Efficient Mean-shift Clustering Using Gaussian KD-Tree

Mean shift is a popular approach for data clustering, however, the high computational complexity of the mean shift procedure limits its practical applications in high dimensional and large data set clustering. In this paper, we propose an efficient method that allows mean shift clustering performed...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer graphics forum Ročník 29; číslo 7; s. 2065 - 2073
Hlavní autoři: Xiao, Chunxia, Liu, Meng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford, UK Blackwell Publishing Ltd 01.09.2010
Témata:
ISSN:0167-7055, 1467-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Mean shift is a popular approach for data clustering, however, the high computational complexity of the mean shift procedure limits its practical applications in high dimensional and large data set clustering. In this paper, we propose an efficient method that allows mean shift clustering performed on large data set containing tens of millions of points at interactive rate. The key in our method is a new scheme for approximating mean shift procedure using a greatly reduced feature space. This reduced feature space is adaptive clustering of the original data set, and is generated by applying adaptive KD‐tree in a high‐dimensional affinity space. The proposed method significantly reduces the computational cost while obtaining almost the same clustering results as the standard mean shift procedure. We present several kinds of data clustering applications to illustrate the efficiency of the proposed method, including image and video segmentation, static geometry model and time‐varying sequences segmentation.
AbstractList Mean shift is a popular approach for data clustering, however, the high computational complexity of the mean shift procedure limits its practical applications in high dimensional and large data set clustering. In this paper, we propose an efficient method that allows mean shift clustering performed on large data set containing tens of millions of points at interactive rate. The key in our method is a new scheme for approximating mean shift procedure using a greatly reduced feature space. This reduced feature space is adaptive clustering of the original data set, and is generated by applying adaptive KD‐tree in a high‐dimensional affinity space. The proposed method significantly reduces the computational cost while obtaining almost the same clustering results as the standard mean shift procedure. We present several kinds of data clustering applications to illustrate the efficiency of the proposed method, including image and video segmentation, static geometry model and time‐varying sequences segmentation.
AbstractMean shift is a popular approach for data clustering, however, the high computational complexity of the mean shift procedure limits its practical applications in high dimensional and large data set clustering. In this paper, we propose an efficient method that allows mean shift clustering performed on large data set containing tens of millions of points at interactive rate. The key in our method is a new scheme for approximating mean shift procedure using a greatly reduced feature space. This reduced feature space is adaptive clustering of the original data set, and is generated by applying adaptive KD-tree in a high-dimensional affinity space. The proposed method significantly reduces the computational cost while obtaining almost the same clustering results as the standard mean shift procedure. We present several kinds of data clustering applications to illustrate the efficiency of the proposed method, including image and video segmentation, static geometry model and time-varying sequences segmentation.
Author Xiao, Chunxia
Liu, Meng
Author_xml – sequence: 1
  givenname: Chunxia
  surname: Xiao
  fullname: Xiao, Chunxia
  organization: The School of Computer, Wuhan University, Wuhan, 430072, China
– sequence: 2
  givenname: Meng
  surname: Liu
  fullname: Liu, Meng
  organization: The School of Computer, Wuhan University, Wuhan, 430072, China
BookMark eNqNkUFP7CAUhYnRxNHnf2hcuekIpRRYaGLqOL7o04UaEzc3lAFlrFShjeO_l74xLlzJAm7gfOfCYQdt-s4bhDKCpySNw-WUlBXPRcXktMBpFxMu6XS1gSbfB5togkmqOWZsG-3EuMQYl7xiE1TNrHXaGd9n_4zyeXxyts_qdoi9Cc4_ZndxnOdqiNEpn12c5rfBmD9oy6o2mr2vdRfdnc1u6_P88nr-tz65zHVJCM21pBTThsiFbKqSF1yokotGctrQAi_YwkrTWK0NazRf4FLZhgmiuLTGFloQuosO1r6voXsbTOzhxUVt2lZ50w0R0qtIIUtZjdL9H9JlNwSfbgecCVGVghdJJNYiHboYg7HwGtyLCh9AMIx5whLG2GCMDcY84X-esEro8Q9Uu171rvN9UK79jcHR2uDdtebj142hnp-NVeLzNe_S36y-eRWeoeKUM7i_msNDzc4pv6FwTz8BiFeeiQ
CitedBy_id crossref_primary_10_1007_s10032_017_0285_7
crossref_primary_10_1109_TIP_2016_2547185
crossref_primary_10_1109_TVCG_2017_2759265
crossref_primary_10_1007_s11554_017_0733_0
crossref_primary_10_1109_ACCESS_2021_3114223
crossref_primary_10_1109_TCYB_2016_2626295
crossref_primary_10_1186_1687_6180_2011_111
crossref_primary_10_3390_rs5073259
crossref_primary_10_1016_j_patcog_2020_107452
crossref_primary_10_1007_s00371_014_0919_4
crossref_primary_10_1109_TVCG_2013_60
crossref_primary_10_1111_cgf_12502
crossref_primary_10_1111_cgf_12998
crossref_primary_10_3389_fnins_2018_00135
crossref_primary_10_1002_spe_70021
crossref_primary_10_1007_s41095_015_0024_2
crossref_primary_10_1109_TCAD_2023_3274922
crossref_primary_10_1109_TVCG_2010_226
crossref_primary_10_1007_s00138_013_0503_3
crossref_primary_10_1007_s11517_014_1240_0
Cites_doi 10.1007/978-3-540-24671-8_19
10.1145/1531326.1531327
10.1109/TPAMI.2003.1195991
10.1016/j.imavis.2003.08.005
10.1109/CGO.2007.13
10.1109/TPAMI.2003.1240123
10.1145/566570.566650
10.1145/1661412.1618454
10.1145/293347.293348
10.1145/1399504.1360635
10.1007/11744085_44
10.1145/1360612.1360639
10.1109/CVPR.2007.383228
10.1145/127719.122740
10.1109/ICCV.2003.1238383
10.1109/34.400568
10.1145/1073204.1073233
10.1145/1186562.1015763
10.1109/34.1000236
10.1109/ICCV.2003.1238382
10.1109/TIT.1975.1055330
10.1145/882262.882368
10.1145/882262.882367
10.1007/s00371-009-0394-5
ContentType Journal Article
Copyright 2010 The Author(s) Journal compilation © 2010 The Eurographics Association and Blackwell Publishing Ltd.
Copyright_xml – notice: 2010 The Author(s) Journal compilation © 2010 The Eurographics Association and Blackwell Publishing Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/j.1467-8659.2010.01793.x
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef
Technology Research Database

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 2073
ExternalDocumentID 2165328711
10_1111_j_1467_8659_2010_01793_x
CGF1793
ark_67375_WNG_ZC5H37S3_W
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
ALUQN
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c4113-c93303b19d9b647278a478b973b320d5df9ebfcce5bc7d04afb581a79fef2c813
IEDL.DBID DRFUL
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000283159400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Sun Nov 09 11:17:08 EST 2025
Fri Jul 25 23:29:09 EDT 2025
Sat Nov 29 03:41:06 EST 2025
Tue Nov 18 22:00:54 EST 2025
Wed Aug 20 07:24:30 EDT 2025
Tue Nov 11 03:33:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4113-c93303b19d9b647278a478b973b320d5df9ebfcce5bc7d04afb581a79fef2c813
Notes ark:/67375/WNG-ZC5H37S3-W
istex:F386FF631523E7F3CE723560CBFD898EC5B9D87E
ArticleID:CGF1793
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 758864872
PQPubID 30877
PageCount 9
ParticipantIDs proquest_miscellaneous_1671294961
proquest_journals_758864872
crossref_primary_10_1111_j_1467_8659_2010_01793_x
crossref_citationtrail_10_1111_j_1467_8659_2010_01793_x
wiley_primary_10_1111_j_1467_8659_2010_01793_x_CGF1793
istex_primary_ark_67375_WNG_ZC5H37S3_W
PublicationCentury 2000
PublicationDate September 2010
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: September 2010
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2010
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Carreira-Perpinán M.: Acceleration strategies for Gaussian mean-shift image segmentation. In CVPR (2006), vol. 1.
Fukunaga K., Hostetler L.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Transactions on Information Theory 21, 1 (1975), 32-40.
Wuhrer S., Brunton A.: Segmenting animated objects into near-rigid components. The Visual Computer 26, 2 (2010), 147-155.
Barash D., Comaniciu D.: A common framework for nonlinear diffusion, adaptive smoothing, bilateral filtering and mean shift. Image and Vision Computing 22, 1 (2004), 73-81.
Cheng Y.: Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 17, 8 (1995), 790-799.
Elgammal A., Duraiswami R., Davis L.: Efficient kernel density estimation using the fast gauss transform with applications to color modeling and tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 11 (2003), 1499-1504.
Comaniciu D., Ramesh V., Meer P.: Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 5 (2003), 564-577.
Arya S., Mount D., Netanyahu N., Silverman R., WU A.: An optimal algorithm for approximate near-est neighbor searching fixed dimensions. Journal of the ACM (JACM) 45, 6 (1998), 891-923.
Adams A., Gelfand N., Dolson L., Levoy M.: Gaussian kd-trees for fast high-dimensional filtering. ACM Transactions on Graphics (TOG) 28, 3 (2009), 21.
Comaniciu D., Meer P.: Mean shift: A robust approach toward feature space analysis. IEEE Transactions on pattern analysis and machine intelligence 24, 5 (2002), 603-619.
DeMenthon D.: Spatio-temporal segmentation of video by hierarchical mean shift analysis. Language 2 (2002).
Wang L., Bhat P., Colburn R., Agrawala M., Cohen M.: Video cutout. ACM Transactions on Graphics 24, 3 (2005), 585-594.
Hanrahan P., Salzman D., Aupperle L.: A rapid hierarchical radiosity algorithm. ACM SIGGRAPH Computer Graphics 25, 4 (1991), 206.
Buades A., Coll B., Morel J.: A non-local algorithm for image denoising. In CVPR 2005 (2005), pp. 60-65.
Fleishman S., Drori I., Cohen-Or D.: Bilateral mesh denoising. ACM Transactions on Graphics (TOG) 22, 3 (2003), 950-953.
Jones T., Durand F., Desbrun M.: Non-iterative, feature-preserving mesh smoothing. ACM Transactions on Graphics 22, 3 (2003), 943-949.
An X., Pellacini F.: Appprop: all-pairs appearances-pace edit propagation. ACM Trans. Graph 27, 3 (2008), 40.
2004; 22
1995; 17
2010
2009
2002; 2
2008
2007
2006
2005
2004
2006; 1
2003
2002
2004; 1
1998; 45
2005; 2005
2005; 24
2009; 28
2010; 26
1991; 25
2005; 243
2002; 24
2008; 27
2003; 25
2003; 3
1975; 21
2003; 22
e_1_2_7_5_2
e_1_2_7_4_2
DeCarlo D. (e_1_2_7_13_2) 2002
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
Wei Y. (e_1_2_7_30_2) 2004
e_1_2_7_8_2
e_1_2_7_7_2
Wang P. (e_1_2_7_29_2) 2007
e_1_2_7_19_2
e_1_2_7_18_2
DeMenthon D. (e_1_2_7_12_2) 2002; 2
e_1_2_7_17_2
Carreira‐Perpinán M. (e_1_2_7_10_2) 2006; 1
e_1_2_7_16_2
LI X. (e_1_2_7_22_2) 2005
e_1_2_7_15_2
Horn D. (e_1_2_7_20_2) 2007
e_1_2_7_14_2
e_1_2_7_11_2
Buades A. (e_1_2_7_6_2) 2005; 2005
e_1_2_7_26_2
e_1_2_7_27_2
e_1_2_7_28_2
Yamauchi H. (e_1_2_7_37_2) 2005
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_32_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_34_2
e_1_2_7_36_2
e_1_2_7_38_2
Yang C. (e_1_2_7_35_2) 2003
References_xml – reference: Comaniciu D., Meer P.: Mean shift: A robust approach toward feature space analysis. IEEE Transactions on pattern analysis and machine intelligence 24, 5 (2002), 603-619.
– reference: An X., Pellacini F.: Appprop: all-pairs appearances-pace edit propagation. ACM Trans. Graph 27, 3 (2008), 40.
– reference: Fukunaga K., Hostetler L.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Transactions on Information Theory 21, 1 (1975), 32-40.
– reference: Wuhrer S., Brunton A.: Segmenting animated objects into near-rigid components. The Visual Computer 26, 2 (2010), 147-155.
– reference: Wang L., Bhat P., Colburn R., Agrawala M., Cohen M.: Video cutout. ACM Transactions on Graphics 24, 3 (2005), 585-594.
– reference: Hanrahan P., Salzman D., Aupperle L.: A rapid hierarchical radiosity algorithm. ACM SIGGRAPH Computer Graphics 25, 4 (1991), 206.
– reference: Carreira-Perpinán M.: Acceleration strategies for Gaussian mean-shift image segmentation. In CVPR (2006), vol. 1.
– reference: Elgammal A., Duraiswami R., Davis L.: Efficient kernel density estimation using the fast gauss transform with applications to color modeling and tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 11 (2003), 1499-1504.
– reference: Barash D., Comaniciu D.: A common framework for nonlinear diffusion, adaptive smoothing, bilateral filtering and mean shift. Image and Vision Computing 22, 1 (2004), 73-81.
– reference: Cheng Y.: Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 17, 8 (1995), 790-799.
– reference: DeMenthon D.: Spatio-temporal segmentation of video by hierarchical mean shift analysis. Language 2 (2002).
– reference: Buades A., Coll B., Morel J.: A non-local algorithm for image denoising. In CVPR 2005 (2005), pp. 60-65.
– reference: Fleishman S., Drori I., Cohen-Or D.: Bilateral mesh denoising. ACM Transactions on Graphics (TOG) 22, 3 (2003), 950-953.
– reference: Jones T., Durand F., Desbrun M.: Non-iterative, feature-preserving mesh smoothing. ACM Transactions on Graphics 22, 3 (2003), 943-949.
– reference: Adams A., Gelfand N., Dolson L., Levoy M.: Gaussian kd-trees for fast high-dimensional filtering. ACM Transactions on Graphics (TOG) 28, 3 (2009), 21.
– reference: Arya S., Mount D., Netanyahu N., Silverman R., WU A.: An optimal algorithm for approximate near-est neighbor searching fixed dimensions. Journal of the ACM (JACM) 45, 6 (1998), 891-923.
– reference: Comaniciu D., Ramesh V., Meer P.: Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 5 (2003), 564-577.
– volume: 1
  year: 2006
  article-title: Acceleration strategies for Gaussian mean‐shift image segmentation
  publication-title: CVPR
– volume: 22
  start-page: 943
  issue: 3
  year: 2003
  end-page: 949
  article-title: Non‐iterative, feature‐preserving mesh smoothing
  publication-title: ACM Transactions on Graphics
– start-page: 769
  year: 2002
  end-page: 776
– volume: 243
  year: 2005
– start-page: 1
  year: 2007
  end-page: 8
– volume: 3
  start-page: 447
  year: 2003
  end-page: 450
– volume: 17
  start-page: 790
  issue: 8
  year: 1995
  end-page: 799
  article-title: Mean shift, mode seeking, and clustering
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 574
  year: 2004
  end-page: 583
– year: 2007
– start-page: 664
  year: 2003
  end-page: 671
– volume: 27
  start-page: 40
  issue: 3
  year: 2008
  article-title: Appprop: all‐pairs appearances‐pace edit propagation
  publication-title: ACM Trans. Graph
– volume: 2005
  start-page: 60
  year: 2005
  end-page: 65
  article-title: A non‐local algorithm for image denoising
  publication-title: CVPR
– volume: 24
  start-page: 603
  issue: 5
  year: 2002
  end-page: 619
  article-title: Mean shift: A robust approach toward feature space analysis
  publication-title: IEEE Transactions on pattern analysis and machine intelligence
– volume: 28
  start-page: 21
  issue: 3
  year: 2009
  article-title: Gaussian kd‐trees for fast high‐dimensional filtering
  publication-title: ACM Transactions on Graphics (TOG)
– volume: 21
  start-page: 32
  issue: 1
  year: 1975
  end-page: 40
  article-title: The estimation of the gradient of a density function, with applications in pattern recognition
  publication-title: IEEE Transactions on Information Theory
– volume: 2
  year: 2002
  article-title: Spatio‐temporal segmentation of video by hierarchical mean shift analysis
  publication-title: Language
– start-page: 217
  year: 2005
– year: 2010
– volume: 1
  start-page: 106
  year: 2004
  end-page: 113
– volume: 22
  start-page: 950
  issue: 3
  year: 2003
  end-page: 953
  article-title: Bilateral mesh denoising
  publication-title: ACM Transactions on Graphics (TOG)
– volume: 22
  start-page: 73
  issue: 1
  year: 2004
  end-page: 81
  article-title: A common framework for nonlinear diffusion, adaptive smoothing, bilateral filtering and mean shift
  publication-title: Image and Vision Computing
– start-page: 1
  year: 2009
  end-page: 6
– start-page: 1
  year: 2008
  end-page: 11
– volume: 45
  start-page: 891
  issue: 6
  year: 1998
  end-page: 923
  article-title: An optimal algorithm for approximate near‐est neighbor searching fixed dimensions
  publication-title: Journal of the ACM (JACM)
– volume: 25
  start-page: 564
  issue: 5
  year: 2003
  end-page: 577
  article-title: Kernel‐based object tracking
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– year: 2006
– start-page: 238
  year: 2004
  end-page: 249
– volume: 25
  start-page: 206
  issue: 4
  year: 1991
  article-title: A rapid hierarchical radiosity algorithm
  publication-title: ACM SIGGRAPH Computer Graphics
– start-page: 456
  year: 2003
  end-page: 463
– volume: 25
  start-page: 1499
  issue: 11
  year: 2003
  end-page: 1504
  article-title: Efficient kernel density estimation using the fast gauss transform with applications to color modeling and tracking
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 174
  year: 2007
– volume: 24
  start-page: 585
  issue: 3
  year: 2005
  end-page: 594
  article-title: Video cutout
  publication-title: ACM Transactions on Graphics
– volume: 26
  start-page: 147
  issue: 2
  year: 2010
  end-page: 155
  article-title: Segmenting animated objects into near‐rigid components
  publication-title: The Visual Computer
– start-page: 17
  year: 2007
– volume: 2005
  start-page: 60
  year: 2005
  ident: e_1_2_7_6_2
  article-title: A non‐local algorithm for image denoising
  publication-title: CVPR
– volume: 1
  year: 2006
  ident: e_1_2_7_10_2
  article-title: Acceleration strategies for Gaussian mean‐shift image segmentation
  publication-title: CVPR
– ident: e_1_2_7_31_2
  doi: 10.1007/978-3-540-24671-8_19
– ident: e_1_2_7_2_2
  doi: 10.1145/1531326.1531327
– ident: e_1_2_7_11_2
  doi: 10.1109/TPAMI.2003.1195991
– ident: e_1_2_7_5_2
  doi: 10.1016/j.imavis.2003.08.005
– ident: e_1_2_7_7_2
  doi: 10.1109/CGO.2007.13
– ident: e_1_2_7_14_2
  doi: 10.1109/TPAMI.2003.1240123
– start-page: 769
  volume-title: SIGGRAPH
  year: 2002
  ident: e_1_2_7_13_2
  doi: 10.1145/566570.566650
– ident: e_1_2_7_33_2
  doi: 10.1145/1661412.1618454
– ident: e_1_2_7_3_2
  doi: 10.1145/293347.293348
– ident: e_1_2_7_38_2
  doi: 10.1145/1399504.1360635
– ident: e_1_2_7_24_2
  doi: 10.1007/11744085_44
– ident: e_1_2_7_4_2
  doi: 10.1145/1360612.1360639
– ident: e_1_2_7_25_2
  doi: 10.1109/CVPR.2007.383228
– ident: e_1_2_7_26_2
– ident: e_1_2_7_23_2
– ident: e_1_2_7_19_2
  doi: 10.1145/127719.122740
– start-page: 106
  volume-title: CVPR
  year: 2004
  ident: e_1_2_7_30_2
– ident: e_1_2_7_34_2
– ident: e_1_2_7_36_2
  doi: 10.1109/ICCV.2003.1238383
– ident: e_1_2_7_8_2
  doi: 10.1109/34.400568
– start-page: 447
  volume-title: ICIP
  year: 2003
  ident: e_1_2_7_35_2
– ident: e_1_2_7_28_2
  doi: 10.1145/1073204.1073233
– ident: e_1_2_7_32_2
  doi: 10.1145/1186562.1015763
– ident: e_1_2_7_9_2
  doi: 10.1109/34.1000236
– volume: 2
  year: 2002
  ident: e_1_2_7_12_2
  article-title: Spatio‐temporal segmentation of video by hierarchical mean shift analysis
  publication-title: Language
– ident: e_1_2_7_18_2
  doi: 10.1109/ICCV.2003.1238382
– volume-title: Workshop on Artificial Intelligence and Statistics (AISTATS
  year: 2007
  ident: e_1_2_7_29_2
– start-page: 217
  volume-title: SGP
  year: 2005
  ident: e_1_2_7_22_2
– volume-title: SMA
  year: 2005
  ident: e_1_2_7_37_2
– ident: e_1_2_7_16_2
  doi: 10.1109/TIT.1975.1055330
– ident: e_1_2_7_15_2
  doi: 10.1145/882262.882368
– ident: e_1_2_7_17_2
– ident: e_1_2_7_21_2
  doi: 10.1145/882262.882367
– start-page: 174
  volume-title: Proceedings of the 2007 symposium on Interactive 3D graphics and games
  year: 2007
  ident: e_1_2_7_20_2
– ident: e_1_2_7_27_2
  doi: 10.1007/s00371-009-0394-5
SSID ssj0004765
Score 2.1413817
Snippet Mean shift is a popular approach for data clustering, however, the high computational complexity of the mean shift procedure limits its practical applications...
AbstractMean shift is a popular approach for data clustering, however, the high computational complexity of the mean shift procedure limits its practical...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2065
SubjectTerms Approximation
Clustering
Computational efficiency
Computer graphics
Datasets
Gaussian
I.4 [Computing methodologies]: Image Processing and Computer Vision-Applications
Image coding
Image processing systems
Interactive
Mathematical models
Normal distribution
Segmentation
Studies
Title Efficient Mean-shift Clustering Using Gaussian KD-Tree
URI https://api.istex.fr/ark:/67375/WNG-ZC5H37S3-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-8659.2010.01793.x
https://www.proquest.com/docview/758864872
https://www.proquest.com/docview/1671294961
Volume 29
WOSCitedRecordID wos000283159400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NTxsxEB1VpIf2AP2gYqGtthLitlUcr7-4VYEEqTRCBQTqxbK9tkCgDcomKEd-Ar-RX1LPZpMStQeEeltpPavdsWf9xn7zDLBNO9QwaosspzJkOWdFJo0KmWSecCeCY6QuFD4Ug4E8P1dHDf8Ja2Fm-hCLBTeMjPp_jQFubPV3kEvOVMPQwrH2NeLJFtZYxUSstfezd3r4p0pScDZX-kYNmWVezz-ftTRZtdDv0yUk-hjP1hNSb-1_fsobWG1gafptNo7ewgtfvoPXj8QK38Pufq02ESep9Ic35cPdfXVxGcZp93qCYguxTVrzD9K-mVRYmpl-34uNTkber8Npb_-ke5A1Jy9kLieEZg6XOaglqlAW9eWFNLmQVglqaaddsCIob4NznlkninZugmWSGKGCDx0nCf0AK-Ww9BuQtrlt84ghnHMRHFoZ0yvFnPIx1STK2pCAmLtYu0aWHE_HuNZL6YnQ6B2N3tG1d_Q0AbKwvJlJczzBZqfuxYWBGV0htU0wfTbo619ddkDFMdVnCWzNu1k3UV3pmFtJHjO8TgJfFndjOOIeiyn9cFLpOLgigsoVJwnwus-f_G662-_h1eZzDbfg1YzbgAy4j7AyHk38J3jpbseX1ehzEw6_AYg2BrI
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwED9N7STgARgwEcYgkxBvQXUd_-MNdWuL1lXT6LSJF8t2bDExZahp0R75CHxGPgm-NO1WwcOEeIsUX5Sc7-Lf2Xe_A3hDu9QwaosspzJkOWdFJo0KmWSecCeCY6QuFB6J8Vien6vjph0Q1sIs-CFWG27oGfX_Gh0cN6T_9HLJmWpStNDY3kVA2c45FbIF7f2T_unopkxScLak-kYSmfXEnr8-a221aqPir9eg6G1AW69I_Uf_9Vsew8MGmKYfFpa0BRu-fAIPbtEVPoX3BzXfRFym0iNvyl8_flZfLsIs7V3OkW4hjknrDIR0YOYVFmemh_tx0GTq_TM47R9MesOs6b2QuZwQmjnc6KCWqEJZZJgX0uRCWiWopd1OwYqgvA3OeWadKDq5CZZJYoQKPnSdJHQbWuVV6Z9D2uG2wyOKcM5FeGhlDLAUc8rHYJMoa0MCYqlj7RpicuyPcanXAhShUTsataNr7ejrBMhK8tuCnOMOMm_raVwJmOlXTG4TTJ-NB_pzjw2p-ET1WQI7y3nWjV9XOkZXkscYr5vA3upudEg8ZTGlv5pXOlpXxFC54iQBXk_6nd9N9wZ9vHrxr4Kv4d5wcjTSo4_jwx24v8h0wHy4l9CaTed-Fzbd99lFNX3V-MZvV8sKog
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6hBCF64I3qloeREDejbNb74oaSOkUNUQWtWnFZ7a53RdXKreIE9dif0N_IL2HHcUIjOFSImyXvWPbsjueb3ZlvAN7SPjWM2jLLqQxZzlmZSaNCJpkn3IngGGkKhcdiMpHHx2q_bQeEtTALfojVhhtaRvO_RgP3F2X408olZ6pN0cLF9j4Cym7OFMs70B1-KQ7Hv8skBWdLqm8kkVlP7Pnrs9a8VRcVf7kGRW8C2sYjFQ__67c8ggctME0_LlbSY7jjqyewcYOu8Cl82Gn4JqKbSj97U_28uq6_n4RZOjibI91CHJM2GQjpyMxrLM5M94Zx0MHU-2dwWOwcDHaztvdC5nJCaOZwo4NaokplkWFeSJMLaZWglvZ7JSuD8jY455l1ouzlJlgmiREq-NB3ktDn0KnOK78JaY_bHo8owjkX4aGVMcBSzCkfg02irA0JiKWOtWuJybE_xpleC1CERu1o1I5utKMvEyAryYsFOcctZN4107gSMNNTTG4TTB9NRvrbgO1S8ZXqowS2l_OsW7uudYyuJI8xXj-BN6u70SDxlMVU_nxe67i6IobKFScJ8GbSb_1uejAq8GrrXwVfw739YaHHnyZ723B_keiA6XAvoDObzv1LuOt-zE7q6avWNH4B0BcKHQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Mean%E2%80%90shift+Clustering+Using+Gaussian+KD%E2%80%90Tree&rft.jtitle=Computer+graphics+forum&rft.au=Xiao%2C+Chunxia&rft.au=Liu%2C+Meng&rft.date=2010-09-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=29&rft.issue=7&rft.spage=2065&rft.epage=2073&rft_id=info:doi/10.1111%2Fj.1467-8659.2010.01793.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1467_8659_2010_01793_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon