New criteria for configuration of cellular manufacturing considering product mix variation
•Mathematical model for clustering workers and machines in product mix variation case.•The mutual interest between workers is introduced for the first time.•Comparing two different MOP solution techniques to the proposed problem. This paper deals with configuring manufacturing cells when product mix...
Uloženo v:
| Vydáno v: | Computers & industrial engineering Ročník 98; s. 413 - 426 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Elsevier Ltd
01.08.2016
Pergamon Press Inc |
| Témata: | |
| ISSN: | 0360-8352, 1879-0550 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Mathematical model for clustering workers and machines in product mix variation case.•The mutual interest between workers is introduced for the first time.•Comparing two different MOP solution techniques to the proposed problem.
This paper deals with configuring manufacturing cells when product mix variation occurs. Most of researches have addressed the cell formation problem when part-machine incidence matrix is constant even for dynamic/stochastic case. But to the nature of CMS in manufacturing products in mid-variety and mid-volume, the product mix variation is not too far-fetched. Product mix variation causes the part-machine incidence matrix to change. To formulate the proposed problem two different criteria are considered which one relates to worker experts and another to worker relations. The first object considers the maximizing the expert levels in manufacturing cells. While the second object tries to maximize the interest levels in manufacturing cells. To make these concepts practical, a mathematical formulation which minimizes the voids of both worker-machine and worker-worker incidence matrices is developed. Due to the non-homogenous nature of the objective functions and possible conflicts, a bi-objective programming approach is applied. To find the Pareto-optimal front, the augmented ε-constraint method (AUGMECON) is applied. Since AUGMECON may not provide non-dominated set in a reasonable time, especially for large-size instances, NSGAII algorithm is customized and applied to produce optimal/near optimal Pareto solutions. To assess the performance of the proposed NSGAII algorithm, several randomly generated test problems were solved for a set of well-known multi-objective performance metrics. |
|---|---|
| AbstractList | •Mathematical model for clustering workers and machines in product mix variation case.•The mutual interest between workers is introduced for the first time.•Comparing two different MOP solution techniques to the proposed problem.
This paper deals with configuring manufacturing cells when product mix variation occurs. Most of researches have addressed the cell formation problem when part-machine incidence matrix is constant even for dynamic/stochastic case. But to the nature of CMS in manufacturing products in mid-variety and mid-volume, the product mix variation is not too far-fetched. Product mix variation causes the part-machine incidence matrix to change. To formulate the proposed problem two different criteria are considered which one relates to worker experts and another to worker relations. The first object considers the maximizing the expert levels in manufacturing cells. While the second object tries to maximize the interest levels in manufacturing cells. To make these concepts practical, a mathematical formulation which minimizes the voids of both worker-machine and worker-worker incidence matrices is developed. Due to the non-homogenous nature of the objective functions and possible conflicts, a bi-objective programming approach is applied. To find the Pareto-optimal front, the augmented ε-constraint method (AUGMECON) is applied. Since AUGMECON may not provide non-dominated set in a reasonable time, especially for large-size instances, NSGAII algorithm is customized and applied to produce optimal/near optimal Pareto solutions. To assess the performance of the proposed NSGAII algorithm, several randomly generated test problems were solved for a set of well-known multi-objective performance metrics. This paper deals with configuring manufacturing cells when product mix variation occurs. Most of researches have addressed the cell formation problem when part-machine incidence matrix is constant even for dynamic/stochastic case. But to the nature of CMS in manufacturing products in mid-variety and mid-volume, the product mix variation is not too far-fetched. Product mix variation causes the part-machine incidence matrix to change. To formulate the proposed problem two different criteria are considered which one relates to worker experts and another to worker relations. The first object considers the maximizing the expert levels in manufacturing cells. While the second object tries to maximize the interest levels in manufacturing cells. To make these concepts practical, a mathematical formulation which minimizes the voids of both worker-machine and worker-worker incidence matrices is developed. Due to the non-homogenous nature of the objective functions and possible conflicts, a bi-objective programming approach is applied. To find the Pareto-optimal front, the augmented epsilon -constraint method (AUGMECON) is applied. Since AUGMECON may not provide non-dominated set in a reasonable time, especially for large-size instances, NSGAII algorithm is customized and applied to produce optimal/near optimal Pareto solutions. To assess the performance of the proposed NSGAII algorithm, several randomly generated test problems were solved for a set of well-known multi-objective performance metrics. This paper deals with configuring manufacturing cells when product mix variation occurs. Most of researches have addressed the cell formation problem when part-machine incidence matrix is constant even for dynamic/stochastic case. But to the nature of CMS in manufacturing products in mid-variety and mid-volume, the product mix variation is not too far-fetched. Product mix variation causes the part-machine incidence matrix to change. To formulate the proposed problem two different criteria are considered which one relates to worker experts and another to worker relations. The first object considers the maximizing the expert levels in manufacturing cells. While the second object tries to maximize the interest levels in manufacturing cells. To make these concepts practical, a mathematical formulation which minimizes the voids of both worker-machine and worker-worker incidence matrices is developed. Due to the non-homogenous nature of the objective functions and possible conflicts, a bi-objective programming approach is applied. To find the Pareto-optimal front, the augmented ε-constraint method (AUGMECON) is applied. Since AUGMECON may not provide non-dominated set in a reasonable time, especially for large-size instances, NSGAII algorithm is customized and applied to produce optimal/near optimal Pareto solutions. To assess the performance of the proposed NSGAII algorithm, several randomly generated test problems were solved for a set of well-known multi-objective performance metrics. |
| Author | Bootaki, Behrang Mahdavi, Iraj Paydar, Mohammad Mahdi |
| Author_xml | – sequence: 1 givenname: Behrang surname: Bootaki fullname: Bootaki, Behrang organization: Department of Industrial Engineering, Mazandaran University of Science and Technology, Babol, Iran – sequence: 2 givenname: Iraj surname: Mahdavi fullname: Mahdavi, Iraj email: irajarash@rediffmail.com organization: Department of Industrial Engineering, Mazandaran University of Science and Technology, Babol, Iran – sequence: 3 givenname: Mohammad Mahdi surname: Paydar fullname: Paydar, Mohammad Mahdi email: paydar@nit.ac.ir organization: Department of Industrial Engineering, Babol University of Technology, Babol, Iran |
| BookMark | eNp9kMtKxTAQhoMoeLw8gLuCGzc9zrRNL7gS8QaiG924CWk6kRx6Ek1SL29v6nHlQhjIEL5v-Gf22LZ1lhg7QlgiYH26WipDyyK1S0hV4BZbYNt0OXAO22wBZQ15W_Jil-2FsAKAine4YM_39JEpbyJ5IzPtfKac1eZl8jIaZzOnM0XjOI3SZ2tpJy1VnLyxLzMXzEA__at3w6Ritjaf2btMk2b3gO1oOQY6_H332dPV5ePFTX73cH17cX6Xqwox5liQVn2rS6hQt6S15B1xIgnIu74ZFPVFK1Wjy4Ej8FpWfOh5X3Ipa9J1X-6zk83clOJtohDF2oQ5tLTkpiAwrV1XVdfwhB7_QVdu8jalSxR0vGsKhEQ1G0p5F4InLZSJPytFL80oEMR8c7FK_yTmmwtIVWAy8Y_56s1a-q9_nbONQ-lG74a8CAmxigbjSUUxOPOP_Q0Rc53k |
| CODEN | CINDDL |
| CitedBy_id | crossref_primary_10_1016_j_cie_2017_09_046 crossref_primary_10_3390_su10010042 crossref_primary_10_1007_s00521_024_10215_0 crossref_primary_10_1007_s12351_020_00574_6 crossref_primary_10_1080_00207543_2022_2105763 crossref_primary_10_1016_j_cie_2020_106565 crossref_primary_10_1016_j_cie_2021_107172 crossref_primary_10_1016_j_eswa_2023_122263 |
| Cites_doi | 10.1016/j.cor.2007.10.026 10.1080/0951192X.2014.880949 10.1016/j.jmsy.2011.07.007 10.1016/0377-2217(93)90016-G 10.1016/S0360-8352(98)00126-0 10.1016/j.ijpe.2005.01.014 10.1016/j.cie.2012.05.006 10.1016/j.cie.2003.03.006 10.1016/0360-8352(96)00103-9 10.1504/IJOR.2011.041800 10.1007/BF01759923 10.1080/00207548908942637 10.1016/j.eswa.2008.07.054 10.1080/00207540110072966 10.1016/j.amc.2009.03.037 10.1016/j.ejor.2007.12.014 10.1016/j.ress.2005.11.018 10.1109/TSMC.1971.4308298 10.1109/TEVC.2003.812220 10.1016/j.cor.2012.10.016 10.1109/4235.797969 10.1016/j.cie.2014.05.022 10.1109/21.281420 10.1162/106365600568202 10.1016/j.cie.2003.03.002 10.1080/00207540601138551 10.1162/evco.1994.2.3.221 10.1016/j.cie.2012.06.015 10.1016/j.cie.2010.09.003 10.1162/106365600568167 10.1109/4235.996017 10.1016/j.mcm.2012.08.013 10.1016/j.jmsy.2014.05.005 10.1243/09544054JEM813SC 10.1016/j.apenergy.2010.09.014 10.1080/00207540110040466 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd Copyright Pergamon Press Inc. Aug 2016 |
| Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Copyright Pergamon Press Inc. Aug 2016 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.cie.2016.06.021 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1879-0550 |
| EndPage | 426 |
| ExternalDocumentID | 4140514101 10_1016_j_cie_2016_06_021 S0360835216302170 |
| Genre | Feature |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKG AABNK AACTN AAEDT AAEDW AAFWJ AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARIN AATTM AAXKI AAXUO ABAOU ABDPE ABJNI ABMAC ABUCO ABWVN ABXDB ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ACRPL ADBBV ADEZE ADGUI ADMUD ADNMO ADRHT ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LX9 LY1 LY7 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SSH SST SSW SSZ T5K TAE TN5 WUQ XPP ZMT ~G- 9DU AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD 7SC 8FD AFXIZ AGCQF AGRNS JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c411t-12efcb8f3041f8effa59e5eea0159b7dceb28ac7f3d51056a45db5b35aa6ef6b3 |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000381949800035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-8352 |
| IngestDate | Sun Nov 09 11:29:39 EST 2025 Fri Jul 25 03:01:49 EDT 2025 Sat Nov 29 01:39:49 EST 2025 Tue Nov 18 22:17:51 EST 2025 Sun Apr 06 06:54:00 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cellular manufacturing systems NSGAII Worker interest ε-constraint method Product mix variation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c411t-12efcb8f3041f8effa59e5eea0159b7dceb28ac7f3d51056a45db5b35aa6ef6b3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1809597210 |
| PQPubID | 9545 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_1835644975 proquest_journals_1809597210 crossref_citationtrail_10_1016_j_cie_2016_06_021 crossref_primary_10_1016_j_cie_2016_06_021 elsevier_sciencedirect_doi_10_1016_j_cie_2016_06_021 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-08-01 |
| PublicationDateYYYYMMDD | 2016-08-01 |
| PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Computers & industrial engineering |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd Pergamon Press Inc |
| Publisher_xml | – name: Elsevier Ltd – name: Pergamon Press Inc |
| References | Mitrofanov (b0155) 1966 Srinivas, Deb (b0200) 1994; 2 Chu, Tsai (b0040) 2001 Süer, Tummaluri (b0220) 2008; 46 Fonseca, Fleming (b0085) 1993 Egilmez, Erenay, Süer (b0070) 2014; 33 Mavrotas (b0150) 2009; 213 Aramoon Bajestani, Rabbani, Rahimi-Vahed, Baharian Khoshkhou (b0005) 2009; 36 Horn, Nafpliotis, Goldberg (b0120) 1994 Süer, Dagli (b0210) 2005; 48 Mahdavi, Aalaei, Paydar, Solimanpur (b0140) 2012; 31 Bootaki, Mahdavi, Paydar (b0025) 2014; 75 Paydar, Saidi-Mehrabad (b0180) 2013; 40 Schaffer (b0185) 1985 Zitzler, Thiele (b0255) 1999; 3 Hajela, Lin (b0110) 1992; 4 Bidanda, Ariyawongrat, LaScola Needy, Norman, Tharmmaphornphilas (b0020) 2005; 48 Haimes, Lasdon, Wismer (b0105) 1971; 1 Süer, Bera (b0205) 1998; 35 Heragu (b0115) 1994; 24 Zitzler, Deb, Thiele (b0245) 2000; 8 Murata, Ishibuchi (b0160) 1995 Lu, Yen (b0135) 2003; 7 Fonseca, Fleming (b0090) 1996 Collette, Siarry (b0045) 2003 Corne, Knowles, Oates (b0055) 2000 Wood, Wollenberg (b0235) 1996 Mahdavi, Paydar, Solimanpur, Heidarzade (b0145) 2009; 36 Süer, Kamat, Mese, Huang (b0215) 2013; 57 Giri, Srinivas, Mouli (b0095) 2007; 221 Deb (b0060) 2001 Zitzler, Laumanns, Thiele (b0250) 2001 Askin, Huang (b0010) 2001; 39 Suresh, Slomp (b0225) 2001; 39 Paydar, Mahdavi, Valipoor khonakdari, Solimanpur (b0175) 2011; 11 Deb, Pratap, Agarwal, Meyarivan (b0065) 2002; 6 Goldberg (b0100) 1989 Egilmez, Süer, Huang (b0075) 2012; 63 Yin, Yasuda (b0240) 2006; 101 Bérubé, Gendreau, Potvin (b0015) 2009; 194 Paydar, Mahdavi, Sharafuddin, Solimanpur (b0170) 2010; 59 Bootaki, Mahdavi, Paydar (b0030) 2015; 28 Corne, Jerram, Knowles, Oates (b0050) 2001 Wemmerlov, Hyer (b0230) 1989; 27 Esmaili, Amjady, Shayanfar (b0080) 2011; 88 Konak, Coit, Smith (b0130) 2006; 91 Chankong, Haimes (b0035) 1983 Seifoddini, Djassemi (b0190) 1996; 31 Othman, Bhuiyan, Gouw (b0165) 2012; 63 Singh (b0195) 1993; 69 Knowles, Corne (b0125) 2000; 8 Deb (10.1016/j.cie.2016.06.021_b0060) 2001 Mahdavi (10.1016/j.cie.2016.06.021_b0145) 2009; 36 Askin (10.1016/j.cie.2016.06.021_b0010) 2001; 39 Fonseca (10.1016/j.cie.2016.06.021_b0090) 1996 Mavrotas (10.1016/j.cie.2016.06.021_b0150) 2009; 213 Süer (10.1016/j.cie.2016.06.021_b0210) 2005; 48 Paydar (10.1016/j.cie.2016.06.021_b0170) 2010; 59 Collette (10.1016/j.cie.2016.06.021_b0045) 2003 Süer (10.1016/j.cie.2016.06.021_b0220) 2008; 46 Othman (10.1016/j.cie.2016.06.021_b0165) 2012; 63 Seifoddini (10.1016/j.cie.2016.06.021_b0190) 1996; 31 Mahdavi (10.1016/j.cie.2016.06.021_b0140) 2012; 31 Heragu (10.1016/j.cie.2016.06.021_b0115) 1994; 24 Süer (10.1016/j.cie.2016.06.021_b0215) 2013; 57 Yin (10.1016/j.cie.2016.06.021_b0240) 2006; 101 Bootaki (10.1016/j.cie.2016.06.021_b0030) 2015; 28 Esmaili (10.1016/j.cie.2016.06.021_b0080) 2011; 88 Wemmerlov (10.1016/j.cie.2016.06.021_b0230) 1989; 27 Corne (10.1016/j.cie.2016.06.021_b0055) 2000 Zitzler (10.1016/j.cie.2016.06.021_b0245) 2000; 8 Giri (10.1016/j.cie.2016.06.021_b0095) 2007; 221 Horn (10.1016/j.cie.2016.06.021_b0120) 1994 Chankong (10.1016/j.cie.2016.06.021_b0035) 1983 Paydar (10.1016/j.cie.2016.06.021_b0180) 2013; 40 Suresh (10.1016/j.cie.2016.06.021_b0225) 2001; 39 Deb (10.1016/j.cie.2016.06.021_b0065) 2002; 6 Hajela (10.1016/j.cie.2016.06.021_b0110) 1992; 4 Goldberg (10.1016/j.cie.2016.06.021_b0100) 1989 Chu (10.1016/j.cie.2016.06.021_b0040) 2001 Haimes (10.1016/j.cie.2016.06.021_b0105) 1971; 1 Fonseca (10.1016/j.cie.2016.06.021_b0085) 1993 Süer (10.1016/j.cie.2016.06.021_b0205) 1998; 35 Bérubé (10.1016/j.cie.2016.06.021_b0015) 2009; 194 Schaffer (10.1016/j.cie.2016.06.021_b0185) 1985 Knowles (10.1016/j.cie.2016.06.021_b0125) 2000; 8 Aramoon Bajestani (10.1016/j.cie.2016.06.021_b0005) 2009; 36 Paydar (10.1016/j.cie.2016.06.021_b0175) 2011; 11 Srinivas (10.1016/j.cie.2016.06.021_b0200) 1994; 2 Lu (10.1016/j.cie.2016.06.021_b0135) 2003; 7 Egilmez (10.1016/j.cie.2016.06.021_b0070) 2014; 33 Bootaki (10.1016/j.cie.2016.06.021_b0025) 2014; 75 Corne (10.1016/j.cie.2016.06.021_b0050) 2001 Murata (10.1016/j.cie.2016.06.021_b0160) 1995 Zitzler (10.1016/j.cie.2016.06.021_b0250) 2001 Konak (10.1016/j.cie.2016.06.021_b0130) 2006; 91 Bidanda (10.1016/j.cie.2016.06.021_b0020) 2005; 48 Singh (10.1016/j.cie.2016.06.021_b0195) 1993; 69 Zitzler (10.1016/j.cie.2016.06.021_b0255) 1999; 3 Mitrofanov (10.1016/j.cie.2016.06.021_b0155) 1966 Egilmez (10.1016/j.cie.2016.06.021_b0075) 2012; 63 Wood (10.1016/j.cie.2016.06.021_b0235) 1996 |
| References_xml | – volume: 3 start-page: 257 year: 1999 end-page: 271 ident: b0255 article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach publication-title: IEEE Transactions on Evolutionary Computation – volume: 101 start-page: 329 year: 2006 end-page: 352 ident: b0240 article-title: Similarity coefficient methods applied to the cell formation problem: A taxonomy and review publication-title: International Journal of Production Economics – start-page: 310 year: 2001 end-page: 317 ident: b0040 article-title: A heuristic algorithm for grouping manufacturing cells publication-title: Proceedings of the 2001 IEEE congress on evolutionary computation, Seoul, Korea – volume: 35 start-page: 431 year: 1998 end-page: 434 ident: b0205 article-title: Optimal operator assignment and cell loading when lot-splitting is allowed publication-title: Computers & Industrial Engineering – volume: 59 start-page: 929 year: 2010 end-page: 936 ident: b0170 article-title: Applying simulated annealing for designing cellular manufacturing systems using MDmTSP publication-title: Computers & Industrial Engineering – volume: 221 start-page: 1101 year: 2007 end-page: 1106 ident: b0095 article-title: An optimal design approach for a cellular manufacturing system publication-title: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture – year: 1996 ident: b0235 article-title: Power generation, operation and control – volume: 1 start-page: 296 year: 1971 end-page: 297 ident: b0105 article-title: On a bi-criterion formulation of the problems of integrated system identification and system optimization publication-title: IEEE Transactions on Systems, Man and Cybernetics – volume: 7 start-page: 325 year: 2003 end-page: 343 ident: b0135 article-title: Rank-density-based multiobjective genetic algorithm and benchmark test function study publication-title: IEEE Transactions on Evolutionary Computation – volume: 27 start-page: 1511 year: 1989 end-page: 1530 ident: b0230 article-title: Cellular manufacturing in the US industry: A survey of users publication-title: International Journal of Production Research – volume: 8 start-page: 173 year: 2000 end-page: 195 ident: b0245 article-title: Comparison of multiobjective evolutionary algorithms: Empirical results publication-title: Evolutionary Computation – volume: 57 start-page: 741 year: 2013 end-page: 753 ident: b0215 article-title: Minimizing total tardiness subject to manpower restriction in labor-intensive manufacturing cells publication-title: Mathematical and Computer Modelling – volume: 63 start-page: 842 year: 2012 end-page: 854 ident: b0075 article-title: Stochastic cellular manufacturing system design subject to maximum acceptable risk level publication-title: Computers & Industrial Engineering – start-page: 584 year: 1996 end-page: 593 ident: b0090 article-title: On the performance assessment and comparison of stochastic multiobjective optimizers publication-title: Parallel problem solving from nature IV – volume: 11 start-page: 408 year: 2011 end-page: 424 ident: b0175 article-title: Developing a mathematical model for cell formation in cellular manufacturing systems publication-title: International Journal of Operational Research – year: 2001 ident: b0060 article-title: Multi-objective optimization using evolutionary algorithms – volume: 63 start-page: 1096 year: 2012 end-page: 1106 ident: b0165 article-title: Integrating workers’ differences into workforce planning publication-title: Computers & Industrial Engineering – volume: 40 start-page: 980 year: 2013 end-page: 990 ident: b0180 article-title: A hybrid genetic-variable neighborhood search algorithm for the cell formation problem based on grouping efficacy publication-title: Computers & Operations Research – volume: 69 start-page: 284 year: 1993 end-page: 291 ident: b0195 article-title: Design of cellular manufacturing systems: An invited review publication-title: European Journal of Operational Research – year: 1995 ident: b0160 article-title: MOGA: Multi-objective genetic algorithms publication-title: Proceedings of the 1995 IEEE international conference on evolutionary computation, 29 November–1 December, 1995 – year: 1993 ident: b0085 article-title: Multiobjective genetic algorithms publication-title: IEE colloquium on ‘genetic algorithms for control systems engineering’, 28 May, 1993 – year: 1985 ident: b0185 article-title: Multiple objective optimization with vector evaluated genetic algorithms publication-title: Proceedings of the international conference on genetic algorithm and their applications – volume: 75 start-page: 31 year: 2014 end-page: 40 ident: b0025 article-title: A hybrid GA-AUGMECON method to solve a cubic cell formation problem considering different worker skills publication-title: Computers & Industrial Engineering – volume: 48 start-page: 643 year: 2005 end-page: 655 ident: b0210 article-title: Intra-cell manpower transfers and cell loading in labor-intensive manufacturing cells publication-title: Computers & Industrial Engineering – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b0065 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Transactions on Evolutionary Computation – volume: 31 start-page: 214 year: 2012 end-page: 223 ident: b0140 article-title: A new mathematical model for integrating all incidence matrices in multi-dimensional cellular manufacturing system publication-title: Journal of Manufacturing Systems – volume: 39 start-page: 2431 year: 2001 end-page: 2451 ident: b0010 article-title: Forming effective worker teams for cellular manufacturing publication-title: International Journal of Production Research – volume: 28 start-page: 577 year: 2015 end-page: 592 ident: b0030 article-title: New bi-objective robust design-based utilization towards dynamic cell formation problem with fuzzy random demands publication-title: International Journal of Computer Integrated Manufacturing – volume: 24 start-page: 203 year: 1994 end-page: 214 ident: b0115 article-title: Group technology and cellular manufacturing publication-title: IEEE Transactions on Systems, Man and Cybernetics – year: 1994 ident: b0120 article-title: A niched Pareto genetic algorithm for multiobjective optimization publication-title: Proceedings of the first IEEE conference on evolutionary computation, IEEE world congress on computational intelligence, 27–29 June, 1994 – year: 1989 ident: b0100 article-title: Genetic algorithms: Search, optimization and machine learning – volume: 39 start-page: 4103 year: 2001 end-page: 4131 ident: b0225 article-title: A multi-objective procedure for labour assignments and grouping in capacitated cell formation problems publication-title: International Journal of Production Research – volume: 194 start-page: 39 year: 2009 end-page: 50 ident: b0015 article-title: An exact ε-constraint method for bi-objective combinatorial optimization problems: Application to the Traveling Salesman Problem with Profits publication-title: European Journal of Operational Research – year: 2003 ident: b0045 article-title: Multi-objective optimization: Principles and case studies – year: 2000 ident: b0055 article-title: The Pareto envelope-based selection algorithm for multiobjective optimization publication-title: Proceedings of sixth international conference on parallel problem solving from nature, 18–20 September, 2000 – volume: 213 start-page: 455 year: 2009 end-page: 465 ident: b0150 article-title: Effective implementation of thee-constraint method in multi-objective mathematical programming problems publication-title: Applied Mathematical Computations – year: 2001 ident: b0250 article-title: SPEA2: Improving the strength Pareto evolutionary algorithm – volume: 36 start-page: 6598 year: 2009 end-page: 6604 ident: b0145 article-title: Genetic algorithm approach for solving a cell formation problem in cellular manufacturing publication-title: Expert Systems with Applications – volume: 4 start-page: 99 year: 1992 end-page: 107 ident: b0110 article-title: Genetic search strategies in multicriterion optimal design publication-title: Structural Optimization – volume: 91 start-page: 992 year: 2006 end-page: 1007 ident: b0130 article-title: Multi-objective optimization using genetic algorithms: A tutorial publication-title: Reliability Engineering and System Safety – year: 1983 ident: b0035 article-title: Multi-objective decision making: Theory and methodology – volume: 8 start-page: 149 year: 2000 end-page: 172 ident: b0125 article-title: Approximating the nondominated front using the Pareto archived evolution strategy publication-title: Evolutionary Computation – volume: 88 start-page: 755 year: 2011 end-page: 766 ident: b0080 article-title: Multi-objective congestion management by modified augmented ε-constraint method publication-title: Applied Energy – volume: 33 start-page: 578 year: 2014 end-page: 588 ident: b0070 article-title: Stochastic skill-based manpower allocation in a cellular manufacturing system publication-title: Journal of Manufacturing Systems – volume: 2 start-page: 221 year: 1994 end-page: 248 ident: b0200 article-title: Multiobjective optimization using nondominated sorting in genetic algorithms publication-title: Evolutionary Computation – volume: 36 start-page: 777 year: 2009 end-page: 794 ident: b0005 article-title: A multi objective scatter search for a dynamic cell formation problem publication-title: Computers & Operations Research – volume: 31 start-page: 163 year: 1996 end-page: 167 ident: b0190 article-title: Sensitivity analysis in cellular manufacturing system in the case of product mix variation publication-title: Computers & Industrial Engineering – volume: 48 start-page: 507 year: 2005 end-page: 523 ident: b0020 article-title: Human related issues in manufacturing cell design, implementation, and operation: A review and survey publication-title: Computers & Industrial Engineering – year: 2001 ident: b0050 article-title: PESA-II: Region-based selection in evolutionary multiobjective optimization publication-title: Proceedings of the genetic and evolutionary computation conference, San Francisco, CA – year: 1966 ident: b0155 article-title: The scientific principles of group technology – volume: 46 start-page: 469 year: 2008 end-page: 493 ident: b0220 article-title: Multi-period operator assignment considering skills, learning and forgetting in labour-intensive cells publication-title: International Journal of Production Research – year: 2001 ident: 10.1016/j.cie.2016.06.021_b0250 – year: 2001 ident: 10.1016/j.cie.2016.06.021_b0060 – year: 1989 ident: 10.1016/j.cie.2016.06.021_b0100 – volume: 36 start-page: 777 year: 2009 ident: 10.1016/j.cie.2016.06.021_b0005 article-title: A multi objective scatter search for a dynamic cell formation problem publication-title: Computers & Operations Research doi: 10.1016/j.cor.2007.10.026 – volume: 28 start-page: 577 issue: 6 year: 2015 ident: 10.1016/j.cie.2016.06.021_b0030 article-title: New bi-objective robust design-based utilization towards dynamic cell formation problem with fuzzy random demands publication-title: International Journal of Computer Integrated Manufacturing doi: 10.1080/0951192X.2014.880949 – volume: 31 start-page: 214 year: 2012 ident: 10.1016/j.cie.2016.06.021_b0140 article-title: A new mathematical model for integrating all incidence matrices in multi-dimensional cellular manufacturing system publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2011.07.007 – year: 1994 ident: 10.1016/j.cie.2016.06.021_b0120 article-title: A niched Pareto genetic algorithm for multiobjective optimization – volume: 69 start-page: 284 year: 1993 ident: 10.1016/j.cie.2016.06.021_b0195 article-title: Design of cellular manufacturing systems: An invited review publication-title: European Journal of Operational Research doi: 10.1016/0377-2217(93)90016-G – year: 2003 ident: 10.1016/j.cie.2016.06.021_b0045 – volume: 35 start-page: 431 issue: 3–4 year: 1998 ident: 10.1016/j.cie.2016.06.021_b0205 article-title: Optimal operator assignment and cell loading when lot-splitting is allowed publication-title: Computers & Industrial Engineering doi: 10.1016/S0360-8352(98)00126-0 – volume: 101 start-page: 329 year: 2006 ident: 10.1016/j.cie.2016.06.021_b0240 article-title: Similarity coefficient methods applied to the cell formation problem: A taxonomy and review publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2005.01.014 – volume: 63 start-page: 842 year: 2012 ident: 10.1016/j.cie.2016.06.021_b0075 article-title: Stochastic cellular manufacturing system design subject to maximum acceptable risk level publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2012.05.006 – volume: 48 start-page: 643 year: 2005 ident: 10.1016/j.cie.2016.06.021_b0210 article-title: Intra-cell manpower transfers and cell loading in labor-intensive manufacturing cells publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2003.03.006 – volume: 31 start-page: 163 issue: 1–2 year: 1996 ident: 10.1016/j.cie.2016.06.021_b0190 article-title: Sensitivity analysis in cellular manufacturing system in the case of product mix variation publication-title: Computers & Industrial Engineering doi: 10.1016/0360-8352(96)00103-9 – year: 1993 ident: 10.1016/j.cie.2016.06.021_b0085 article-title: Multiobjective genetic algorithms – volume: 11 start-page: 408 year: 2011 ident: 10.1016/j.cie.2016.06.021_b0175 article-title: Developing a mathematical model for cell formation in cellular manufacturing systems publication-title: International Journal of Operational Research doi: 10.1504/IJOR.2011.041800 – year: 1983 ident: 10.1016/j.cie.2016.06.021_b0035 – volume: 4 start-page: 99 issue: 2 year: 1992 ident: 10.1016/j.cie.2016.06.021_b0110 article-title: Genetic search strategies in multicriterion optimal design publication-title: Structural Optimization doi: 10.1007/BF01759923 – volume: 27 start-page: 1511 issue: 9 year: 1989 ident: 10.1016/j.cie.2016.06.021_b0230 article-title: Cellular manufacturing in the US industry: A survey of users publication-title: International Journal of Production Research doi: 10.1080/00207548908942637 – volume: 36 start-page: 6598 year: 2009 ident: 10.1016/j.cie.2016.06.021_b0145 article-title: Genetic algorithm approach for solving a cell formation problem in cellular manufacturing publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.07.054 – volume: 39 start-page: 4103 issue: 18 year: 2001 ident: 10.1016/j.cie.2016.06.021_b0225 article-title: A multi-objective procedure for labour assignments and grouping in capacitated cell formation problems publication-title: International Journal of Production Research doi: 10.1080/00207540110072966 – volume: 213 start-page: 455 issue: 2 year: 2009 ident: 10.1016/j.cie.2016.06.021_b0150 article-title: Effective implementation of thee-constraint method in multi-objective mathematical programming problems publication-title: Applied Mathematical Computations doi: 10.1016/j.amc.2009.03.037 – year: 1996 ident: 10.1016/j.cie.2016.06.021_b0235 – volume: 194 start-page: 39 year: 2009 ident: 10.1016/j.cie.2016.06.021_b0015 article-title: An exact ε-constraint method for bi-objective combinatorial optimization problems: Application to the Traveling Salesman Problem with Profits publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2007.12.014 – volume: 91 start-page: 992 year: 2006 ident: 10.1016/j.cie.2016.06.021_b0130 article-title: Multi-objective optimization using genetic algorithms: A tutorial publication-title: Reliability Engineering and System Safety doi: 10.1016/j.ress.2005.11.018 – year: 2001 ident: 10.1016/j.cie.2016.06.021_b0050 article-title: PESA-II: Region-based selection in evolutionary multiobjective optimization – volume: 1 start-page: 296 issue: 3 year: 1971 ident: 10.1016/j.cie.2016.06.021_b0105 article-title: On a bi-criterion formulation of the problems of integrated system identification and system optimization publication-title: IEEE Transactions on Systems, Man and Cybernetics doi: 10.1109/TSMC.1971.4308298 – volume: 7 start-page: 325 issue: 4 year: 2003 ident: 10.1016/j.cie.2016.06.021_b0135 article-title: Rank-density-based multiobjective genetic algorithm and benchmark test function study publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2003.812220 – year: 1966 ident: 10.1016/j.cie.2016.06.021_b0155 – volume: 40 start-page: 980 year: 2013 ident: 10.1016/j.cie.2016.06.021_b0180 article-title: A hybrid genetic-variable neighborhood search algorithm for the cell formation problem based on grouping efficacy publication-title: Computers & Operations Research doi: 10.1016/j.cor.2012.10.016 – start-page: 584 year: 1996 ident: 10.1016/j.cie.2016.06.021_b0090 article-title: On the performance assessment and comparison of stochastic multiobjective optimizers – volume: 3 start-page: 257 issue: 4 year: 1999 ident: 10.1016/j.cie.2016.06.021_b0255 article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.797969 – volume: 75 start-page: 31 year: 2014 ident: 10.1016/j.cie.2016.06.021_b0025 article-title: A hybrid GA-AUGMECON method to solve a cubic cell formation problem considering different worker skills publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2014.05.022 – volume: 24 start-page: 203 issue: 2 year: 1994 ident: 10.1016/j.cie.2016.06.021_b0115 article-title: Group technology and cellular manufacturing publication-title: IEEE Transactions on Systems, Man and Cybernetics doi: 10.1109/21.281420 – volume: 8 start-page: 173 issue: 2 year: 2000 ident: 10.1016/j.cie.2016.06.021_b0245 article-title: Comparison of multiobjective evolutionary algorithms: Empirical results publication-title: Evolutionary Computation doi: 10.1162/106365600568202 – volume: 48 start-page: 507 year: 2005 ident: 10.1016/j.cie.2016.06.021_b0020 article-title: Human related issues in manufacturing cell design, implementation, and operation: A review and survey publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2003.03.002 – volume: 46 start-page: 469 issue: 2 year: 2008 ident: 10.1016/j.cie.2016.06.021_b0220 article-title: Multi-period operator assignment considering skills, learning and forgetting in labour-intensive cells publication-title: International Journal of Production Research doi: 10.1080/00207540601138551 – year: 1985 ident: 10.1016/j.cie.2016.06.021_b0185 article-title: Multiple objective optimization with vector evaluated genetic algorithms – year: 2000 ident: 10.1016/j.cie.2016.06.021_b0055 article-title: The Pareto envelope-based selection algorithm for multiobjective optimization – volume: 2 start-page: 221 issue: 3 year: 1994 ident: 10.1016/j.cie.2016.06.021_b0200 article-title: Multiobjective optimization using nondominated sorting in genetic algorithms publication-title: Evolutionary Computation doi: 10.1162/evco.1994.2.3.221 – volume: 63 start-page: 1096 year: 2012 ident: 10.1016/j.cie.2016.06.021_b0165 article-title: Integrating workers’ differences into workforce planning publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2012.06.015 – volume: 59 start-page: 929 year: 2010 ident: 10.1016/j.cie.2016.06.021_b0170 article-title: Applying simulated annealing for designing cellular manufacturing systems using MDmTSP publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2010.09.003 – volume: 8 start-page: 149 issue: 2 year: 2000 ident: 10.1016/j.cie.2016.06.021_b0125 article-title: Approximating the nondominated front using the Pareto archived evolution strategy publication-title: Evolutionary Computation doi: 10.1162/106365600568167 – year: 1995 ident: 10.1016/j.cie.2016.06.021_b0160 article-title: MOGA: Multi-objective genetic algorithms – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.cie.2016.06.021_b0065 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.996017 – volume: 57 start-page: 741 year: 2013 ident: 10.1016/j.cie.2016.06.021_b0215 article-title: Minimizing total tardiness subject to manpower restriction in labor-intensive manufacturing cells publication-title: Mathematical and Computer Modelling doi: 10.1016/j.mcm.2012.08.013 – volume: 33 start-page: 578 year: 2014 ident: 10.1016/j.cie.2016.06.021_b0070 article-title: Stochastic skill-based manpower allocation in a cellular manufacturing system publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2014.05.005 – start-page: 310 year: 2001 ident: 10.1016/j.cie.2016.06.021_b0040 article-title: A heuristic algorithm for grouping manufacturing cells – volume: 221 start-page: 1101 issue: 6 year: 2007 ident: 10.1016/j.cie.2016.06.021_b0095 article-title: An optimal design approach for a cellular manufacturing system publication-title: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture doi: 10.1243/09544054JEM813SC – volume: 88 start-page: 755 issue: 3 year: 2011 ident: 10.1016/j.cie.2016.06.021_b0080 article-title: Multi-objective congestion management by modified augmented ε-constraint method publication-title: Applied Energy doi: 10.1016/j.apenergy.2010.09.014 – volume: 39 start-page: 2431 issue: 11 year: 2001 ident: 10.1016/j.cie.2016.06.021_b0010 article-title: Forming effective worker teams for cellular manufacturing publication-title: International Journal of Production Research doi: 10.1080/00207540110040466 |
| SSID | ssj0004591 |
| Score | 2.2118893 |
| Snippet | •Mathematical model for clustering workers and machines in product mix variation case.•The mutual interest between workers is introduced for the first... This paper deals with configuring manufacturing cells when product mix variation occurs. Most of researches have addressed the cell formation problem when... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 413 |
| SubjectTerms | Algorithms Cellular manufacturing systems Constants Criteria Incidence Manufacturing cells Mathematical analysis Mathematical models Mathematical programming Matrices (mathematics) NSGAII Optimization Optimization algorithms Pareto optimum Product mix variation Product mixes Stochastic models Studies Worker interest ε-constraint method |
| Title | New criteria for configuration of cellular manufacturing considering product mix variation |
| URI | https://dx.doi.org/10.1016/j.cie.2016.06.021 https://www.proquest.com/docview/1809597210 https://www.proquest.com/docview/1835644975 |
| Volume | 98 |
| WOSCitedRecordID | wos000381949800035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0550 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLaqjgMc-DFAFAYyEiemoCS24-Q40BBD2sRhSBWXyHFsmmpNpv5SOfGv8xzbSVu0iR24RFWcRGnel-f3nO99D6F3VEDIRrkMiFQEEhROAxHpMigyrVgo40yLsG02wS8u0vE4-zYY_Pa1MOsrXtfpZpNd_1dTwz4wtimdvYO5u4vCDvgNRoctmB22_2R4w1gEV2A0mEVLIoSMV1c_V_MuODSL9S37dCbqlalssKWK0vXutPXprRDs8azaHK8hne7t51UNXDeIRYudqm8AonqBwy7Vb5qlsO2xP6oJTI7dyLmYlGLdjpzNxbT_nvWrtMTv82YiZjNhuCCTstpeooiSjiDXl2aFgQn1tt2ubT7t_Ca1BaluCqa2iP4v724XGqYfwOsZUl7SKq_aAutdJe29Ga7jHXpK2zSHS-TmErmh9RkhgoOYsywdooOTs9Px1y3Bedt00f8D_2G8pQju3cdNoc3eJN9GLpeP0UOXcuATC5UnaKDqQ_TIpR_YOffFIXqwpU35FP0AHGGPIww4wjs4wo3GHkd4B0d4C0fY4QgDjnCHo2fo--fTy09fAteII5A0ipZBFCsti1STkEY6VVoLlimmlIBYMit4KVURp0JyTUoTryeCsrJgBWFCJEonBXmOhnVTqxcIK67ShBCtIkJppgsBKa0gcSlZWXKp4xEK_TMEG1k2immWcpXfaLsRet-dcm0lWm47mHrD5C7GtLFjDiC77bQjb8TcveuL3EjfMaN-FY7Q224Y3LN5_KJWzcocQxikHBlnL-9ym6_Q_f5FOkLD5XylXqN7cr2sFvM3DqR_AFfmuAQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+criteria+for+configuration+of+cellular+manufacturing+considering+product+mix+variation&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Bootaki%2C+Behrang&rft.au=Mahdavi%2C+Iraj&rft.au=Paydar%2C+Mohammad+Mahdi&rft.date=2016-08-01&rft.issn=0360-8352&rft.volume=98&rft.spage=413&rft.epage=426&rft_id=info:doi/10.1016%2Fj.cie.2016.06.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cie_2016_06_021 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon |