Computer Simulation of Cathode Materials for Lithium Ion and Lithium Batteries: A Review
Driven by the increasing demand for electrochemical energy storage, lithium ion and lithium batteries have been the subject of tremendous scientific endeavors for decades. However, limited energy density, which is bottlenecked by available high‐density cathode materials, has become a critical issue...
Uložené v:
| Vydané v: | Energy & environmental materials (Hoboken, N.J.) Ročník 1; číslo 3; s. 148 - 173 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Hoboken
Wiley Subscription Services, Inc
01.09.2018
|
| Predmet: | |
| ISSN: | 2575-0356, 2575-0356 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Driven by the increasing demand for electrochemical energy storage, lithium ion and lithium batteries have been the subject of tremendous scientific endeavors for decades. However, limited energy density, which is bottlenecked by available high‐density cathode materials, has become a critical issue to be solved. Recently, computational studies have played an increasingly important role in the search for the next‐generation high‐density cathode materials. Not only important insights on the battery chemistry have been revealed, but also novel material systems have been proposed. This review highlights recent progresses in the computational studies of cathode materials for lithium ion and lithium batteries. It starts from a brief introduction of the scientific background of lithium ion and lithium batteries, followed by a brief discussion of the working principles of batteries. Different computer simulation techniques are shown to originate from the same quantum mechanical treatment of many‐body systems with different levels of simplifications. Progresses in computational studies of different cathode materials, including intercalation electrode, conversion compounds, sulfur, and organosulfides, are then presented in detail. Finally, the capabilities of computational techniques in the study of cathode materials are summarized, and major challenges are discussed.
Computational methods are becoming increasing important in our search for high‐energy‐density electrode materials. This review showcases the versatility of atomistic simulations with a focus on cathode materials for lithium ion and lithium batteries. Progresses and challenges in the study of intercalation and conversion compounds, as well as sulfur and organosulfides, are discussed. |
|---|---|
| AbstractList | Driven by the increasing demand for electrochemical energy storage, lithium ion and lithium batteries have been the subject of tremendous scientific endeavors for decades. However, limited energy density, which is bottlenecked by available high‐density cathode materials, has become a critical issue to be solved. Recently, computational studies have played an increasingly important role in the search for the next‐generation high‐density cathode materials. Not only important insights on the battery chemistry have been revealed, but also novel material systems have been proposed. This review highlights recent progresses in the computational studies of cathode materials for lithium ion and lithium batteries. It starts from a brief introduction of the scientific background of lithium ion and lithium batteries, followed by a brief discussion of the working principles of batteries. Different computer simulation techniques are shown to originate from the same quantum mechanical treatment of many‐body systems with different levels of simplifications. Progresses in computational studies of different cathode materials, including intercalation electrode, conversion compounds, sulfur, and organosulfides, are then presented in detail. Finally, the capabilities of computational techniques in the study of cathode materials are summarized, and major challenges are discussed. Driven by the increasing demand for electrochemical energy storage, lithium ion and lithium batteries have been the subject of tremendous scientific endeavors for decades. However, limited energy density, which is bottlenecked by available high‐density cathode materials, has become a critical issue to be solved. Recently, computational studies have played an increasingly important role in the search for the next‐generation high‐density cathode materials. Not only important insights on the battery chemistry have been revealed, but also novel material systems have been proposed. This review highlights recent progresses in the computational studies of cathode materials for lithium ion and lithium batteries. It starts from a brief introduction of the scientific background of lithium ion and lithium batteries, followed by a brief discussion of the working principles of batteries. Different computer simulation techniques are shown to originate from the same quantum mechanical treatment of many‐body systems with different levels of simplifications. Progresses in computational studies of different cathode materials, including intercalation electrode, conversion compounds, sulfur, and organosulfides, are then presented in detail. Finally, the capabilities of computational techniques in the study of cathode materials are summarized, and major challenges are discussed. Computational methods are becoming increasing important in our search for high‐energy‐density electrode materials. This review showcases the versatility of atomistic simulations with a focus on cathode materials for lithium ion and lithium batteries. Progresses and challenges in the study of intercalation and conversion compounds, as well as sulfur and organosulfides, are discussed. |
| Author | Ma, Ying |
| Author_xml | – sequence: 1 givenname: Ying orcidid: 0000-0003-3408-5703 surname: Ma fullname: Ma, Ying email: yingma@uwec.edu organization: University of Wisconsin‐Eau Claire |
| BookMark | eNp9kF9LwzAUxYNMcM69-AkCvgmduWm6tr7NMXWwIfgHfAsxTVhG28w0dezbm60iIuLTvZf7O-dezinq1bZWCJ0DGQEh9Eqpio6AEkiPUJ8maRKROBn3fvQnaNg0axJgAjGDvI9ep7batF45_GSqthTe2BpbjafCr2yh8FKEnRFlg7V1eGH8yrQVngdI1MX3fCP8HlPNNZ7gR_Vh1PYMHesgU8OvOkAvt7Pn6X20eLibTyeLSDKANCoKKmX4L8-lzEBlkhU0oyKTqUo1y4TQepzHJMmLnDJIElAs128py0hKFIwhHqCLznfj7HurGs_XtnV1OMlpkpEcABgN1GVHSWebxinNN85Uwu04EL4Pj-_D44fwAkx-wdL4QzLeCVP-LYFOsjWl2v1jzmezJe00n-dvgTw |
| CitedBy_id | crossref_primary_10_1016_j_pecs_2023_101084 crossref_primary_10_1002_admi_202200800 crossref_primary_10_1002_batt_202400361 crossref_primary_10_1002_ijch_201900116 crossref_primary_10_3389_fchem_2023_1169896 crossref_primary_10_1002_cnl2_124 crossref_primary_10_1016_j_cej_2023_142950 crossref_primary_10_1016_j_ccr_2023_215084 crossref_primary_10_1039_D2CP01674E crossref_primary_10_1039_D4RA04812A crossref_primary_10_1002_celc_202400320 crossref_primary_10_1039_D5TA01313E crossref_primary_10_1002_adma_202204272 crossref_primary_10_1016_j_est_2023_107088 crossref_primary_10_1007_s12598_022_02009_x crossref_primary_10_1088_2516_1083_ac3894 crossref_primary_10_1016_j_jechem_2020_11_008 crossref_primary_10_1016_j_electacta_2019_02_114 crossref_primary_10_1002_aenm_202002373 crossref_primary_10_1016_j_est_2023_109937 crossref_primary_10_1002_batt_202000320 crossref_primary_10_1016_j_electacta_2024_145234 crossref_primary_10_1016_j_est_2023_108929 crossref_primary_10_1016_j_jallcom_2021_160774 crossref_primary_10_1016_j_cej_2025_164755 crossref_primary_10_1002_cphc_202000174 crossref_primary_10_1002_pen_26454 crossref_primary_10_1103_PhysRevA_106_032428 crossref_primary_10_1002_adsu_202400610 crossref_primary_10_1016_j_cja_2023_07_010 crossref_primary_10_1016_j_jpowsour_2024_235658 crossref_primary_10_1016_j_gee_2025_02_001 crossref_primary_10_1016_j_seppur_2023_124372 crossref_primary_10_1016_j_ssi_2023_116170 crossref_primary_10_1016_j_progsolidstchem_2020_100298 crossref_primary_10_3390_molecules29133161 crossref_primary_10_1002_adfm_202508438 |
| Cites_doi | 10.1021/ja301637c 10.1149/2.F03122if 10.1016/0013-4686(93)80053-3 10.1002/cssc.201702446 10.1021/acscentsci.7b00288 10.1016/j.ssi.2010.09.011 10.1021/ja308170k 10.1016/j.commatsci.2018.02.041 10.1039/c2cc33945e 10.1016/S0167-2738(96)00472-9 10.1039/C6TA04510C 10.1021/ar300179v 10.1016/j.chempr.2017.12.012 10.1002/adfm.200900414 10.1016/S0378-7753(96)02580-3 10.1007/978-1-4757-0576-8 10.1021/cm300065y 10.1038/35104644 10.1021/acsenergylett.6b00533 10.1103/PhysRevB.75.035115 10.1038/35035045 10.1039/b925751a 10.1021/ja3052206 10.1149/1.1602454 10.1016/j.ssi.2008.06.028 10.1017/CBO9780511816581 10.1021/jp513023v 10.1103/PhysRevApplied.2.034004 10.1002/aenm.201500118 10.1002/9780470125823.ch2 10.1021/jp1114724 10.1038/npjcompumats.2015.11 10.1063/1.4927562 10.1002/aenm.201300655 10.1063/1.5029877 10.1016/S0378-7753(01)00631-0 10.1088/0034-4885/78/6/066501 10.1002/anie.201307314 10.1002/aenm.201401986 10.1002/smll.201600809 10.1039/C8EE01286E 10.1002/adma.201606823 10.1016/j.elecom.2010.01.010 10.1039/C4CP04532G 10.1016/j.jssc.2015.03.019 10.1039/b901825e 10.1103/PhysRevB.87.094118 10.1038/s41524-018-0074-y 10.1038/nmat2460 10.1039/c2ra22808d 10.1002/aenm.201201080 10.1201/9781420005851 10.1021/cm050999v 10.1002/adfm.201801791 10.1149/1.1431574 10.1149/1.1571533 10.1002/adma.201103392 10.1103/PhysRevLett.55.2471 10.1016/j.ssi.2008.01.079 10.1002/adma.201502329 10.1149/1.3117249 10.1007/978-1-4684-3851-2_7 10.1021/ja00290a017 10.1016/j.ssi.2004.07.070 10.1149/1.1571532 10.1016/j.jpowsour.2014.07.078 10.1038/nmat2590 10.1039/C7TA07460C 10.1021/nl200658a 10.1021/acs.jpcc.7b04822 10.1016/j.mser.2012.05.003 10.1149/1.1391693 10.1038/nmat2321 10.1002/adfm.200801522 10.1039/c2cp42796f 10.1007/s11837-013-0755-4 10.1016/0025-5408(80)90012-4 10.1103/PhysRevB.87.075322 10.1002/eem2.12003 10.1021/nl2027684 10.1021/acsenergylett.6b00642 10.1016/j.electacta.2012.02.061 10.1021/ja206268a 10.1149/1.1596162 10.1021/am500538b 10.1103/PhysRevB.59.6120 10.1021/ja400229v 10.7566/JPSJ.84.124709 10.1021/jp5015466 10.1103/PhysRevLett.97.155704 10.1021/cm801105p 10.1021/ar200329r 10.1039/b715935h 10.1002/adma.201000717 10.1021/cm200683n 10.1038/ncomms2185 10.1016/B978-012304460-0/50008-6 10.1149/2.086202jes 10.1039/c3ta13072j 10.1021/acs.jpcc.5b06373 10.1134/S1023193508050029 10.1063/1.4817772 10.1149/2.0251701jes 10.1038/npjcompumats.2016.2 10.1103/PhysRevB.76.165435 10.1016/j.nantod.2014.09.005 10.1063/1.2210932 10.1002/aenm.201401999 10.1038/nmat3568 10.1149/1.1516778 10.1016/j.jpowsour.2013.06.053 10.1039/C4CP00481G 10.1039/C4CP00889H 10.1021/am4000535 10.1149/1.2403974 10.1021/nn403108w 10.1002/chem.201703895 10.1039/C5CP01150G 10.1021/ja00051a040 10.1021/cm300749w 10.1039/b912820d 10.1016/j.ssc.2012.06.018 10.1149/1.1806394 10.1039/c3sc22093a 10.1103/PhysRevB.46.6671 10.1021/jp310366a 10.1021/acs.jpcc.6b09577 10.1021/cm801036k 10.1063/1.4830405 10.1039/C8CC04076A 10.1149/1.1884787 10.1002/anie.201304762 10.1039/c3ta12826a 10.1021/cr00005a001 10.1002/qua.24616 10.1002/anie.201704324 10.1021/cm200753g 10.1021/cm0620943 10.1063/1.4865107 10.1038/451652a 10.1002/aenm.201100795 10.1021/cr500062v 10.1016/S0079-6786(97)81003-5 10.1016/0378-7753(83)87029-3 10.1149/1.1633511 10.1021/jp205057d 10.1039/C6TA00054A 10.1016/j.cpc.2006.07.020 10.1021/nn401228t 10.1016/0378-7753(93)80220-J 10.1039/C4TA02075H 10.1021/acs.jpcc.8b00478 10.1021/cm702327g 10.1039/C5EE01809A 10.1039/c2cs35256g 10.1021/acsami.7b03435 10.1002/aenm.201200947 10.1016/j.mattod.2014.10.040 10.1021/ja3091438 10.1088/0953-8984/9/4/002 10.1038/nmat732 10.1149/1.1609998 10.1126/science.192.4244.1126 10.1021/jp508184f 10.1002/adfm.201302631 10.1016/j.jpowsour.2004.05.017 10.1021/jp503902z 10.1021/j100161a070 10.1021/cm902696j 10.1016/0167-2738(92)90164-K 10.1038/ncomms3985 10.1039/c002639e 10.1002/anie.201603897 10.1038/ncomms2163 10.1002/aenm.201402290 10.1016/0167-2738(90)90049-W 10.1149/1.1837571 10.1149/1.3106132 10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P 10.1016/S0009-2614(02)01342-8 |
| ContentType | Journal Article |
| Copyright | 2018 Zhengzhou University |
| Copyright_xml | – notice: 2018 Zhengzhou University |
| DBID | AAYXX CITATION 7SR 7ST 8FD C1K JG9 SOI |
| DOI | 10.1002/eem2.12017 |
| DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Environment Abstracts |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | CrossRef Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2575-0356 |
| EndPage | 173 |
| ExternalDocumentID | 10_1002_eem2_12017 EEM212017 |
| Genre | reviewArticle |
| GroupedDBID | 0R~ 1OC 24P ACCMX ACXQS ALMA_UNASSIGNED_HOLDINGS AVUZU EBS EJD OK1 WIN AAYXX ALUQN CITATION 7SR 7ST 8FD C1K JG9 SOI |
| ID | FETCH-LOGICAL-c4117-dd2cc25799cc81e8c4d282a8c7e7f48aaff693059d9241551e49fb748070e1613 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 69 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000576640900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2575-0356 |
| IngestDate | Mon Jun 30 12:04:03 EDT 2025 Tue Nov 18 20:41:47 EST 2025 Sat Nov 29 02:18:04 EST 2025 Wed Jan 22 16:53:38 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4117-dd2cc25799cc81e8c4d282a8c7e7f48aaff693059d9241551e49fb748070e1613 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3408-5703 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eem2.12017 |
| PQID | 2580911142 |
| PQPubID | 5251211 |
| PageCount | 26 |
| ParticipantIDs | proquest_journals_2580911142 crossref_primary_10_1002_eem2_12017 crossref_citationtrail_10_1002_eem2_12017 wiley_primary_10_1002_eem2_12017_EEM212017 |
| PublicationCentury | 2000 |
| PublicationDate | September 2018 |
| PublicationDateYYYYMMDD | 2018-09-01 |
| PublicationDate_xml | – month: 09 year: 2018 text: September 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Energy & environmental materials (Hoboken, N.J.) |
| PublicationYear | 2018 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2010; 12 2011; 115 2015; 78 2002; 14 2013; 3 2013; 4 2013; 1 2013; 65 2004; 7 1991; 95 2015; 143 2003; 150 2013; 243 2006; 175 1983; 9 2014; 24 1992; 57 2007; 75 2012; 14 2013; 7 2007; 76 2013; 5 1997; 9 2000; 407 2009; 12 2010; 22 2009; 11 2010; 20 2004; 175 1990; 44 2012; 134 1993; 38 2018; 4 2018; 1 2015; 84 1992; 114 1999; 59 1997; 144 2013; 117 2013; 52 2014; 16 1991; 91 2002; 149 1992; 46 2017; 164 1980 2008; 20 2010; 3 2009; 19 2012; 24 2012; 21 2001; 414 2007; 19 2018; 28 2013; 87 1993; 44 1997; 25 2002; 1 1994 2014; 272 1996; 92 2007; 10 2011; 133 2016; 12 2016; 4 2016; 1 2016; 2 2001; 97–98 2004; 151 2002; 364 2017; 56 2015; 119 2008; 44 2014; 140 2012; 48 2018; 11 2005; 17 2017; 5 2011; 159 2018; 122 2017; 2 2017; 3 2018; 123 2008; 7 2009; 156 2011; 11 2015; 227 2017; 9 2014; 4 2004; 136 2014; 2 2000 2013; 12 2011; 23 2017; 121 1985; 55 2014; 9 2012; 68 2014; 6 2006; 124 2014; 118 2015; 17 2006; 97 2015; 5 2005; 152 2015; 18 2013; 46 2008; 18 2018; 148 1997; 68 2013; 42 2017; 23 2007 2006 1999; 146 2017; 29 2004 1985; 107 1976; 192 2015; 8 2014; 114 2012; 73 2016; 55 1980; 15 2012; 152 2012; 2 2015; 27 2012; 3 2013; 139 2009; 9 2013; 135 2009; 8 2008; 179 2009; 2 2011; 184 2008; 451 2018; 54 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_131_1 e_1_2_10_177_1 e_1_2_10_158_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_116_1 e_1_2_10_150_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_135_1 e_1_2_10_173_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_154_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_120_1 e_1_2_10_166_1 e_1_2_10_147_1 e_1_2_10_82_1 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_181_1 e_1_2_10_124_1 e_1_2_10_162_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_143_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_132_1 e_1_2_10_155_1 e_1_2_10_178_1 e_1_2_10_159_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_170_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 Dong Q. F. (e_1_2_10_118_1) 2011; 23 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_151_1 e_1_2_10_174_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_121_1 e_1_2_10_144_1 e_1_2_10_167_1 e_1_2_10_148_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_182_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_163_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_110_1 e_1_2_10_156_1 e_1_2_10_179_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_171_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_152_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_175_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_119_1 e_1_2_10_145_1 e_1_2_10_168_1 e_1_2_10_80_1 e_1_2_10_149_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_183_1 e_1_2_10_126_1 e_1_2_10_160_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_122_1 e_1_2_10_164_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_108_1 e_1_2_10_130_1 e_1_2_10_157_1 e_1_2_10_92_1 e_1_2_10_1_1 e_1_2_10_73_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_172_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_153_1 e_1_2_10_176_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_146_1 e_1_2_10_169_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_161_1 e_1_2_10_180_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_142_1 e_1_2_10_165_1 e_1_2_10_47_1 e_1_2_10_89_1 |
| References_xml | – volume: 14 start-page: 14495 year: 2012 publication-title: Phys. Chem. Chem. Phys. – volume: 56 start-page: 8178 year: 2017 publication-title: Angew. Chem. Int. Ed. – volume: 150 start-page: A1394 year: 2003 publication-title: J. Electrochem. Soc. – volume: 134 start-page: 18510 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 143 start-page: 054109 year: 2015 publication-title: J. Chem. Phys. – volume: 192 start-page: 1126 year: 1976 publication-title: Science – volume: 12 start-page: A125 year: 2009 publication-title: Electrochem. Solid State Lett. – volume: 11 start-page: 2306 year: 2018 publication-title: Energy Environ. Sci. – volume: 21 start-page: 37 year: 2012 publication-title: Electrochem. Soc. Interface – volume: 1 start-page: 1221 year: 2016 publication-title: ACS Energy Lett. – volume: 6 start-page: 10858 year: 2014 publication-title: ACS Appl. Mater. Interfaces. – volume: 175 start-page: 243 year: 2004 publication-title: Solid State Ionics – volume: 20 start-page: 1798 year: 2008 publication-title: Chem. Mater. – volume: 134 start-page: 8205 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 95 start-page: 3358 year: 1991 publication-title: J. Phys. Chem. – volume: 5 start-page: 2208 year: 2013 publication-title: ACS Appl. Mater. Interfaces. – volume: 73 start-page: 51 year: 2012 publication-title: Mater. Sci. Eng. R Rep. – volume: 18 start-page: 1209 year: 2008 publication-title: J. Mater. Chem. – volume: 4 start-page: 1300655 year: 2014 publication-title: Adv. Energy Mater. – volume: 148 start-page: 231 year: 2018 publication-title: Comput. Mater. Sci. – volume: 19 start-page: 395 year: 2009 publication-title: Adv. Funct. Mater. – volume: 22 start-page: 691 year: 2010 publication-title: Chem. Mater. – volume: 140 start-page: 084106 year: 2014 publication-title: J. Chem. Phys. – volume: 12 start-page: 3283 year: 2016 publication-title: Small – volume: 59 start-page: 6120 year: 1999 publication-title: Phys. Rev. B – volume: 122 start-page: 8769 year: 2018 publication-title: J. Phys. Chem. C – volume: 149 start-page: K31 year: 2002 publication-title: J. Electrochem. Soc. – volume: 2 start-page: 15011 year: 2016 publication-title: NPJ Comput. Mater. – volume: 7 start-page: 937 year: 2008 publication-title: Nat. Mater. – volume: 123 start-page: 245301 year: 2018 publication-title: J. Appl. Phys. – volume: 44 start-page: 87 year: 1990 publication-title: Solid State Ionics – volume: 68 start-page: 716 year: 1997 publication-title: J. Power Sources – volume: 5 start-page: 25005 year: 2017 publication-title: J. Mater. Chem. A – volume: 121 start-page: 308 year: 2017 publication-title: J. Phys. Chem. C – volume: 78 start-page: 066501 year: 2015 publication-title: Rep. Prog. Phys. – volume: 414 start-page: 359 year: 2001 publication-title: Nature – volume: 151 start-page: A1969 year: 2004 publication-title: J. Electrochem. Soc. – volume: 1 start-page: 13089 year: 2013 publication-title: J. Mater. Chem. A – volume: 17 start-page: 5085 year: 2005 publication-title: Chem. Mater. – volume: 124 start-page: 244704 year: 2006 publication-title: J. Chem. Phys. – volume: 23 start-page: 16941 year: 2017 publication-title: Chemistry – volume: 28 start-page: 1801791 year: 2018 publication-title: Adv. Funct. Mater. – volume: 20 start-page: 9821 year: 2010 publication-title: J. Mater. Chem. – volume: 3 start-page: 1063 year: 2017 publication-title: ACS Cent. Sci. – volume: 5 start-page: 1402290 year: 2015 publication-title: Adv. Energy Mater. – volume: 119 start-page: 4675 year: 2015 publication-title: J. Phys. Chem. C – volume: 152 start-page: A913 year: 2005 publication-title: J. Electrochem. Soc. – volume: 46 start-page: 1216 year: 2013 publication-title: Acc. Chem. Res. – year: 2007 – volume: 114 start-page: 10024 year: 1992 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 8873 year: 2018 publication-title: Chem. Commun. – volume: 107 start-page: 829 year: 1985 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 500 year: 2009 publication-title: Nat. Mater. – volume: 184 start-page: 57 year: 2011 publication-title: Solid State Ionics – volume: 243 start-page: 494 year: 2013 publication-title: J. Power Sources – volume: 149 start-page: A162 year: 2002 publication-title: J. Electrochem. Soc. – volume: 9 start-page: 604 year: 2014 publication-title: Nano Today – volume: 1 start-page: 123 year: 2002 publication-title: Nat. Mater. – volume: 87 start-page: 075322 year: 2013 publication-title: Phys. Rev. B – volume: 2 start-page: 12201 year: 2014 publication-title: J. Mater. Chem. A – volume: 3 start-page: 600 year: 2013 publication-title: Adv. Energy Mater. – volume: 44 start-page: 689 year: 1993 publication-title: J. Power Sources – volume: 52 start-page: 13621 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 14 start-page: 963 year: 2002 publication-title: Adv. Mater. – volume: 119 start-page: 1535 year: 2015 publication-title: J. Phys. Chem. B – volume: 2 start-page: 605 year: 2017 publication-title: ACS Energy Lett. – volume: 22 start-page: E170 year: 2010 publication-title: Adv. Mater. – volume: 3 start-page: 1008 year: 2013 publication-title: Adv. Energy Mater. – volume: 24 start-page: 1205 year: 2012 publication-title: Chem. Mater. – volume: 150 start-page: A1318 year: 2003 publication-title: J. Electrochem. Soc. – volume: 7 start-page: 8003 year: 2013 publication-title: ACS Nano – volume: 20 start-page: 5574 year: 2008 publication-title: Chem. Mater. – volume: 55 start-page: 10027 year: 2016 publication-title: Angew. Chem. Int. Ed. – volume: 46 start-page: 1125 year: 2013 publication-title: Acc. Chem. Res. – volume: 179 start-page: 1683 year: 2008 publication-title: Solid State Ionics – volume: 4 start-page: 2985 year: 2013 publication-title: Nat. Commun. – volume: 9 start-page: 68 year: 2009 publication-title: Nat. Mater. – volume: 144 start-page: 1188 year: 1997 publication-title: J. Electrochem. Soc. – volume: 133 start-page: 18828 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 1401986 year: 2015 publication-title: Adv. Energy Mater. – volume: 139 start-page: 204101 year: 2013 publication-title: J. Chem. Phys. – volume: 42 start-page: 3018 year: 2013 publication-title: Chem. Soc. Rev. – volume: 97–98 start-page: 430 year: 2001 publication-title: J. Power Sources – volume: 20 start-page: 5274 year: 2008 publication-title: Chem. Mater. – volume: 48 start-page: 8817 year: 2012 publication-title: Chem. Commun. – volume: 451 start-page: 652 year: 2008 publication-title: Nature – volume: 23 start-page: 2278 year: 2011 publication-title: Chem. Mater. – volume: 2 start-page: 034004 year: 2014 publication-title: Phys. Rev. Appl. – volume: 65 start-page: 1501 year: 2013 publication-title: JOM – volume: 25 start-page: 1 year: 1997 publication-title: Prog. Solid State Chem. – volume: 136 start-page: 150 year: 2004 publication-title: J. Power Sources – volume: 179 start-page: 2016 year: 2008 publication-title: Solid State Ionics – volume: 115 start-page: 13045 year: 2011 publication-title: J. Phys. Chem. A – volume: 44 start-page: 506 year: 2008 publication-title: Russ. J. Electrochem. – volume: 117 start-page: 837 year: 2013 publication-title: J. Phys. Chem. C – volume: 16 start-page: 10923 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 4 start-page: 1330 year: 2013 publication-title: Chem. Sci. – volume: 9 start-page: 281 year: 1983 publication-title: J. Power Sources – volume: 7 start-page: A30 year: 2004 publication-title: Electrochem. Solid‐State Lett. – volume: 118 start-page: 15169 year: 2014 publication-title: J. Phys. Chem. C – volume: 55 start-page: 2471 year: 1985 publication-title: Phys. Rev. Lett. – volume: 91 start-page: 651 year: 1991 publication-title: Chem. Rev. – volume: 2 start-page: 589 year: 2009 publication-title: Energy Environ. Sci. – volume: 159 start-page: R1 year: 2011 publication-title: J. Electrochem. Soc. – volume: 1 start-page: 20 year: 2018 publication-title: Energy Environ. Mater. – year: 1994 – volume: 75 start-page: 035115 year: 2007 publication-title: Phys. Rev. B – volume: 4 start-page: 3 year: 2018 publication-title: Chem – volume: 5 start-page: 1401999 year: 2015 publication-title: Adv. Energy Mater. – volume: 135 start-page: 1167 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 14050 year: 2016 publication-title: J. Mater. Chem. A – volume: 139 start-page: 064106 year: 2013 publication-title: J. Chem. Phys. – volume: 24 start-page: 1176 year: 2012 publication-title: Adv. Mater. – volume: 121 start-page: 21105 year: 2017 publication-title: J. Phys. Chem. C – volume: 1 start-page: 13484 year: 2013 publication-title: J. Mater. Chem. A – volume: 135 start-page: 4070 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 252 year: 2015 publication-title: Mater. Today – volume: 15 start-page: 783 year: 1980 publication-title: Mater. Res. Bull. – year: 2004 – volume: 10 start-page: A40 year: 2007 publication-title: Electrochem. Solid‐State Lett. – volume: 38 start-page: 1221 year: 1993 publication-title: Electrochim. Acta – volume: 97 start-page: 155704 year: 2006 publication-title: Phys. Rev. Lett. – volume: 175 start-page: 713 year: 2006 publication-title: Comput. Phys. Commun. – volume: 118 start-page: 11545 year: 2014 publication-title: J. Phys. Chem. C – volume: 119 start-page: 20495 year: 2015 publication-title: J. Phys. Chem. C – volume: 2 start-page: 16002 year: 2016 publication-title: NPJ Comput. Mater. – volume: 17 start-page: 15218 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 164 start-page: A5019 year: 2017 publication-title: J. Electrochem. Soc. – volume: 57 start-page: 311 year: 1992 publication-title: Solid State Ionics – volume: 272 start-page: 518 year: 2014 publication-title: J. Power Sources – volume: 87 start-page: 094118 year: 2013 publication-title: Phys. Rev. B – volume: 11 start-page: 9884 year: 2009 publication-title: Phys. Chem. Chem. Phys. – volume: 114 start-page: 1031 year: 2014 publication-title: Int. J. Quantum Chem. – volume: 9 start-page: 767 year: 1997 publication-title: J. Phys. Condens. Matter – volume: 24 start-page: 1243 year: 2014 publication-title: Adv. Funct. Mater. – volume: 146 start-page: 862 year: 1999 publication-title: J. Electrochem. Soc. – volume: 4 start-page: 5406 year: 2016 publication-title: J. Mater. Chem. A – volume: 7 start-page: 5367 year: 2013 publication-title: ACS Nano – volume: 23 start-page: 533 year: 2011 publication-title: Prog. Chem. – volume: 3 start-page: 1166 year: 2012 publication-title: Nat. Commun. – volume: 5 start-page: 1500118 year: 2015 publication-title: Adv. Energy Mater. – volume: 17 start-page: 3383 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 8 start-page: 2389 year: 2015 publication-title: Energy Environ. Sci. – year: 2000 – volume: 76 start-page: 165435 year: 2007 publication-title: Phys. Rev. B – volume: 115 start-page: 6057 year: 2011 publication-title: J. Phys. Chem. C – volume: 92 start-page: 1 year: 1996 publication-title: Solid State Ionics – volume: 3 start-page: 2558 year: 2013 publication-title: RSC Adv. – volume: 84 start-page: 124709 year: 2015 publication-title: J. Phys. Soc. Jpn. – volume: 407 start-page: 496 year: 2000 publication-title: Nature – volume: 9 start-page: 20545 year: 2017 publication-title: ACS Appl. Mater. Interfaces. – volume: 4 start-page: 18 year: 2018 publication-title: NPJ Comput. Mater. – volume: 3 start-page: 1201 year: 2012 publication-title: Nat. Commun. – volume: 2 start-page: 742 year: 2012 publication-title: Adv. Energy Mater. – volume: 68 start-page: 202 year: 2012 publication-title: Electrochim. Acta – volume: 11 start-page: 1970 year: 2018 publication-title: Chemsuschem – volume: 52 start-page: 13186 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 46 start-page: 6671 year: 1992 publication-title: Phys. Rev. B – volume: 150 start-page: A1209 year: 2003 publication-title: J. Electrochem. Soc. – volume: 29 start-page: 1606823 year: 2017 publication-title: Adv. Mater. – volume: 3 start-page: 1531 year: 2010 publication-title: Energy Environ. Sci. – start-page: 145 year: 1980 end-page: 161 – volume: 150 start-page: A796 year: 2003 publication-title: J. Electrochem. Soc. – volume: 16 start-page: 11690 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 114 start-page: 11751 year: 2014 publication-title: Chem. Rev. – year: 2006 – volume: 134 start-page: 15387 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 156 start-page: A407 year: 2009 publication-title: J. Electrochem. Soc. – volume: 12 start-page: 191 year: 2013 publication-title: Nat. Mater. – volume: 227 start-page: 25 year: 2015 publication-title: J. Solid State Chem. – volume: 150 start-page: A800 year: 2003 publication-title: J. Electrochem. Soc. – volume: 364 start-page: 387 year: 2002 publication-title: Chem. Phys. Lett. – volume: 19 start-page: 3285 year: 2009 publication-title: Adv. Funct. Mater. – volume: 24 start-page: 2155 year: 2012 publication-title: Chem. Mater. – volume: 19 start-page: 543 year: 2007 publication-title: Chem. Mater. – volume: 11 start-page: 4462 year: 2011 publication-title: Nano Lett. – volume: 12 start-page: 427 year: 2010 publication-title: Electrochem. Commun. – volume: 27 start-page: 5141 year: 2015 publication-title: Adv. Mater. – volume: 23 start-page: 3854 year: 2011 publication-title: Chem. Mater. – volume: 152 start-page: 1703 year: 2012 publication-title: Solid State Commun. – volume: 11 start-page: 2644 year: 2011 publication-title: Nano Lett. – ident: e_1_2_10_39_1 doi: 10.1021/ja301637c – ident: e_1_2_10_46_1 doi: 10.1149/2.F03122if – ident: e_1_2_10_55_1 doi: 10.1016/0013-4686(93)80053-3 – ident: e_1_2_10_176_1 doi: 10.1002/cssc.201702446 – ident: e_1_2_10_44_1 doi: 10.1021/acscentsci.7b00288 – ident: e_1_2_10_84_1 doi: 10.1016/j.ssi.2010.09.011 – ident: e_1_2_10_165_1 doi: 10.1021/ja308170k – ident: e_1_2_10_37_1 doi: 10.1016/j.commatsci.2018.02.041 – ident: e_1_2_10_145_1 doi: 10.1039/c2cc33945e – ident: e_1_2_10_56_1 doi: 10.1016/S0167-2738(96)00472-9 – ident: e_1_2_10_103_1 doi: 10.1039/C6TA04510C – ident: e_1_2_10_116_1 doi: 10.1021/ar300179v – ident: e_1_2_10_146_1 doi: 10.1016/j.chempr.2017.12.012 – ident: e_1_2_10_67_1 doi: 10.1002/adfm.200900414 – ident: e_1_2_10_96_1 doi: 10.1016/S0378-7753(96)02580-3 – ident: e_1_2_10_26_1 doi: 10.1007/978-1-4757-0576-8 – ident: e_1_2_10_77_1 doi: 10.1021/cm300065y – ident: e_1_2_10_2_1 doi: 10.1038/35104644 – ident: e_1_2_10_23_1 doi: 10.1021/acsenergylett.6b00533 – ident: e_1_2_10_32_1 doi: 10.1103/PhysRevB.75.035115 – ident: e_1_2_10_5_1 doi: 10.1038/35035045 – ident: e_1_2_10_8_1 doi: 10.1039/b925751a – ident: e_1_2_10_152_1 doi: 10.1021/ja3052206 – ident: e_1_2_10_94_1 doi: 10.1149/1.1602454 – ident: e_1_2_10_61_1 doi: 10.1016/j.ssi.2008.06.028 – ident: e_1_2_10_35_1 doi: 10.1017/CBO9780511816581 – ident: e_1_2_10_160_1 doi: 10.1021/jp513023v – ident: e_1_2_10_166_1 doi: 10.1103/PhysRevApplied.2.034004 – ident: e_1_2_10_122_1 doi: 10.1002/aenm.201500118 – ident: e_1_2_10_28_1 doi: 10.1002/9780470125823.ch2 – ident: e_1_2_10_143_1 doi: 10.1021/jp1114724 – ident: e_1_2_10_38_1 doi: 10.1038/npjcompumats.2015.11 – ident: e_1_2_10_183_1 doi: 10.1063/1.4927562 – ident: e_1_2_10_151_1 doi: 10.1002/aenm.201300655 – ident: e_1_2_10_182_1 doi: 10.1063/1.5029877 – ident: e_1_2_10_65_1 doi: 10.1016/S0378-7753(01)00631-0 – ident: e_1_2_10_161_1 doi: 10.1088/0034-4885/78/6/066501 – ident: e_1_2_10_101_1 doi: 10.1002/anie.201307314 – ident: e_1_2_10_124_1 doi: 10.1002/aenm.201401986 – ident: e_1_2_10_169_1 doi: 10.1002/smll.201600809 – ident: e_1_2_10_19_1 doi: 10.1039/C8EE01286E – ident: e_1_2_10_12_1 doi: 10.1002/adma.201606823 – ident: e_1_2_10_79_1 doi: 10.1016/j.elecom.2010.01.010 – ident: e_1_2_10_174_1 doi: 10.1039/C4CP04532G – ident: e_1_2_10_106_1 doi: 10.1016/j.jssc.2015.03.019 – ident: e_1_2_10_70_1 doi: 10.1039/b901825e – ident: e_1_2_10_110_1 doi: 10.1103/PhysRevB.87.094118 – ident: e_1_2_10_82_1 doi: 10.1038/s41524-018-0074-y – ident: e_1_2_10_132_1 doi: 10.1038/nmat2460 – ident: e_1_2_10_139_1 doi: 10.1039/c2ra22808d – ident: e_1_2_10_140_1 doi: 10.1002/aenm.201201080 – ident: e_1_2_10_15_1 doi: 10.1201/9781420005851 – ident: e_1_2_10_60_1 doi: 10.1021/cm050999v – ident: e_1_2_10_153_1 doi: 10.1002/adfm.201801791 – volume: 23 start-page: 533 year: 2011 ident: e_1_2_10_118_1 publication-title: Prog. Chem. – ident: e_1_2_10_51_1 doi: 10.1149/1.1431574 – ident: e_1_2_10_130_1 doi: 10.1149/1.1571533 – ident: e_1_2_10_142_1 doi: 10.1002/adma.201103392 – ident: e_1_2_10_34_1 doi: 10.1103/PhysRevLett.55.2471 – ident: e_1_2_10_62_1 doi: 10.1016/j.ssi.2008.01.079 – ident: e_1_2_10_22_1 doi: 10.1002/adma.201502329 – ident: e_1_2_10_105_1 doi: 10.1149/1.3117249 – ident: e_1_2_10_3_1 doi: 10.1007/978-1-4684-3851-2_7 – ident: e_1_2_10_40_1 doi: 10.1021/ja00290a017 – ident: e_1_2_10_120_1 doi: 10.1016/j.ssi.2004.07.070 – ident: e_1_2_10_131_1 doi: 10.1149/1.1571532 – ident: e_1_2_10_159_1 doi: 10.1016/j.jpowsour.2014.07.078 – ident: e_1_2_10_69_1 doi: 10.1038/nmat2590 – ident: e_1_2_10_156_1 doi: 10.1039/C7TA07460C – ident: e_1_2_10_137_1 doi: 10.1021/nl200658a – ident: e_1_2_10_9_1 – ident: e_1_2_10_167_1 doi: 10.1021/acs.jpcc.7b04822 – ident: e_1_2_10_45_1 doi: 10.1016/j.mser.2012.05.003 – ident: e_1_2_10_48_1 doi: 10.1149/1.1391693 – ident: e_1_2_10_73_1 doi: 10.1038/nmat2321 – ident: e_1_2_10_71_1 doi: 10.1002/adfm.200801522 – ident: e_1_2_10_135_1 doi: 10.1039/c2cp42796f – ident: e_1_2_10_180_1 doi: 10.1007/s11837-013-0755-4 – ident: e_1_2_10_4_1 doi: 10.1016/0025-5408(80)90012-4 – ident: e_1_2_10_86_1 doi: 10.1103/PhysRevB.87.075322 – ident: e_1_2_10_13_1 doi: 10.1002/eem2.12003 – ident: e_1_2_10_136_1 doi: 10.1021/nl2027684 – ident: e_1_2_10_150_1 doi: 10.1021/acsenergylett.6b00642 – ident: e_1_2_10_100_1 doi: 10.1016/j.electacta.2012.02.061 – ident: e_1_2_10_115_1 doi: 10.1021/ja206268a – ident: e_1_2_10_95_1 doi: 10.1149/1.1596162 – ident: e_1_2_10_25_1 doi: 10.1021/am500538b – ident: e_1_2_10_49_1 doi: 10.1103/PhysRevB.59.6120 – ident: e_1_2_10_99_1 doi: 10.1021/ja400229v – ident: e_1_2_10_109_1 doi: 10.7566/JPSJ.84.124709 – ident: e_1_2_10_164_1 doi: 10.1021/jp5015466 – ident: e_1_2_10_17_1 doi: 10.1103/PhysRevLett.97.155704 – ident: e_1_2_10_104_1 doi: 10.1021/cm801105p – ident: e_1_2_10_113_1 – ident: e_1_2_10_18_1 doi: 10.1021/ar200329r – ident: e_1_2_10_87_1 doi: 10.1039/b715935h – ident: e_1_2_10_6_1 doi: 10.1002/adma.201000717 – ident: e_1_2_10_85_1 doi: 10.1021/cm200683n – ident: e_1_2_10_97_1 doi: 10.1038/ncomms2185 – ident: e_1_2_10_27_1 doi: 10.1016/B978-012304460-0/50008-6 – ident: e_1_2_10_102_1 doi: 10.1149/2.086202jes – ident: e_1_2_10_157_1 doi: 10.1039/c3ta13072j – ident: e_1_2_10_172_1 doi: 10.1021/acs.jpcc.5b06373 – ident: e_1_2_10_123_1 doi: 10.1134/S1023193508050029 – ident: e_1_2_10_181_1 doi: 10.1063/1.4817772 – ident: e_1_2_10_1_1 doi: 10.1149/2.0251701jes – ident: e_1_2_10_78_1 doi: 10.1038/npjcompumats.2016.2 – ident: e_1_2_10_88_1 doi: 10.1103/PhysRevB.76.165435 – ident: e_1_2_10_93_1 doi: 10.1016/j.nantod.2014.09.005 – ident: e_1_2_10_158_1 doi: 10.1063/1.2210932 – ident: e_1_2_10_149_1 doi: 10.1002/aenm.201401999 – ident: e_1_2_10_179_1 doi: 10.1038/nmat3568 – ident: e_1_2_10_53_1 doi: 10.1149/1.1516778 – ident: e_1_2_10_98_1 doi: 10.1016/j.jpowsour.2013.06.053 – ident: e_1_2_10_114_1 doi: 10.1039/C4CP00481G – ident: e_1_2_10_129_1 doi: 10.1039/C4CP00889H – ident: e_1_2_10_134_1 doi: 10.1021/am4000535 – ident: e_1_2_10_58_1 doi: 10.1149/1.2403974 – ident: e_1_2_10_148_1 doi: 10.1021/nn403108w – ident: e_1_2_10_155_1 doi: 10.1002/chem.201703895 – ident: e_1_2_10_112_1 doi: 10.1039/C5CP01150G – ident: e_1_2_10_36_1 doi: 10.1021/ja00051a040 – ident: e_1_2_10_76_1 doi: 10.1021/cm300749w – ident: e_1_2_10_89_1 doi: 10.1039/b912820d – ident: e_1_2_10_107_1 doi: 10.1016/j.ssc.2012.06.018 – ident: e_1_2_10_127_1 doi: 10.1149/1.1806394 – ident: e_1_2_10_21_1 doi: 10.1039/c3sc22093a – ident: e_1_2_10_30_1 doi: 10.1103/PhysRevB.46.6671 – ident: e_1_2_10_92_1 doi: 10.1021/jp310366a – ident: e_1_2_10_173_1 doi: 10.1021/acs.jpcc.6b09577 – ident: e_1_2_10_75_1 doi: 10.1021/cm801036k – ident: e_1_2_10_33_1 doi: 10.1063/1.4830405 – ident: e_1_2_10_16_1 doi: 10.1039/C8CC04076A – ident: e_1_2_10_64_1 doi: 10.1149/1.1884787 – ident: e_1_2_10_119_1 doi: 10.1002/anie.201304762 – ident: e_1_2_10_138_1 doi: 10.1039/c3ta12826a – ident: e_1_2_10_29_1 doi: 10.1021/cr00005a001 – ident: e_1_2_10_72_1 doi: 10.1002/qua.24616 – ident: e_1_2_10_168_1 doi: 10.1002/anie.201704324 – ident: e_1_2_10_81_1 doi: 10.1021/cm200753g – ident: e_1_2_10_91_1 doi: 10.1021/cm0620943 – ident: e_1_2_10_162_1 doi: 10.1063/1.4865107 – ident: e_1_2_10_7_1 doi: 10.1038/451652a – ident: e_1_2_10_14_1 doi: 10.1002/aenm.201100795 – ident: e_1_2_10_121_1 doi: 10.1021/cr500062v – ident: e_1_2_10_52_1 doi: 10.1016/S0079-6786(97)81003-5 – ident: e_1_2_10_128_1 doi: 10.1016/0378-7753(83)87029-3 – ident: e_1_2_10_59_1 doi: 10.1149/1.1633511 – ident: e_1_2_10_83_1 doi: 10.1021/jp205057d – ident: e_1_2_10_170_1 doi: 10.1039/C6TA00054A – ident: e_1_2_10_74_1 doi: 10.1016/j.cpc.2006.07.020 – ident: e_1_2_10_178_1 doi: 10.1021/nn401228t – ident: e_1_2_10_54_1 doi: 10.1016/0378-7753(93)80220-J – ident: e_1_2_10_147_1 doi: 10.1039/C4TA02075H – ident: e_1_2_10_11_1 doi: 10.1021/acs.jpcc.8b00478 – ident: e_1_2_10_80_1 doi: 10.1021/cm702327g – ident: e_1_2_10_171_1 doi: 10.1039/C5EE01809A – ident: e_1_2_10_126_1 doi: 10.1039/c2cs35256g – ident: e_1_2_10_90_1 doi: 10.1021/acsami.7b03435 – ident: e_1_2_10_20_1 doi: 10.1002/aenm.201200947 – ident: e_1_2_10_43_1 doi: 10.1016/j.mattod.2014.10.040 – ident: e_1_2_10_24_1 doi: 10.1021/ja3091438 – ident: e_1_2_10_31_1 doi: 10.1088/0953-8984/9/4/002 – ident: e_1_2_10_63_1 doi: 10.1038/nmat732 – ident: e_1_2_10_68_1 doi: 10.1149/1.1609998 – ident: e_1_2_10_10_1 doi: 10.1126/science.192.4244.1126 – ident: e_1_2_10_175_1 doi: 10.1021/jp508184f – ident: e_1_2_10_177_1 doi: 10.1002/adfm.201302631 – ident: e_1_2_10_66_1 doi: 10.1016/j.jpowsour.2004.05.017 – ident: e_1_2_10_108_1 doi: 10.1021/jp503902z – ident: e_1_2_10_41_1 doi: 10.1021/j100161a070 – ident: e_1_2_10_42_1 doi: 10.1021/cm902696j – ident: e_1_2_10_47_1 doi: 10.1016/0167-2738(92)90164-K – ident: e_1_2_10_117_1 doi: 10.1038/ncomms3985 – ident: e_1_2_10_133_1 doi: 10.1039/c002639e – ident: e_1_2_10_154_1 doi: 10.1002/anie.201603897 – ident: e_1_2_10_144_1 doi: 10.1038/ncomms2163 – ident: e_1_2_10_125_1 doi: 10.1002/aenm.201402290 – ident: e_1_2_10_50_1 doi: 10.1016/0167-2738(90)90049-W – ident: e_1_2_10_57_1 doi: 10.1149/1.1837571 – ident: e_1_2_10_111_1 doi: 10.1149/1.3106132 – ident: e_1_2_10_141_1 doi: 10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P – ident: e_1_2_10_163_1 doi: 10.1016/S0009-2614(02)01342-8 |
| SSID | ssj0002013419 |
| Score | 2.365926 |
| SecondaryResourceType | review_article |
| Snippet | Driven by the increasing demand for electrochemical energy storage, lithium ion and lithium batteries have been the subject of tremendous scientific endeavors... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 148 |
| SubjectTerms | atomistic simulations cathode Cathodes Computer applications Computer simulation Electrochemistry Electrode materials Energy storage Flux density Ions Lithium Lithium batteries lithium ion battery Lithium ions Quantum mechanics Rechargeable batteries Storage batteries Sulfur |
| Title | Computer Simulation of Cathode Materials for Lithium Ion and Lithium Batteries: A Review |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12017 https://www.proquest.com/docview/2580911142 |
| Volume | 1 |
| WOSCitedRecordID | wos000576640900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2575-0356 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002013419 issn: 2575-0356 databaseCode: WIN dateStart: 20180101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2575-0356 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002013419 issn: 2575-0356 databaseCode: 24P dateStart: 20180101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED7m9MEXf6DidEpAXxTqlrRdE_FlyIaDbQxU3FvJ0hQLrpOt8-_30nSdggjiS3_QaymXpPdd0vs-gEtDmSYYpiWct4TjuYo6UvvMidTEZdJXVIi8ULgfDId8PBajCtytamEsP0Q54WZGRv69NgNcThaNNWmo1lN2QzF-BRuwSanLjXAD80blDAteMmRlRl0OMYnTdP1WyU_KGuvbv0ekNcz8ClbzaNPd_d977sFOgTJJ23aLfajo9ADGKwUH8phMC9UuMouJKQKcRZoMZGa7I0EgS_pJ9posp6SHRjKNynNLyIn59S1pE7uycAjP3c7T_YNTCCs4yqMYlaKIKYVOEUIpTjVXXoSZl-Qq0EHscSnj2Cgk-iISJsD7VHsingSm-rypESK6R1BNZ6k-BuJi_qc1pueYSGI8NMuWCNGoROShEAp5NbhaOTdUBeu4Eb94Cy1fMguNf8LcPzW4KG3fLdfGj1b1VRuFxXhbhMznTfPZ9lgNrvPW-OUJYaczYPnRyV-MT2Ebd9z-YFaHajZf6jPYUh9Zspif530Pty-94SfFA9gp |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFA06BX3xAxWnUwP6olC3puma-DZkY8OuCE7cW8jSFAtuk63z93vTdJ2CCOJbP25LuUl6z01yz0HoylCmcQJpCWNN7lBPuY7UPnFiNfKI9JXLeV4oHAZRxIZD_ljszTG1MJYfopxwMyMj_1-bAW4mpOsr1lCtx-TWhQAWrKMNCkjDKDe89KJyigVuGbYyIy8HoMRpeH6zJCgl9dXj30PSCmd-Rat5uOns_vND99BOgTNxy3aMfbSmJwdouNRwwE_puNDtwtMEmzLAaaxxX2a2Q2KAsjhMs9d0McY9MJKTuDy3lJyQYd_hFrZrC4foudMe3HedQlrBUdSFuBTHRCnwCudKMVczRWPIvSRTgQ4SyqRMEqOR6POYmxDvu5ryZBSY-vOGBpDoHaHKZDrRxwh7kAFqDQk6pJIQEc3CJYA0VwL2UACGaBVdL70rVME7buQv3oRlTCbC-Efk_qmiy9L23bJt_GhVWzaSKEbcXBCfNcyPm5Iqusmb45c3iHa7T_Kjk78YX6Ct7qAfirAXPZyibbjE7HazGqpks4U-Q5vqI0vns_O8I34CLCvbcg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86RXzxAxWnUwP6olC3puma-DZ0w-E2BirsLWRJigXXjX3493tpuk5BBPGtH9cPLpfc75Lc7xC6spRpnEBYwlidezRQvidNSDythgGRofI5zxKFO1GvxwYD3s_35thcGMcPUUy42Z6Rjde2g5uJjqsr1lBjRuTWBwcWraMNGsI3LbEz7RdTLHDLspXZ8nIASrxaENYLglJSXT3-3SWtcOZXtJq5m9buP390D-3kOBM3nGHsozWTHqDBsoYDfk5Ged0uPI6xTQMca4O7cu4MEgOUxZ1k_pYsRrgNQjLVxbmj5IQI-w43sFtbOESvrebL_aOXl1bwFPXBL2lNlAKtcK4U8w1TVEPsJZmKTBRTJmUc2xqJIdfcuvjQN5THw8jmn9cMgMTgCJXScWqOEQ4gAjQGAnQIJcEj2oVLAGm-BOyhAAzRMrpealeonHfclr94F44xmQirH5Hpp4wuC9mJY9v4UaqybCSR97iZICGr2YGbkjK6yZrjlzeIZrNLsqOTvwhfoK3-Q0t02r2nU7QNV5jbbVZBpfl0Yc7QpvqYJ7PpeWaHn3rZ2ok |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer+Simulation+of+Cathode+Materials+for+Lithium+Ion+and+Lithium+Batteries%3A+A+Review&rft.jtitle=Energy+%26+environmental+materials+%28Hoboken%2C+N.J.%29&rft.au=Ma%2C+Ying&rft.date=2018-09-01&rft.issn=2575-0356&rft.eissn=2575-0356&rft.volume=1&rft.issue=3&rft.spage=148&rft.epage=173&rft_id=info:doi/10.1002%2Feem2.12017&rft.externalDBID=10.1002%252Feem2.12017&rft.externalDocID=EEM212017 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2575-0356&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2575-0356&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2575-0356&client=summon |