Matrix Trees

We propose a new data representation for octrees and kd‐trees that improves upon memory size and algorithm speed of existing techniques. While pointerless approaches exploit the regular structure of the tree to facilitate efficient data access, their memory footprint becomes prohibitively large as t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer graphics forum Ročník 29; číslo 3; s. 963 - 972
Hlavní autoři: Andrysco, Nathan, Tricoche, Xavier
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford, UK Blackwell Publishing Ltd 01.06.2010
Témata:
ISSN:0167-7055, 1467-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We propose a new data representation for octrees and kd‐trees that improves upon memory size and algorithm speed of existing techniques. While pointerless approaches exploit the regular structure of the tree to facilitate efficient data access, their memory footprint becomes prohibitively large as the height of the tree increases. Pointerbased trees require memory consumption proportional to the number of tree nodes, thus exploiting the typical sparsity of large trees. Yet, their traversal is slowed by the need to follow explicit pointers across the different levels. Our solution is a pointerless approach that represents each tree level with its own matrix, as opposed to traditional pointerless trees that use only a single vector. This novel data organization allows us to fully exploit the tree's regular structure and improve the performance of tree operations. By using a sparse matrix data structure we obtain a representation that is suited for sparse and dense trees alike. In particular, it uses less total memory than pointer‐based trees even when the data set is extremely sparse. We show how our approach is easily implemented on the GPU and illustrate its performance in typical visualization scenarios.
Bibliografie:ark:/67375/WNG-4JWZ4VLW-T
istex:279A656F361372749E50DEF6E80E58E3725DB194
ArticleID:CGF1709
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0167-7055
1467-8659
DOI:10.1111/j.1467-8659.2009.01709.x