohammad Mahdi
  surname: Paydar
  fullname: Paydar, Mohammad Mahdi
  email: paydar@nit.ac.ir
  organization: Department of Industrial Engineering, Babol University of Technology, Babol, Iran
BookMark eNp9kMtKxTAQhoMoeLw8gLuCGzc9zrRNL7gS8QaiG924CWk6kRx6Ek1SL29v6nHlQhjIEL5v-Gf22LZ1lhg7QlgiYH26WipDyyK1S0hV4BZbYNt0OXAO22wBZQ15W_Jil-2FsAKAine4YM_39JEpbyJ5IzPtfKac1eZl8jIaZzOnM0XjOI3SZ2tpJy1VnLyxLzMXzEA__at3w6Ritjaf2btMk2b3gO1oOQY6_H332dPV5ePFTX73cH17cX6Xqwox5liQVn2rS6hQt6S15B1xIgnIu74ZFPVFK1Wjy4Ej8FpWfOh5X3Ipa9J1X-6zk83clOJtohDF2oQ5tLTkpiAwrV1XVdfwhB7_QVdu8jalSxR0vGsKhEQ1G0p5F4InLZSJPytFL80oEMR8c7FK_yTmmwtIVWAy8Y_56s1a-q9_nbONQ-lG74a8CAmxigbjSUUxOPOP_Q0Rc53k
CODEN CINDDL
CitedBy_id crossref_primary_10_1016_j_cie_2017_09_046
crossref_primary_10_3390_su10010042
crossref_primary_10_1007_s00521_024_10215_0
crossref_primary_10_1007_s12351_020_00574_6
crossref_primary_10_1080_00207543_2022_2105763
crossref_primary_10_1016_j_cie_2020_106565
crossref_primary_10_1016_j_cie_2021_107172
crossref_primary_10_1016_j_eswa_2023_122263
Cites_doi 10.1016/j.cor.2007.10.026
10.1080/0951192X.2014.880949
10.1016/j.jmsy.2011.07.007
10.1016/0377-2217(93)90016-G
10.1016/S0360-8352(98)00126-0
10.1016/j.ijpe.2005.01.014
10.1016/j.cie.2012.05.006
10.1016/j.cie.2003.03.006
10.1016/0360-8352(96)00103-9
10.1504/IJOR.2011.041800
10.1007/BF01759923
10.1080/00207548908942637
10.1016/j.eswa.2008.07.054
10.1080/00207540110072966
10.1016/j.amc.2009.03.037
10.1016/j.ejor.2007.12.014
10.1016/j.ress.2005.11.018
10.1109/TSMC.1971.4308298
10.1109/TEVC.2003.812220
10.1016/j.cor.2012.10.016
10.1109/4235.797969
10.1016/j.cie.2014.05.022
10.1109/21.281420
10.1162/106365600568202
10.1016/j.cie.2003.03.002
10.1080/00207540601138551
10.1162/evco.1994.2.3.221
10.1016/j.cie.2012.06.015
10.1016/j.cie.2010.09.003
10.1162/106365600568167
10.1109/4235.996017
10.1016/j.mcm.2012.08.013
10.1016/j.jmsy.2014.05.005
10.1243/09544054JEM813SC
10.1016/j.apenergy.2010.09.014
10.1080/00207540110040466
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright Pergamon Press Inc. Aug 2016
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Copyright Pergamon Press Inc. Aug 2016
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.cie.2016.06.021
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-0550
EndPage 426
ExternalDocumentID 4140514101
10_1016_j_cie_2016_06_021
S0360835216302170
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AATTM
AAXKI
AAXUO
ABAOU
ABDPE
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADGUI
ADMUD
ADNMO
ADRHT
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSH
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c411t-12efcb8f3041f8effa59e5eea0159b7dceb28ac7f3d51056a45db5b35aa6ef6b3
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000381949800035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-8352
IngestDate Sun Nov 09 11:29:39 EST 2025
Fri Jul 25 03:01:49 EDT 2025
Sat Nov 29 01:39:49 EST 2025
Tue Nov 18 22:17:51 EST 2025
Sun Apr 06 06:54:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Cellular manufacturing systems
NSGAII
Worker interest
ε-constraint method
Product mix variation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c411t-12efcb8f3041f8effa59e5eea0159b7dceb28ac7f3d51056a45db5b35aa6ef6b3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1809597210
PQPubID 9545
PageCount 14
ParticipantIDs proquest_miscellaneous_1835644975
proquest_journals_1809597210
crossref_citationtrail_10_1016_j_cie_2016_06_021
crossref_primary_10_1016_j_cie_2016_06_021
elsevier_sciencedirect_doi_10_1016_j_cie_2016_06_021
PublicationCentury 2000
PublicationDate 2016-08-01
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Computers & industrial engineering
PublicationYear 2016
Publisher Elsevier Ltd
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Pergamon Press Inc
References Mitrofanov (b0155) 1966
Srinivas, Deb (b0200) 1994; 2
Chu, Tsai (b0040) 2001
Süer, Tummaluri (b0220) 2008; 46
Fonseca, Fleming (b0085) 1993
Egilmez, Erenay, Süer (b0070) 2014; 33
Mavrotas (b0150) 2009; 213
Aramoon Bajestani, Rabbani, Rahimi-Vahed, Baharian Khoshkhou (b0005) 2009; 36
Horn, Nafpliotis, Goldberg (b0120) 1994
Süer, Dagli (b0210) 2005; 48
Mahdavi, Aalaei, Paydar, Solimanpur (b0140) 2012; 31
Bootaki, Mahdavi, Paydar (b0025) 2014; 75
Paydar, Saidi-Mehrabad (b0180) 2013; 40
Schaffer (b0185) 1985
Zitzler, Thiele (b0255) 1999; 3
Hajela, Lin (b0110) 1992; 4
Bidanda, Ariyawongrat, LaScola Needy, Norman, Tharmmaphornphilas (b0020) 2005; 48
Haimes, Lasdon, Wismer (b0105) 1971; 1
Süer, Bera (b0205) 1998; 35
Heragu (b0115) 1994; 24
Zitzler, Deb, Thiele (b0245) 2000; 8
Murata, Ishibuchi (b0160) 1995
Lu, Yen (b0135) 2003; 7
Fonseca, Fleming (b0090) 1996
Collette, Siarry (b0045) 2003
Corne, Knowles, Oates (b0055) 2000
Wood, Wollenberg (b0235) 1996
Mahdavi, Paydar, Solimanpur, Heidarzade (b0145) 2009; 36
Süer, Kamat, Mese, Huang (b0215) 2013; 57
Giri, Srinivas, Mouli (b0095) 2007; 221
Deb (b0060) 2001
Zitzler, Laumanns, Thiele (b0250) 2001
Askin, Huang (b0010) 2001; 39
Suresh, Slomp (b0225) 2001; 39
Paydar, Mahdavi, Valipoor khonakdari, Solimanpur (b0175) 2011; 11
Deb, Pratap, Agarwal, Meyarivan (b0065) 2002; 6
Goldberg (b0100) 1989
Egilmez, Süer, Huang (b0075) 2012; 63
Yin, Yasuda (b0240) 2006; 101
Bérubé, Gendreau, Potvin (b0015) 2009; 194
Paydar, Mahdavi, Sharafuddin, Solimanpur (b0170) 2010; 59
Bootaki, Mahdavi, Paydar (b0030) 2015; 28
Corne, Jerram, Knowles, Oates (b0050) 2001
Wemmerlov, Hyer (b0230) 1989; 27
Esmaili, Amjady, Shayanfar (b0080) 2011; 88
Konak, Coit, Smith (b0130) 2006; 91
Chankong, Haimes (b0035) 1983
Seifoddini, Djassemi (b0190) 1996; 31
Othman, Bhuiyan, Gouw (b0165) 2012; 63
Singh (b0195) 1993; 69
Knowles, Corne (b0125) 2000; 8
Deb (10.1016/j.cie.2016.06.021_b0060) 2001
Mahdavi (10.1016/j.cie.2016.06.021_b0145) 2009; 36
Askin (10.1016/j.cie.2016.06.021_b0010) 2001; 39
Fonseca (10.1016/j.cie.2016.06.021_b0090) 1996
Mavrotas (10.1016/j.cie.2016.06.021_b0150) 2009; 213
Süer (10.1016/j.cie.2016.06.021_b0210) 2005; 48
Paydar (10.1016/j.cie.2016.06.021_b0170) 2010; 59
Collette (10.1016/j.cie.2016.06.021_b0045) 2003
Süer (10.1016/j.cie.2016.06.021_b0220) 2008; 46
Othman (10.1016/j.cie.2016.06.021_b0165) 2012; 63
Seifoddini (10.1016/j.cie.2016.06.021_b0190) 1996; 31
Mahdavi (10.1016/j.cie.2016.06.021_b0140) 2012; 31
Heragu (10.1016/j.cie.2016.06.021_b0115) 1994; 24
Süer (10.1016/j.cie.2016.06.021_b0215) 2013; 57
Yin (10.1016/j.cie.2016.06.021_b0240) 2006; 101
Bootaki (10.1016/j.cie.2016.06.021_b0030) 2015; 28
Esmaili (10.1016/j.cie.2016.06.021_b0080) 2011; 88
Wemmerlov (10.1016/j.cie.2016.06.021_b0230) 1989; 27
Corne (10.1016/j.cie.2016.06.021_b0055) 2000
Zitzler (10.1016/j.cie.2016.06.021_b0245) 2000; 8
Giri (10.1016/j.cie.2016.06.021_b0095) 2007; 221
Horn (10.1016/j.cie.2016.06.021_b0120) 1994
Chankong (10.1016/j.cie.2016.06.021_b0035) 1983
Paydar (10.1016/j.cie.2016.06.021_b0180) 2013; 40
Suresh (10.1016/j.cie.2016.06.021_b0225) 2001; 39
Deb (10.1016/j.cie.2016.06.021_b0065) 2002; 6
Hajela (10.1016/j.cie.2016.06.021_b0110) 1992; 4
Goldberg (10.1016/j.cie.2016.06.021_b0100) 1989
Chu (10.1016/j.cie.2016.06.021_b0040) 2001
Haimes (10.1016/j.cie.2016.06.021_b0105) 1971; 1
Fonseca (10.1016/j.cie.2016.06.021_b0085) 1993
Süer (10.1016/j.cie.2016.06.021_b0205) 1998; 35
Bérubé (10.1016/j.cie.2016.06.021_b0015) 2009; 194
Schaffer (10.1016/j.cie.2016.06.021_b0185) 1985
Knowles (10.1016/j.cie.2016.06.021_b0125) 2000; 8
Aramoon Bajestani (10.1016/j.cie.2016.06.021_b0005) 2009; 36
Paydar (10.1016/j.cie.2016.06.021_b0175) 2011; 11
Srinivas (10.1016/j.cie.2016.06.021_b0200) 1994; 2
Lu (10.1016/j.cie.2016.06.021_b0135) 2003; 7
Egilmez (10.1016/j.cie.2016.06.021_b0070) 2014; 33
Bootaki (10.1016/j.cie.2016.06.021_b0025) 2014; 75
Corne (10.1016/j.cie.2016.06.021_b0050) 2001
Murata (10.1016/j.cie.2016.06.021_b0160) 1995
Zitzler (10.1016/j.cie.2016.06.021_b0250) 2001
Konak (10.1016/j.cie.2016.06.021_b0130) 2006; 91
Bidanda (10.1016/j.cie.2016.06.021_b0020) 2005; 48
Singh (10.1016/j.cie.2016.06.021_b0195) 1993; 69
Zitzler (10.1016/j.cie.2016.06.021_b0255) 1999; 3
Mitrofanov (10.1016/j.cie.2016.06.021_b0155) 1966
Egilmez (10.1016/j.cie.2016.06.021_b0075) 2012; 63
Wood (10.1016/j.cie.2016.06.021_b0235) 1996
References_xml – volume: 3
  start-page: 257
  year: 1999
  end-page: 271
  ident: b0255
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 101
  start-page: 329
  year: 2006
  end-page: 352
  ident: b0240
  article-title: Similarity coefficient methods applied to the cell formation problem: A taxonomy and review
  publication-title: International Journal of Production Economics
– start-page: 310
  year: 2001
  end-page: 317
  ident: b0040
  article-title: A heuristic algorithm for grouping manufacturing cells
  publication-title: Proceedings of the 2001 IEEE congress on evolutionary computation, Seoul, Korea
– volume: 35
  start-page: 431
  year: 1998
  end-page: 434
  ident: b0205
  article-title: Optimal operator assignment and cell loading when lot-splitting is allowed
  publication-title: Computers & Industrial Engineering
– volume: 59
  start-page: 929
  year: 2010
  end-page: 936
  ident: b0170
  article-title: Applying simulated annealing for designing cellular manufacturing systems using MDmTSP
  publication-title: Computers & Industrial Engineering
– volume: 221
  start-page: 1101
  year: 2007
  end-page: 1106
  ident: b0095
  article-title: An optimal design approach for a cellular manufacturing system
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
– year: 1996
  ident: b0235
  article-title: Power generation, operation and control
– volume: 1
  start-page: 296
  year: 1971
  end-page: 297
  ident: b0105
  article-title: On a bi-criterion formulation of the problems of integrated system identification and system optimization
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
– volume: 7
  start-page: 325
  year: 2003
  end-page: 343
  ident: b0135
  article-title: Rank-density-based multiobjective genetic algorithm and benchmark test function study
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 27
  start-page: 1511
  year: 1989
  end-page: 1530
  ident: b0230
  article-title: Cellular manufacturing in the US industry: A survey of users
  publication-title: International Journal of Production Research
– volume: 8
  start-page: 173
  year: 2000
  end-page: 195
  ident: b0245
  article-title: Comparison of multiobjective evolutionary algorithms: Empirical results
  publication-title: Evolutionary Computation
– volume: 57
  start-page: 741
  year: 2013
  end-page: 753
  ident: b0215
  article-title: Minimizing total tardiness subject to manpower restriction in labor-intensive manufacturing cells
  publication-title: Mathematical and Computer Modelling
– volume: 63
  start-page: 842
  year: 2012
  end-page: 854
  ident: b0075
  article-title: Stochastic cellular manufacturing system design subject to maximum acceptable risk level
  publication-title: Computers & Industrial Engineering
– start-page: 584
  year: 1996
  end-page: 593
  ident: b0090
  article-title: On the performance assessment and comparison of stochastic multiobjective optimizers
  publication-title: Parallel problem solving from nature IV
– volume: 11
  start-page: 408
  year: 2011
  end-page: 424
  ident: b0175
  article-title: Developing a mathematical model for cell formation in cellular manufacturing systems
  publication-title: International Journal of Operational Research
– year: 2001
  ident: b0060
  article-title: Multi-objective optimization using evolutionary algorithms
– volume: 63
  start-page: 1096
  year: 2012
  end-page: 1106
  ident: b0165
  article-title: Integrating workers’ differences into workforce planning
  publication-title: Computers & Industrial Engineering
– volume: 40
  start-page: 980
  year: 2013
  end-page: 990
  ident: b0180
  article-title: A hybrid genetic-variable neighborhood search algorithm for the cell formation problem based on grouping efficacy
  publication-title: Computers & Operations Research
– volume: 69
  start-page: 284
  year: 1993
  end-page: 291
  ident: b0195
  article-title: Design of cellular manufacturing systems: An invited review
  publication-title: European Journal of Operational Research
– year: 1995
  ident: b0160
  article-title: MOGA: Multi-objective genetic algorithms
  publication-title: Proceedings of the 1995 IEEE international conference on evolutionary computation, 29 November–1 December, 1995
– year: 1993
  ident: b0085
  article-title: Multiobjective genetic algorithms
  publication-title: IEE colloquium on ‘genetic algorithms for control systems engineering’, 28 May, 1993
– year: 1985
  ident: b0185
  article-title: Multiple objective optimization with vector evaluated genetic algorithms
  publication-title: Proceedings of the international conference on genetic algorithm and their applications
– volume: 75
  start-page: 31
  year: 2014
  end-page: 40
  ident: b0025
  article-title: A hybrid GA-AUGMECON method to solve a cubic cell formation problem considering different worker skills
  publication-title: Computers & Industrial Engineering
– volume: 48
  start-page: 643
  year: 2005
  end-page: 655
  ident: b0210
  article-title: Intra-cell manpower transfers and cell loading in labor-intensive manufacturing cells
  publication-title: Computers & Industrial Engineering
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b0065
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 31
  start-page: 214
  year: 2012
  end-page: 223
  ident: b0140
  article-title: A new mathematical model for integrating all incidence matrices in multi-dimensional cellular manufacturing system
  publication-title: Journal of Manufacturing Systems
– volume: 39
  start-page: 2431
  year: 2001
  end-page: 2451
  ident: b0010
  article-title: Forming effective worker teams for cellular manufacturing
  publication-title: International Journal of Production Research
– volume: 28
  start-page: 577
  year: 2015
  end-page: 592
  ident: b0030
  article-title: New bi-objective robust design-based utilization towards dynamic cell formation problem with fuzzy random demands
  publication-title: International Journal of Computer Integrated Manufacturing
– volume: 24
  start-page: 203
  year: 1994
  end-page: 214
  ident: b0115
  article-title: Group technology and cellular manufacturing
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
– year: 1994
  ident: b0120
  article-title: A niched Pareto genetic algorithm for multiobjective optimization
  publication-title: Proceedings of the first IEEE conference on evolutionary computation, IEEE world congress on computational intelligence, 27–29 June, 1994
– year: 1989
  ident: b0100
  article-title: Genetic algorithms: Search, optimization and machine learning
– volume: 39
  start-page: 4103
  year: 2001
  end-page: 4131
  ident: b0225
  article-title: A multi-objective procedure for labour assignments and grouping in capacitated cell formation problems
  publication-title: International Journal of Production Research
– volume: 194
  start-page: 39
  year: 2009
  end-page: 50
  ident: b0015
  article-title: An exact ε-constraint method for bi-objective combinatorial optimization problems: Application to the Traveling Salesman Problem with Profits
  publication-title: European Journal of Operational Research
– year: 2003
  ident: b0045
  article-title: Multi-objective optimization: Principles and case studies
– year: 2000
  ident: b0055
  article-title: The Pareto envelope-based selection algorithm for multiobjective optimization
  publication-title: Proceedings of sixth international conference on parallel problem solving from nature, 18–20 September, 2000
– volume: 213
  start-page: 455
  year: 2009
  end-page: 465
  ident: b0150
  article-title: Effective implementation of thee-constraint method in multi-objective mathematical programming problems
  publication-title: Applied Mathematical Computations
– year: 2001
  ident: b0250
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm
– volume: 36
  start-page: 6598
  year: 2009
  end-page: 6604
  ident: b0145
  article-title: Genetic algorithm approach for solving a cell formation problem in cellular manufacturing
  publication-title: Expert Systems with Applications
– volume: 4
  start-page: 99
  year: 1992
  end-page: 107
  ident: b0110
  article-title: Genetic search strategies in multicriterion optimal design
  publication-title: Structural Optimization
– volume: 91
  start-page: 992
  year: 2006
  end-page: 1007
  ident: b0130
  article-title: Multi-objective optimization using genetic algorithms: A tutorial
  publication-title: Reliability Engineering and System Safety
– year: 1983
  ident: b0035
  article-title: Multi-objective decision making: Theory and methodology
– volume: 8
  start-page: 149
  year: 2000
  end-page: 172
  ident: b0125
  article-title: Approximating the nondominated front using the Pareto archived evolution strategy
  publication-title: Evolutionary Computation
– volume: 88
  start-page: 755
  year: 2011
  end-page: 766
  ident: b0080
  article-title: Multi-objective congestion management by modified augmented ε-constraint method
  publication-title: Applied Energy
– volume: 33
  start-page: 578
  year: 2014
  end-page: 588
  ident: b0070
  article-title: Stochastic skill-based manpower allocation in a cellular manufacturing system
  publication-title: Journal of Manufacturing Systems
– volume: 2
  start-page: 221
  year: 1994
  end-page: 248
  ident: b0200
  article-title: Multiobjective optimization using nondominated sorting in genetic algorithms
  publication-title: Evolutionary Computation
– volume: 36
  start-page: 777
  year: 2009
  end-page: 794
  ident: b0005
  article-title: A multi objective scatter search for a dynamic cell formation problem
  publication-title: Computers & Operations Research
– volume: 31
  start-page: 163
  year: 1996
  end-page: 167
  ident: b0190
  article-title: Sensitivity analysis in cellular manufacturing system in the case of product mix variation
  publication-title: Computers & Industrial Engineering
– volume: 48
  start-page: 507
  year: 2005
  end-page: 523
  ident: b0020
  article-title: Human related issues in manufacturing cell design, implementation, and operation: A review and survey
  publication-title: Computers & Industrial Engineering
– year: 2001
  ident: b0050
  article-title: PESA-II: Region-based selection in evolutionary multiobjective optimization
  publication-title: Proceedings of the genetic and evolutionary computation conference, San Francisco, CA
– year: 1966
  ident: b0155
  article-title: The scientific principles of group technology
– volume: 46
  start-page: 469
  year: 2008
  end-page: 493
  ident: b0220
  article-title: Multi-period operator assignment considering skills, learning and forgetting in labour-intensive cells
  publication-title: International Journal of Production Research
– year: 2001
  ident: 10.1016/j.cie.2016.06.021_b0250
– year: 2001
  ident: 10.1016/j.cie.2016.06.021_b0060
– year: 1989
  ident: 10.1016/j.cie.2016.06.021_b0100
– volume: 36
  start-page: 777
  year: 2009
  ident: 10.1016/j.cie.2016.06.021_b0005
  article-title: A multi objective scatter search for a dynamic cell formation problem
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2007.10.026
– volume: 28
  start-page: 577
  issue: 6
  year: 2015
  ident: 10.1016/j.cie.2016.06.021_b0030
  article-title: New bi-objective robust design-based utilization towards dynamic cell formation problem with fuzzy random demands
  publication-title: International Journal of Computer Integrated Manufacturing
  doi: 10.1080/0951192X.2014.880949
– volume: 31
  start-page: 214
  year: 2012
  ident: 10.1016/j.cie.2016.06.021_b0140
  article-title: A new mathematical model for integrating all incidence matrices in multi-dimensional cellular manufacturing system
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2011.07.007
– year: 1994
  ident: 10.1016/j.cie.2016.06.021_b0120
  article-title: A niched Pareto genetic algorithm for multiobjective optimization
– volume: 69
  start-page: 284
  year: 1993
  ident: 10.1016/j.cie.2016.06.021_b0195
  article-title: Design of cellular manufacturing systems: An invited review
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(93)90016-G
– year: 2003
  ident: 10.1016/j.cie.2016.06.021_b0045
– volume: 35
  start-page: 431
  issue: 3–4
  year: 1998
  ident: 10.1016/j.cie.2016.06.021_b0205
  article-title: Optimal operator assignment and cell loading when lot-splitting is allowed
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/S0360-8352(98)00126-0
– volume: 101
  start-page: 329
  year: 2006
  ident: 10.1016/j.cie.2016.06.021_b0240
  article-title: Similarity coefficient methods applied to the cell formation problem: A taxonomy and review
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2005.01.014
– volume: 63
  start-page: 842
  year: 2012
  ident: 10.1016/j.cie.2016.06.021_b0075
  article-title: Stochastic cellular manufacturing system design subject to maximum acceptable risk level
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2012.05.006
– volume: 48
  start-page: 643
  year: 2005
  ident: 10.1016/j.cie.2016.06.021_b0210
  article-title: Intra-cell manpower transfers and cell loading in labor-intensive manufacturing cells
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2003.03.006
– volume: 31
  start-page: 163
  issue: 1–2
  year: 1996
  ident: 10.1016/j.cie.2016.06.021_b0190
  article-title: Sensitivity analysis in cellular manufacturing system in the case of product mix variation
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/0360-8352(96)00103-9
– year: 1993
  ident: 10.1016/j.cie.2016.06.021_b0085
  article-title: Multiobjective genetic algorithms
– volume: 11
  start-page: 408
  year: 2011
  ident: 10.1016/j.cie.2016.06.021_b0175
  article-title: Developing a mathematical model for cell formation in cellular manufacturing systems
  publication-title: International Journal of Operational Research
  doi: 10.1504/IJOR.2011.041800
– year: 1983
  ident: 10.1016/j.cie.2016.06.021_b0035
– volume: 4
  start-page: 99
  issue: 2
  year: 1992
  ident: 10.1016/j.cie.2016.06.021_b0110
  article-title: Genetic search strategies in multicriterion optimal design
  publication-title: Structural Optimization
  doi: 10.1007/BF01759923
– volume: 27
  start-page: 1511
  issue: 9
  year: 1989
  ident: 10.1016/j.cie.2016.06.021_b0230
  article-title: Cellular manufacturing in the US industry: A survey of users
  publication-title: International Journal of Production Research
  doi: 10.1080/00207548908942637
– volume: 36
  start-page: 6598
  year: 2009
  ident: 10.1016/j.cie.2016.06.021_b0145
  article-title: Genetic algorithm approach for solving a cell formation problem in cellular manufacturing
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.07.054
– volume: 39
  start-page: 4103
  issue: 18
  year: 2001
  ident: 10.1016/j.cie.2016.06.021_b0225
  article-title: A multi-objective procedure for labour assignments and grouping in capacitated cell formation problems
  publication-title: International Journal of Production Research
  doi: 10.1080/00207540110072966
– volume: 213
  start-page: 455
  issue: 2
  year: 2009
  ident: 10.1016/j.cie.2016.06.021_b0150
  article-title: Effective implementation of thee-constraint method in multi-objective mathematical programming problems
  publication-title: Applied Mathematical Computations
  doi: 10.1016/j.amc.2009.03.037
– year: 1996
  ident: 10.1016/j.cie.2016.06.021_b0235
– volume: 194
  start-page: 39
  year: 2009
  ident: 10.1016/j.cie.2016.06.021_b0015
  article-title: An exact ε-constraint method for bi-objective combinatorial optimization problems: Application to the Traveling Salesman Problem with Profits
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2007.12.014
– volume: 91
  start-page: 992
  year: 2006
  ident: 10.1016/j.cie.2016.06.021_b0130
  article-title: Multi-objective optimization using genetic algorithms: A tutorial
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/j.ress.2005.11.018
– year: 2001
  ident: 10.1016/j.cie.2016.06.021_b0050
  article-title: PESA-II: Region-based selection in evolutionary multiobjective optimization
– volume: 1
  start-page: 296
  issue: 3
  year: 1971
  ident: 10.1016/j.cie.2016.06.021_b0105
  article-title: On a bi-criterion formulation of the problems of integrated system identification and system optimization
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
  doi: 10.1109/TSMC.1971.4308298
– volume: 7
  start-page: 325
  issue: 4
  year: 2003
  ident: 10.1016/j.cie.2016.06.021_b0135
  article-title: Rank-density-based multiobjective genetic algorithm and benchmark test function study
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2003.812220
– year: 1966
  ident: 10.1016/j.cie.2016.06.021_b0155
– volume: 40
  start-page: 980
  year: 2013
  ident: 10.1016/j.cie.2016.06.021_b0180
  article-title: A hybrid genetic-variable neighborhood search algorithm for the cell formation problem based on grouping efficacy
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2012.10.016
– start-page: 584
  year: 1996
  ident: 10.1016/j.cie.2016.06.021_b0090
  article-title: On the performance assessment and comparison of stochastic multiobjective optimizers
– volume: 3
  start-page: 257
  issue: 4
  year: 1999
  ident: 10.1016/j.cie.2016.06.021_b0255
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.797969
– volume: 75
  start-page: 31
  year: 2014
  ident: 10.1016/j.cie.2016.06.021_b0025
  article-title: A hybrid GA-AUGMECON method to solve a cubic cell formation problem considering different worker skills
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2014.05.022
– volume: 24
  start-page: 203
  issue: 2
  year: 1994
  ident: 10.1016/j.cie.2016.06.021_b0115
  article-title: Group technology and cellular manufacturing
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
  doi: 10.1109/21.281420
– volume: 8
  start-page: 173
  issue: 2
  year: 2000
  ident: 10.1016/j.cie.2016.06.021_b0245
  article-title: Comparison of multiobjective evolutionary algorithms: Empirical results
  publication-title: Evolutionary Computation
  doi: 10.1162/106365600568202
– volume: 48
  start-page: 507
  year: 2005
  ident: 10.1016/j.cie.2016.06.021_b0020
  article-title: Human related issues in manufacturing cell design, implementation, and operation: A review and survey
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2003.03.002
– volume: 46
  start-page: 469
  issue: 2
  year: 2008
  ident: 10.1016/j.cie.2016.06.021_b0220
  article-title: Multi-period operator assignment considering skills, learning and forgetting in labour-intensive cells
  publication-title: International Journal of Production Research
  doi: 10.1080/00207540601138551
– year: 1985
  ident: 10.1016/j.cie.2016.06.021_b0185
  article-title: Multiple objective optimization with vector evaluated genetic algorithms
– year: 2000
  ident: 10.1016/j.cie.2016.06.021_b0055
  article-title: The Pareto envelope-based selection algorithm for multiobjective optimization
– volume: 2
  start-page: 221
  issue: 3
  year: 1994
  ident: 10.1016/j.cie.2016.06.021_b0200
  article-title: Multiobjective optimization using nondominated sorting in genetic algorithms
  publication-title: Evolutionary Computation
  doi: 10.1162/evco.1994.2.3.221
– volume: 63
  start-page: 1096
  year: 2012
  ident: 10.1016/j.cie.2016.06.021_b0165
  article-title: Integrating workers’ differences into workforce planning
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2012.06.015
– volume: 59
  start-page: 929
  year: 2010
  ident: 10.1016/j.cie.2016.06.021_b0170
  article-title: Applying simulated annealing for designing cellular manufacturing systems using MDmTSP
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2010.09.003
– volume: 8
  start-page: 149
  issue: 2
  year: 2000
  ident: 10.1016/j.cie.2016.06.021_b0125
  article-title: Approximating the nondominated front using the Pareto archived evolution strategy
  publication-title: Evolutionary Computation
  doi: 10.1162/106365600568167
– year: 1995
  ident: 10.1016/j.cie.2016.06.021_b0160
  article-title: MOGA: Multi-objective genetic algorithms
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.cie.2016.06.021_b0065
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– volume: 57
  start-page: 741
  year: 2013
  ident: 10.1016/j.cie.2016.06.021_b0215
  article-title: Minimizing total tardiness subject to manpower restriction in labor-intensive manufacturing cells
  publication-title: Mathematical and Computer Modelling
  doi: 10.1016/j.mcm.2012.08.013
– volume: 33
  start-page: 578
  year: 2014
  ident: 10.1016/j.cie.2016.06.021_b0070
  article-title: Stochastic skill-based manpower allocation in a cellular manufacturing system
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2014.05.005
– start-page: 310
  year: 2001
  ident: 10.1016/j.cie.2016.06.021_b0040
  article-title: A heuristic algorithm for grouping manufacturing cells
– volume: 221
  start-page: 1101
  issue: 6
  year: 2007
  ident: 10.1016/j.cie.2016.06.021_b0095
  article-title: An optimal design approach for a cellular manufacturing system
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
  doi: 10.1243/09544054JEM813SC
– volume: 88
  start-page: 755
  issue: 3
  year: 2011
  ident: 10.1016/j.cie.2016.06.021_b0080
  article-title: Multi-objective congestion management by modified augmented ε-constraint method
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2010.09.014
– volume: 39
  start-page: 2431
  issue: 11
  year: 2001
  ident: 10.1016/j.cie.2016.06.021_b0010
  article-title: Forming effective worker teams for cellular manufacturing
  publication-title: International Journal of Production Research
  doi: 10.1080/00207540110040466
SSID ssj0004591
Score 2.2118893
Snippet •Mathematical model for clustering workers and machines in product mix variation case.•The mutual interest between workers is introduced for the first...
This paper deals with configuring manufacturing cells when product mix variation occurs. Most of researches have addressed the cell formation problem when...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 413
SubjectTerms Algorithms
Cellular manufacturing systems
Constants
Criteria
Incidence
Manufacturing cells
Mathematical analysis
Mathematical models
Mathematical programming
Matrices (mathematics)
NSGAII
Optimization
Optimization algorithms
Pareto optimum
Product mix variation
Product mixes
Stochastic models
Studies
Worker interest
ε-constraint method
Title New criteria for configuration of cellular manufacturing considering product mix variation
URI https://dx.doi.org/10.1016/j.cie.2016.06.021
https://www.proquest.com/docview/1809597210
https://www.proquest.com/docview/1835644975
Volume 98
WOSCitedRecordID wos000381949800035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLaqjgMc-DFAFAYyEiemoCS24-Q40BBD2sRhSBWXyHFsmmpNpv5SOfGv8xzbSVu0iR24RFWcRGnel-f3nO99D6F3VEDIRrkMiFQEEhROAxHpMigyrVgo40yLsG02wS8u0vE4-zYY_Pa1MOsrXtfpZpNd_1dTwz4wtimdvYO5u4vCDvgNRoctmB22_2R4w1gEV2A0mEVLIoSMV1c_V_MuODSL9S37dCbqlalssKWK0vXutPXprRDs8azaHK8hne7t51UNXDeIRYudqm8AonqBwy7Vb5qlsO2xP6oJTI7dyLmYlGLdjpzNxbT_nvWrtMTv82YiZjNhuCCTstpeooiSjiDXl2aFgQn1tt2ubT7t_Ca1BaluCqa2iP4v724XGqYfwOsZUl7SKq_aAutdJe29Ga7jHXpK2zSHS-TmErmh9RkhgoOYsywdooOTs9Px1y3Bedt00f8D_2G8pQju3cdNoc3eJN9GLpeP0UOXcuATC5UnaKDqQ_TIpR_YOffFIXqwpU35FP0AHGGPIww4wjs4wo3GHkd4B0d4C0fY4QgDjnCHo2fo--fTy09fAteII5A0ipZBFCsti1STkEY6VVoLlimmlIBYMit4KVURp0JyTUoTryeCsrJgBWFCJEonBXmOhnVTqxcIK67ShBCtIkJppgsBKa0gcSlZWXKp4xEK_TMEG1k2immWcpXfaLsRet-dcm0lWm47mHrD5C7GtLFjDiC77bQjb8TcveuL3EjfMaN-FY7Q224Y3LN5_KJWzcocQxikHBlnL-9ym6_Q_f5FOkLD5XylXqN7cr2sFvM3DqR_AFfmuAQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+criteria+for+configuration+of+cellular+manufacturing+considering+product+mix+variation&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Bootaki%2C+Behrang&rft.au=Mahdavi%2C+Iraj&rft.au=Paydar%2C+Mohammad+Mahdi&rft.date=2016-08-01&rft.issn=0360-8352&rft.volume=98&rft.spage=413&rft.epage=426&rft_id=info:doi/10.1016%2Fj.cie.2016.06.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cie_2016_06_021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon