Barley resistance and susceptibility to fungal cell entry involve the interplay of ROP signaling with phosphatidylinositol‐monophosphates

SUMMARY Rho‐of‐plant small GTPases (ROPs) are regulators of plant polar growth and of plant–pathogen interactions. The barley ROP, RACB, is involved in susceptibility toward infection by the barley powdery mildew fungus Blumeria hordei (Bh) but little is known about the cellular pathways that connec...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Plant journal : for cell and molecular biology Ročník 123; číslo 2; s. e70356 - n/a
Hlavní autori: Weiß, Lukas Sebastian, Bradai, Mariem, Bartram, Christoph, Heilmann, Mareike, Mergner, Julia, Kuster, Bernhard, Hensel, Götz, Kumlehn, Jochen, Engelhardt, Stefan, Heilmann, Ingo, Hückelhoven, Ralph
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England John Wiley and Sons Inc 01.07.2025
Predmet:
ISSN:0960-7412, 1365-313X, 1365-313X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract SUMMARY Rho‐of‐plant small GTPases (ROPs) are regulators of plant polar growth and of plant–pathogen interactions. The barley ROP, RACB, is involved in susceptibility toward infection by the barley powdery mildew fungus Blumeria hordei (Bh) but little is known about the cellular pathways that connect RACB signaling to disease susceptibility. Here we identify novel RACB interaction partners of plant or fungal origin by untargeted co‐immunoprecipitation of constitutively active (CA) RACB tagged by green fluorescent protein from Bh‐infected barley epidermal layers and subsequent analysis by liquid chromatography‐coupled mass spectrometry. Three of the immunoprecipitated proteins, a plant phosphoinositide phosphatase, a plant phosphoinositide phospholipase, and a putative Bh‐effector protein, are involved in the barley‐Bh‐pathosystem and support disease resistance or susceptibility, respectively. RACB and its plant interactors bind to overlapping anionic phospholipid species in vitro, and in the case of RACB, this lipid interaction is mediated by its carboxy‐terminal polybasic region (PBR). Fluorescent markers for anionic phospholipids show altered subcellular distribution in barley cells during Bh attack and under expression of a RACB‐binding fungal effector. Phosphatidylinositol 4‐phosphate, phosphatidylinositol 3,5‐bisphosphate, and phosphatidylserine show a distinct enrichment at the haustorial neck region, suggesting a connection to subcellular targeting of RACB at this site. The interplay of ROPs with anionic phospholipids and phospholipid‐metabolizing enzymes may thus enable the subcellular enrichment of components pivotal for success or failure of fungal penetration. Significance Statement The ROP GTPase RACB has been co‐immunoprecipitated with two host phospholipid‐metabolizing enzymes and one fungal effector that influences pathogen interaction. All three modeled protein complexes share an overlapping binding interface with RACB. Rho‐of‐plant small GTPases (ROPs) are regulators of plant cell polarity, disease resistance, and susceptibility to fungal invasion of plant cells. In cell development, ROPs act in concert with phosphoinositides, but such a function was not established for ROP signaling in plant–microbe interactions. Here we show relevant phosphoinositide interaction of barley RACB, a ROP GTPase acting in susceptibility to invasion by Blumeria hordei, and new interaction partners of RACB that influence fungal invasion success and may act on plant phosphoinositide metabolism.
AbstractList Rho‐of‐plant small GTPases (ROPs) are regulators of plant polar growth and of plant–pathogen interactions. The barley ROP, RACB, is involved in susceptibility toward infection by the barley powdery mildew fungus Blumeria hordei ( Bh ) but little is known about the cellular pathways that connect RACB signaling to disease susceptibility. Here we identify novel RACB interaction partners of plant or fungal origin by untargeted co‐immunoprecipitation of constitutively active (CA) RACB tagged by green fluorescent protein from Bh ‐infected barley epidermal layers and subsequent analysis by liquid chromatography‐coupled mass spectrometry. Three of the immunoprecipitated proteins, a plant phosphoinositide phosphatase, a plant phosphoinositide phospholipase, and a putative Bh ‐effector protein, are involved in the barley‐ Bh‐ pathosystem and support disease resistance or susceptibility, respectively. RACB and its plant interactors bind to overlapping anionic phospholipid species in vitro , and in the case of RACB, this lipid interaction is mediated by its carboxy‐terminal polybasic region (PBR). Fluorescent markers for anionic phospholipids show altered subcellular distribution in barley cells during Bh attack and under expression of a RACB‐binding fungal effector. Phosphatidylinositol 4‐phosphate, phosphatidylinositol 3,5‐bisphosphate, and phosphatidylserine show a distinct enrichment at the haustorial neck region, suggesting a connection to subcellular targeting of RACB at this site. The interplay of ROPs with anionic phospholipids and phospholipid‐metabolizing enzymes may thus enable the subcellular enrichment of components pivotal for success or failure of fungal penetration.
Rho‐of‐plant small GTPases (ROPs) are regulators of plant polar growth and of plant–pathogen interactions. The barley ROP, RACB, is involved in susceptibility toward infection by the barley powdery mildew fungus Blumeria hordei (Bh) but little is known about the cellular pathways that connect RACB signaling to disease susceptibility. Here we identify novel RACB interaction partners of plant or fungal origin by untargeted co‐immunoprecipitation of constitutively active (CA) RACB tagged by green fluorescent protein from Bh‐infected barley epidermal layers and subsequent analysis by liquid chromatography‐coupled mass spectrometry. Three of the immunoprecipitated proteins, a plant phosphoinositide phosphatase, a plant phosphoinositide phospholipase, and a putative Bh‐effector protein, are involved in the barley‐Bh‐pathosystem and support disease resistance or susceptibility, respectively. RACB and its plant interactors bind to overlapping anionic phospholipid species in vitro, and in the case of RACB, this lipid interaction is mediated by its carboxy‐terminal polybasic region (PBR). Fluorescent markers for anionic phospholipids show altered subcellular distribution in barley cells during Bh attack and under expression of a RACB‐binding fungal effector. Phosphatidylinositol 4‐phosphate, phosphatidylinositol 3,5‐bisphosphate, and phosphatidylserine show a distinct enrichment at the haustorial neck region, suggesting a connection to subcellular targeting of RACB at this site. The interplay of ROPs with anionic phospholipids and phospholipid‐metabolizing enzymes may thus enable the subcellular enrichment of components pivotal for success or failure of fungal penetration. The ROP GTPase RACB has been co‐immunoprecipitated with two host phospholipid‐metabolizing enzymes and one fungal effector that influences pathogen interaction. All three modeled protein complexes share an overlapping binding interface with RACB. Rho‐of‐plant small GTPases (ROPs) are regulators of plant cell polarity, disease resistance, and susceptibility to fungal invasion of plant cells. In cell development, ROPs act in concert with phosphoinositides, but such a function was not established for ROP signaling in plant–microbe interactions. Here we show relevant phosphoinositide interaction of barley RACB, a ROP GTPase acting in susceptibility to invasion by Blumeria hordei, and new interaction partners of RACB that influence fungal invasion success and may act on plant phosphoinositide metabolism.
SUMMARY Rho‐of‐plant small GTPases (ROPs) are regulators of plant polar growth and of plant–pathogen interactions. The barley ROP, RACB, is involved in susceptibility toward infection by the barley powdery mildew fungus Blumeria hordei (Bh) but little is known about the cellular pathways that connect RACB signaling to disease susceptibility. Here we identify novel RACB interaction partners of plant or fungal origin by untargeted co‐immunoprecipitation of constitutively active (CA) RACB tagged by green fluorescent protein from Bh‐infected barley epidermal layers and subsequent analysis by liquid chromatography‐coupled mass spectrometry. Three of the immunoprecipitated proteins, a plant phosphoinositide phosphatase, a plant phosphoinositide phospholipase, and a putative Bh‐effector protein, are involved in the barley‐Bh‐pathosystem and support disease resistance or susceptibility, respectively. RACB and its plant interactors bind to overlapping anionic phospholipid species in vitro, and in the case of RACB, this lipid interaction is mediated by its carboxy‐terminal polybasic region (PBR). Fluorescent markers for anionic phospholipids show altered subcellular distribution in barley cells during Bh attack and under expression of a RACB‐binding fungal effector. Phosphatidylinositol 4‐phosphate, phosphatidylinositol 3,5‐bisphosphate, and phosphatidylserine show a distinct enrichment at the haustorial neck region, suggesting a connection to subcellular targeting of RACB at this site. The interplay of ROPs with anionic phospholipids and phospholipid‐metabolizing enzymes may thus enable the subcellular enrichment of components pivotal for success or failure of fungal penetration. Significance Statement The ROP GTPase RACB has been co‐immunoprecipitated with two host phospholipid‐metabolizing enzymes and one fungal effector that influences pathogen interaction. All three modeled protein complexes share an overlapping binding interface with RACB. Rho‐of‐plant small GTPases (ROPs) are regulators of plant cell polarity, disease resistance, and susceptibility to fungal invasion of plant cells. In cell development, ROPs act in concert with phosphoinositides, but such a function was not established for ROP signaling in plant–microbe interactions. Here we show relevant phosphoinositide interaction of barley RACB, a ROP GTPase acting in susceptibility to invasion by Blumeria hordei, and new interaction partners of RACB that influence fungal invasion success and may act on plant phosphoinositide metabolism.
Rho-of-plant small GTPases (ROPs) are regulators of plant polar growth and of plant-pathogen interactions. The barley ROP, RACB, is involved in susceptibility toward infection by the barley powdery mildew fungus Blumeria hordei (Bh) but little is known about the cellular pathways that connect RACB signaling to disease susceptibility. Here we identify novel RACB interaction partners of plant or fungal origin by untargeted co-immunoprecipitation of constitutively active (CA) RACB tagged by green fluorescent protein from Bh-infected barley epidermal layers and subsequent analysis by liquid chromatography-coupled mass spectrometry. Three of the immunoprecipitated proteins, a plant phosphoinositide phosphatase, a plant phosphoinositide phospholipase, and a putative Bh-effector protein, are involved in the barley-Bh-pathosystem and support disease resistance or susceptibility, respectively. RACB and its plant interactors bind to overlapping anionic phospholipid species in vitro, and in the case of RACB, this lipid interaction is mediated by its carboxy-terminal polybasic region (PBR). Fluorescent markers for anionic phospholipids show altered subcellular distribution in barley cells during Bh attack and under expression of a RACB-binding fungal effector. Phosphatidylinositol 4-phosphate, phosphatidylinositol 3,5-bisphosphate, and phosphatidylserine show a distinct enrichment at the haustorial neck region, suggesting a connection to subcellular targeting of RACB at this site. The interplay of ROPs with anionic phospholipids and phospholipid-metabolizing enzymes may thus enable the subcellular enrichment of components pivotal for success or failure of fungal penetration.Rho-of-plant small GTPases (ROPs) are regulators of plant polar growth and of plant-pathogen interactions. The barley ROP, RACB, is involved in susceptibility toward infection by the barley powdery mildew fungus Blumeria hordei (Bh) but little is known about the cellular pathways that connect RACB signaling to disease susceptibility. Here we identify novel RACB interaction partners of plant or fungal origin by untargeted co-immunoprecipitation of constitutively active (CA) RACB tagged by green fluorescent protein from Bh-infected barley epidermal layers and subsequent analysis by liquid chromatography-coupled mass spectrometry. Three of the immunoprecipitated proteins, a plant phosphoinositide phosphatase, a plant phosphoinositide phospholipase, and a putative Bh-effector protein, are involved in the barley-Bh-pathosystem and support disease resistance or susceptibility, respectively. RACB and its plant interactors bind to overlapping anionic phospholipid species in vitro, and in the case of RACB, this lipid interaction is mediated by its carboxy-terminal polybasic region (PBR). Fluorescent markers for anionic phospholipids show altered subcellular distribution in barley cells during Bh attack and under expression of a RACB-binding fungal effector. Phosphatidylinositol 4-phosphate, phosphatidylinositol 3,5-bisphosphate, and phosphatidylserine show a distinct enrichment at the haustorial neck region, suggesting a connection to subcellular targeting of RACB at this site. The interplay of ROPs with anionic phospholipids and phospholipid-metabolizing enzymes may thus enable the subcellular enrichment of components pivotal for success or failure of fungal penetration.
Author Heilmann, Mareike
Weiß, Lukas Sebastian
Engelhardt, Stefan
Heilmann, Ingo
Hensel, Götz
Mergner, Julia
Bradai, Mariem
Bartram, Christoph
Kumlehn, Jochen
Hückelhoven, Ralph
Kuster, Bernhard
AuthorAffiliation 2 Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology Martin‐Luther‐University Halle‐Wittenberg Halle (Saale) Germany
4 Bavarian Biomolecular Mass Spectrometry Center (BayBioMS) Technical University of Munich Freising Germany
1 Chair of Phytopathology, TUM School of Life Sciences Technical University of Munich Freising Germany
5 Institute of Plant Genetics and Crop Plant Research Gatersleben Germany
3 Chair of Proteomics and Bioanalytics Technical University of Munich Freising Germany
6 Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences Centre for Plant Genome Engineering Düsseldorf Germany
AuthorAffiliation_xml – name: 6 Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences Centre for Plant Genome Engineering Düsseldorf Germany
– name: 5 Institute of Plant Genetics and Crop Plant Research Gatersleben Germany
– name: 1 Chair of Phytopathology, TUM School of Life Sciences Technical University of Munich Freising Germany
– name: 4 Bavarian Biomolecular Mass Spectrometry Center (BayBioMS) Technical University of Munich Freising Germany
– name: 2 Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology Martin‐Luther‐University Halle‐Wittenberg Halle (Saale) Germany
– name: 3 Chair of Proteomics and Bioanalytics Technical University of Munich Freising Germany
Author_xml – sequence: 1
  givenname: Lukas Sebastian
  surname: Weiß
  fullname: Weiß, Lukas Sebastian
  organization: Technical University of Munich
– sequence: 2
  givenname: Mariem
  orcidid: 0000-0002-0474-220X
  surname: Bradai
  fullname: Bradai, Mariem
  organization: Technical University of Munich
– sequence: 3
  givenname: Christoph
  surname: Bartram
  fullname: Bartram, Christoph
  organization: Technical University of Munich
– sequence: 4
  givenname: Mareike
  orcidid: 0000-0002-0929-9374
  surname: Heilmann
  fullname: Heilmann, Mareike
  organization: Martin‐Luther‐University Halle‐Wittenberg
– sequence: 5
  givenname: Julia
  orcidid: 0000-0002-4332-1280
  surname: Mergner
  fullname: Mergner, Julia
  organization: Technical University of Munich
– sequence: 6
  givenname: Bernhard
  orcidid: 0000-0002-9094-1677
  surname: Kuster
  fullname: Kuster, Bernhard
  organization: Technical University of Munich
– sequence: 7
  givenname: Götz
  orcidid: 0000-0002-5539-3097
  surname: Hensel
  fullname: Hensel, Götz
  organization: Centre for Plant Genome Engineering
– sequence: 8
  givenname: Jochen
  orcidid: 0000-0001-7080-7983
  surname: Kumlehn
  fullname: Kumlehn, Jochen
  organization: Institute of Plant Genetics and Crop Plant Research
– sequence: 9
  givenname: Stefan
  orcidid: 0000-0003-1933-1160
  surname: Engelhardt
  fullname: Engelhardt, Stefan
  organization: Technical University of Munich
– sequence: 10
  givenname: Ingo
  orcidid: 0000-0002-2324-1849
  surname: Heilmann
  fullname: Heilmann, Ingo
  organization: Martin‐Luther‐University Halle‐Wittenberg
– sequence: 11
  givenname: Ralph
  orcidid: 0000-0001-5632-5451
  surname: Hückelhoven
  fullname: Hückelhoven, Ralph
  email: hueckelhoven@tum.de
  organization: Technical University of Munich
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40680717$$D View this record in MEDLINE/PubMed
BookMark eNqNks1O3DAQxy0EKgv0wAtUPraHgB07TvZUtYh-CQmEqNSb5SSTjZHXTm1nUW7ce-kz8iR4u4DoAQlfPPL85u_52kPb1llA6JCSI5rOcRyuj0rCCrGFZpSJImOU_dpGMzIXJCs5zXfRXgjXhNCSCf4G7XIiKlLScob-fFbewIQ9BB2isg1gZVscxtDAEHWtjY4Tjg53o10ogxswBoONfsLarpxZAY49JDuCH4yasOvw5fkFDnphldF2gW907PHQuzD0Kup2So8u6OjM3e3fpbPu0QXhAO10ygR4-3Dvo59fTq9OvmVn51-_n3w6yxpOqcigKTrFSlUJzqpazAvednWquKsoNJSwnNOK1KSdJwu6qm2gIBxa1TJWqRTC9tHHje4w1ktI_lSOMnLweqn8JJ3S8n-P1b1cuJWkeV5yUq4V3j8oePd7hBDlUod1a5QFNwaZfs5JVaTOvwJlVPCEsoS-e57XU0KP00rAhw3QeBeCh-4JoUSuN0GmTZD_NiGxxxv2Rqf5vgzKq4sfm4h7cZu5-w
Cites_doi 10.1016/S0092-8674(02)00661-X
10.1038/s41477-020-00781-1
10.1038/nplants.2015.162
10.1104/pp.111.191940
10.1016/j.cub.2007.04.038
10.1111/nph.16853
10.1038/nsmb1175
10.1038/nbt1091-963
10.1038/nature22043
10.1186/s12864-018-4750-6
10.1007/s11105-011-0360-z
10.1126/science.aav9959
10.1093/jxb/erv057
10.1016/j.biochi.2013.07.004
10.1016/j.jplph.2020.153324
10.1093/pcp/pcz058
10.1093/jxb/erac403
10.1105/tpc.19.00970
10.1016/j.molp.2021.07.017
10.1073/pnas.1324264111
10.1083/jcb.200409140
10.1016/S1360-1385(02)02307-5
10.1105/tpc.110.082131
10.1016/j.jplph.2005.04.027
10.1093/jxb/erx403
10.1111/mpp.13246
10.1111/mpp.12531
10.1073/pnas.1808585115
10.1146/annurev-arplant-081519-035910
10.1006/pmpp.2002.0414
10.1186/1471-2164-13-694
10.1104/pp.20.00742
10.1111/j.1365-313X.2006.02749.x
10.1111/j.1365-313X.2010.04136.x
10.1111/j.1365-313X.2010.04435.x
10.1093/plphys/kiaf067
10.1093/nar/18.4.1052
10.1046/j.1365-313X.1999.00624.x
10.1105/tpc.010359
10.1093/plphys/kiab385
10.1093/pcp/pcx011
10.1371/journal.pone.0258924
10.1046/j.1365-313X.2003.01905.x
10.1093/mp/ssn051
10.3389/fpls.2021.803635
10.1038/nmeth.3901
10.1105/tpc.107.056119
10.1111/mpp.12271
10.1111/j.1462-5822.2008.01167.x
10.1093/genetics/156.4.1959
10.1093/jxb/erae155
10.1104/pp.010805
10.1105/tpc.113.110411
10.1111/nph.16069
10.1007/s00018-006-6197-1
10.1111/j.1365-3040.2009.02027.x
10.1007/978-1-4939-7063-6_16
10.1104/pp.103.021444
10.1126/science.1194573
10.1007/s00425-007-0686-9
10.1038/nbt.1511
10.1126/science.1134389
10.1083/jcb.145.2.317
10.1210/me.2008-0368
10.1016/j.devcel.2018.04.011
10.1104/pp.004770
10.1152/ajpcell.00232.2008
10.1105/tpc.001065
10.3389/fpls.2019.01023
10.1146/annurev-phyto-102313-045854
10.1016/j.chom.2013.03.007
10.1038/s41477-018-0277-8
10.1046/j.1365-313x.2000.00760.x
10.1016/j.tcb.2008.01.003
10.1105/tpc.114.135400
10.1007/s11103-022-01329-x
10.1016/j.cub.2009.08.052
10.1104/pp.126.4.1416
10.1186/s12864-019-6243-7
10.1093/jxb/ery174
10.1111/pce.12028
10.1146/annurev-arplant-042916-041022
10.1093/plcell/koaa035
10.1111/j.1365-313X.2007.03292.x
10.1016/j.cub.2013.01.022
10.1128/MCB.00333-17
10.1111/tpj.12358
ContentType Journal Article
Copyright 2025 The Author(s). published by Society for Experimental Biology and John Wiley & Sons Ltd.
2025 The Author(s). The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
Copyright_xml – notice: 2025 The Author(s). published by Society for Experimental Biology and John Wiley & Sons Ltd.
– notice: 2025 The Author(s). The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1111/tpj.70356
DatabaseName Wiley Open Access Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef


AGRICOLA
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
DocumentTitleAlternate ROP signaling with phosphatidylinositol‐monophosphates
EISSN 1365-313X
EndPage n/a
ExternalDocumentID PMC12274078
40680717
10_1111_tpj_70356
TPJ70356
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: HU886/12‐1; SFB924
– fundername: Deutsche Forschungsgemeinschaft
  grantid: SFB924
– fundername: Deutsche Forschungsgemeinschaft
  grantid: HU886/12-1
– fundername: ;
  grantid: HU886/12‐1; SFB924
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
TR2
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YFH
YUY
ZZTAW
~IA
~KM
~WT
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c4116-ec5fa37a86438b6954dfb313f81ec10324180b0d9324ef8dce504edad338a4383
IEDL.DBID 24P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001531000400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-7412
1365-313X
IngestDate Tue Nov 04 02:03:07 EST 2025
Fri Nov 14 18:43:59 EST 2025
Fri Sep 05 15:37:12 EDT 2025
Wed Jul 23 01:41:41 EDT 2025
Sat Nov 29 07:35:47 EST 2025
Wed Jul 30 09:30:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords susceptibility
phosphoinositide phosphatase
polybasic domain
ROP GTPAse
effector
haustorium
phosphatidylinositol‐monophosphate
phosphoinositide phospholipase
polarity
Language English
License Attribution
2025 The Author(s). The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4116-ec5fa37a86438b6954dfb313f81ec10324180b0d9324ef8dce504edad338a4383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7080-7983
0000-0002-4332-1280
0000-0003-1933-1160
0000-0002-2324-1849
0000-0002-0929-9374
0000-0002-0474-220X
0000-0002-9094-1677
0000-0002-5539-3097
0000-0001-5632-5451
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.70356
PMID 40680717
PQID 3231645413
PQPubID 23479
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12274078
proquest_miscellaneous_3242085412
proquest_miscellaneous_3231645413
pubmed_primary_40680717
crossref_primary_10_1111_tpj_70356
wiley_primary_10_1111_tpj_70356_TPJ70356
PublicationCentury 2000
PublicationDate July 2025
2025-07-00
2025-Jul
20250701
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July 2025
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Hoboken
PublicationTitle The Plant journal : for cell and molecular biology
PublicationTitleAlternate Plant J
PublicationYear 2025
Publisher John Wiley and Sons Inc
Publisher_xml – name: John Wiley and Sons Inc
References 2002; 14
2023; 74
2025; 197
2013; 25
2013; 23
2019; 10
1990; 18
2022; 23
2024; 75
2008; 227
2008; 1
2018; 45
2012; 13
2019; 364
2010; 62
2020; 6
2006; 63
2019; 60
2021; 33
2018; 4
2019; 20
2017; 37
2013; 13
2006; 163
2008; 26
2011; 65
2011; 23
2002; 108
2008; 20
2014; 96
2014; 52
2009; 19
2001; 13
2007; 17
2009; 23
2015; 1
2020; 184
2006; 13
2002; 130
2008; 18
2000; 22
2017; 68
2021; 229
2002; 7
2003; 36
2011; 30
2019; 224
2008; 10
1999; 20
1999; 145
2020; 32
2021; 187
2007; 52
2000; 156
2006; 314
2014; 111
2016; 17
1991; 9
2001; 126
2016; 13
2003; 132
2018; 69
2021; 14
2018; 19
2013; 36
2015; 27
2009; 32
2021; 12
2021; 256
2017; 58
2006; 46
2002; 61
2005; 169
2020; 71
2023; 111
2018; 115
2015; 66
2002; 128
2010; 330
2017
2012; 159
2017; 544
2008; 295
2014; 77
2022; 17
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
Wu G. (e_1_2_9_84_1) 2001; 13
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_88_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 163
  start-page: 405
  year: 2006
  end-page: 416
  article-title: Contributions of PIP2‐specific‐phospholipase C and free salicylic acid to heat acclimation‐induced thermotolerance in pea leaves
  publication-title: Journal of Plant Physiology
– volume: 187
  start-page: 2485
  year: 2021
  end-page: 2508
  article-title: Formation of self‐organizing functionally distinct rho of plants domains involves a reduced mobile population
  publication-title: Plant Physiology
– volume: 544
  start-page: 427
  year: 2017
  end-page: 433
  article-title: A chromosome conformation capture ordered sequence of the barley genome
  publication-title: Nature
– volume: 330
  start-page: 1543
  year: 2010
  end-page: 1546
  article-title: Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism
  publication-title: Science
– volume: 20
  start-page: 367
  year: 2008
  end-page: 380
  article-title: The Arabidopsis phosphatidylinositol phosphate 5‐kinase PIP5K3 is a key regulator of root hair tip growth
  publication-title: Plant Cell
– volume: 14
  start-page: 763
  year: 2002
  end-page: 776
  article-title: The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth
  publication-title: Plant Cell
– volume: 10
  year: 2019
  article-title: siRNA‐finder (si‐fi) software for RNAi‐target design and off‐target prediction
  publication-title: Frontiers in Plant Science
– volume: 69
  start-page: 3745
  year: 2018
  end-page: 3758
  article-title: A barley powdery mildew fungus non‐autonomous retrotransposon encodes a peptide that supports penetration success on barley
  publication-title: Journal of Experimental Botany
– volume: 63
  start-page: 2446
  year: 2006
  end-page: 2459
  article-title: ROPs in the spotlight of plant signal transduction
  publication-title: Cellular and Molecular Life Sciences
– volume: 75
  start-page: 3700
  year: 2024
  end-page: 3712
  article-title: Vesicle trafficking pathways in defence‐related cell wall modifications: papillae and encasements
  publication-title: Journal of Experimental Botany
– volume: 66
  start-page: 1617
  year: 2015
  end-page: 1624
  article-title: Protein lipid modifications and the regulation of ROP GTPase function
  publication-title: Journal of Experimental Botany
– volume: 20
  start-page: 541
  year: 1999
  end-page: 552
  article-title: Transient expression of members of the germin‐like gene family in epidermal cells of wheat confers disease resistance
  publication-title: The Plant Journal
– volume: 23
  start-page: 1524
  year: 2022
  end-page: 1537
  article-title: Barley guanine nucleotide exchange factor Hv GEF14 is an activator of the susceptibility factor Hv RACB and supports host cell entry by f. sp. hordei
  publication-title: Molecular Plant Pathology
– volume: 111
  start-page: 329
  year: 2023
  end-page: 344
  article-title: Barley RIC157, a potential RACB scaffold protein, is involved in susceptibility to powdery mildew
  publication-title: Plant Molecular Biology
– volume: 32
  start-page: 1664
  year: 2009
  end-page: 1681
  article-title: Over‐expression of Brassica napus phosphatidylinositol‐phospholipase C2 in canola induces significant changes in gene expression and phytohormone distribution patterns, enhances drought tolerance and promotes early flowering and maturation
  publication-title: Plant, Cell & Environment
– volume: 46
  start-page: 934
  year: 2006
  end-page: 947
  article-title: Association of Arabidopsis type‐II ROPs with the plasma membrane requires a conserved C‐terminal sequence motif and a proximal polybasic domain
  publication-title: Plant Journal
– volume: 14
  start-page: 1951
  year: 2021
  end-page: 1960
  article-title: Direct acetylation of a conserved threonine of RIN4 by the bacterial effector HopZ5 or AvrBsT activates RPM1‐dependent immunity in Arabidopsis
  publication-title: Molecular Plant
– volume: 19
  start-page: 381
  year: 2018
  article-title: Signatures of host specialization and a recent transposable element burst in the dynamic one‐speed genome of the fungal barley powdery mildew pathogen
  publication-title: BMC Genomics
– volume: 224
  start-page: 833
  year: 2019
  end-page: 847
  article-title: A PAMP‐triggered MAPK cascade inhibits phosphatidylinositol 4,5‐bisphosphate production by PIP5K6 in Arabidopsis thaliana
  publication-title: The New Phytologist
– volume: 18
  start-page: 1052
  year: 1990
  article-title: Sequence of the f. sp. hordei gene encoding beta‐tubulin
  publication-title: Nucleic Acids Research
– volume: 26
  start-page: 1367
  year: 2008
  end-page: 1372
  article-title: MaxQuant enables high peptide identification rates, individualized ppb‐range mass accuracies and proteome‐wide protein quantification
  publication-title: Nature Biotechnology
– volume: 60
  start-page: 1514
  year: 2019
  end-page: 1524
  article-title: Enrichment of phosphatidylinositol 4,5‐bisphosphate in the extra‐invasive hyphal membrane promotes Colletotrichum infection of
  publication-title: Plant & Cell Physiology
– volume: 19
  start-page: 1827
  year: 2009
  end-page: 1832
  article-title: A ROP GTPase signaling pathway controls cortical microtubule ordering and cell expansion in Arabidopsis
  publication-title: Current Biology
– volume: 74
  start-page: 118
  year: 2023
  end-page: 129
  article-title: Barley endosomal MONENSIN SENSITIVITY1 is a target of the powdery mildew effector CSEP0162 and plays a role in plant immunity
  publication-title: Journal of Experimental Botany
– volume: 156
  start-page: 1959
  year: 2000
  end-page: 1971
  article-title: Genetic structure and evolution of RAC‐GTPases in
  publication-title: Genetics
– volume: 36
  start-page: 945
  year: 2013
  end-page: 955
  article-title: Arabidopsis ROP‐interactive CRIB motif‐containing protein 1 (RIC1) positively regulates auxin signalling and negatively regulates abscisic acid (ABA) signalling during root development
  publication-title: Plant, Cell & Environment
– volume: 13
  start-page: 1135
  year: 2006
  end-page: 1140
  article-title: Crystal structure of Rac1 bound to its effector phospholipase C‐beta2
  publication-title: Nature Structural & Molecular Biology
– volume: 145
  start-page: 317
  year: 1999
  end-page: 330
  article-title: Rac homologues and compartmentalized phosphatidylinositol 4, 5‐bisphosphate act in a common pathway to regulate polar pollen tube growth
  publication-title: Journal of Cell Biology
– volume: 23
  start-page: 901
  year: 2009
  end-page: 913
  article-title: PLC‐gamma1 and Rac1 coregulate EGF‐induced cytoskeleton remodeling and cell migration
  publication-title: Molecular Endocrinology
– volume: 58
  start-page: 1185
  year: 2017
  end-page: 1195
  article-title: Visualization of phosphatidylinositol 3,5‐bisphosphate dynamics by a tandem ML1N‐based fluorescent protein probe in Arabidopsis
  publication-title: Plant & Cell Physiology
– volume: 13
  start-page: 694
  year: 2012
  article-title: Structure and evolution of barley powdery mildew effector candidates
  publication-title: BMC Genomics
– volume: 77
  start-page: 322
  year: 2014
  end-page: 337
  article-title: A multi‐colour/multi‐affinity marker set to visualize phosphoinositide dynamics in Arabidopsis
  publication-title: Plant Journal
– volume: 68
  start-page: 5731
  year: 2017
  end-page: 5743
  article-title: The plant membrane surrounding powdery mildew haustoria shares properties with the endoplasmic reticulum membrane
  publication-title: Journal of Experimental Botany
– volume: 1
  year: 2015
  article-title: Arabidopsis D6PK is a lipid domain‐dependent mediator of root epidermal planar polarity
  publication-title: Nature Plants
– volume: 256
  year: 2021
  article-title: Recognition and defence of plant‐infecting fungal pathogens
  publication-title: Journal of Plant Physiology
– volume: 130
  start-page: 22
  year: 2002
  end-page: 46
  article-title: Inositol phospholipid metabolism in Arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide‐specific phospholipase C
  publication-title: Plant Physiology
– volume: 19
  start-page: 393
  year: 2018
  end-page: 404
  article-title: Barley susceptibility factor RACB modulates transcript levels of signalling protein genes in compatible interaction with f.sp. hordei
  publication-title: Molecular Plant Pathology
– volume: 71
  start-page: 71
  year: 2020
  end-page: 102
  article-title: Functions of anionic lipids in plants
  publication-title: Annual Review of Plant Biology
– volume: 36
  start-page: 589
  year: 2003
  end-page: 601
  article-title: Functional analysis of barley RAC/ROP G‐protein family members in susceptibility to the powdery mildew fungus
  publication-title: The Plant Journal
– volume: 128
  start-page: 1447
  year: 2002
  end-page: 1454
  article-title: A small GTP‐binding host protein is required for entry of powdery mildew fungus into epidermal cells of barley
  publication-title: Plant Physiology
– volume: 32
  start-page: 1665
  year: 2020
  end-page: 1688
  article-title: Specific recruitment of phosphoinositide species to the plant‐pathogen interfacial membrane underlies Arabidopsis susceptibility to fungal infection
  publication-title: Plant Cell
– volume: 13
  start-page: 2841
  year: 2001
  end-page: 2856
  article-title: A genome‐wide analysis of Arabidopsis Rop‐interactive CRIB motif–containing proteins that act as Rop GTPase targets
  publication-title: The Plant Cell
– volume: 18
  start-page: 119
  year: 2008
  end-page: 127
  article-title: Spatial control of rho (Rac‐Rop) signaling in tip‐growing plant cells
  publication-title: Trends in Cell Biology
– volume: 227
  start-page: 1127
  year: 2008
  end-page: 1140
  article-title: Enhanced expression of phospholipase C 1 (ZmPLC1) improves drought tolerance in transgenic maize
  publication-title: Planta
– volume: 184
  start-page: 823
  year: 2020
  end-page: 836
  article-title: ROP INTERACTIVE PARTNER b interacts with RACB and supports fungal penetration into barley epidermal cells
  publication-title: Plant Physiology
– volume: 33
  start-page: 642
  year: 2021
  end-page: 670
  article-title: Plasma membrane nano‐organization specifies phosphoinositide effects on rho‐GTPases and actin dynamics in tobacco pollen tubes
  publication-title: Plant Cell
– volume: 68
  start-page: 349
  year: 2017
  end-page: 374
  article-title: Guilt by association: a phenotype‐based view of the plant phosphoinositide network
  publication-title: Annual Review of Plant Biology
– volume: 25
  start-page: 2202
  year: 2013
  end-page: 2216
  article-title: Rapid structural changes and acidification of guard cell vacuoles during stomatal closure require phosphatidylinositol 3,5‐bisphosphate
  publication-title: Plant Cell
– volume: 115
  start-page: E7834
  year: 2018
  end-page: E7843
  article-title: Plant pathogen effector utilizes host susceptibility factor NRL1 to degrade the immune regulator SWAP70
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 4
  start-page: 888
  year: 2018
  end-page: 897
  article-title: PtdIns(3,5)P2 mediates root hair shank hardening in Arabidopsis
  publication-title: Nature Plants
– volume: 17
  start-page: 184
  year: 2016
  end-page: 195
  article-title: A barley SKP1‐like protein controls abundance of the susceptibility factor RACB and influences the interaction of barley with the barley powdery mildew fungus
  publication-title: Molecular Plant Pathology
– volume: 22
  start-page: 543
  year: 2000
  end-page: 551
  article-title: In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves
  publication-title: The Plant Journal
– volume: 132
  start-page: 544
  year: 2003
  end-page: 555
  article-title: The SAC domain‐containing protein gene family in Arabidopsis
  publication-title: Plant Physiology
– volume: 14
  start-page: S375
  issue: Suppl
  year: 2002
  end-page: S388
  article-title: Small GTPases: versatile signaling switches in plants
  publication-title: Plant Cell
– volume: 108
  start-page: 743
  year: 2002
  end-page: 754
  article-title: RIN4 interacts with pseudomonas syringae type III effector molecules and is required for RPM1‐mediated resistance in Arabidopsis
  publication-title: Cell
– volume: 364
  start-page: 57
  year: 2019
  end-page: 62
  article-title: Developmental control of plant rho GTPase nano‐organization by the lipid phosphatidylserine
  publication-title: Science
– volume: 126
  start-page: 1416
  year: 2001
  end-page: 1429
  article-title: Efficient prenylation by a plant Geranylgeranyltransferase‐I requires a functional CaaL box motif and a proximal polybasic domain
  publication-title: Plant Physiology
– volume: 7
  start-page: 411
  year: 2002
  end-page: 415
  article-title: Cell polarization, a crucial process in fungal defence
  publication-title: Trends in Plant Science
– start-page: 163
  year: 2017
  end-page: 175
– volume: 17
  year: 2022
  article-title: Posttranslational modification of the RHO of plants protein RACB by phosphorylation and cross‐kingdom conserved ubiquitination
  publication-title: PLoS One
– volume: 65
  start-page: 453
  year: 2011
  end-page: 468
  article-title: Phosphatidylinositol‐4,5‐bisphosphate influences Nt‐Rac5‐mediated cell expansion in pollen tubes of
  publication-title: Plant Journal
– volume: 20
  start-page: 968
  year: 2019
  article-title: BaRTv1.0: an improved barley reference transcript dataset to determine accurate changes in the barley transcriptome using RNA‐seq
  publication-title: BMC Genomics
– volume: 61
  start-page: 31
  year: 2002
  end-page: 40
  article-title: Molecular cloning and characterization of a rice phosphoinositide‐specific phospholipase C gene, OsPI‐PLC1, that is activated in systemic acquired resistance
  publication-title: Physiological and Molecular Plant Pathology
– volume: 52
  start-page: 551
  year: 2014
  end-page: 581
  article-title: Susceptibility genes 101: how to be a good host
  publication-title: Annual Review of Phytopathology
– volume: 159
  start-page: 311
  year: 2012
  end-page: 320
  article-title: Barley ROP binding kinase1 is involved in microtubule organization and in basal penetration resistance to the barley powdery mildew fungus
  publication-title: Plant Physiology
– volume: 52
  start-page: 1014
  year: 2007
  end-page: 1026
  article-title: Visualization of phosphatidylinositol 4,5‐bisphosphate in the plasma membrane of suspension‐cultured tobacco BY‐2 cells and whole Arabidopsis seedlings
  publication-title: Plant Journal
– volume: 197
  year: 2025
  article-title: A powdery mildew core effector protein targets the host endosome tethering complexes HOPS and CORVET in barley
  publication-title: Plant Physiology
– volume: 314
  start-page: 1458
  year: 2006
  end-page: 1461
  article-title: PI(3,4,5)P and PI(4,5)P lipids target proteins with polybasic clusters to the plasma membrane
  publication-title: Science
– volume: 23
  start-page: 2422
  year: 2011
  end-page: 2439
  article-title: A barley ROP GTPase ACTIVATING PROTEIN associates with microtubules and regulates entry of the barley powdery mildew fungus into leaf epidermal cells
  publication-title: Plant Cell
– volume: 295
  start-page: C1499
  year: 2008
  end-page: C1509
  article-title: Rac1 promotes intestinal epithelial restitution by increasing Ca influx through interaction with phospholipase C‐(gamma)1 after wounding
  publication-title: American Journal of Physiology‐Cell Physiology
– volume: 229
  start-page: 469
  year: 2021
  end-page: 487
  article-title: A phosphoinositide 5‐phosphatase from is activated by PAMP‐treatment and may antagonize phosphatidylinositol 4,5‐bisphosphate at Phytophthora infestans infection sites
  publication-title: The New Phytologist
– volume: 37
  year: 2017
  article-title: Corrected and republished from: activation status‐coupled transient S‐acylation determines membrane partitioning of a plant rho‐related GTPase
  publication-title: Molecular and Cellular Biology
– volume: 13
  start-page: 465
  year: 2013
  end-page: 476
  article-title: An OsCEBiP/OsCERK1‐OsRacGEF1‐OsRac1 module is an essential early component of chitin‐induced rice immunity
  publication-title: Cell Host & Microbe
– volume: 169
  start-page: 127
  year: 2005
  end-page: 138
  article-title: A rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes
  publication-title: The Journal of Cell Biology
– volume: 45
  start-page: 465
  year: 2018
  end-page: 480
  article-title: A combinatorial lipid code shapes the electrostatic landscape of plant Endomembranes
  publication-title: Developmental Cell
– volume: 12
  year: 2021
  article-title: Functions and mechanisms of SAC phosphoinositide phosphatases in plants
  publication-title: Frontiers in Plant Science
– volume: 96
  start-page: 144
  year: 2014
  end-page: 157
  article-title: Plant phosphoinositide‐dependent phospholipases C: variations around a canonical theme
  publication-title: Biochimie
– volume: 1
  start-page: 1021
  year: 2008
  end-page: 1035
  article-title: RIP1 (ROP interactive partner 1)/ICR1 marks pollen germination sites and may act in the ROP1 pathway in the control of polarized pollen growth
  publication-title: Molecular Plant
– volume: 10
  start-page: 1815
  year: 2008
  end-page: 1826
  article-title: Barley RIC171 interacts with RACB in planta and supports entry of the powdery mildew fungus
  publication-title: Cellular Microbiology
– volume: 9
  start-page: 963
  year: 1991
  end-page: 967
  article-title: A DNA transformation–competent Arabidopsis genomic library in agrobacterium
  publication-title: Bio/Technology
– volume: 23
  start-page: 290
  year: 2013
  end-page: 297
  article-title: Rho GTPase signaling activates microtubule severing to promote microtubule ordering in Arabidopsis
  publication-title: Current Biology
– volume: 17
  start-page: 947
  year: 2007
  end-page: 952
  article-title: A novel ROP/RAC effector links cell polarity, root‐meristem maintenance, and vesicle trafficking
  publication-title: Current Biology
– volume: 6
  start-page: 1275
  year: 2020
  end-page: 1288
  article-title: ARMADILLO REPEAT ONLY proteins confine rho GTPase signalling to polar growth sites
  publication-title: Nature Plants
– volume: 30
  start-page: 488
  year: 2011
  end-page: 497
  article-title: Characterization and functional validation of tobacco PLC Delta for abiotic stress tolerance
  publication-title: Plant Molecular Biology Reporter
– volume: 62
  start-page: 224
  year: 2010
  end-page: 239
  article-title: Identification of tomato phosphatidylinositol‐specific phospholipase‐C (PI‐PLC) family members and the role of PLC4 and PLC6 in HR and disease resistance
  publication-title: Plant Journal
– volume: 13
  start-page: 731
  year: 2016
  end-page: 740
  article-title: The Perseus computational platform for comprehensive analysis of (prote) omics data
  publication-title: Nature Methods
– volume: 111
  start-page: 2818
  year: 2014
  end-page: 2823
  article-title: SAC phosphoinositide phosphatases at the tonoplast mediate vacuolar function in Arabidopsis
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 27
  start-page: 1140
  year: 2015
  end-page: 1161
  article-title: Arabidopsis RIC1 severs actin filaments at the apex to regulate pollen tube growth
  publication-title: The Plant Cell
– ident: e_1_2_9_39_1
  doi: 10.1016/S0092-8674(02)00661-X
– ident: e_1_2_9_27_1
  doi: 10.1038/s41477-020-00781-1
– ident: e_1_2_9_72_1
  doi: 10.1038/nplants.2015.162
– ident: e_1_2_9_21_1
  doi: 10.1104/pp.111.191940
– ident: e_1_2_9_30_1
  doi: 10.1016/j.cub.2007.04.038
– ident: e_1_2_9_56_1
  doi: 10.1111/nph.16853
– ident: e_1_2_9_23_1
  doi: 10.1038/nsmb1175
– ident: e_1_2_9_32_1
  doi: 10.1038/nbt1091-963
– ident: e_1_2_9_41_1
  doi: 10.1038/nature22043
– ident: e_1_2_9_10_1
  doi: 10.1186/s12864-018-4750-6
– ident: e_1_2_9_74_1
  doi: 10.1007/s11105-011-0360-z
– ident: e_1_2_9_50_1
  doi: 10.1126/science.aav9959
– ident: e_1_2_9_85_1
  doi: 10.1093/jxb/erv057
– ident: e_1_2_9_52_1
  doi: 10.1016/j.biochi.2013.07.004
– ident: e_1_2_9_59_1
  doi: 10.1016/j.jplph.2020.153324
– ident: e_1_2_9_67_1
  doi: 10.1093/pcp/pcz058
– ident: e_1_2_9_35_1
  doi: 10.1093/jxb/erac403
– ident: e_1_2_9_53_1
  doi: 10.1105/tpc.19.00970
– ident: e_1_2_9_6_1
  doi: 10.1016/j.molp.2021.07.017
– ident: e_1_2_9_48_1
  doi: 10.1073/pnas.1324264111
– ident: e_1_2_9_15_1
  doi: 10.1083/jcb.200409140
– ident: e_1_2_9_60_1
  doi: 10.1016/S1360-1385(02)02307-5
– ident: e_1_2_9_20_1
  doi: 10.1105/tpc.110.082131
– ident: e_1_2_9_37_1
  doi: 10.1016/j.jplph.2005.04.027
– ident: e_1_2_9_29_1
  doi: 10.1093/jxb/erx403
– ident: e_1_2_9_75_1
  doi: 10.1111/mpp.13246
– ident: e_1_2_9_61_1
  doi: 10.1111/mpp.12531
– ident: e_1_2_9_16_1
  doi: 10.1073/pnas.1808585115
– ident: e_1_2_9_46_1
  doi: 10.1146/annurev-arplant-081519-035910
– ident: e_1_2_9_69_1
  doi: 10.1006/pmpp.2002.0414
– ident: e_1_2_9_49_1
  doi: 10.1186/1471-2164-13-694
– ident: e_1_2_9_42_1
  doi: 10.1104/pp.20.00742
– ident: e_1_2_9_31_1
  doi: 10.1111/j.1365-313X.2006.02749.x
– ident: e_1_2_9_79_1
  doi: 10.1111/j.1365-313X.2010.04136.x
– ident: e_1_2_9_22_1
  doi: 10.1111/j.1365-313X.2010.04435.x
– ident: e_1_2_9_58_1
  doi: 10.1093/plphys/kiaf067
– ident: e_1_2_9_66_1
  doi: 10.1093/nar/18.4.1052
– ident: e_1_2_9_65_1
  doi: 10.1046/j.1365-313X.1999.00624.x
– ident: e_1_2_9_24_1
  doi: 10.1105/tpc.010359
– ident: e_1_2_9_73_1
  doi: 10.1093/plphys/kiab385
– ident: e_1_2_9_19_1
  doi: 10.1093/pcp/pcx011
– ident: e_1_2_9_82_1
  doi: 10.1371/journal.pone.0258924
– ident: e_1_2_9_63_1
  doi: 10.1046/j.1365-313X.2003.01905.x
– ident: e_1_2_9_33_1
  doi: 10.1093/mp/ssn051
– ident: e_1_2_9_40_1
  doi: 10.3389/fpls.2021.803635
– ident: e_1_2_9_76_1
  doi: 10.1038/nmeth.3901
– ident: e_1_2_9_28_1
  doi: 10.1105/tpc.107.056119
– ident: e_1_2_9_57_1
  doi: 10.1111/mpp.12271
– ident: e_1_2_9_64_1
  doi: 10.1111/j.1462-5822.2008.01167.x
– ident: e_1_2_9_83_1
  doi: 10.1093/genetics/156.4.1959
– ident: e_1_2_9_45_1
  doi: 10.1093/jxb/erae155
– ident: e_1_2_9_62_1
  doi: 10.1104/pp.010805
– ident: e_1_2_9_3_1
  doi: 10.1105/tpc.113.110411
– volume: 13
  start-page: 2841
  year: 2001
  ident: e_1_2_9_84_1
  article-title: A genome‐wide analysis of Arabidopsis Rop‐interactive CRIB motif–containing proteins that act as Rop GTPase targets
  publication-title: The Plant Cell
– ident: e_1_2_9_43_1
  doi: 10.1111/nph.16069
– ident: e_1_2_9_4_1
  doi: 10.1007/s00018-006-6197-1
– ident: e_1_2_9_13_1
  doi: 10.1111/j.1365-3040.2009.02027.x
– ident: e_1_2_9_81_1
  doi: 10.1007/978-1-4939-7063-6_16
– ident: e_1_2_9_88_1
  doi: 10.1104/pp.103.021444
– ident: e_1_2_9_71_1
  doi: 10.1126/science.1194573
– ident: e_1_2_9_80_1
  doi: 10.1007/s00425-007-0686-9
– ident: e_1_2_9_8_1
  doi: 10.1038/nbt.1511
– ident: e_1_2_9_17_1
  doi: 10.1126/science.1134389
– ident: e_1_2_9_26_1
  doi: 10.1083/jcb.145.2.317
– ident: e_1_2_9_34_1
  doi: 10.1210/me.2008-0368
– ident: e_1_2_9_51_1
  doi: 10.1016/j.devcel.2018.04.011
– ident: e_1_2_9_44_1
  doi: 10.1104/pp.004770
– ident: e_1_2_9_54_1
  doi: 10.1152/ajpcell.00232.2008
– ident: e_1_2_9_87_1
  doi: 10.1105/tpc.001065
– ident: e_1_2_9_38_1
  doi: 10.3389/fpls.2019.01023
– ident: e_1_2_9_78_1
  doi: 10.1146/annurev-phyto-102313-045854
– ident: e_1_2_9_2_1
  doi: 10.1016/j.chom.2013.03.007
– ident: e_1_2_9_18_1
  doi: 10.1038/s41477-018-0277-8
– ident: e_1_2_9_86_1
  doi: 10.1046/j.1365-313x.2000.00760.x
– ident: e_1_2_9_25_1
  doi: 10.1016/j.tcb.2008.01.003
– ident: e_1_2_9_89_1
  doi: 10.1105/tpc.114.135400
– ident: e_1_2_9_9_1
  doi: 10.1007/s11103-022-01329-x
– ident: e_1_2_9_12_1
  doi: 10.1016/j.cub.2009.08.052
– ident: e_1_2_9_5_1
  doi: 10.1104/pp.126.4.1416
– ident: e_1_2_9_55_1
  doi: 10.1186/s12864-019-6243-7
– ident: e_1_2_9_47_1
  doi: 10.1093/jxb/ery174
– ident: e_1_2_9_7_1
  doi: 10.1111/pce.12028
– ident: e_1_2_9_14_1
  doi: 10.1146/annurev-arplant-042916-041022
– ident: e_1_2_9_11_1
  doi: 10.1093/plcell/koaa035
– ident: e_1_2_9_77_1
  doi: 10.1111/j.1365-313X.2007.03292.x
– ident: e_1_2_9_36_1
  doi: 10.1016/j.cub.2013.01.022
– ident: e_1_2_9_70_1
  doi: 10.1128/MCB.00333-17
– ident: e_1_2_9_68_1
  doi: 10.1111/tpj.12358
SSID ssj0017364
Score 2.48212
Snippet SUMMARY Rho‐of‐plant small GTPases (ROPs) are regulators of plant polar growth and of plant–pathogen interactions. The barley ROP, RACB, is involved in...
Rho‐of‐plant small GTPases (ROPs) are regulators of plant polar growth and of plant–pathogen interactions. The barley ROP, RACB, is involved in susceptibility...
Rho-of-plant small GTPases (ROPs) are regulators of plant polar growth and of plant-pathogen interactions. The barley ROP, RACB, is involved in susceptibility...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e70356
SubjectTerms Ascomycota - pathogenicity
Ascomycota - physiology
barley
Blumeria
Disease Resistance
disease susceptibility
effector
fluorescence
fungi
green fluorescent protein
guanosinetriphosphatase
haustoria
haustorium
Hordeum - genetics
Hordeum - immunology
Hordeum - metabolism
Hordeum - microbiology
Host-Pathogen Interactions
mass spectrometry
neck
Original
Phosphatidylinositol Phosphates - metabolism
phosphatidylinositol‐monophosphate
phosphatidylserines
phosphoinositide phosphatase
phosphoinositide phospholipase
phospholipases
Plant Diseases - immunology
Plant Diseases - microbiology
Plant Proteins - genetics
Plant Proteins - metabolism
polarity
polybasic domain
powdery mildew
precipitin tests
ROP GTPAse
Signal Transduction
species
susceptibility
Title Barley resistance and susceptibility to fungal cell entry involve the interplay of ROP signaling with phosphatidylinositol‐monophosphates
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.70356
https://www.ncbi.nlm.nih.gov/pubmed/40680717
https://www.proquest.com/docview/3231645413
https://www.proquest.com/docview/3242085412
https://pubmed.ncbi.nlm.nih.gov/PMC12274078
Volume 123
WOSCitedRecordID wos001531000400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-313X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017364
  issn: 0960-7412
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li5xAEC42u3vIJe-HeSyVkEMuBltbbckpm2QIYdkMyy7MTVq7ZWZZdFhnFrzlnkt-Y35JqtpRdlgSAkEQ0Ralu6rrq_bzK4A3sqCttLFPwYESlCJNfE2w2M-qIClKHQqjXdWSo_T4WM1m2XQH3g__wvT6EOOCG3uGm6_ZwXXRXnPy1fL8HZlrnNyCPSEixXUbQjkdPyGkUa8dRRDdp7AZbmSFmMYz3rodjG4gzJtEyesA1kWgyd3_evd7cGcDPPFDbyn3YcfWD2D_sCFw2D2EH4f81b1DSr4ZUJIloK4NtuvW0V4cg7bDVYMUBymmIK_3oytKgouaZrgri4QkceEojBe6w6bCk29TZHqI5j_ekRd8cTlv2uWcjMF0dJL5Ys3Fr-8_yRWa4ZJtH8HZ5PPpxy_-pk6DX0ohEt-WcaWjVCtCN6pIsliaqohEVClhSxbsk0IFRWAIKkpbKerNOJDWaEPpsWap1MewWze1fQpohTBGWaEjFUoT2CItM5qAyzBLYpvKzIPXw4Dly16OIx_SGOrU3HWqB6-GoczJWbhHdG2bdZtHhGZZwkxEf2vDjANqE3rwpB_-8VGSK5VQAuyB2jKMsQGLdW9fqRdzJ9otQsr_CY958NZZxp9fPz-dfnUHz_696XO4HXJhYscjfgG7q8u1fQn75dVq0V4eOMegfTpTB7D36WRydvQb6VEZew
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB0tbSW48F0Inwb1wCVVnDiJI3FhgVWBZVlVW6m3yIkd7aIqWTW7lXLjzoXfyC9hxtlEXVVFSCiXKHGUyJ7xvLFf3gAciAyP3IQuBgdMULI4chXCYjcpvCjLlc-1slVLxvFkIk9Pk-kA3nb_wrT6EP2CG3mGna_JwWlB-pKXr5bfD9Few-gG7Ao0I7Tv3Q_Ho5Nxv4sQB618FKJ0FyOnv1EWIiZP__B2PLoCMq9yJS9jWBuERnf-7_Pvwu0N-GTvWmu5BwNT3oe9YYUAsXkAP4e0894wTMAJVKI1MFVqVq9rS32xLNqGrSqGsRDjCqM1f2YLk7BFibPchWGIJtnC0hjPVMOqgh1_mzKiiCj6653Roi9bzqt6OUeD0A1eJM5Ydfb7xy90h6q7ZeqHcDL6OHt_5G5qNbi54DxyTR4WKoiVRIQjsygJhS6ygAeF5CYn0T7BpZd5GuGiMIXE7gw9YbTSmCIrkkvdh52yKs1jYIZzraXhKpC-0J7J4jzBSTj3kyg0sUgceN2NWLpsJTnSLpXBTk1tpzrwqhvLFB2GekSVplrXaYCIlmTMePC3NsQ6wDa-A4_a8e9fJahaCSbBDsgty-gbkGD39p1yMbfC3dz3Y9o3deCNNY3rPz-dTT_bkyf_3vQl3DyafR2n40-TL0_hlk-Fii2v-BnsrM7X5jns5RerRX3-YuMnfwA0mxx5
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7STSi9NH3XTR9q6aEXB8uWbRlySZoufSzbJSSQm5Etmd0SbBPvBnzrvZf-xv6SzshrkyW0FIovxpaxkWY030ifvwF4KzI8chO6GBwwQcniyFUIi92k8KIsVz7XylYtmcTTqTw_T2ZbcND_C9PpQwwLbuQZdr4mBze1Lq55-bL-to_2Gka3YFtQEZkRbB-fjM8mwy5CHHTyUYjSXYyc_lpZiJg8w8Ob8egGyLzJlbyOYW0QGu_-3-ffg7tr8MkOO2u5D1umfAA7RxUCxPYh_DiinfeWYQJOoBKtgalSs2bVWOqLZdG2bFkxjIUYVxit-TNbmIQtSpzlrgxDNMkWlsZ4oVpWFezk64wRRUTRX--MFn1ZPa-aeo4GoVu8SJyx6uLX95_oDlV_yzSP4Gz84fT9R3ddq8HNBeeRa_KwUEGsJCIcmUVJKHSRBTwoJDc5ifYJLr3M0wgXhSkkdmfoCaOVxhRZkVzqYxiVVWmeAjOcay0NV4H0hfZMFucJTsK5n0ShiUXiwJt-xNK6k-RI-1QGOzW1nerA634sU3QY6hFVmmrVpAEiWpIx48Hf2hDrANv4Djzpxn94laBqJZgEOyA3LGNoQILdm3fKxdwKd3Pfj2nf1IF31jT-_Pnp6eyzPXn2701fwe3Z8TidfJp-2YM7PtUptrTi5zBaXq7MC9jJr5aL5vLl2k1-A5p8G_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Barley+resistance+and+susceptibility+to+fungal+cell+entry+involve+the+interplay+of+ROP+signaling+with+phosphatidylinositol%E2%80%90monophosphates&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Wei%C3%9F%2C+Lukas+Sebastian&rft.au=Bradai%2C+Mariem&rft.au=Bartram%2C+Christoph&rft.au=Heilmann%2C+Mareike&rft.date=2025-07-01&rft.issn=0960-7412&rft.volume=123&rft.issue=2+p.e70356-&rft_id=info:doi/10.1111%2Ftpj.70356&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon