Practical classification of different moving targets using automotive radar and deep neural networks

In this work, the authors present results for classification of different classes of targets (car, single and multiple people, bicycle) using automotive radar data and different neural networks. A fast implementation of radar algorithms for detection, tracking, and micro-Doppler extraction is propos...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET radar, sonar & navigation Ročník 12; číslo 10; s. 1082 - 1089
Hlavní autoři: Angelov, Aleksandar, Robertson, Andrew, Murray-Smith, Roderick, Fioranelli, Francesco
Médium: Journal Article
Jazyk:angličtina
Vydáno: The Institution of Engineering and Technology 01.10.2018
Témata:
ISSN:1751-8784, 1751-8792
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this work, the authors present results for classification of different classes of targets (car, single and multiple people, bicycle) using automotive radar data and different neural networks. A fast implementation of radar algorithms for detection, tracking, and micro-Doppler extraction is proposed in conjunction with the automotive radar transceiver TEF810X and microcontroller unit SR32R274 manufactured by NXP Semiconductors. Three different types of neural networks are considered, namely a classic convolutional network, a residual network, and a combination of convolutional and recurrent network, for different classification problems across the four classes of targets recorded. Considerable accuracy (close to 100% in some cases) and low latency of the radar pre-processing prior to classification (∼0.55 s to produce a 0.5 s long spectrogram) are demonstrated in this study, and possible shortcomings and outstanding issues are discussed.
AbstractList In this work, the authors present results for classification of different classes of targets (car, single and multiple people, bicycle) using automotive radar data and different neural networks. A fast implementation of radar algorithms for detection, tracking, and micro-Doppler extraction is proposed in conjunction with the automotive radar transceiver TEF810X and microcontroller unit SR32R274 manufactured by NXP Semiconductors. Three different types of neural networks are considered, namely a classic convolutional network, a residual network, and a combination of convolutional and recurrent network, for different classification problems across the four classes of targets recorded. Considerable accuracy (close to 100% in some cases) and low latency of the radar pre-processing prior to classification (∼0.55 s to produce a 0.5 s long spectrogram) are demonstrated in this study, and possible shortcomings and outstanding issues are discussed.
In this work, the authors present results for classification of different classes of targets (car, single and multiple people, bicycle) using automotive radar data and different neural networks. A fast implementation of radar algorithms for detection, tracking, and micro‐Doppler extraction is proposed in conjunction with the automotive radar transceiver TEF810X and microcontroller unit SR32R274 manufactured by NXP Semiconductors. Three different types of neural networks are considered, namely a classic convolutional network, a residual network, and a combination of convolutional and recurrent network, for different classification problems across the four classes of targets recorded. Considerable accuracy (close to 100% in some cases) and low latency of the radar pre‐processing prior to classification (∼0.55 s to produce a 0.5 s long spectrogram) are demonstrated in this study, and possible shortcomings and outstanding issues are discussed.
Author Angelov, Aleksandar
Fioranelli, Francesco
Murray-Smith, Roderick
Robertson, Andrew
Author_xml – sequence: 1
  givenname: Aleksandar
  surname: Angelov
  fullname: Angelov, Aleksandar
  organization: 1School of Engineering, University of Glasgow, Glasgow, UK
– sequence: 2
  givenname: Andrew
  surname: Robertson
  fullname: Robertson, Andrew
  organization: 2NXP Semiconductors, Glasgow, UK
– sequence: 3
  givenname: Roderick
  surname: Murray-Smith
  fullname: Murray-Smith, Roderick
  organization: 3School of Computing Science, University of Glasgow, Glasgow, UK
– sequence: 4
  givenname: Francesco
  surname: Fioranelli
  fullname: Fioranelli, Francesco
  email: francesco.fioranelli@glasgow.ac.uk
  organization: 1School of Engineering, University of Glasgow, Glasgow, UK
BookMark eNqFkMlKBDEQhoMouD6At1w99Jj0Mul4U3GDQUXnHmqSikR7kiHJKL693Y6IiMspFfi_Wr5tsu6DR0L2ORtxVstDh7mIyY9KxtsR46xaI1tcNLxohSzXP-u23iTbKT0y1jTjWm4RcxtBZ6eho7qDlJzt6-yCp8FS46zFiD7TeXh2_oFmiA-YE12m4QfLHOYhu2ekEQxECt5Qg7igHpex7-gxv4T4lHbJhoUu4d7Hu0Om52fT08ticnNxdXo8KXTNuSgQ25lsSzbmFmthJMoGAMqqrXCsW2ks4yCtZtogE1yCHmOFZQXCCNPObLVD-KqtjiGliFYtoptDfFWcqcGS6i2p3pIaLKnBUs-Ib4x2-V1AjuC6P8mjFfniOnz9f5S6u78uT84Zk43o4YMVPMQewzL63ou6OpsOqS_MwgxnFT9kf1_sDSznoyM
CitedBy_id crossref_primary_10_3389_fnins_2022_1075538
crossref_primary_10_1515_freq_2021_0062
crossref_primary_10_1109_TIM_2022_3229703
crossref_primary_10_3390_rs15153742
crossref_primary_10_1109_TMTT_2022_3218304
crossref_primary_10_1109_JSEN_2020_3036047
crossref_primary_10_1109_JSEN_2021_3095674
crossref_primary_10_1016_j_measurement_2022_110743
crossref_primary_10_3390_s25113337
crossref_primary_10_3390_s24092813
crossref_primary_10_1109_JSTSP_2021_3058895
crossref_primary_10_3390_s21061951
crossref_primary_10_1049_iet_rsn_2019_0190
crossref_primary_10_1109_TAP_2022_3175716
crossref_primary_10_1109_LRA_2022_3147324
crossref_primary_10_1080_09205071_2020_1713226
crossref_primary_10_1109_TIV_2022_3220435
crossref_primary_10_1016_j_micpro_2020_103182
crossref_primary_10_1049_iet_rsn_2019_0471
crossref_primary_10_1016_j_desal_2023_116676
crossref_primary_10_1109_ACCESS_2022_3141543
crossref_primary_10_1109_JIOT_2023_3305513
crossref_primary_10_1109_JSEN_2021_3057450
crossref_primary_10_3390_e21100963
crossref_primary_10_1109_JSEN_2022_3141213
crossref_primary_10_3390_electronics11091383
crossref_primary_10_3390_rs16224256
crossref_primary_10_1109_ACCESS_2020_2966222
crossref_primary_10_1049_rsn2_12181
crossref_primary_10_1049_rsn2_12182
crossref_primary_10_1109_TCE_2023_3343460
crossref_primary_10_1109_LRA_2020_2967272
crossref_primary_10_1109_TAES_2023_3291335
crossref_primary_10_1049_iet_rsn_2019_0044
crossref_primary_10_1631_FITEE_1900523
crossref_primary_10_3390_s23146472
crossref_primary_10_1109_JSEN_2023_3276798
crossref_primary_10_1109_LGRS_2021_3102039
crossref_primary_10_1016_j_ins_2021_03_024
crossref_primary_10_1049_iet_rsn_2019_0601
crossref_primary_10_3390_s21072317
crossref_primary_10_1109_JSEN_2020_3041615
crossref_primary_10_3390_s23218901
crossref_primary_10_1049_iet_rsn_2018_5331
crossref_primary_10_1109_TITS_2025_3554781
crossref_primary_10_1109_ACCESS_2020_2977922
crossref_primary_10_3390_app10113861
crossref_primary_10_3390_electronics13204070
crossref_primary_10_3390_s22114208
crossref_primary_10_1145_3628453
crossref_primary_10_1049_iet_rsn_2019_0493
crossref_primary_10_1109_JSEN_2025_3564189
crossref_primary_10_1109_TIV_2022_3167733
crossref_primary_10_3390_electronics10101144
crossref_primary_10_3389_fnins_2022_851774
crossref_primary_10_1080_01431161_2024_2398823
crossref_primary_10_1109_ACCESS_2020_2977938
crossref_primary_10_1109_TGRS_2021_3138687
crossref_primary_10_3390_math11020361
crossref_primary_10_1049_rsn2_12042
crossref_primary_10_1109_ACCESS_2020_2975676
crossref_primary_10_1016_j_eswa_2024_125280
crossref_primary_10_3390_s20123504
crossref_primary_10_3390_s22031048
crossref_primary_10_1109_JSEN_2020_2999548
Cites_doi 10.1049/el.2016.3543
10.1049/iet-rsn.2015.0118
10.1137/0105003
10.1162/neco.1997.9.8.1735
10.1109/LGRS.2015.2491329
10.1109/CVPR.2016.90
10.1109/LGRS.2017.2771405
10.1109/TAES.2017.2740098
10.1049/iet-rsn.2017.0126
10.1109/TAES.2017.2651678
10.1109/TAES.1983.309350
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2020 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2020 The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/iet-rsn.2018.0103
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8792
EndPage 1089
ExternalDocumentID 10_1049_iet_rsn_2018_0103
RSN2BF00957
Genre article
GrantInformation_xml – fundername: EPSRC UK Quantum Technology Programme
  funderid: EP/ M01326X/1
– fundername: EU Horizon 2020 project MoreGrasp
  funderid: 643955
GroupedDBID 0R
24P
29I
4.4
4IJ
6IK
8FE
8FG
8VB
AAJGR
ABJCF
ABPTK
ACGFS
ACIWK
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BFFAM
BGLVJ
DU5
EBS
EJD
ESX
GOZPB
GRPMH
HCIFZ
HZ
IFIPE
IPLJI
JAVBF
L6V
LAI
LOTEE
LXI
M43
M7S
MS
NADUK
NXXTH
O9-
OCL
P62
PTHSS
QWB
RIE
RNS
RUI
S0W
U5U
UNMZH
UNR
ZL0
.DC
0R~
0ZK
1OC
96U
AAHHS
AAHJG
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AEQDE
AFAZI
AIWBW
AJBDE
ALUQN
AVUZU
CCPQU
F8P
GROUPED_DOAJ
HZ~
IAO
IGS
ITC
K1G
MCNEO
MS~
OK1
ROL
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
IMI
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c4117-ee8b982061fe47d9e95aaa2383e6c89df01a9fc0cde0719ac6e3e23a7d7d8bf3
IEDL.DBID 24P
ISICitedReferencesCount 94
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000444968600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-8784
IngestDate Tue Nov 18 21:41:26 EST 2025
Wed Nov 05 20:46:04 EST 2025
Wed Jan 22 16:30:59 EST 2025
Tue Jan 05 21:44:13 EST 2021
Thu May 09 18:03:30 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords radar transmitters
radar tracking
electrical engineering computing
radar detection
recurrent neural network
recurrent neural nets
convolutional neural network
radar pre-processing
object detection
microcontroller unit SR32R274
NXP Semiconductors
signal classification
target classification
automotive radar transceiver TEF810X
time 0.5 s
residual neural network
radar receivers
object tracking
microDoppler extraction
Doppler radar
road vehicle radar
deep neural network
microcontrollers
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4117-ee8b982061fe47d9e95aaa2383e6c89df01a9fc0cde0719ac6e3e23a7d7d8bf3
OpenAccessLink https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-rsn.2018.0103
PageCount 8
ParticipantIDs crossref_primary_10_1049_iet_rsn_2018_0103
iet_journals_10_1049_iet_rsn_2018_0103
wiley_primary_10_1049_iet_rsn_2018_0103_RSN2BF00957
crossref_citationtrail_10_1049_iet_rsn_2018_0103
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 20181000
October 2018
2018-10-00
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 20181000
PublicationDecade 2010
PublicationTitle IET radar, sonar & navigation
PublicationYear 2018
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Jokanović, B.; Amin, M. (C22) 2018; 52
Hochreiter, S.; Schmidhuber, J. (C36) 1997; 9
Seyfioğlu, M.S.; Gürbüz, S.Z. (C27) 2017; 14
Lee, J.; Kim, D.; Jeong, S. (C11) 2016; 52
Kim, Y.; Moon, T. (C21) 2016; 13
Rohling, H. (C33) 1983; AES-19
Srivastava, N.; Hinton, G.; Krizhevsky, A. (C35) 2014; 15
Fioranelli, F.; Ritchie, M.; Gürbüz, S. (C20) 2017; 53
Tahmoush, D. (C19) 2015; 9
Patel, J.S.; Fioranelli, F.; Ritchie, M. (C30) 2017
Lee, S.; Yoon, Y.J.; Lee, J.E. (C12) 2017; 11
Munkres, J. (C34) 1957; 5
2017; 53
2012
2011
2017; 14
2017; 11
2009
1983; AES‐19
2014; 15
2016; 52
2017
2016
2018; 52
2015
2015; 9
1957; 5
1997; 9
2016; 13
e_1_2_7_5_1
(e_1_2_7_4_1) 2017
e_1_2_7_3_1
Sorowka P. (e_1_2_7_10_1) 2015
Schubert E. (e_1_2_7_11_1) 2015
e_1_2_7_2_1
Jokanovic B. (e_1_2_7_25_1) 2017
e_1_2_7_13_1
Patel J.S. (e_1_2_7_31_1) 2017
e_1_2_7_12_1
e_1_2_7_28_1
Trommel R.P. (e_1_2_7_29_1) 2016
Heuel S. (e_1_2_7_8_1) 2012
Hasch J. (e_1_2_7_6_1) 2015
Belgiovane D. (e_1_2_7_18_1) 2016
Heuel S. (e_1_2_7_7_1) 2011
Belgiovane D. (e_1_2_7_17_1) 2017
Srivastava N. (e_1_2_7_36_1) 2014; 15
Khashbat J. (e_1_2_7_33_1) 2012
Seyfioğlu M.S. (e_1_2_7_26_1) 2017
Marchetti E. (e_1_2_7_15_1) 2017
Saebboe J. (e_1_2_7_9_1) 2009
Parashar K.N. (e_1_2_7_27_1) 2017
e_1_2_7_32_1
Gashinova M. (e_1_2_7_16_1) 2016
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_37_1
e_1_2_7_38_1
Jokanovic B. (e_1_2_7_24_1) 2016
Klarenbeek G. (e_1_2_7_30_1) 2017
Marchetti E. (e_1_2_7_14_1) 2017
Stolz M. (e_1_2_7_19_1) 2017
References_xml – start-page: 1
  year: 2017
  end-page: 10
  ident: C30
  article-title: Multistatic radar classification of armed vs unarmed personnel using neural networks
  publication-title: Evol. Syst.
– volume: 52
  start-page: 180
  issue: 1
  year: 2018
  end-page: 189
  ident: C22
  article-title: Fall detection using deep learning in range-Doppler radars
  publication-title: IEEE Trans. Aerosp. Electron. Syst., PP, (99)
– volume: 9
  start-page: 1140
  issue: 9
  year: 2015
  end-page: 1146
  ident: C19
  article-title: Review of micro-Doppler signatures
  publication-title: IET Radar Sonar Navig.
– volume: 13
  start-page: 8
  issue: 1
  year: 2016
  end-page: 12
  ident: C21
  article-title: Human detection and activity classification based on micro-Doppler signatures using deep convolutional neural networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 14
  start-page: 2462
  issue: 12
  year: 2017
  end-page: 2466
  ident: C27
  article-title: Deep neural network initialization methods for micro-Doppler classification with low training sample support
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 5
  start-page: 32
  issue: 1
  year: 1957
  end-page: 38
  ident: C34
  article-title: Algorithms for the assignment and transportation problems
  publication-title: J. Soc. Ind. Appl. Math.
– volume: 53
  start-page: 640
  issue: 2
  year: 2017
  end-page: 654
  ident: C20
  article-title: Feature diversity for optimized human micro-Doppler classification using multistatic radar
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: C35
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: C36
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 52
  start-page: 2061
  issue: 25
  year: 2016
  end-page: 2063
  ident: C11
  article-title: Target classification scheme using phase characteristics for automotive FMCW radar
  publication-title: IET Electron. Lett.
– volume: AES-19
  start-page: 608
  issue: 4
  year: 1983
  end-page: 621
  ident: C33
  article-title: Radar CFAR thresholding in clutter and multiple target situations
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– volume: 11
  start-page: 1589
  issue: 10
  year: 2017
  end-page: 1596
  ident: C12
  article-title: Human–vehicle classification using feature-based SVM in 77-GHz automotive FMCW radar
  publication-title: IET Radar Sonar Navig.
– start-page: 167
  year: 2015
  end-page: 173
– volume: 53
  start-page: 640
  issue: 2
  year: 2017
  end-page: 654
  article-title: Feature diversity for optimized human micro‐Doppler classification using multistatic radar
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– start-page: 94
  year: 2017
  end-page: 97
– start-page: 350
  year: 2016
  end-page: 353
– start-page: 1
  year: 2009
  end-page: 5
– volume: 14
  start-page: 2462
  issue: 12
  year: 2017
  end-page: 2466
  article-title: Deep neural network initialization methods for micro‐Doppler classification with low training sample support
  publication-title: IEEE Geosci. Remote Sens. Lett.
– start-page: 1
  year: 2017
  end-page: 7
– start-page: 477
  year: 2011
  end-page: 484
– volume: 5
  start-page: 32
  issue: 1
  year: 1957
  end-page: 38
  article-title: Algorithms for the assignment and transportation problems
  publication-title: J. Soc. Ind. Appl. Math.
– volume: 52
  start-page: 2061
  issue: 25
  year: 2016
  end-page: 2063
  article-title: Target classification scheme using phase characteristics for automotive FMCW radar
  publication-title: IET Electron. Lett.
– start-page: 81
  year: 2016
  end-page: 84
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 52
  start-page: 180
  issue: 1
  year: 2018
  end-page: 189
  article-title: Fall detection using deep learning in range‐Doppler radars
  publication-title: IEEE Trans. Aerosp. Electron. Syst., PP, (99)
– year: 2016
– volume: 13
  start-page: 8
  issue: 1
  year: 2016
  end-page: 12
  article-title: Human detection and activity classification based on micro‐Doppler signatures using deep convolutional neural networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  article-title: Long short‐term memory
  publication-title: Neural Comput.
– start-page: 1
  year: 2016
  end-page: 5
– start-page: 57
  year: 2017
  end-page: 60
– year: 2012
– start-page: 2912
  year: 2017
  end-page: 2916
– start-page: 167
  year: 2017
  end-page: 170
– start-page: 39
  year: 2012
  end-page: 44
– start-page: 174
  year: 2015
  end-page: 179
– volume: AES‐19
  start-page: 608
  issue: 4
  year: 1983
  end-page: 621
  article-title: Radar CFAR thresholding in clutter and multiple target situations
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– volume: 11
  start-page: 1589
  issue: 10
  year: 2017
  end-page: 1596
  article-title: Human–vehicle classification using feature‐based SVM in 77‐GHz automotive FMCW radar
  publication-title: IET Radar Sonar Navig.
– start-page: 1125
  year: 2017
  end-page: 1130
– start-page: 1
  year: 2015
  end-page: 4
– start-page: 1
  year: 2017
  end-page: 10
  article-title: Multistatic radar classification of armed vs unarmed personnel using neural networks
  publication-title: Evol. Syst.
– year: 2017
– start-page: 0948
  year: 2017
  end-page: 0952
– start-page: 1739
  year: 2017
  end-page: 1744
– volume: 9
  start-page: 1140
  issue: 9
  year: 2015
  end-page: 1146
  article-title: Review of micro‐Doppler signatures
  publication-title: IET Radar Sonar Navig.
– year: 2015
– start-page: 167
  volume-title: Pedestrian classification with 24 GHz chirp sequence radar
  year: 2015
  ident: e_1_2_7_10_1
– start-page: 1
  volume-title: Effect of data representations on deep learning in fall detection
  year: 2016
  ident: e_1_2_7_24_1
– ident: e_1_2_7_12_1
  doi: 10.1049/el.2016.3543
– start-page: 1739
  volume-title: Micro‐Doppler feature extraction using convolutional auto‐encoders for low latency target classification
  year: 2017
  ident: e_1_2_7_27_1
– start-page: 1
  volume-title: Harmonic automotive radar for VRU classification
  year: 2009
  ident: e_1_2_7_9_1
– volume: 15
  start-page: 1929
  year: 2014
  ident: e_1_2_7_36_1
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– ident: e_1_2_7_20_1
  doi: 10.1049/iet-rsn.2015.0118
– start-page: 2912
  volume-title: Micro‐Doppler characteristics of pedestrians and bicycles for automotive radar sensors at 77 GHz
  year: 2017
  ident: e_1_2_7_17_1
– ident: e_1_2_7_35_1
  doi: 10.1137/0105003
– ident: e_1_2_7_3_1
– volume-title: Determining the driver's reaction time in the stationary and real‐life environments (comparative study)
  year: 2012
  ident: e_1_2_7_33_1
– ident: e_1_2_7_37_1
  doi: 10.1162/neco.1997.9.8.1735
– start-page: 174
  volume-title: Clustering of high‐resolution automotive radar detections and subsequent feature extraction for classification of road users
  year: 2015
  ident: e_1_2_7_11_1
– start-page: 1
  volume-title: Bicycles and human riders backscattering at 77 GHz for automotive radar
  year: 2016
  ident: e_1_2_7_18_1
– start-page: 1
  volume-title: Comparison of pedestrian reflectivities at 24 and 300 GHz
  year: 2017
  ident: e_1_2_7_15_1
– ident: e_1_2_7_22_1
  doi: 10.1109/LGRS.2015.2491329
– start-page: 1
  volume-title: Driving towards 2020: automotive radar technology trends
  year: 2015
  ident: e_1_2_7_6_1
– ident: e_1_2_7_5_1
– start-page: 477
  volume-title: Two‐stage pedestrian classification in automotive radar systems
  year: 2011
  ident: e_1_2_7_7_1
– start-page: 1125
  volume-title: Deep learning of micro‐Doppler features for aided and unaided gait recognition
  year: 2017
  ident: e_1_2_7_26_1
– start-page: 167
  volume-title: Multi‐target human gait classification using LSTM recurrent neural networks applied to micro‐Doppler
  year: 2017
  ident: e_1_2_7_30_1
– ident: e_1_2_7_2_1
– start-page: 81
  volume-title: Multi‐target human gait classification using deep convolutional neural networks on micro‐Doppler spectrograms
  year: 2016
  ident: e_1_2_7_29_1
– ident: e_1_2_7_32_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_7_38_1
– start-page: 39
  volume-title: Two‐stage pedestrian classification in automotive radar systems
  year: 2012
  ident: e_1_2_7_8_1
– start-page: 57
  volume-title: Radar reflectivity and motion characteristics of pedestrians at 300 GHz
  year: 2017
  ident: e_1_2_7_14_1
– ident: e_1_2_7_28_1
  doi: 10.1109/LGRS.2017.2771405
– start-page: 1
  year: 2017
  ident: e_1_2_7_31_1
  article-title: Multistatic radar classification of armed vs unarmed personnel using neural networks
  publication-title: Evol. Syst.
– ident: e_1_2_7_23_1
  doi: 10.1109/TAES.2017.2740098
– ident: e_1_2_7_13_1
  doi: 10.1049/iet-rsn.2017.0126
– ident: e_1_2_7_21_1
  doi: 10.1109/TAES.2017.2651678
– start-page: 94
  volume-title: Multi‐target reflection point model of cyclists for automotive radar
  year: 2017
  ident: e_1_2_7_19_1
– start-page: 0948
  volume-title: Multiple joint‐variable domains recognition of human motion
  year: 2017
  ident: e_1_2_7_25_1
– start-page: 350
  volume-title: Predicted sensitivity of a 300 GHz FMCW radar to pedestrians
  year: 2016
  ident: e_1_2_7_16_1
– ident: e_1_2_7_34_1
  doi: 10.1109/TAES.1983.309350
– volume-title: Expect the unexpected – an IET transport sector report on the unintended consequences of connected and autonomous vehicles
  year: 2017
  ident: e_1_2_7_4_1
SSID ssj0055649
Score 2.5424938
Snippet In this work, the authors present results for classification of different classes of targets (car, single and multiple people, bicycle) using automotive radar...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 1082
SubjectTerms automotive radar transceiver TEF810X
convolutional neural network
deep neural network
Doppler radar
electrical engineering computing
microcontroller unit SR32R274
microcontrollers
microDoppler extraction
NXP Semiconductors
object detection
object tracking
radar detection
radar pre‐processing
radar receivers
radar tracking
radar transmitters
recurrent neural nets
recurrent neural network
residual neural network
road vehicle radar
signal classification
Special Issue: Advanced Automotive Sensing – Towards Car Autonomy
target classification
time 0.5 s
Title Practical classification of different moving targets using automotive radar and deep neural networks
URI http://digital-library.theiet.org/content/journals/10.1049/iet-rsn.2018.0103
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-rsn.2018.0103
Volume 12
WOSCitedRecordID wos000444968600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-8792
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055649
  issn: 1751-8784
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-8792
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055649
  issn: 1751-8784
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9swFH-kWQ_roVvbjaX7QIzSQ8FdZDmWddxKwwIjhC7Q3IysjxLYnGC7_fv7npxkDYUMxi4-yE-2ed-Wnn4P4EworiyXaSS0SaLE6TjSacyj1GcyLnghhA8HhX_I8TibzdSkA1frszAtPsRmwY0sI_hrMnBdtF1IMKlFIc5dE1U1QZjy7JK6FezBC86FJNWOk8naHQ8GaciBMUxyNP0s2Wxtqi_PHrEVnPbw9nbKGmLO8NV_-drXcLhKOdnXVkeOoOPKYzh4AkR4AraFLUJ5MUPpNNUPBZGxhWfrHioN-x2WH1hbPV4zqpm_Y_q-CRV9D45V2uqK6dIy69ySEVYmPrFsK83rNzAdXk-vvker_guRSTgGL-eyQhG-O_cukVY5NdBaY4wXLjWZsr7PtfKmb6zDREVpkzrhYqGllTYrvHgL3XJRunfAMon-vRDKaNpVRPUYxIUx6FAM_lApX_Sgv-Z7blbY5NQi41ce9sgTlSP_cuRfTvzLiX89uNhMWbbAHLuIz2lsZZ71LsLPW4Sj62l-83P8hyBfWt8DEUT99_fS3PjbkPJYefpPs97DSxpvywc_QLep7t1H2DcPzbyuPgVNx-vtaPwIBAcDvQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swED_xMQl4gAFDdAxmoYkHpEAdu0n8uI1WRZQKjT7wZjn-mJAgVEng75_PaQvVJJAQr8mdE935PmyffwfwgwkqDE2TiCnNI25VHKkkplHisjTOac6YCxeFB-lwmN3ciKsFOJvehWnwIWYbbmgZwV-jgeOGdLPg5AiSeWvrqKwQw5RmJ9iuYBGWuY822Mcg5ldTf9zpJCEJ9nGSetvP-OxsU5z-N8RcdFr0r-dz1hB0ehsf87ufYX2SdJKfzSzZhAVbbMHaCyjCbTANcJHXGNGYUGMFUVAaeXBk2kWlJvdhA4I09eMVwar5v0Q91qGm78mSUhlVElUYYqwdE0TL9CMWTa159QVGve7odz-adGCINKc-fFmb5QIR3qmzPDXCio5Sykd5ZhOdCePaVAmn29pYn6oIpRPLbMxUalKT5Y7twFLxUNhdIFnqPXzOhFZ4rugnSCfOtfYuRfsllXB5C9pTwUs9QSfHJhl3MpyScyG9_KSXn0T5SZRfC45nLOMGmuM14iN8NjHQ6jXCwznC8-5I_rkePhPIsXEtYEHXb38XeeNfPcxk06_v4voOK_3R5UAOzocXe7CKNE0x4TdYqstHuw-f9FN9W5UHYdr_A0LyBpA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB6StJTkkD5DtklTUUoPBacrS37omNeS0LAs7R5yE7I0KoHGWWwnvz8aeXfbpZBC6dUeyWZG85Bm9A3AR6G4crzIE2GsTCSaNDF5ypPcl0Va8UoIHy8KXxbjcXl1pSZrcLq4C9PjQywP3Egzor0mBceZ8_2GUxJI5jV2SdMShikvD6ldwTo8kVmwtYTvLCcLe5xleQyCg5_kQfdLucxtqi9_TLHindbD69WYNTqd0fP_87svYHsedLKjfpW8hDWsX8HWb1CEr8H1wEVBYsxSQE0VRFFo7NazRReVjt3EAwjW14-3jKrmfzBz18WavntkjXGmYaZ2zCHOGKFlhhnrvta8fQPT0dn05DyZd2BIrOTBfSGWlSKEd-5RFk6hyowxwcsLzG2pnB9yo7wdWochVFHG5igwFaZwhSsrL3Zgo76tcRdYWQQLXwllDeUVwwLJ0sraYFJs2FIpXw1guGC8tnN0cmqS8VPHLLlUOvBPB_5p4p8m_g3g83LIrIfmeIz4Ez2bK2j7GOGHFcKLs6n-9n38i0AHsQ5ARFn__bs0Nj0eUSRbvP2nUe_h2eR0pC8vxl_3YJNI-lrCfdjomjt8B0_tfXfdNgdx1T8A3zYGFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Practical+classification+of+different+moving+targets+using+automotive+radar+and+deep+neural+networks&rft.jtitle=IET+radar%2C+sonar+%26+navigation&rft.au=Angelov%2C+Aleksandar&rft.au=Robertson%2C+Andrew&rft.au=Murray-Smith%2C+Roderick&rft.au=Fioranelli%2C+Francesco&rft.date=2018-10-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-8784&rft.eissn=1751-8792&rft.volume=12&rft.issue=10&rft.spage=1082&rft.epage=1089&rft_id=info:doi/10.1049%2Fiet-rsn.2018.0103&rft.externalDocID=10_1049_iet_rsn_2018_0103
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8784&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8784&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8784&client=summon