Object detection based on RGC mask R-CNN

Object detection is a crucial topic in computer vision. Mask Region-Convolution Neural Network (R-CNN) based methods, wherein a large intersection over union (IoU) threshold is chosen for high quality samples, have often been employed for object detection. However, the detection performance of such...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET image processing Ročník 14; číslo 8; s. 1502 - 1508
Hlavní autoři: Wu, Minghu, Yue, Hanhui, Wang, Juan, Huang, Yongxi, Liu, Min, Jiang, Yuhan, Ke, Cong, Zeng, Cheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: The Institution of Engineering and Technology 19.06.2020
Témata:
ISSN:1751-9659, 1751-9667
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Object detection is a crucial topic in computer vision. Mask Region-Convolution Neural Network (R-CNN) based methods, wherein a large intersection over union (IoU) threshold is chosen for high quality samples, have often been employed for object detection. However, the detection performance of such methods deteriorates when samples are reduced. To address this, the authors propose an improved Mask R-CNN-based method: the ResNet Group Cascade (RGC) Mask R-CNN. First, they compared ResNet with different layers, finding that ResNeXt-101-64 × 4d is superior to other backbone networks. Secondly, during the training of the test model, the performance of Mask R-CNN suffered from a small batch processing scale, resulting in inaccurately calculated mean and variance; thus, group normalisation was added to the backbone, feature pyramid network neck and bounding box head of the network. Finally, the higher the intersection of Mask R-CNN than the threshold, the easier it is to obtain high-quality samples. However, blindly selecting a high threshold leads to sample reduction and overfitting. Thus, a proposed cascade network configuration with three IoU thresholds was utilised in the process of model training. The model was trained and tested on the COCO and PASCAL VOC07 datasets. Their proposed algorithm demonstrated superior performance compared to that of the Mask R-CNN.
AbstractList Object detection is a crucial topic in computer vision. Mask Region‐Convolution Neural Network (R‐CNN) based methods, wherein a large intersection over union (IoU) threshold is chosen for high quality samples, have often been employed for object detection. However, the detection performance of such methods deteriorates when samples are reduced. To address this, the authors propose an improved Mask R‐CNN‐based method: the ResNet Group Cascade (RGC) Mask R‐CNN. First, they compared ResNet with different layers, finding that ResNeXt‐101‐64 × 4d is superior to other backbone networks. Secondly, during the training of the test model, the performance of Mask R‐CNN suffered from a small batch processing scale, resulting in inaccurately calculated mean and variance; thus, group normalisation was added to the backbone, feature pyramid network neck and bounding box head of the network. Finally, the higher the intersection of Mask R‐CNN than the threshold, the easier it is to obtain high‐quality samples. However, blindly selecting a high threshold leads to sample reduction and overfitting. Thus, a proposed cascade network configuration with three IoU thresholds was utilised in the process of model training. The model was trained and tested on the COCO and PASCAL VOC07 datasets. Their proposed algorithm demonstrated superior performance compared to that of the Mask R‐CNN.
Author Yue, Hanhui
Huang, Yongxi
Wu, Minghu
Ke, Cong
Liu, Min
Wang, Juan
Zeng, Cheng
Jiang, Yuhan
Author_xml – sequence: 1
  givenname: Minghu
  surname: Wu
  fullname: Wu, Minghu
  organization: 2Hubei Power Grid Intelligent Control and Equipment Engineering Technology Research Center, Wuhan 430068, People's Republic of China
– sequence: 2
  givenname: Hanhui
  surname: Yue
  fullname: Yue, Hanhui
  organization: 2Hubei Power Grid Intelligent Control and Equipment Engineering Technology Research Center, Wuhan 430068, People's Republic of China
– sequence: 3
  givenname: Juan
  surname: Wang
  fullname: Wang, Juan
  email: happywj@hbut.edu.cn
  organization: 3Post-doctoral Research Workstation, Wuhan Huaan Science and Technology Co., Ltd., Wuhan 430068, People's Republic of China
– sequence: 4
  givenname: Yongxi
  surname: Huang
  fullname: Huang, Yongxi
  organization: 2Hubei Power Grid Intelligent Control and Equipment Engineering Technology Research Center, Wuhan 430068, People's Republic of China
– sequence: 5
  givenname: Min
  surname: Liu
  fullname: Liu, Min
  organization: 2Hubei Power Grid Intelligent Control and Equipment Engineering Technology Research Center, Wuhan 430068, People's Republic of China
– sequence: 6
  givenname: Yuhan
  surname: Jiang
  fullname: Jiang, Yuhan
  organization: 2Hubei Power Grid Intelligent Control and Equipment Engineering Technology Research Center, Wuhan 430068, People's Republic of China
– sequence: 7
  givenname: Cong
  surname: Ke
  fullname: Ke, Cong
  organization: 2Hubei Power Grid Intelligent Control and Equipment Engineering Technology Research Center, Wuhan 430068, People's Republic of China
– sequence: 8
  givenname: Cheng
  surname: Zeng
  fullname: Zeng, Cheng
  organization: 2Hubei Power Grid Intelligent Control and Equipment Engineering Technology Research Center, Wuhan 430068, People's Republic of China
BookMark eNqFkE1PwjAYgBuDiYD-AG876mHYrlu7etMFkISAIXhu-vEuKcJGuhnDv6cLxhjjx-l9D8_T9ukA9aq6AoSuCR4RnIo7B23s9n6UYCJGGGf8DPUJz0gsGOO9zz0TF2jQNJtACJxnfXSz1BswbWShDcPVVaRVAzYKy2paRDvVvEaruFgsLtF5qbYNXH3MIXqZjNfFUzxfTmfFwzw2KSE0NkJbC5ARTllpS2F4kjDQkGoCKc21wqVK0owZRjXXmvEcjCgB29TmSlhDh4iczjW-bhoPpdx7t1P-IAmWXaoMqTKkyi5VdqnB4d8c41rV1bReue2f5v3JfHdbOPx_lZw9r5LHCU4oo0G-PckdtqnffBU-Rs7G64764uxtGdj4B_b3hx0BpjmK7g
CitedBy_id crossref_primary_10_1016_j_jfranklin_2020_07_045
crossref_primary_10_1088_1361_6501_ad3f3a
crossref_primary_10_1002_acs_3287
crossref_primary_10_1002_acs_3320
crossref_primary_10_1002_acs_3169
crossref_primary_10_1002_acs_3203
crossref_primary_10_1002_oca_2766
crossref_primary_10_1155_2023_1135946
crossref_primary_10_12688_f1000research_73156_1
crossref_primary_10_12688_f1000research_73156_2
crossref_primary_10_1016_j_jfranklin_2020_08_045
crossref_primary_10_1007_s11071_021_06730_7
crossref_primary_10_3390_electronics12183760
crossref_primary_10_1007_s12555_020_0688_y
crossref_primary_10_1007_s12555_019_1060_y
crossref_primary_10_1155_2022_7811200
crossref_primary_10_1002_rnc_5266
crossref_primary_10_1109_JSEN_2024_3524584
crossref_primary_10_1080_10106049_2022_2036824
crossref_primary_10_1049_cth2_12161
crossref_primary_10_1002_rnc_5206
crossref_primary_10_1002_rnc_5646
crossref_primary_10_1155_2022_5785108
crossref_primary_10_1007_s12145_022_00834_3
crossref_primary_10_1061_JCCEE5_CPENG_5948
crossref_primary_10_1002_acs_3296
crossref_primary_10_1002_acs_3257
crossref_primary_10_1049_iet_cta_2020_0673
crossref_primary_10_1002_rnc_5576
crossref_primary_10_1016_j_jclepro_2022_131096
crossref_primary_10_1016_j_jafr_2024_101139
crossref_primary_10_3390_buildings14041129
crossref_primary_10_1080_00207721_2021_1889707
crossref_primary_10_1002_acs_3308
crossref_primary_10_1002_acs_3221
crossref_primary_10_1049_iet_cta_2020_0866
crossref_primary_10_1002_acs_3263
crossref_primary_10_1002_acs_3302
crossref_primary_10_1109_ACCESS_2024_3407720
crossref_primary_10_32604_cmc_2023_039582
crossref_primary_10_3390_s22187026
crossref_primary_10_1007_s11277_024_11539_9
crossref_primary_10_1088_1755_1315_1276_1_012073
crossref_primary_10_1007_s12555_019_0831_9
crossref_primary_10_1007_s11554_021_01182_z
crossref_primary_10_1002_rnc_5200
crossref_primary_10_3103_S8756699024700146
crossref_primary_10_1007_s00034_021_01801_x
crossref_primary_10_1049_cth2_12118
crossref_primary_10_1049_iet_ipr_2020_1128
crossref_primary_10_1109_ACCESS_2025_3583341
crossref_primary_10_1002_rnc_5706
crossref_primary_10_1002_rnc_5468
crossref_primary_10_1002_mp_17176
crossref_primary_10_1016_j_sigpro_2020_107904
crossref_primary_10_1049_ipr2_12280
crossref_primary_10_1016_j_jfranklin_2021_04_006
crossref_primary_10_3390_aerospace8040112
crossref_primary_10_3390_s24134347
crossref_primary_10_3390_buildings14020420
crossref_primary_10_1002_rnc_5675
crossref_primary_10_1016_j_jclepro_2023_137558
crossref_primary_10_1016_j_jfranklin_2021_01_020
crossref_primary_10_1049_ipr2_12318
crossref_primary_10_1002_rnc_5672
crossref_primary_10_1109_ACCESS_2022_3190969
crossref_primary_10_1007_s11554_021_01178_9
Cites_doi 10.1109/ICCV.2015.135
10.1109/CVPR.2015.7298642
10.1007/978-3-319-10584-0_20
10.1109/CVPR.2015.7299170
10.1109/ICCV.2017.322
10.1109/CVPR.2017.243
10.1109/CVPR.2014.81
10.1049/iet-ipr.2017.1144
10.1109/ICCV.2015.169
10.1049/iet-ipr.2018.5424
10.1109/CVPR.2016.343
10.1109/CVPR.2015.7298965
10.1109/CVPR.2001.990517
10.1109/CVPR.2017.634
10.1109/CVPR.2016.90
10.1109/ICCV.2017.593
10.1109/TPAMI.2016.2577031
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2021 The Authors. IET Image Processing published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2021 The Authors. IET Image Processing published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/iet-ipr.2019.0057
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1751-9667
EndPage 1508
ExternalDocumentID 10_1049_iet_ipr_2019_0057
IPR2BF02363
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 6160117
– fundername: Major Technological Innovation Projects of Hubei
  grantid: 2018AAA028
– fundername: Hubei university outstanding youth science and technology innovation team project
  grantid: T201805
– fundername: National Natural Science Foundation of China
  grantid: 61901165
– fundername: Hubei University of Technology Ph.D. Research Startup Fund Project
  grantid: BSQD2015023
– fundername: Hubei Provincial Department of Education Scientific Research Project Funded Project Young Talents Program
  grantid: Q20181401
– fundername: National Natural Science Foundation of China
  funderid: 6160117; 61901165
GroupedDBID 0R
24P
29I
5GY
6IK
8VB
AAJGR
ABPTK
ACGFS
ACIWK
AENEX
ALMA_UNASSIGNED_HOLDINGS
BFFAM
CS3
DU5
ESX
HZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS
O9-
OCL
P2P
QWB
RIE
RNS
RUI
UNR
ZL0
.DC
0R~
1OC
4.4
8FE
8FG
AAHHS
AAHJG
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACXQS
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
EJD
GROUPED_DOAJ
HCIFZ
HZ~
IAO
ITC
K1G
L6V
M7S
MCNEO
MS~
OK1
P62
PTHSS
ROL
S0W
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c4113-c9bddee51736fdf9c7226ebe4b1e438ba0fa2456c63b7bb678ec9fe0d4d8a9dc3
IEDL.DBID 24P
ISICitedReferencesCount 76
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000537949300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-9659
IngestDate Wed Oct 29 21:14:30 EDT 2025
Tue Nov 18 22:30:01 EST 2025
Wed Jan 22 16:32:18 EST 2025
Sat May 30 04:20:32 EDT 2020
Tue Jan 05 21:50:47 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords image classification
detection performance
improved Mask R-CNN-based method
object detection
high quality samples
bounding box head
feature extraction
ResNet Group Cascade Mask R-CNN
computer vision
image representation
RGC mask R-CNN
feature pyramid network neck
Mask Region-Convolution Neural Network based methods
learning (artificial intelligence)
high-quality samples
image coding
neural nets
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4113-c9bddee51736fdf9c7226ebe4b1e438ba0fa2456c63b7bb678ec9fe0d4d8a9dc3
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-ipr.2019.0057
PageCount 7
ParticipantIDs crossref_citationtrail_10_1049_iet_ipr_2019_0057
crossref_primary_10_1049_iet_ipr_2019_0057
wiley_primary_10_1049_iet_ipr_2019_0057_IPR2BF02363
iet_journals_10_1049_iet_ipr_2019_0057
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 2020-06-19
PublicationDateYYYYMMDD 2020-06-19
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-19
  day: 19
PublicationDecade 2020
PublicationTitle IET image processing
PublicationYear 2020
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Wu, K.; Yu, Y. (C7) 2018; 12
Tang, L.; Gao, C.; Chen, X. (C6) 2018; 12
Ren, S.; He, K.; Girshick, R. (C9) 2016; 39
Rehman, Y.; Khan, J.; Shin, H. (C12) 2018; 12
2018; 6
June 2014
2016; 10
June 2015
2018
June 2016
2017
2016
9 September 2014
7 July 2017
2014
2013
2018; 12
10 July 2017; 3
2016; 39
10 July 2017
1 December 2001
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_19_1
Tang L. (e_1_2_7_7_1) 2018; 12
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 39
  start-page: 1137
  issue: 6
  year: 2016
  end-page: 1149
  ident: C9
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 12
  start-page: 1131
  issue: 7
  year: 2018
  end-page: 1141
  ident: C6
  article-title: Pose detection in complex classroom environment based on improved faster R-CNN
  publication-title: IET Image Process.
– volume: 12
  start-page: 1131
  year: 2018
  end-page: 1141
  ident: C7
  article-title: Automatic object extraction from images using deep neural networks and the level-set method
  publication-title: IET Image Process.
– volume: 12
  start-page: 2229
  issue: 12
  year: 2018
  end-page: 2237
  ident: C12
  article-title: Efficient coarser-to-fine holistic traffic sign detection for occlusion handling
  publication-title: IET Image Process.
– start-page: 5562
  year: 10 July 2017
  end-page: 5570
– start-page: 5325
  year: June 2015
  end-page: 5334
– volume: 12
  start-page: 1131
  issue: 7
  year: 2018
  end-page: 1141
  article-title: Pose detection in complex classroom environment based on improved faster R‐CNN
  publication-title: IET Image Process.
– start-page: 2874
  year: June 2016
  end-page: 2883
– start-page: 770
  year: June 2016
  end-page: 778
– start-page: 2980
  year: 10 July 2017
  end-page: 2988
– start-page: 1134
  year: June 2015
  end-page: 1142
– start-page: I‐I
  year: 1 December 2001
– volume: 12
  start-page: 2229
  issue: 12
  year: 2018
  end-page: 2237
  article-title: Efficient coarser‐to‐fine holistic traffic sign detection for occlusion handling
  publication-title: IET Image Process.
– volume: 10
  start-page: 21
  year: 2016
  end-page: 37
– volume: 3
  start-page: 7
  issue: 6
  year: 10 July 2017
– year: 2018
– start-page: 779
  year: June 2016
  end-page: 788
– year: 2014
– start-page: 3
  year: 7 July 2017
– start-page: 5987
  year: 7 July 2017
  end-page: 5995
– start-page: 580
  year: June 2014
  end-page: 587
– volume: 12
  start-page: 1131
  year: 2018
  end-page: 1141
  article-title: Automatic object extraction from images using deep neural networks and the level‐set method
  publication-title: IET Image Process.
– start-page: 1440
  year: June 2015
  end-page: 1448
– start-page: 447
  year: June 2015
  end-page: 456
– volume: 39
  start-page: 1137
  issue: 6
  year: 2016
  end-page: 1149
  article-title: Faster R‐CNN: towards real‐time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 3431
  year: June 2015
  end-page: 3440
– start-page: 297
  year: 9 September 2014
  end-page: 312
– start-page: 789
  year: June 2016
  end-page: 798
– start-page: 379
  year: 2016
  end-page: 387
– year: 2017
– start-page: 3150
  year: June 2016
  end-page: 3158
– volume: 6
  start-page: 10
  year: 2018
  end-page: 18
– year: 2013
– ident: e_1_2_7_20_1
– ident: e_1_2_7_3_1
  doi: 10.1109/ICCV.2015.135
– ident: e_1_2_7_12_1
  doi: 10.1109/CVPR.2015.7298642
– ident: e_1_2_7_29_1
– ident: e_1_2_7_14_1
  doi: 10.1007/978-3-319-10584-0_20
– ident: e_1_2_7_19_1
  doi: 10.1109/CVPR.2015.7299170
– ident: e_1_2_7_11_1
  doi: 10.1109/ICCV.2017.322
– ident: e_1_2_7_22_1
  doi: 10.1109/CVPR.2017.243
– ident: e_1_2_7_2_1
  doi: 10.1109/CVPR.2014.81
– ident: e_1_2_7_28_1
– ident: e_1_2_7_8_1
  doi: 10.1049/iet-ipr.2017.1144
– ident: e_1_2_7_9_1
  doi: 10.1109/ICCV.2015.169
– ident: e_1_2_7_13_1
  doi: 10.1049/iet-ipr.2018.5424
– ident: e_1_2_7_4_1
– ident: e_1_2_7_18_1
  doi: 10.1109/CVPR.2016.343
– ident: e_1_2_7_5_1
– ident: e_1_2_7_15_1
  doi: 10.1109/CVPR.2015.7298965
– ident: e_1_2_7_16_1
– ident: e_1_2_7_21_1
– ident: e_1_2_7_30_1
– ident: e_1_2_7_24_1
– ident: e_1_2_7_17_1
  doi: 10.1109/CVPR.2001.990517
– ident: e_1_2_7_25_1
  doi: 10.1109/CVPR.2017.634
– ident: e_1_2_7_27_1
– ident: e_1_2_7_23_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_7_26_1
  doi: 10.1109/ICCV.2017.593
– ident: e_1_2_7_6_1
– volume: 12
  start-page: 1131
  issue: 7
  year: 2018
  ident: e_1_2_7_7_1
  article-title: Pose detection in complex classroom environment based on improved faster R‐CNN
  publication-title: IET Image Process.
– ident: e_1_2_7_10_1
  doi: 10.1109/TPAMI.2016.2577031
– ident: e_1_2_7_31_1
SSID ssj0059085
Score 2.5131845
Snippet Object detection is a crucial topic in computer vision. Mask Region-Convolution Neural Network (R-CNN) based methods, wherein a large intersection over union...
Object detection is a crucial topic in computer vision. Mask Region‐Convolution Neural Network (R‐CNN) based methods, wherein a large intersection over union...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 1502
SubjectTerms bounding box head
computer vision
detection performance
feature extraction
feature pyramid network neck
high quality samples
image classification
image coding
image representation
improved Mask R‐CNN‐based method
learning (artificial intelligence)
Mask Region‐Convolution Neural Network based methods
neural nets
object detection
Research Article
ResNet Group Cascade Mask R‐CNN
RGC mask R‐CNN
Title Object detection based on RGC mask R-CNN
URI http://digital-library.theiet.org/content/journals/10.1049/iet-ipr.2019.0057
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-ipr.2019.0057
Volume 14
WOSCitedRecordID wos000537949300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60evDiW6wvgogHIZhkk-7uUYPVXmIpit7CPqGosbTRsz_B3-gvcSdNK0VQEC8hJDNJmJ3Zmd3Nfh_AkaFKMBIbnyD8o8vH1OeRTnwdBcKEgbCBVRXZBM0ydn_Pu3OQTvbCjPEhphNuGBlVf40BLuSYhcQVta4R-6b0-wOE9AwRcjKh87AQhoSia0dxd9IdI6d3Uu2KRD75VsKnS5v89NsjZpLTvLs9W7JWOae98i9fuwrLdcnpnY19ZA3mTLEOK3X56dXBPdqAk2uJkzKeNmX1f1bhYYrTnjvpXabekxg9eL2Pt_c0yzbhtn1xk175NZWCr2JnFF9x6foxk4SUtKy2XFFXdrn2i2VoYsKkCKzAJVDVIpJK6TKYUdyaQMeaCa4V2YJG8VyYbfA4w4xGmFaMxYnmwtiQUaFdYSmtkaoJwcSGuapxxpHu4jGv1rtjnjtb5M4WOdoiR1s04WSqMhiDbPwkfIzX6lAb_SR4OCPYubjJO93el0A-0LYJpGq239-LutF5GxH3yc6ftHZhKcLROjIf8T1olMMXsw-L6rXsj4YHlde6410n-wQ2R-9P
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFD6kF-helq4XlnVtTRl9KJjalhxLj12aNKGZF0IKfRO6QmiXhSbb837CfmN_SXUcJyUUUih9M_aRLY509B1J1vcBfLOZloxQGxKkf_R4nIU8MWlokkjaOJIucroQm8jynN3e8l4FLudnYWb8EIsFN4yMYrzGAMcF6dmEkyJJ5tBOw-EYOT1j5JxMszXYoB5tUMcgob35eIyi3mlxLBIF5espX-xt8vMXr1hCpzX_eDlnLUCnVX2f6m7DxzLpDC5mveQTVOxoB6plAhqU4T3ZhbOfCpdlAmOnxR9aowBBzgT-on_VCH7JyV3Qf_z3v5Hne3DTag4a7bAUUwg1jWMSaq78SGbTOCN1ZxzXmU-8fAtSFVtKmJKRk7gJqutEZUp5DLOaOxsZapjkRpN9WB_9HtnPEHCGmEaY0YzR1HBpXcwyaXxqqZxVugbR3IlCl0zjKHhxL4odb8qF94XwvhDoC4G-qMHZosh4RrOxyvgU75XBNllleLJk2GkORKfXfzYQY-NqQIp2e_27WDb53kLOffLlTaWOYas9-NEV3U5-fQAfEpy7ow4S_wrr04c_9hA29d_pcPJwVHThJ8iZ8iI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB58IV6sT6zPIOJBCCbdTbN71NZqUWIpCt6WfUJRa7HVsz_B3-gvcSdNK0VQEG8hmUmWmZ3H7mS_ATiwqZaMUBsShH_08TgNecUkoalE0saRdJHTebOJNMvY3R1vTUF9dBZmiA8x3nBDy8j9NRq47Rk3XHBSBMns2EHY6SGmZ4yYk0k6DbM08b4W8Z1pa-SPsal3kh-LxIby1YSPa5v8-NsrJqLTtH88mbPmQadR-p_hLsFikXQGJ8NZsgxTtrsCpSIBDQrz7q_C0bXCbZnA2EH-h1Y3wCBnAn_RPq8Fj7J_H7Q_3t5rWbYGt42zm9pFWDRTCDWNYxJqrrwns0mckqozjuvUJ15eg1TFlhKmZOQkFkF1lahUKR_DrObORoYaJrnRZB1muk9duwEBZxjTCDOaMZoYLq2LWSqNTy2Vs0qXIRoJUegCaRwbXjyIvOJNufCyEF4WAmUhUBZlOBqz9IYwGz8RH-K9wtj6PxHuTxA2z25Es9X-IhBeRWUgud5-_y7yVk4biLlPNv_EtQfzrXpDXDWzyy1YqODSHdsg8W2YGTy_2B2Y06-DTv95N5_Bn3_S8aY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Object+detection+based+on+RGC+mask+R-CNN&rft.jtitle=IET+image+processing&rft.au=Wu%2C+Minghu&rft.au=Yue%2C+Hanhui&rft.au=Wang%2C+Juan&rft.au=Huang%2C+Yongxi&rft.date=2020-06-19&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=14&rft.issue=8&rft.spage=1502&rft.epage=1508&rft_id=info:doi/10.1049%2Fiet-ipr.2019.0057&rft.externalDocID=10_1049_iet_ipr_2019_0057
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon